Please use this identifier to cite or link to this item:
Title: Human and computer recognition of regional accents and ethnic groups from British English speech
Authors: Hanani, Abualsoud
Russell, Martin
Carey, Michael
Issue Date: 2013
Publisher: ELSVIER ScienceDirect
Abstract: The paralinguistic information in a speech signal includes clues to the geographical and social background of the speaker. This paper is concerned with automatic extraction of this information from a short segment of speech. A state-of-the-art language identification (LID) system is applied to the problems of regional accent recognition for British English, and ethnic group recognition within a particular accent. We compare the results with human performance and, for accent recognition, the ‘text dependent’ ACCDIST accent recognition measure. For the 14 regional accents of British English in the ABI-1 corpus (good quality read speech), our LID system achieves a recognition accuracy of 89.6%, compared with 95.18% for our best ACCDIST-based system and 58.24% for human listeners. The “Voices across Birmingham” corpus contains significant amounts of telephone conversational speech for the two largest ethnic groups in the city of Birmingham (UK), namely the ‘Asian’ and ‘White’ communities. Our LID system distinguishes between these two groups with an accuracy of 96.51% compared with 90.24% for human listeners. Although direct comparison is difficult, it seems that our LID system performs much better on the standard 12 class NIST 2003 Language Recognition Evaluation task or the two class ethnic group recognition task than on the 14 class regional accent recognition task. We conclude that automatic accent recognition is a challenging task for speech technology, and speculate that the use of natural conversational speech may be advantageous for these types of paralinguistic task
Appears in Collections:Fulltext Publications

Files in This Item:
File Description SizeFormat
9380.pdf436.85 kBAdobe PDFView/Open
Show full item record

Page view(s)

Last Week
Last month
checked on Jun 27, 2024


checked on Jun 27, 2024

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.