Please use this identifier to cite or link to this item: `http://hdl.handle.net/20.500.11889/5527`
DC FieldValueLanguage
dc.date.accessioned2018-05-07T05:36:02Z
dc.date.available2018-05-07T05:36:02Z
dc.date.issued2017
dc.identifier.urihttp://hdl.handle.net/20.500.11889/5527
dc.description.abstractThe main goal of this thesis is to study the bifurcation of second and third order rational difference equations. We consider the sufficient conditions for the existence of the bifurcation. We study the second order rational difference equation xn+1 = α + βxn−1 A + Bxn + Cxn−1 , n = 0, 1, 2, . . . with positive parameters α, β, A, B, C and non-negative initial conditions {x−k, x−k+1, . . . , x0}. We study the dynamic behavior and the direction of the bifurcation of the periodtwo cycle. Then, we give numerical discussion with figures to support our results. Also we study the third order rational difference equation xn+1 = α + βxn−2 A + Bxn + Cxn−2 , n = 0, 1, 2, . . . with positive parameters α, β, A, B, C and non-negative initial conditions {x−k, x−k+1, . . . , x0}. We study the dynamic behavior and the direction of the Neimark-Sacker bifurcation. Then, we give numerical discussion with figures to support our results.en_US
dc.language.isoen_USen_US
dc.subjectBifurcation theoryen_US
dc.subjectDifferentiable dynamical systemsen_US
dc.subjectDiffierential equations - Numerical solutionsen_US
dc.titleDynamics and bifurcation of xn+1=α+βxn−kA+Bxn+Cxn−k,k= 1,2en_US
dc.typeThesisen_US
newfileds.item-access-typeopen_accessen_US
newfileds.thesis-progMathematicsen_US
newfileds.general-subjectnoneen_US
item.grantfulltextopen-
item.fulltextWith Fulltext-
item.languageiso639-1other-
Appears in Collections:Theses
###### Files in This Item:
File Description SizeFormat

#### Page view(s)

144
Last Week
0
Last month
3
checked on Aug 12, 2024