Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.11889/4098
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAbdulrahman, Basant A.
dc.contributor.authorAbu Khweek, Arwa
dc.contributor.authorAkhter, Anwari
dc.contributor.authorCaution, Kyle
dc.contributor.authorKotrange, Sheetal
dc.contributor.authorAbdelaziz, Dalia H. A.
dc.contributor.authorNewland, Christie
dc.contributor.authorRosales-Reyes, Roberto
dc.contributor.authorKopp, Benjamin
dc.contributor.authorMcCoy, Karen
dc.contributor.authorMontione, Richard
dc.contributor.authorSchlesinger, Larry S.
dc.contributor.authorGavrilin, Mikhail A.
dc.contributor.authorWewers, Mark D.
dc.contributor.authorValvano, Miguel A.
dc.contributor.authorAmer, Amal O.
dc.date.accessioned2017-01-12T09:06:42Z
dc.date.available2017-01-12T09:06:42Z
dc.date.issued2011-11-01
dc.identifier.citationBasant A. Abdulrahman, Arwa Abu Khweek, Anwari Akhter, Kyle Caution, Sheetal Kotrange, Dalia H.A. Abdelaziz, Christie Newland, Roberto Rosales-Reyes, Benjamin Kopp, Karen McCoy, Richard Montione, Larry S. Schlesinger, Mikhail A. Gavrilin, Mark D. Wewers, Miguel A. Valvano & Amal O. Amer (2011) Autophagy stimulation by rapamycin suppresses lung inflammation and infection by Burkholderia cenocepacia in a model of cystic fibrosis, Autophagy, 7:11, 1359-1370, DOI: 10.4161/auto.7.11.17660
dc.identifier.urihttp://hdl.handle.net/20.500.11889/4098
dc.descriptionAuthors include Basant A. Abdulrahman,Anwari Akhter, Kyle Caution, Sheetal Kotrange, Dalia H.A. Abdelaziz, Christie Newland, Roberto Rosales- Reyes, Benjamin Kopp, Karen McCoy, Richard Montione, Larry S. Schlesinger, Mikhail A. Gavrilin, Mark D. Wewers, Miguel A. Valvano & Amal O. Ameren_US
dc.description.abstractCystic fibrosis (CF) is the most common inherited lethal disease of Caucasians which results in multi organ dysfunction. However, 85% of the deaths are due to pulmonary infections. Infection by Burkholderia cenocepacia (B. cepacia) is a particularly lethal threat to CF patients because it causes severe and persistent lung inflammation and is resistant to nearly all available antibiotics. In CFTR ΔF508 mouse macrophages, B. cepacia persists in vacuoles that do not fuse with the lysosomes and mediates increased production of IL-1β. It is believed that intracellular bacterial survival contributes to the persistence of the bacterium. Here we show for the first time that in wild-type macrophages, many B. cepacia reside in autophagosomes that fuse with lysosomes at later stages of infection. Accordingly, association and intracellular survival of B. cepacia are higher in CFTR-ΔF508 (ΔF508) macrophages than in WT macrophages. An autophagosome is a compartment that engulfs non-functional organelles and parts of the cytoplasm then delivers them to the lysosome for degradation to produce nutrients during periods of starvation or stress. Furthermore, we show that B. cepacia down-regulates autophagy genes in WT and ΔF508 macrophages.However, downregualtion is more pronounced in ΔF508 macrophages since they already have compromised autophagy activity. We demonstrate that the autophagy-stimulating agent, Rapamycin markedly decreases B. cepacia infection in vitro by enhancing the clearance of B. cepacia via induced autophagy. In vivo, Rapamycin decreases bacterial burden in the lungs of CF mice and drastically reduces signs of lung inflammation. Together, our studies reveal that if efficiently activated, autophagy can control B. cepacia infection and ameliorate the associated inflammation. Therefore, autophagy is a novel target for new drug development for CF patients to control B. cepacia infection and accompanying inflammation.en_US
dc.language.isoen_USen_US
dc.subjectPneumonia - Preventionen_US
dc.subjectRapamycin - Pathophysiologyen_US
dc.subjectCystic fibrosis - Pathophysiologyen_US
dc.subjectPhagocytosisen_US
dc.titleAutophagy stimulation by rapamycin suppresses lung inflammation and infection by Burkholderia cenocepacia in a model of cystic fibrosisen_US
dc.typeArticleen_US
newfileds.departmentScienceen_US
newfileds.item-access-typeopen_accessen_US
newfileds.thesis-prognoneen_US
newfileds.general-subjectnoneen_US
Appears in Collections:Fulltext Publications



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.