Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.11889/6714
DC FieldValueLanguage
dc.contributor.authorSaleh, Mohammaden_US
dc.contributor.authorAsad, Ayaen_US
dc.date.accessioned2021-03-15T06:38:53Z-
dc.date.available2021-03-15T06:38:53Z-
dc.date.issued2020-
dc.identifier.urihttp://hdl.handle.net/20.500.11889/6714-
dc.description.abstractIn this paper we will investigate the dynamical behavior of the following rational difference equation xn+1 = α +βxn +γxn−k A+Bxn +Cxn−k , n = 0,1,... (1) where the parameters α,β, γ and A, B, C and the initial conditions x−k ,...,x−1,x0 are non-negative real numbers, and the denominator is nonzero. Our concentration here, is on the global stability, the periodic character, the analysis of semi-cycles and the invariant intervals of the positive solution of the above equation. It is worth mentioning that our difference equation is the general case of the rational equation which is studied by Kulenovic and Ladas in their monograph ( Dynamics of Second Order Rational Difference Equation with Open Problems and Conjectures, 2002 ).en_US
dc.publisherJournal of Applied Nonlinear Dynamicsen_US
dc.subjectFixed pointen_US
dc.subjectStabilityen_US
dc.subjectPeriod-doublingen_US
dc.subjectSemi-cycle analysisen_US
dc.titleDynamics of Kth Order Rational Difference Equationen_US
dc.typeArticleen_US
newfileds.departmentScienceen_US
newfileds.item-access-typeopen_accessen_US
newfileds.thesis-prognoneen_US
newfileds.general-subjectnoneen_US
dc.identifier.doi10.5890/JAND.2021.03.008-
item.fulltextWith Fulltext-
item.grantfulltextopen-
Appears in Collections:Fulltext Publications
Files in This Item:
File Description SizeFormat
aya(1)-8-JAND-D-19-00081_proof.pdf738.04 kBAdobe PDFView/Open
Show simple item record

Page view(s)

5
checked on Jun 22, 2021

Download(s)

3
checked on Jun 22, 2021

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.