Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.11889/4022
DC FieldValueLanguage
dc.contributor.authorSaleh, Mohammad
dc.contributor.authorFarahat, A.
dc.date.accessioned2017-01-04T10:07:49Z
dc.date.available2017-01-04T10:07:49Z
dc.date.issued2017
dc.identifier.urihttp://hdl.handle.net/20.500.11889/4022
dc.description.abstractIn this paper, we investigate the local and global stability and the period two solutions of all nonnegative solutions of the difference equation, xn+1 = axn + bxn−k A + Bxn−k where a, b, A, B are all positive real numbers, k ≥ 1 is a positive integer, and the initial conditions x−k , x−k+1, ..., x0 are nonnegative real numbers. It is shown that the zero equilibrium point is globally asymptotically stable under the condition a+b ≤ A, and the unique positive solution is also globally asymptotically stable under the condition a − b ≤ A ≤ a + b. By the end, we study the global stability of such an equation through numerically solved examples.en_US
dc.language.isoenen_US
dc.publisherJ. Appl. Math. Comput.en_US
dc.subjectDifferential equations, Nonlinearen_US
dc.subjectFluid dynamics - Mathematical modelsen_US
dc.titleGlobal asymptotic stability of the higher order equation x_ {n+ 1}=\ frac {ax_ {n}+ bx_ {nk}}{A+ Bx_ {nk}}en_US
dc.typeArticleen_US
newfileds.departmentScienceen_US
newfileds.item-access-typeopen_accessen_US
newfileds.thesis-prognoneen_US
newfileds.general-subjectnoneen_US
item.grantfulltextopen-
item.languageiso639-1other-
item.fulltextWith Fulltext-
Appears in Collections:Fulltext Publications
Files in This Item:
File Description SizeFormat
art_10.1007_s12190-016-1029-4-aseel-spring.pdf427.03 kBAdobe PDFView/Open
Show simple item record

Page view(s)

2
Last Week
0
Last month
2
checked on Dec 7, 2019

Download(s)

1
checked on Dec 7, 2019

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.