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Abstract
This paper investigates the potential use of the International Roughness Index (IRI) in generating optimal rehabilitation

plans at the network-level. The IRI data used in the study was obtained using the portable vehicle-mounted IRIMETER-2

profilometer, which is a product of Englo LLC, Tallinn, Estonia. An optimum rehabilitation model is proposed to minimize

the average IRI value at the network-level subject to variable and budget constraints. The model mainly focuses on using

major rehabilitation strategies that can produce a major improvement in pavement condition. An alternate maximization

model that can use other pavement condition indicators, such as the present serviceability index (PSI) and pavement

condition index (PCI), is also presented. The PSI and PCI can be estimated from the IRI using correlation models. The

proposed optimum models are linear in form and can easily be solved using the proposed cost-effectiveness ratio. The

sample results presented for a 27.1-km suburban highway indicate the reliability of using the IRI data to generate optimal

rehabilitation plans. A statistical uncertainty analysis of IRI measurements produced a mild impact on optimal solutions

derived using ten independent IRI tests and 99% confidence level. The uncertainty analysis has also indicated that the use

of a single IRI test provides results that are statistically indifferent from those obtained using ten IRI tests.

Keywords Roadway roughness � Pavement rehabilitation � Pavement management � Optimization � Uncertainty analysis

1 Introduction

The main purpose of pavement management is to yield an

optimal maintenance and rehabilitation (M&R) plan at the

network-level. It generally requires optimizing the pave-

ment condition while taking into account available

resources, especially financial ones. Therefore, the pave-

ment management problem is mainly an optimization

problem that needs to be formulated using a specified

decision-making policy subject to certain constraints. The

optimization problem can be solved for a single time-

horizon typically taken as one year, or an analysis period

comprised of multiple time horizons, such as five years or

more. A single time-horizon only requires present

pavement performance data, whereas multiple time-hori-

zons require future pavement performance data for the

specified analysis period. The latter case requires using a

prediction model to generate future pavement performance

data so that the optimization problem can be solved for

each time horizon within the analysis period, thus resulting

in what is known as a long-term M&R schedule [1, 2].

Several types of deterministic and probabilistic prediction

models have been used in pavement management such as

regression-based, Bayesian, Markov chain, and Artificial

Neural Network (ANN) models [3–8].

Therefore, it is clear that reliable pavement performance

data is the key requirement for yielding an effective M&R

plan regardless of any proposed decision-making policy.

Pavement performance or serviceability has typically been

measured using either visual inspection or expensive

instruments operated by well-trained staff such as the

profilograph for pavement longitudinal roughness and

falling weight deflectometer (FWD) for surface deflection

measurements [9, 10]. While visual inspection is much less

costly, it can involve significant variations in performance
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measurements due to subjectivity. Also, visual inspection

is time-consuming and associated with safety risks. Recent

approaches to measuring pavement performance have

focused on using automatic rather than manual data col-

lection because it requires substantially less time and cost,

and it is hazard-free and subjectivity-free [11, 12]. The

outcome of pavement performance assessment is typically

converted into a single pavement performance indicator,

such as the present serviceability index (PSI), the pavement

condition index (PCI), or the international roughness index

(IRI). These sample performance indices have been

extensively used in several pavement management appli-

cations [13–16].

A typical M&R plan can involve routine maintenance,

such as crack sealing, pothole patching, and surface treat-

ments such as sand and slurry seals. However, these routine

maintenance treatments cannot significantly extend the

pavement service life, nor can they cause major improve-

ment in the present pavement condition [17, 18]. However,

major rehabilitation actions, such as plain overlay, cold

milling and overlay, and reconstruction can produce a

major uplift in the pavement structural capacity, thus

substantially extending the pavement service life. Conse-

quently, most pavement management models have

attempted to optimize pavement conditions at the network-

level by mainly incorporating major rehabilitation strate-

gies similar to the ones mentioned earlier [19–22].

The use of the IRI in the proposed rehabilitation model

at the network-level can be particularly beneficial for

planning purposes. However, once projects are selected for

implementation, then a structural-based assessment can be

performed at the project-level to specify the appropriate

rehabilitation strategy (i.e., overlay/reconstruction/etc.).

Structural-based assessment may involve deflection tests,

Marshall tests, bearing capacity tests, etc. depending on

local affordability. Nevertheless, highway agencies with

limited resources may not be able to afford expensive

material testing, and they typically rely on ‘‘prescription’’

procedures developed based on experience and engineering

judgment. Alternatively, the PCI can be used in lieu of the

IRI since it mostly accounts for the pavement’s structural

integrity. The PCI can be field-estimated based on the

assessment of pavement distress or obtained from the IRI

measurements using correlation models as later presented.

The use of IRI data in developing an optimal rehabili-

tation plan is suitable for developing countries because the

instruments and methods used for collecting IRI data are

cost-effective. Generally, developing countries, especially

those with limited financial resources, cannot afford to

purchase and operate sophisticated instruments for IRI

measurements. The purchase cost of the instrument used in

this study is affordable (about 15,000 USD). The device is

a portable one that can be easily installed and operated

using an automobile. The device can be operated at a wide

range of speeds (20–100 km/hr), making it appropriate to

cover a road network with different speed limits. There-

fore, the operation time and cost associated with IRI col-

lection for a road network is reasonably low. Also, the

proposed optimum pavement rehabilitation model using

IRI data does not require advanced technical expertise to

formulate and solve.

The key research objective of this paper is to investigate

the potential use of IRI data in generating an optimum

rehabilitation plan at the network-level. The IRI was pro-

posed by the World Bank as an international standard

statistic to quantify pavement performance used in pave-

ment management applications [23]. It is a measure of the

longitudinal profile roughness defined in relation to the

cumulative suspension motion associated with a moving

vehicle over a traveled distance [9]. Therefore, it essen-

tially describes the vehicle vibrations caused by the profile

roughness expressed in the unit of (m/km). Traditional

methods for measuring the IRI rely on expensive instru-

mentation and require well-trained professionals, thus

limiting the use of these instruments at the network-level.

Furthermore, the associated testing procedure is time-

consuming and labor-intensive. In contrast, modern

portable instruments for measuring the IRI mainly rely on

using sensors to quantify vehicle vibrations so that higher

vehicle vibrations will result in higher IRI values [23].

Generally, two approaches, direct and indirect, have

been reported in the literature for measuring the longitu-

dinal profile roughness in order to represent the IRI

[24, 25]. The direct approach requires conducting roadway

longitudinal surveys using rod and level or advanced laser-

type profilometers. The indirect approach mainly deploys

response-type roughness meters that calculate the total

simulated vehicle suspension motion to be divided by the

traveled distance to yield the average suspension motion

per unit length. The vehicle-simulated suspension is typi-

cally computed using a mathematical quarter-car vehicle

model [23]. The indirect approach is commonly used

worldwide because of its effectiveness in terms of saving

time and money and is considered hazard-free. Several

portable IRI measuring devices have been developed uti-

lizing the indirect approach. The IRIMETER-2 used in this

study is one example.

There are five main objectives associated with this

research paper as follows:

1. Applying IRIMETER-2 profilometer to obtain IRI

measurements at the network-level.

2. Searching the literature for sample correlation models

that can be used to estimate the PSI and PCI from IRI.

3. Proposing an optimum rehabilitation model that seeks

to optimize the pavement condition at the network-
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level with IRI measurements being the main data

requirement.

4. Proposing a similar optimum rehabilitation model that

can make use of other pavement condition indicators

such as the PSI and PCI. The focus is mainly on

optimal solutions for a single time-horizon.

5. Investigating the uncertainty impact of IRI measure-

ments on the optimal solutions obtained using the three

outlined pavement condition indicators (i.e., IRI/PSI/

PCI). Also, investigating the uncertainty impact of the

sample size as related to the number of required IRI

tests.

Figure 1 provides a flowchart that presents the main

objectives associated with this research along with their

logical sequence.

2 Literature Review of IRI Research

The IRI is a universal standard for pavement roughness

measurement and it has become the most widely used road

condition indicator. Múčka [26] summarizes the IRI limit

values for different pavement types including new and

rehabilitated/reconstructed pavements. Limit values are

found to be a function of road surface type, road functional

category, road speed limit, road construction type, or

average annual daily traffic (AADT). Several IRI-related

studies can be found in the literature with an emphasis on

improving the methods used to estimate the IRI. For

example, Sidess et al. [27] proposed a model to predict the

deterioration of the IRI over time. The model is a function

of pavement structural parameters such as structural num-

ber, asphalt layer thickness, subgrade strength, and envi-

ronmental conditions. The approach used in model

development is based on a combination of empirical-

mechanistic and regressive-empirical.

Moreover, Šroubek et al. [28] proposed and derived a

new numerical method for IRI computation. The method

does not use iterative approximation as originally proposed

by Sayer’s method [23]. This makes the new method much

faster especially for road data that is not uniformly sam-

pled. Mirtabar et al. [29] proposed a new vibration-based

approach to estimate the IRI. The new method uses a low-

cost three-axis Micro-Electro-Mechanical Systems

accelerometer and a Global Positioning System sensor. The

pavement profile is obtained by double integration of z-axis

acceleration data with the IRI being computed using pro-

cess valves and automation system software. Abdelaziz

et al. [30] proposed an IRI prediction model for flexible

pavement using multiple-linear regression and artificial

neural networks (ANNs). The model predicts the IRI as a

function of pavement age, initial IRI value, transverse

cracks, alligator cracks, and rut depth standard devia-

tion. Pérez-Acebo et al. [31] used the Markov chain to

predict the future IRI values for flexible pavement based on

IRI measurements collected twice a year. Consequently,

relevant transition probability matrices were developed

using a half-year cycle length.

The main objective of this paper is to use IRI data in a

simple pavement management model capable of yielding

optimal solutions at the network-level. The proposed model

is linear in form and can be easily solved by pavement

engineers. The other similar studies generally proposed

sophisticated models that are more data-demanding and

require solutions using advanced optimization methods. A

sample of these advanced methods, which mainly focuses

on using the IRI in relevant pavement management appli-

cations, is summarized below.

Khattak et al. [32] used IRI data to develop predictive

models for HMA overlay treatment of flexible and com-

posite pavements. The predictive models are useful in

support of cost-effective selection of pavement treatment

type and timing. Loprencipe et al. [33] applied IRI data to

develop a sustainable pavement management system that

accounts for vehicle operating costs. The system provides

highway managers with a tool to compare alternative

maintenance strategies and perform priority analysis at the

network-level. Saha and Ksaibati [34] developed a risk-

based optimization methodology for pavement manage-

ment of county paved roads. The proposed methodology

can identify the best mix of keeping projects within budget,

maximizing traffic on treated roads, maximizing the
Fig. 1 Definition and logical sequence of the five main research

objectives
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weighted PSI/IRI average, and minimizing risk. Janani

et al. [35] proposed a novel method to prioritize pavement

sections for maintenance and rehabilitation actions using

only functional performance indicators, such as the IRI.

The proposed method allows pavement engineers to con-

siderably reduce the frequency of expensive, time-con-

suming, and traffic-disruptive tests for obtaining the

structural characteristics of pavements. In addition, several

international highway agencies have used the IRI as a key

pavement performance indicator in their pavement man-

agement systems [36–38].

3 IRIMETER-2 Setup and Specifications

The IRIMETER-2 is a vehicle-mounted device for road

roughness measurements. It is a product of Englo LLC,

Tallinn, Estonia. The device is designed to compute the IRI

for a 5-m roadway lane length. The main device compo-

nents are a control unit with a graphic LCD display, two

wireless inertial sensors, and a roof magnet-mounted GPS

antenna. The two wireless sensors are to be installed on the

vehicle’s front axle, one next to each wheel. Each sensor

can detect and record the vehicle suspension motion, which

is then converted into an IRI value. The two IRI values

from the two sensors are averaged out to give a single IRI

value for each 5-m lane length. The sensors are wirelessly

connected to the rest of the system. Figure 2 shows pictures

of the device’s three main components. The GPS unit is an

important feature as it allows assigning the IRI measure-

ments to their specific locations with outcomes displayed

on actual maps of the road network.

The IRIMETER-2 system can be easily mounted on any

passenger car; preferably, if its suspension system is at

least in fair condition. It can be operated on both paved and

unpaved roads under all weather conditions provided the

vehicle speed is in the range of 20–100 km/hr. This wide

speed range allows the operator to select the speed that is

consistent with the road speed limit; however, it is rec-

ommended to maintain approximately the same speed for a

given roadway. The IRIMETER-2 operating system is

designed to store IRI measurements for up to 15,000 lane-

kilometer. The stored data can be downloaded to a com-

puter via a USB connection. The system software allows

the user to manipulate and analyze the IRI data with results

displayed using graphs, tables, and maps. Figure 3 shows

sample IRI display formats. The IRIMETER-2 system is

very portable with only a 2 kg total weight. It provides IRI

measurements with 0.1 resolution.

The IRIMETER-2 has a reasonable purchase price of

about 15,000 USD, which makes it affordable especially

for developing countries with limited financial resources.

The operating cost is also minimal as it only requires a

passenger car with a driver and a professional staff,

preferably an engineer or technician who can operate the

IRIMETER-2 software to retrieve and analyze the IRI data.

Birzeit University, Birzeit, Palestine, has recently acquired

an IRIMETER-2 device to be mainly used in research

activities. One main research objective is to investigate the

feasibility of using IRI measurements in developing reli-

able optimal rehabilitation plans at the network-level.

Therefore, sample IRI data for a 27.1 km major suburban

highway is presented and used to yield optimal solutions

via an optimization model. The proposed optimization

model is capable of either minimizing the network average

IRI value or maximizing the network average PSI/PCI

value as outlined next.

4 Methodology

The methodology section has two parts. The first presents

the optimum rehabilitation models proposed to yield opti-

mal solutions at the network-level using major rehabilita-

tion actions with pavement performance defined using

either IRI, PSI, or PCI. The proposed models are designed

to generate optimal solutions for a single time horizon as

would typically be the case in developing countries such as

Palestine. The second section presents sample correlation

models amongst the three outlined condition indicators,

namely IRI, PSI, and PCI. This allows a developing

country interested in using PSI/PCI to still use the proposed

relevant optimum model.

4.1 Optimum Rehabilitation Model

The optimum decision-making policy for the development

of an optimal rehabilitation plan is generally based on

optimizing the network pavement condition. This can be

achieved by minimizing the average IRI value associated

with a particular pavement network. The IRIMETER-2

device used in this study estimates the IRI value for con-

secutive pavement sections with a 5-m lane length. The

software associated with the device can provide a summary

of the IRI results using different IRI ranges as specified by

the user. As part of the result summary, the number of 5-m

pavement sections within each IRI range (i.e., class) can be

obtained (Ni;jÞ for the ith class and jth test. The average

number of pavement sections in the ith class (Ni) is com-

puted from the section numbers (Ni;j) obtained using (n)

tests as indicated by Eq. (1). Each pavement section rep-

resents one IRI measurement point corresponding to a 5-m

lane length.

Ni ¼
Pn

j¼1 Ni;j

n
ð1Þ
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Similarly, the average IRI value of the ith class (IRIiÞ is
calculated as the arithmetic average of the corresponding

IRI averages (IRIi;jÞ associated with the jth test for a

specific highway network as defined in Eq. (2).

IRIi ¼
Pn

j¼1 IRIi;j

n
ð2Þ

The average IRI value associated with a particular

pavement network (IRInet) can be determined using

Eq. (3). It is computed as a weighted average based on the

average section numbers (Ni) and average IRI values (IRIiÞ
associated with (m) IRI classes, and a total number of

pavement sections associated with a particular pavement

network (NT).

Fig. 2 Main IRIMETER-2 components
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IRInet ¼
1

NT

Xm

i¼1

Ni � IRIi; where : NT ¼
Xm

i¼1

Ni ð3Þ

The proposed optimum rehabilitation model requires that

a potential major rehabilitation strategy be specified for

pavement sections in each pavement class. It also requires

defining the improvement expected to be gained by each

pavement class (DIRIi) in terms of the IRI value. This gain is

defined as the difference between the class average IRI value

(IRIiÞ and the class average IRI value expected after major

rehabilitation (IRIoÞ;which is assumed to be the same for all

classes. The class IRI gains are to be multiplied by the cor-

responding class numbers of pavement sections to be reha-

bilitated (NiÞ to yield the network average IRI value after

major rehabilitation as presented in Eq. (4). The net gain in

pavement condition improvement as a result of major reha-

bilitation is presented as a deduct term in Eq. (4). Therefore,

Eq. (4) will yield a lower network average IRI value for a

specific major rehabilitation strategy. According to Eq. (4),

it is assumed that all pavement classes can receive major

rehabilitation with the exception of class number 1 (i.e., the

class with the best pavement condition). Typically, lower IRI

values indicate better pavement conditions.

IRInet ¼
1

NT

Xm

i¼1

Ni � IRIi �
Xm

i¼2

Ni � DIRIi

" #

ð4Þ

It is also popular to use other pavement condition

indicators, such as the present serviceability index (PSI)

and pavement condition index (PCI). However, the values

of these condition indices increase with the application of

pavement major rehabilitation. Therefore, the net gain in

pavement condition improvement as a result of major

rehabilitation is a positive one as indicated by Eq. (5).

Equation (5) is similar to Eq. (4) but uses PSI as the

pavement condition indicator. Equation (5) will yield a

larger network average PSI value (PSInet) compared to the

original case without any major rehabilitation.

PSInet ¼
1

NT

Xm

i¼1

Ni � PSIi þ
Xm

i¼2

Ni � DPSIi

" #

ð5Þ

In the search for an optimal rehabilitation plan, the

numbers of pavement sections to be rehabilitated (NiÞ in

the various applicable pavement classes are considered as

the variables to be optimized subject to budget and variable

lower and upper-limit constraints. Equation (6) represents

the objective function to be minimized when using the IRI

as the pavement condition indicator.

Minimize : IRInet ¼
1

NT

Xm

i¼1

Ni � IRIi �
Xm

i¼2

Ni � DIRIi

" #

;

ð6Þ
Fig. 3 IRI data display formats
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where : DIRIi ¼ IRIi � IRIo

However, in the case of using the PSI as the pavement

condition indicator, the goal is to maximize the pavement

network average PSI value as defined in Eq. (7). Both

Eqs. (6) and (7) represent linear models with (m–1) vari-

ables, namely the (NiÞ variables. The solution for a linear

optimization problem can be readily obtained using com-

mercially available software packages.

Maximize : PSInet

¼ 1

NT

Xm

i¼1

Ni � PSIi þ
Xm

i¼2

Ni � DPSIi

" #

; ð7Þ

where: DPSIi ¼ PSIi � PSIo
Both linear models presented in Eqs. (6) and (7) are

subject to the following constraints:

1) RC ¼ 5W
Pm

i¼2ðUCi � NiÞ�AB

2) Ni � 0

3) Ni �Ni

The first constraint is the budget constraint, which

requires that the major rehabilitation cost (RC) associated

with a particular rehabilitation plan must be less than or

equal to the allocated budget (AB). The RC is computed

from the product sum of multiplying the rehabilitation cost

units (UCiinUSD=m
2) by the corresponding number of

pavement sections to be rehabilitated (Ni). This product

sum is then multiplied by the travel lane width (W) in

meters and pavement section length (i.e., 5 m). The second

constraint is the variable non-negativity one. The third one

enforces the variable upper-limit value as defined by the

class average number of pavement sections (NiÞ.

4.2 Sample IRI/PSI/PCI Correlation Models

The IRI as a pavement condition indicator mainly consid-

ers pavement surface roughness in the longitudinal direc-

tion, thus representing a measure of the pavement

functional performance that greatly affects passenger dis-

comfort. On the other hand, the PSI accounts partially for

pavement structural performance as it considers both

cracking and patching, although its value is largely con-

trolled by pavement surface roughness [24]. On the con-

trary, the PCI value is largely controlled by structural

defects, such as different types of cracking both load and

non-load-related. Therefore, the PCI is mainly a measure of

the pavement structural capacity, which is a key indicator

of pavement load-carrying capability. Generally, all three

previously outlined pavement condition indicators have

been used in pavement rehabilitation and management

applications [13–16]. However, the main advantage of

using the IRI is that the associated testing procedure is cost

and time-effective, efficient, and safe.

Some researchers have developed correlation models to

estimate one pavement condition indicator from the other

ones. For example, Paterson [14] developed the predictive

exponential model presented in Eq. (8), which can be used

to estimate the PSI from the IRI (m/km) for flexible

pavement structures. Another similar model was developed

by Al-Omari and Darter [39] as presented in Eq. (9).

PSI ¼ 5e�0:18IRI ð8Þ

PSI ¼ 5e�0:24IRI ð9Þ

The PCI can be typically estimated for a particular

pavement section using the procedure outlined by ASTM

[40]. The relevant procedure requires assessing the extent

and severity of a large number of pavement defects, with

the result being a total deduct value that has to be sub-

tracted from the perfect score of 100. The test procedure is

time-consuming and is considered somewhat subjective.

Similar to PSI, Park et al. [9] developed a power regression

model as defined in Eq. (10) to estimate the PCI value from

the corresponding IRI (m/km) for a particular pavement

section. However, according to Eq. (10), the maximum

value for PCI is only about 87.1, which might be somewhat

restrictive. Also, Dewan and Smith [41] proposed a linear

model to estimate the IRI from the PCI as presented in

Eq. (11). However, this linear model resulted in a 0.53 R-

square value.

PCI ¼ 87:098IRI�0:481 ð10Þ
IRI ¼ 0:0171 153�PCIð Þ ð11Þ

Another model to estimate the PCI from the IRI was

proposed by Park et al. [9], which also takes on a power

form but is transformed into a linear logarithmic model as

defined in Eq. (12). A boundary condition was set in

developing this model by requiring a minimum IRI value

of 0.727 to yield a maximum PCI value of 100. This

required the zero intercept to be set at 2. Therefore, this

model can yield PCI values up to 100; however, the model

needs calibration using observed PCI and IRI values to

estimate the K2 coefficient, which should have a negative

value so that the PCI value remains less than 100. The PCI

can replace the PSI in Eq. (7) if so preferred.

logPCI ¼ 2þ K2log
IRI

0:727

� �

;where : IRI � 0:727

ð12Þ

Furthermore, Fuentes et al. [10] proposed a linear model

to estimate the PSI as a function of both IRI and PCI as

defined in Eq. (13). This model provides a logical inverse

relationship between PSI and IRI and a direct relationship

between PSI and PCI as one would expect. The earlier PSI

International Journal of Civil Engineering

123



predictive models developed from the AASHO road test

gave much higher weight to roadway roughness compared

to cracking and patching; however, these pavement defects

inversely influenced the PSI estimation [42].

PSI ¼ 4:22� 0:24IRI þ 0:013PCI ð13Þ

Recently, several other researchers have investigated the

relationship between PCI and IRI. For example, Elhadidy

et al. [43] used distress data from the LTPP database to

develop a simplified model to estimate the PCI from the

IRI. A sigmoid function was found to be effective in pre-

dicting PCI from IRI at a very high coefficient of deter-

mination (R2 = 0.995). In another study, Adeli et al. [44]

presented three linear models to estimate the PCI from the

IRI using different IRI ranges with R2 ranging from 0.59 to

0.76. Other researchers attempted to develop correlation

models between the IRI as a functional indicator and

structural indicators, namely deflection-based parameters

(DBPs) [45]. Relevant sample data extracted from the

LTPP was used to develop correlation models for two

pavement structures (A and B) with 0.71 and 0.65 R-square

values, respectively.

In general, it is recommended that correlation models

similar to the previously outlined ones be developed based

on local traffic conditions and material characteristics.

Once these models are developed, a highway agency can

have the choice of using any one of the three outlined

pavement condition indicators (i.e., IRI, PSI, PCI) in

developing an optimal rehabilitation plan as proposed in

this paper.

The main objective of this research paper is to use IRI

data in developing optimal rehabilitation strategies at the

network-level [46]. Moreover, other pavement condition

indicators, such as the PSI and PCI, can be used if so

preferred. While both PSI and PCI can be field estimated

using published procedures [40, 42], they can also be

obtained from IRI measurements using already published

correlation models. The PSI as defined in the original

AASHTO model is a function of pavement roughness,

cracking, and patching [42]. However, cracking and

patching only contributed about 5% to the model correla-

tion coefficient [24]. Therefore, potential predictive models

have only used the IRI to estimate the PSI [14, 39].

5 Sample Presentation

The sample presentation section includes three subsections,

namely IRI measurements obtained using IRIMETER-2,

developing sample optimal rehabilitation plans using

optimum models presented in Eqs. (6) and (7), and

uncertainty analysis to investigate the impact of variation

in the IRI measurements on optimal solutions obtained

using ten independent IRI tests.

5.1 IRI Measurements via IRIMETER-2

The IRIMETER-2 device was used to evaluate the present

pavement roughness of a two-lane suburban highway

located in the district of Ramallah, Palestine. Figure 4

provides a location map for the highway under investiga-

tion. The highway has a total length of 27.1 km. It has a

flexible pavement structure with a 12-cm asphalt concrete

surface. The pavement longitudinal roughness was tested

ten times (n) in each highway direction using the IRI-

METER-2 device. Each test was run by driving the vehicle

within the two visible wheel tracks so that the impact of

vehicle lateral wandering on roughness measurements

could be minimized. The IRIMETER-2 device measures

the IRI value for pavement sections with a 5-m lane length.

The IRI results obtained for the ten tests are summarized

using six different pavement classes as provided in

Tables 1 and 2 for both the forward and backward highway

directions, respectively. The tables provide the numbers of

5-m pavement sections (i.e., measurement points), Ni,j,

associated with the 6 pavement classes considering each

IRI test.

It can be noticed that there are some variations in the

number of measurement points (Ni,j) associated with the

ten tests when considering the same pavement class, which

can be mainly attributed to vehicle lateral wandering. The

average number of measurement points (Ni) associated

with each pavement class is provided at the bottom of

Tables 1 and 2. There are some variations in the average

number of measurement points (Ni) as relevant to both

highway directions, which can be expected. However, the

overall assessment is that both highway directions are in a

state of similar longitudinal roughness as indicated by the

class percentages provided at the bottom of the tables.

Table 3 provides a summary of statistics associated with

both highway directions combined. It includes the total

number of measurement points (Ni) to be used in devel-

oping the optimal rehabilitation plan as outlined earlier. It

also provides the class average IRI value (IRIi) computed

as the arithmetic average of all IRI values associated with

the total number of measurement points (Ni). The standard

deviation (Si) associated with all IRI values is also pro-

vided for each pavement class. The three outlined statistics

(i.e., Ni, IRI, Si) have been used in Eqs. (14) and (15) to

establish the class upper and lower-limit average IRI values

(IRIui& IRIli), respectively, to investigate the uncertainty

impact of IRI measurements on the derived optimal reha-

bilitation plans. The standard normal variable (Z/=2) is

used in Eqs. (14) and (15) since the sample size (Ni) is
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larger than (30) with its value being equal to (2.58) for a

99% confidence level. It can be noticed that the standard

deviation for class 6 is substantially larger than the corre-

sponding values associated with the other classes because

class 6 covers a much wider range of IRI data. However,

the corresponding 99% confidence IRI range [14.76, 16.22]

is somewhat narrow due to the relatively large sample size

(Ni).

IRIui ¼ IRIi þ Z/=2
Si
ffiffiffiffiffi
Ni

p ð14Þ

Fig. 4 Location map of tested highway, Ramallah district, Palestine

Table 1 IRI measurement points for highway forward direction

Test No. (j) IRI measurement points (Ni,j) for i
th class

IRI = 0–2

Class 1

2–4

Class 2

4–6

Class 3

6–8

Class 4

8–10

Class 5

IRI[ 10

Class 6

Total

1 891 2385 1018 515 266 345 5420

2 851 2372 1064 505 283 345 5420

3 814 2415 1025 528 271 367 5420

4 832 2409 1054 513 250 362 5420

5 811 2434 1075 493 250 357 5420

6 863 2335 1103 503 284 332 5420

7 810 2390 1114 479 290 337 5420

8 772 2408 1115 528 252 345 5420

9 821 2357 1059 496 296 391 5420

10 850 2460 1059 470 253 328 5420

Mean (NiÞ 832 2396 1069 503 269 351 5420

Class % 15.35 44.21 19.72 9.28 4.96 6.48 100%
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IRIli ¼ IRIi � Z/=2
Si
ffiffiffiffiffi
Ni

p ð15Þ

5.2 Sample Optimal Rehabilitation Plans

The implementation of the proposed optimum rehabilita-

tion model requires defining the potential major rehabili-

tation strategies to be applied to various pavement classes.

Table 4 provides the definitions of five major rehabilitation

strategies to be applied to pavement classes (2–6) with

class 1 being excluded from any major rehabilitation work

as outlined earlier. These major rehabilitation strategies

range from 2.5-cm thin hot-mix asphalt (HMA) overlay

applied to class 2 to reconstruction, which typically

includes completely removing the existing asphalt surface,

providing a leveling aggregate course, and placing a 12-cm

HMA surface to pavements in class 6. Table 4 also pro-

vides the cost units (UCi), in US dollars per square meter of

pavement surface area, for the proposed major rehabilita-

tion strategies estimated based on local prices for per-

forming similar rehabilitation work. The amount of work to

be done in each pavement class is represented by the cor-

responding rehabilitation variable (Ni), which defines the

number of 5-m pavement sections to receive the relevant

rehabilitation strategy.

The number (Ni) needs not be an integer because reha-

bilitation work can involve a section portion. Therefore, it

is not required to solve the optimum models proposed in

Eqs. (6) and (7) as integer linear programs. They can be

simply solved as linear programs using commercially

available software packages. The software package called

‘‘Maple 7’’ was used in this sample presentation to yield

sample optimal solutions for the optimum linear models

Table 2 IRI measurement points for highway backward direction

Test No. (j) IRI measurement points (Ni,j) for i
th class

IRI = 0–2

Class 1

2–4

Class 2

4–6

Class 3

6–8

Class 4

8–10

Class 5

IRI[ 10

Class 6

Total

1 722 2600 1131 440 236 291 5420

2 720 2547 1154 442 249 308 5420

3 675 2600 1135 444 250 316 5420

4 608 2476 1209 508 262 357 5420

5 652 2550 1215 497 217 289 5420

6 718 2577 1114 471 244 296 5420

7 722 2555 1128 462 254 299 5420

8 748 2558 1107 432 241 334 5420

9 745 2559 1129 436 234 317 5420

10 626 2529 1193 494 256 322 5420

Mean (NiÞ 694 2555 1151 463 244 313 5420

Class % 12.82 47.14 21.23 8.54 4.50 5.77 100%

Table 3 IRI/PSI statistics for both highway directions combined

Statistic Statistic value

IRI = 0–2

Class 1

2–4

Class 2

4–6

Class 3

6–8

Class 4

8–10

Class 5

IRI[ 10

Class 6

Total

Mean (NiÞ 1526 4952 2220 966 514 664 10,840

IRIi(m/km) 1.63 2.94 4.88 6.90 8.90 15.49 –

Si (m/km) 0.27 0.56 0.57 0.57 0.58 7.32 –

IRIui 1.65 2.96 4.91 6.95 8.97 16.22 –

IRIli 1.61 2.92 4.85 6.85 8.83 14.76 –

PSIi 3.73 2.95 2.08 1.44 1.01 0.31 –

PSIui 3.72 2.93 2.07 1.43 0.99 0.27 –

IPSIli 3.74 2.96 2.09 1.46 1.00 0.35 –
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presented in Eqs. (6) and (7). The objective function pre-

sented in Eq. (6) requires the deduction of the improve-

ment gain (DIRIi), which has been computed assuming the

IRI value after rehabilitation is equal to one (IRIo = 1.0)

for all rehabilitation strategies. The initial IRI value (IRIo)

is to be practically determined by testing the newly reha-

bilitated pavement using the IRIMETER-2 device. In this

sample presentation, it was estimated to be about one.

The application of Eq. (7) requires estimating the PSI

values for various deployed pavement classes. Table 3

provides the mean, lower, and upper-limit PSI values

computed from Eq. (8) using the corresponding mean,

lower, and upper-limit IRI values. The added class

improvement gains (DPSIi), as required by Eq. (7), are

computed using an initial (PSIo = 4.18) value obtained

from Eq. (8) based on an initial (IRIo = 1.0) value. It is to

be noted that higher PSI values correspond to lower IRI

values as expected. Higher PSI/lower IRI value is an

indication of superior pavement condition. A class cost-

effectiveness (CEi) parameter is presented in Eqs. (16) and

(17), which is defined as the ratio of pavement improve-

ment gain to rehabilitation cost unit (UCi). Therefore, the

higher the CEi value, the more cost-effective is the corre-

sponding rehabilitation strategy. It is later demonstrated

that CEi has a vital impact on the derivation of optimal

solutions obtained using Eqs. (6) and (7).

CEi ¼
DIRIi
UCi

¼ IRIi � IRIo
UCi

ð16Þ

CEi ¼
DPSIi
UCi

¼ PSIi � PSIo
UCi

ð17Þ

Sample CEi values are computed for the IRI/PSI data

provided in Table 3 considering mean, lower, and upper-

limit values. Figure 5 depicts the relevant CEi values for

the 6 pavement classes using the IRI as the condition

indicator. The lowest CEi is associated with class 2

whereas the highest value corresponds to class 4. Similarly,

Fig. 6 shows sample CEi values using the PSI with lowest

and highest values corresponding to classes 6 and 3,

respectively. It can be noted from Figs. 5 and 6 that there

are minor differences in CEi values considering mean,

lower, and upper-limit values. The only exception is the

case associated with class 6 shown in Fig. 5, which is

attributed to the much larger standard deviation (Si).

Another observation is the CEi values provided in Fig. 5

are larger than the corresponding ones given in Fig. 6. This

Table 4 Definition of various pavement classes and applicable

rehabilitation plans

Class

i

IRI

range

(m/km)

Rehabilitation strategy Rehab.

variable

Cost unit

(UCi),

USD/m2

1 0–2 –a – –

2 2–4 2.5 cm HMA overlay N2 8

3 4–6 3.5 cm HMA overlay N3 12

4 6–8 5.0 cm HMA overlay N4 17

5 8–10 6 cm cold milling ? 6 cm

HMA overlay

N5 28

6 [ 10 removal of existing asphalt

layer, adding aggregate

leveling course, and

placing 12 cm HMA

surface

N6 46

a Not applicable

Fig. 5 Sample (CEi) values obtained using IRI as the pavement condition indicator
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is because the practical IRI range is larger than the PSI

range.

Table 5 provides sample optimal solutions ðNi0Þ
obtained for different allocated budgets (AB) using the

mean IRI value (IRIiÞ. The optimal solutions have been

obtained by solving the optimum linear model presented in

Eq. (6) using the software package called ‘‘Maple 7.’’ It

can be noted that only the optimal variable ðN40Þ with the

highest (CEi) value has been selected when assigning a

budget of $0.25 million. When the allocated budget

increased to $0.5 million, the optimal solution picked

another optimal variable ðN30Þ, which is the one associated

with the next highest (CEi) value. However, this happened

after the optimal variable ðN40Þ with the highest (CEi)

value had been fully utilized (i.e., N40 ¼ N4Þ. The same

logic continued in identifying the optimal solutions with

the increase in the allocated budget. This means the opti-

mal solution will pick the variable with the highest (CEi)

value provided the ones with higher (CEi) values have been

fully utilized. The network average IRI value (IRInet)

decreased from 4.56 to 1.39 m/km when using a $2-million

budget as indicated by Table 5, which is equivalent to a

69.5% decrease.

Similarly, Table 6 provides sample optimal solutions for

maximizing the network average PSI value (PSInetÞ as per
Eq. (7) using mean PSI values and the same allocated

budget values. It is clear that the same logic outlined earlier

has been used in selecting the optimal variables. The

optimal variable ðN30Þ with the highest (CEi) according to

Fig. 6 was first selected when allocating a $0.25-million

budget, followed by the variable ðN40Þ with the next

highest (CEi) value when the budget increased to $0.5-

million, and so the same logic continues. The network

average PSI value (PSInet) increased from 2.49 to 4.01

when using a $2-million budget as indicated by Table 6,

which is equivalent to a 61.0% increase. Figure 7 depicts

approximately quadratic relationships between the allo-

cated budget (AB) and deployed pavement condition

Fig. 6 Sample (CEi) values obtained using PSI as the pavement condition indicator

Table 5 Sample optimal rehabilitation plans for minimizing (IRInet)
using mean IRI values

Annual budget

(USDx106)

Optimal Solutions

N20 N30 N40 N50 N60 IRInet(m/

km)

0.0 0 0 0 0 0 4.56

0.25 0 0 840.3 0 0 4.10

0.5 0 1012.4 966 0 0 3.67

1.0 0 2220 966 0 306.1 2.83

1.5 0 2220 966 432.4 664 2.03

2.0 3286 2220 966 514 664 1.39

Table 6 Sample optimal rehabilitation plans for maximizing (PSInet)
using mean PSI values

Annual budget

(USDx106)

Optimal solutions

N20 N30 N40 N50 N60 PSInet

0.0 0 0 0 0 0 2.49

0.25 0 1190.5 0 0 0 2.72

0.5 0 2220 113.6 0 0 2.95

1.0 1760.1 2220 966 0 0 3.37

1.5 4952 2220 966 108.4 0 3.76

2.0 4952 2220 966 514 374.2 4.01
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indicators (i.e., IRInetand PSInetÞ: Therefore, 2nd-degree

polynomial models are obtained using the best-fit tech-

nique with very high R-square values as provided in

Eqs. (18) and (19). These models can be used to estimate

the expected network performance in terms of IRInetand

PSInet as a function of allocated budget (AB).

IRInet ¼ 0:153AB2 � 1:901ABþ 4:567ðR2 ¼ 0:9999Þ
ð18Þ

PSInet ¼ �0:126AB2 þ 1:025ABþ 2:480ðR2 ¼ 0:9993Þ
ð19Þ

5.3 Uncertainty Analysis

In an effort to investigate the uncertainty impact of IRI

measurements on optimal solutions, the optimum rehabil-

itation model outlined in Eq. (6) has been solved using the

upper and lower-limit IRI values (IRIui& IRIli) provided in

Table 3 for a 99% confidence level. The corresponding

optimal IRInet values are provided in Table 7 for the same

allocated budgets. Similarly, Eq. (7) has been solved using

upper and lower-limit IRI values (PSIui& PSIli) provided

in Table 3. It can be noticed that the upper-limit solutions

in terms of IRInet are lower in value while the lower-limit

solutions are higher. This is because the IRInet is computed

by deducting the improvement gains as defined in Eq. (6),

thus the upper-limit IRIui values result in lower-limit IRInet
values. However, in the case of maximizing the PSInet, the

upper-limit solutions are higher in value compared to the

corresponding lower-limit solutions. Again, the reason is

that the improvement gains are added as per Eq. (7) so that

the upper-limit PSIui values result in upper-limit PSInet
values.

Additionally, Table 7 provides the uncertainty error

(UE) defined in Eq. (20) as the maximum difference about

the mean value (MN). Table 7 also provides the percent

Fig. 7 Sample graphical display of optimal network solutions versus allocated budget

Table 7 Uncertainty impact on optimal IRInet and PSInet using 99% confidence level

Annual Budget

(9 106)
Optimal IRInet (m/km) Optimal PSInet

Upper-limit

(UL)

Mean

(MN)

Lower-limit

(LL)

UE %E Upper-limit

(UL)

Mean

(MN)

Lower-limit

(LL)

UE %E

0.0 4.560 4.560 4.560 0.000 0.00 2.490 2.490 2.490 0.000 0.000

0.25 4.096 4.099 4.103 0.004 0.098 2.725 2.724 2.723 0.001 0.037

0.5 3.662 3.669 3.676 0.007 0.191 2.954 2.952 2.950 0.002 0.068

1.0 2.796 2.828 2.859 0.032 1.132 3.373 3.367 3.362 0.006 0.178

1.5 1.976 2.034 2.088 0.058 2.852 3.773 3.761 3.753 0.012 0.319

2.0 1.322 1.387 1.447 0.065 4.686 4.028 4.013 4.004 0.015 0.374
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error (%E) computed as the percentage of uncertainty error

(UE) with respect to mean value (MN) as indicated by

Eq. (20). It can be noticed from Table 7 that the percent

error (%E) is directly proportional to the allocated budget.

It has larger values when IRInet is minimized compared to

when PSInet is maximized. The main reason for that is the

optimal IRInet value gets smaller with the increase in

allocated budget while the optimal PSInet becomes larger.

%E ¼ UE

MN
� 100%; ð20Þ

where: UE = max. (MN-UL, LL-MN) for IRI

UE = max. (UL-MN, MN-LL) for PSI

MN = mean value, UL = upper-limit value, LL =

lower-limit value

Generally, the sample uncertainty errors are relatively

small and expected to have a mild impact on the derived

optimal solutions. However, the uncertainty errors can be

applied to the optimal solutions estimated from Eqs. (18)

and (19) so that the uncertainty impact associated with IRI

measurements can be reflected.

The presented sample results are obtained using ten

independent IRI tests. A question can be raised regarding

how many IRI tests are needed to obtain reliable IRI

measurements. This question can be answered by assuming

one IRI test would be adequate. The answer can be

obtained by conducting a statistical hypothesis test seeking

to verify that the mean IRI value, IRIi, associated with ten

IRI tests is indifferent from the mean IRI value, IRIi;j,

corresponding to the jth IRI test. Equations (21a) and (21b)

provide the null and alternative hypotheses, respectively,

for the question under consideration.

Ho : IRIi ¼ IRIi;j ð21aÞ

Ha : IRIi 6¼ IRIi;j ð21bÞ

The decision can be made by using the t-statistic for two

populations with unknown standard deviations. The mean

and standard deviation associated with ten IRI tests

(n1 = 10) are (IRIi; SiÞ as provided in Table 3, while the

corresponding statistics associated with one IRI test

(n2 = 1) are labeled (IRIi;j; Si;jÞ. The relevant t-statistic is as
defined in Eq. (22) under the assumption of unequal pop-

ulation variances.

t ¼ IRIi � IRIi;j
ffiffiffiffiffiffiffiffiffiffiffiffiffi
S2i
n1
þ S2i;j

n2

q ð22Þ

The null hypothesis is rejected when the t-value calcu-

lated from Eq. (22) is greater than the critical t-value for a

two-sided test using 1% significance level and nine degrees

of freedom (ta/2 = ± 3.25). Table 8 provides sample

(IRIi;j; Si;jÞ values for pavement classes 1, 3, and 6 con-

sidering the IRI data provided in Table 1. Table 8 also

provides the corresponding t-statistics computed using

Eq. (22). All computed t-statistics are substantially less

than the critical t-value of (± 3.25). This means the null

hypothesis cannot be rejected in all sample cases presented

in Table 8, an indication that the means associated with

one and ten IRI tests are statistically indifferent. This is

mainly attributed to the large number of measurement

points used in the study, which resulted in very similar

class means and standard deviations. Therefore, one test is

adequate for taking IRI measurements using the IRI-

METER-2 device.

Table 8 Computed t-statistics for selected sample means and standard deviations

Test No. (j) Class 1

IRIi=1.63, Si = 0.27

Class 3

IRIi=4.88, Si = 0.57

Class 6

IRIi=15.49, Si = 7.32

IRIi;j Si;j t-Stat IRIi;j Si;j t-Stat IRIi;j Si;j t-Stat

1 1.600 0.283 0.101 4.901 0.584 – 0.034 15.589 7.632 – 0.012

2 1.593 0.282 0.131 4.908 0.567 – 0.049 14.542 6.312 0.141

3 1.619 0.269 0.039 4.904 0.578 – 0.040 15.888 8.754 – 0.044

4 1.607 0.271 0.081 4.828 0.569 0.087 19.373 9.627 – 0.392

5 1.620 0.279 0.034 4.880 0.568 0.000 15.167 6.948 0.044

6 1.618 0.264 0.043 4.878 0.575 0.003 15.743 7.915 – 0.031

7 1.613 0.274 0.059 4.898 0.577 – 0.030 15.838 8.182 – 0.041

8 1.609 0.280 0.072 4.925 0.571 – 0.075 14.861 6.285 0.094

9 1.623 0.250 0.026 4.802 0.548 0.135 19.770 10.49 – 0.398

10 1.639 0.273 – 0.031 4.914 0.574 – 0.056 14.672 6.552 0.118
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6 Conclusions and Recommendations

The presented sample results have indicated the efficacy of

the proposed optimum rehabilitation models in yielding

optimal solutions at the network-level. In particular, the

model designed to use IRI measurements has yielded

optimal solutions that resulted in minimizing the network

average IRI value, while the model intended to use PSI

data has produced optimal solutions that maximized the

network average PSI value. Both models seem to provide

compatible solutions in terms of optimizing the pavement

network conditions. Also, the sample results have indicated

the reliability of the proposed cost-effectiveness ratio in

identifying the optimal solutions in terms of the numbers of

5-m pavement sections to be rehabilitated using mainly

major rehabilitation strategies. This provides the users with

a simple and efficient alternative for solving a linear

optimum model. The computer software associated with

the IRIMETER-2 device provides the user with a colored

map displaying the road segments associated with various

deployed pavement classes defined using IRI ranges.

Therefore, the user seeking to implement a particular

optimal solution can easily identify the locations of road

segments within each class to be selected for major

rehabilitation.

The sample results have also indicated that the uncer-

tainty impact associated with the IRI measurements is very

slight when considering the derived optimal solutions,

although the impact is found to be linearly proportional to

the allocated budget. This implies that more rehabilitation

work at the network-level would result in higher risk as one

would expect. Additionally, statistical hypothesis testing

has revealed that one test would provide IRI means that are

indifferent from the means obtained using ten tests for the 6

pavement classes used in the study. Therefore, the rec-

ommendation is that one test is adequate. The presented

optimum rehabilitation models have been mainly used to

generate optimal solutions for a single time-horizon such as

a year or two years. While this is typically appropriate for

developing countries with limited technical expertise and

financial resources, it is recommended to periodically

update the derived optimal solutions based on new IRI

measurements. This would be facilitated by knowing that a

single IRI test is sufficient provided a minimum of 6

pavement classes is used.

The sample highway length of 27.4 km resulted in about

10,840 IRI measurement points, thus providing a good

representation of the highway’s existing pavement condi-

tions. The statistical analysis performed on the IRI data

obtained from ten independent tests resulted in similar

class means and standard deviations for both highway

directions. This can be considered a good indication that

the amount of available data is adequate to draw valid

conclusions. Therefore, it is expected that similar reliable

results can be obtained regardless of the network size.

Highway engineers and managers can benefit from this

research by first using IRI measurements as part of data

inventory, which many highway agencies have already

done. They can also adopt the proposed optimum rehabil-

itation models to be part of their pavement management

systems as they are simple to develop and solve at both

project and network levels. This would especially be useful

for highway engineers seeking to implement pavement

management models that are not too complex in terms of

data requirements and the generation of optimal solutions.

The proposed optimum rehabilitation models are applica-

ble to a single time-horizon such as one year; however,

semiannual or annual updates can be easily obtained if a

portable profilometer similar to the IRIMETER-2 is used.

The main limitation of the presented optimum rehabil-

itation models is that they are only valid for a single time-

horizon, typically taken as one year or two years. The

application of multiple time- horizons requires the incor-

poration of an appropriate performance prediction model

that can be used to predict future IRI records. This can be

accomplished once adequate historical IRI records become

available. Another limitation is that the proposed models

are only applicable to major rehabilitation strategies and

inappropriate for the inclusion of routine maintenance

treatments typically not expected to cause a major

improvement in pavement condition. Finally, the expected

initial (IRIo) value after rehabilitation has been assumed to

be the same for all pavement classes; however, this can be

revised based on experience and engineering judgment so

that a different (IRIo) value can be assigned to each

pavement class.

Data availability The data that support the findings of this study are

available from the author upon reasonable request.
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