Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.11889/6379
DC FieldValueLanguage
dc.contributor.authorTumar, Iyaden_US
dc.contributor.authorHassouneh, Yousefen_US
dc.contributor.authorHamza, Turabiehen_US
dc.contributor.authorThaher, Thaeren_US
dc.date.accessioned2020-04-21T21:27:47Z-
dc.date.available2020-04-21T21:27:47Z-
dc.date.issued2020-01-01-
dc.identifier.urihttp://hdl.handle.net/20.500.11889/6379-
dc.descriptionArticle published in : IEEE Access, vol. 8, 2020, p. 8041-8055en_US
dc.description.abstractSoftware fault prediction (SFP) is a complex problem that meets developers in the software development life cycle. Collecting data from real software projects, either while the development life cycle or after lunch the product, is not a simple task, and the collected data may suffer from imbalance data distribution problem. In this research, we proposed an Enhanced Binary Moth Flame Optimization (EBMFO) with Adaptive synthetic sampling (ADASYN) to predict software faults. BMFO is employed as a wrapper feature selection, while ADASYN enhances the input dataset and address the imbalanced dataset. Converting MFO algorithm from a continues version to the binary version using transfer functions (TFs) from two different groups (S-shape and V-shape) is investigated in this work and proposed an EBFMFO version. Fifteen real projects data obtained from PROMISE repository are employed in this work. Three different classifiers are used: the k-nearest neighbors (k-NN), Decision Trees (DT), and Linear discriminant analysis (LDA). The reported results demonstrate that the proposed EBMFO enhances the overall performance of classifiers and outperforms the results in the literature and show the importance of TF for feature selection algorithms.en_US
dc.language.isoenen_US
dc.publisherIEEE Accessen_US
dc.relation.ispartofIEEE Accessen_US
dc.subjectComputer software - Verificationen_US
dc.subjectFeature Selectionen_US
dc.subjectAdaptive sampling (Statistics)en_US
dc.subjectAlgorithmsen_US
dc.subjectBinary moth flame optimizationen_US
dc.titleEnhanced binary moth flame optimization as a feature selection algorithm to predict software fault predictionen_US
dc.typeArticleen_US
newfileds.departmentEngineering and Technologyen_US
newfileds.item-access-typeopen_accessen_US
newfileds.thesis-prognoneen_US
newfileds.general-subjectComputers and Information Technology | الحاسوب وتكنولوجيا المعلوماتen_US
dc.identifier.doihttps://api.elsevier.com/content/abstract/scopus_id/85078288706-
dc.identifier.doihttps://api.elsevier.com/content/abstract/scopus_id/85078288706-
dc.identifier.doihttps://api.elsevier.com/content/abstract/scopus_id/85078288706-
dc.identifier.doi10.1109/ACCESS.2020.2964321-
dc.identifier.doihttps://api.elsevier.com/content/abstract/scopus_id/85078288706-
dc.identifier.doihttps://api.elsevier.com/content/abstract/scopus_id/85078288706-
dc.identifier.scopus2-s2.0-85078288706-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85078288706-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1other-
Appears in Collections:Fulltext Publications
Files in This Item:
File Description SizeFormat
08950456.pdf2.92 MBAdobe PDFView/Open
Show simple item record

Page view(s)

58
checked on Jun 22, 2021

Download(s)

153
checked on Jun 22, 2021

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.