Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.11889/5531
DC FieldValueLanguage
dc.contributor.advisorSayyed-Ahmad, Abdallah
dc.contributor.authorHawamdeh, Doa
dc.date.accessioned2018-05-07T05:49:07Z
dc.date.available2018-05-07T05:49:07Z
dc.date.issued2018
dc.identifier.urihttp://hdl.handle.net/20.500.11889/5531
dc.description.abstractGene therapy holds a promise in treating genetic diseases by directly delivering therapeutic DNA into living cells. Although viruses have been shown to be efficient delivery vectors, their toxicity has limited their general use. As an alternative, polyamidoamine (PAMAM) dendrimers are considered to be ideal candidates for synthetic vectors due to their unique intrinsic biophysical properties. At neutral pH, a PAMAM dendrimer is cationic and can effectively bind to negatively charged nucleic acid strands to form efficient transfection complexes. In this work, we carried out multiple Brownian dynamics simulations to investigate the physicochemical properties of DNA-PAMAM dendrimers complexes for different lengths of single- and double- stranded DNA complexed with various generations of PAMAM dendrimer. PAMAM dendrimer is represented by a positively charged sphere whereas a bead-spring model is used to model DNA strands. Our results indicate that the formation of DNA-dendrimer complexes is affected by the salt concentration. At low salt concentration (10- 100mM) a DNA chain wraps strongly around the dendrimer, whereas the stronger electrostatics screening effects at high salt concentration limit the wrapping of DNA chain around dendrimers. Furthermore, the morphologies of the aggregates depend on the interaction between DNA and PAMAM dendrimer as well as the PAMAM generation number. For example, G2 with dsDNA seems to have a rodlike structure while ssDNA with G4 trends to give a piece of toroid. Also the flexible dsDNA can form toroidal morphologies with G2 dendrimers while the aggregates of G2 dendrimers and the stiff dsDNA have rod-like structure.en_US
dc.language.isoenen_US
dc.subjectMolecular dynamics - Computer simulationen_US
dc.subjectDendrimers in medicineen_US
dc.subjectNanoparticles - Computer simulationen_US
dc.subjectNanomedicineen_US
dc.subjectGene therapy - Researchen_US
dc.subjectBrownian motion process - Computer simulationen_US
dc.subjectBiochemistry - Computer simulationen_US
dc.subjectDendrimers - Effect of salt onen_US
dc.titleBrownian dynamics simulations of DNA complexation with nano-cationic dendrimersen_US
dc.title.alternativeاستخدام محاكاة الحركة البراونية لدراسة تفاعل المادة الوراثية (DNA) مع مركبات النانو كاتيونيك ديندريمرزen_US
dc.typeThesisen_US
newfileds.departmentGraduate Studiesen_US
newfileds.item-access-typeopen_accessen_US
newfileds.thesis-progPhysicsen_US
newfileds.general-subjectnoneen_US
item.fulltextWith Fulltext-
item.languageiso639-1other-
item.grantfulltextopen-
Appears in Collections:Theses
Files in This Item:
File Description SizeFormat
Doa-Thesis-Final-10-2.pdf3.02 MBAdobe PDFView/Open
Show simple item record

Page view(s)

87
Last Week
0
Last month
4
checked on Apr 14, 2024

Download(s)

44
checked on Apr 14, 2024

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.