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Abstract: Introduction: Pharmaceuticals are regarded as emerging contaminants in the environment. In recent years, their destiny and 

removal have piqued people’s interest. Methods: Examine how well conventional wastewater treatment facilities and cutting-edge 

technologies (ultrafiltration and reverse osmosis) can remove specific pharmaceutical compounds from water, with a focus on the 

compounds' environmental status, their origin, deterioration, metabolites, and the capacities of these facilities. Results and discussion: 

the ability and efficacy of sophisticated treatment technologies such as membrane separation, adsorption, and AOPs (Advanced 

Oxidation Processes) in eliminating chosen commonly used drugs from water are explored. Batch adsorption experiments were 

integrated with appropriate adsorption isotherms and appropriate kinetic models to predict the final extent of pollutant removal by this 

method. Continuous filtration mode was also investigated. Combining filtration (using AC (Activated Carbon) and micelle-clay granule 

complexes) with AOPs improves the economy of treating wastewater, which contains recalcitrant PhACs (Pharmaceutical Compounds). 
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1. Introduction  

The presence and destiny of anthropogenic chemical 

species in general, as well as PPCPs (Pharmaceuticals 

and Personal Care Products), in treated wastewater and 

the natural aquatic environment, has become a major 

concern [1, 2]. PhACs (Pharmaceutical Compounds) 

are biologically active and can be found in small 

amounts in the environment [1-6]. More research into 

their chemical stability and biological activities is 

needed [3-10]. They have the potential to affect people 

in lower quantities than many other pollutants found in 

the environment, which is cause for concern. 

On the global market, there are currently around 

3,000 and 300 active pharmaceutical compounds for 
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human and veterinary use, respectively [2]. ASA 

(Acetylsalicylic Acid), or aspirin, was first produced in 

1899. Since then, paracetamol, ibuprofen, diclofenac, 

naproxen, ketoprofen, amoxicillin, and various other 

medicinal substances have been commercialized [11]. 

These compounds are utilized as analgesics, anti-

inflammatories, anti-arthritics, and antibiotics in humans, 

but they are also used in veterinary medicine [12]. 

Some pharmaceuticals and their metabolites can be 

partially removed from the environment through 

sorption and biotic or abiotic degradation. As a result, 

they can end up in drinking water supplies. According 

to several studies, traditional water treatment processes 

are unable to completely remove some prescription and 

non-prescription drugs from water sources [13-16]. 
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Pharmaceuticals and their metabolites have recently 

been found in surface water [7, 17-23], groundwater 

[24-27], drinking water [21, 28-30], tap water [31], 

ocean water, sediments, and soil [1]. 

Because of the increasing use of OTC (Over-the-

Counter) medicines, their presence in bodies of water 

is one of the most pressing topics in environmental 

science. Several researchers have looked into the 

occurrence of pharmaceuticals in rivers, groundwater, 

and wastewater treatment plant effluents, as well as the 

effectiveness of various treatment techniques for their 

removal. Ibuprofen, naproxen, ketoprofen, diclofenac, 

and bezafibrate are the most regularly used pharmaceutical 

chemicals in the Finnish pharmaceutical business [32], 

and substantial amounts of these medications are found 

near STPs (Sewage Treatment Plants) (Table 1). The 

residues of these chemicals are hazardous to the 

ecosystem [32]. 

STPs only partially remove the selected medicines, 

as demonstrated in Table 1. Because the medications 

included in Table 1 are generally polar and have low 

volatility, their removal by the aforementioned 

methods is only 60-90 percent [33]. This shows that 

traditional sewage treatment procedures are incapable 

of completely removing these chemicals. 

According to Enick et al., approximately 50% of 

wastewater volume is generated from pharmaceutical 

sources around the world [34]. Pharmaceuticals 

carefully enter the ecosystem via municipal WWTPs 

(Wastewater Treatment Plants), medical centers, and 

solid waste disposal sites [35-39]. 

The elimination of PhACs during biological wastewater 

treatment is critical for avoiding these compounds from  
 

Table 1  Pharmaceutical concentrations and percent 

clearance near Finish STPs [32]. 

Compound 
Influent 

(μg/dm3) 

Effluent 

(μg/dm3) 
Removal (%) 

Bezafibrate 0.42 0.21 50 

Naproxen 4.9 0.84 83 

Diclofenac 0.35 0.26 26 

Ibuprofen 13.1 1.3 92 

Ketoprofen 2 0.45 78 

 

spreading into the environment [38-40]. The majority 

of current wastewater treatment methods were not 

engineered with PhACs in mind [41-45]. According to 

certain research, secondary wastewater treatment 

techniques (such as activated sludge and membrane 

bioreactors) can only remove PhACs such as 

sulfamethoxazole, carbamazepine, and diclofenac to  

a limited extent. On the other hand, other chemicals 

including ibuprofen, naproxen, and bezafibrate   

were successfully eliminated [19, 41, 42, 46].  

Because biological approaches are unable to provide a 

dependable barrier against some recalcitrant 

pharmaceuticals [47-51], further advanced treatment 

technologies must be introduced in regions where a 

chronic pollution problem has been identified or is 

expected. Furthermore, the removal of pharmaceutical 

residues from contaminated water has been 

demonstrated to be inefficient using MBR (Membrane 

Bioreactor) technology, ozonation, and AOPs 

(Advanced Oxidation Processes) [25, 52-55]. 

However, combining the three methods mentioned 

above could result in a medicinal removal solution. 

1.1 Conventional Treatment Methods 

The first technology utilized to cleanse wastewater 

from pharmaceutical residues was AS (Activated 

Sludge) technology [49, 56]. HRT (Hydraulic 

Retention Time), temperature, pH, DO (Dissolved 

Oxygen), organic load, microbial population, and the 

presence of hazardous heavy metals are all factors that 

influence the effectiveness of the activated sludge 

process. Because PhACs are often physiologically 

resistant chemicals, the AS approach has been proven 

to be ineffective in treating wastewater contaminated 

with PhACs residues [48, 55-64]. MBRs were also 

found to be more effective in removing medications 

due to their narrow pore size [65-67]. 

1.2 Physio-Chemical Treatment Options 

1.2.1 Membrane Processes 

For the removal of pharmaceutical residues from 
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contaminated water, MF (Microfiltration), UF 

(Ultrafiltration), NF (Nanofiltration), RO (Reverse 

Osmosis), electro dialysis reversal, membrane 

bioreactors, and combinations of membranes in series 

were tested [68, 69]. Because of their high pore size, 

MF and UF procedures are ineffective, but RO and NF 

are the most often used methods for drinking water 

purification [65]. The elimination of pharmaceutical 

residues by RO was shown to be very effective [69-77]. 

The elimination efficiency of ketoprofen and 

diclofenac by the NF membrane was found to be better 

than 90% in a pilot-size investigation [78]. In another 

investigation, negatively charged diclofenac was 

removed by RO membranes at a rate of 95% [76]. 

1.2.2 AC (Activated Carbon) 

In tertiary treatment processes, two types of AC are 

used: GAC (Granular) and PAC (Fine Powder). GAC 

is frequently used as a traditional filter, providing a 

medium for both filtration and adsorption [65]. In 

addition to taste and odor reduction, GAC and PAC are 

utilized as effective materials for the adsorption of 

various PhACs and pesticides [79]. 

The Langmuir adsorption isotherm equation 

represents the equilibrium between aqueous and solid 

phase systems in AC adsorption as a reversible 

chemical equilibrium between species [80]. The 

Langmuir adsorption isotherm is based on the 

following assumptions: (a) all sites have the same 

adsorption energy; (b) adsorption occurs on localized 

sites with no interaction between adsorbed molecules; 

and (c) the maximum adsorption feasible is a complete 

monolayer. The adsorbent surface (solid phase) 

consists of fixed individual locations where adsorbate 

(organic pollutant) molecules can be chemically 

bonded [30]. Datta [81] and Cruz-Guzmá et al. [82] 

discovered that the adsorption of 6-APA (6-

Aminopenicillanic Acid) by AC effectively removes 

the majority of 6-APA. Sedimentation and filtration are 

two pre-treatment techniques that could reduce carbon 

requirements. However, the high cost of active carbon, 

along with the costly process of regeneration, has 

prompted researchers to look for new low-cost 

materials, such as the usage of complex organoclay 

adsorbents. 

1.2.3 Oxidation Reactions 

AOPs are the most efficient procedures for removing 

contaminants from wastewater that are difficult to 

remove using traditional treatment methods. AOPs 

remove more material than damaging radiation alone 

[37,52]. In most cases, they are utilized in addition to 

traditional treatment approaches [83]. AOPs have been 

shown to be effective at removing medications in 

numerous studies [29, 84, 85]. Direct photolysis is not 

an efficient method for removing drugs from 

wastewater, according to reports. Photolysis using Fe 

(III) and H2O2 or TiO2 can, however, successfully 

remove the majority of pharmaceutical residues from 

contaminated water [86, 87]. 

Novel ways of treating pharmaceutically rich sewage 

influent have been developed to increase removal 

efficiency. In some circumstances, AOPs may be a 

better option than filtering for eliminating organic 

materials from wastewater [88]. AOPs work by 

producing highly reactive free radicals like the 

hydroxyl radical (OH•), which are capable of oxidizing 

organic molecules [89-91]. One of the most successful 

clean technologies for reducing/removing pollutants 

from wastewater and drinking water is photocatalytic 

oxidation. TiO2 is the most commonly utilized 

nanoparticle in photocatalysis because it can create 

electronic transitions via light absorption in the near 

ultraviolet range. In addition, this semiconductor can be 

employed in a wide pH range. TiO2 is also notable for 

its low cost, excellent photocatalytic activity, and 

photo-corrosion resistance. However, the non-

selectivity of attack and the ability to destroy 

contaminants without moving them from one phase to 

another or concentrating them are some of the 

drawbacks of hydroxyl radicals [92]. AOPs have the 

capacity to totally and effectively mineralize most of 

the organics present by relying on exceptionally 

powerful OH radicals (oxidation potential = 2.8 V) that 
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are produced throughout the process [93-96]. As a 

result of AOPs, the produced hydroxyl radical can 

degrade organics and other contaminants in aquatic 

solutions through a series of steps [96] with some 

exception such as tetracycline that cannot be photo 

destroyed. 

OH reacts quicker than diffusion-controlled 

reactions with double and triple carbon-carbon bonds 

and aromatic compounds with electron-donating 

substituents [97]. However, the presence of hydroxyl 

radical scavengers, such as humic chemicals, 

oxidation by-products, inorganic compounds like 

carbonate and bicarbonate, excessive alkalinity, and 

high dosages of hydrogen peroxide, can reduce AOP 

effectiveness. 

Different oxidation processes, such as photocatalysis 

(e.g., TiO2) [98] and solar irradiation, can produce 

hydroxyl radicals. Combinations of UV/H2O2, UV/O3, 

UV/O3-H2O, and UV/TiO2 are among the AOPs 

currently being researched and developed in the 

literature [99]. 

Due to its capacity to eliminate refractory chemical 

compounds, TiO2 has recently attracted much attention 

[54, 100, 101]. On the other hand, the degradation of 

these substances may produce more dangerous 

intermediates [102, 103]. AOPs as a pre-treatment have 

been shown to improve biological therapy whereas 

TiO2 is used as a post-treatment to other biological, 

physical, and chemical treatments for complete 

mineralization [104]. 

The extension of AOPs to be effective using solar 

energy renders the process to be more economically 

feasible and affordable [105, 106]. 

Other research used a mixture of UV, O3, and H2O2 

to treat municipal wastewater contaminated with 

various medicines [103, 107]. All of the targeted 

pollutants’ concentrations were determined to be 

below detection thresholds after they were removed. 

Furthermore, it was discovered that adding H2O2 

boosted the removal effectiveness somewhat. 

Doll and Frimmel [54] used a treatment method that 

combines photo-catalysis and microfiltration in 

another study. After the photo-catalytic degradation 

process, this integration allowed TiO2 to be separated 

and reused. Malato et al. [108] presented the building 

of a pilot plant that used a solar photo-catalytic 

treatment system and proposed the mechanism for the 

operation of these pilot plants, as well as the 

parameters for optimizing solar photo-catalytic 

reactions [109, 110]. 

The mechanism behind the high oxidizing power of 

TiO2 is based on electronic transitions from its valence 

band to the conduction band. These transitions are 

caused by band gap lighting of semiconductor particles 

floating in the water, leaving holes in the former. These 

electrons and holes either migrate to the particle surface 

and participate in redox processes or recombine and 

release heat. Reduction reactions devour electrons from 

the conduction band, whereas oxidation reactions fill 

holes. Water oxidation at the valence band of TiO2 

produces hydroxyl radicals [111-114]. These can easily 

target adsorbed organic molecules or those adjacent to 

the catalyst’s surface. For this mechanism to work, the 

pollutant must first be adsorbed on the catalyst’s 

surface in order for oxidation to take place, resulting in 

their total mineralization at the end of the process [115] 

(Fig. 1). 

1.3 Micelle-Clay Complexes as Potential Adsorbents 

Montmorillonite [116] is the most commonly utilized 

clay in the manufacturing of organic clay. This clay has 

a permanent negative charge due to multiple isomorphic 

substitutions [117]. The cations (usually Na+ and Ca2+) 

that can be swapped by other cations present in a 

solution compensate for this charge. A cation’s charge 

causes it to be very hydrophilic and hydrated [118]. This 

hydration, in addition to the presence of Si-O groups in 

the clay, renders the mineral’s surface hydrophilic. 
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Fig. 1  UV illumination of the TiO2 solution interface and UV illumination of TiO2 surface reactions. 
 

As a result, in the presence of water, the adsorption of 

non-ionic, organic molecules by the clay is reduced 

because organic compounds, being relatively polar, 

cannot compete with water for adsorption sites on the 

clay surface. Organic cations are substituted for the 

cations that were initially present in the interlayers to 

create modified clays. Alkyl-ammonium ions are the 

most commonly used organic cations (such as 

octadecyl-trimethyl-ammonium). A central nitrogen 

atom is coupled to four chemical groups, including a 

hydrogen ion, in the molecular structure of this 

molecule. The charged component of the organic cation 

interacts with the clay via electrostatic interactions and 

binds itself to the surfaces of the interlayer. The clay 

becomes organophilic due to the aliphatic component 

of the molecule. The insertion of the organic cation into 

the interlayer causes the clay’s basal distance to grow 

and water to be removed. The process involved is solely 

an exchange of cations when the cation is adsorbed to 

a lesser degree than the clay’s CEC (Cation Exchange 

Capacity). The adsorption of larger loads than the CEC 

is due to Van der Waals forces. The organic-clay 

combination takes on a positive charge and is more 

hydrophobic than the unmodified clay when the 

organic cation adsorbed exceeds the CEC [119]. 

Surfactants have two chemical structures, one of 

which is water-loving or hydrophilic and the other of 

which is hydrophobic and consists of amphiphilic or 

amphipathic molecules [120]. Micelles are 

amphiphilic molecular aggregating in an aqueous 

environment. These molecules produce small 

“globules” in water with one hydrophobic and one 

hydrophilic end, with the hydrophobic parts pointing 

into the center and the hydrophilic ends interacting 

with the water. Micelles are interesting because they 

can sequester chemicals that are insoluble in water 

ordinarily. Micelle formation happens only when the 

concentration of amphiphilic molecules reaches a 

CMC (Critical Micelle Concentration) of a certain 

minimum [120, 121]. 

The micelle-clay combination is made up of an 

organic cation (surfactant) with a long alkyl chain that 

produces micelles of several nanometers in diameter 

spontaneously. At appropriate ratios, the micelles 

interact with a negatively charged clay mineral 

(montmorillonite) or clay, such as bentonite. The most 

commonly used organic cations were ODTMA 

(Octadecyltrimethylammonium) and BDMHDA 

(Benzyldimethylhexadecylammonium), both of which 

are quaternary ammonium cations with an alkyl chain 
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of 18 (ODTMA) or 16 (BDMHDA, which also has a 

benzene ring) [122-124]. 

The micelle-clay complex has different material 

properties than an organo-clay complex [124], which 

is generated by the interaction of surfactant monomers 

with clay. The complex has a huge surface area per 

weight, has substantial hydrophobic sections, and has 

a positive charge surplus of nearly half the clay’s 

exchange capacity. Surfactant release from the 

combination is modest; a layer of AC was used to 

minimize released surfactant concentrations during 

filtration to 1 ppb or less. High temperature, salinity, 

and pH had little effect on filtering capacity [2-13]. 

Micelle-clay is good for the adsorption of anionic 

organic compounds, such as anionic medicines, as well 

as certain neutral and hydrophobic medications. The 

removal of anionic medicines has proven to be 

extremely effective. Antibiotics, painkillers, and 

hormones are all possible applications. Tetracyclines 

(tetracycline, oxytetracycline, chlortetracycline), 

sulfonamides (sulfamethoxazole, sulfisoxazole, 

sulfamethizole), amoxicillin, and cefuroxime axetil 

medicines were removed from water in studies [122, 

125]. Diclofenac, ibuprofen, naproxen, and mefenamic 

acid were reported to be removed by others [71, 73, 

74]. Furthermore, the statins atorvastatin, rosuvastatin, 

and Simvastatin, as well as dexamethasone sodium 

phosphate, diazepam, spironolactone, and the statins 

atorvastatin, rosuvastatin, and Simvastatin, were 

studied [75, 126]. 

A powdered complex was used in all of the above 

studies. To allow for flow, the complex held in filters 

had to be blended with extra sand. Undabeytia et al. 

[123] described a way for making a granulated 

complex that could be confined alone in a filter 

without the requirement for sand mixing. The 

powdered complex, with smaller particles, can be 

removed more efficiently by filtering than the 

granulated complex, but because the capacity per kg 

of the complex grows with its concentration, the 

overall capacity per weight is increased by utilizing a 

granulated complex [123]. Future investigations on 

the removal of pharmaceuticals from water and 

wastewater are expected to use the granulated 

complex. The conclusion of the filtering results and 

estimated capacities will be discussed in the following 

sections of this review. 

2. Stability of a Number of Drugs in Pure and 

Wastewater 

2.1 Ibuprofen 

Despite the fact that only the S enantiomer of Ibuprofen 

has a pharmacological impact, a racemic combination 

is commonly used in commercial applications. After 

absorption, the inactive R (-) ibuprofen is converted 

into the active S (+) enantiomer by chiral inversion. As 

shown in Fig. 2 [127], hydroxyl-ibuprofen (2-(4-

hydroxyl-2-methyl propyl) phenyl) propionic acid, 

carboxy-ibuprofen (3-(4-(1-carboxyethyl) phenyl)-2-

methyl-propionic acid), and carboxy-hydrotropic acid 

(4-(1-carboxyethyl) benzoic acid) are the primary 

metabolites of Ibuprofen [127]. 

In the biological treatment of active sludge, 

ibuprofen has various transformation kinetics under 

different circumstances. Ibuprofen metabolites were 

identified, and carboxy-ibuprofen was measured [127]. 

However, the metabolite hydroxyibuprofen was 

discovered as the primary component associated with 

ibuprofen in the influent and effluent of a number of 

wastewater treatment plants. As a result, 

hydroxyibuprofen appears to be the most stable of the 

three degradation products found [71, 127]. Furthermore, 

Khalaf et al. [72] discovered that in aerobic situations, 

hydroxyl ibuprofen was generated in activated sludge, 

whereas carboxyhydratropic acid was formed in 

anaerobic settings. 

2.2 Naproxen 

Similar to ibuprofen, naproxen (2-naphthaleneacetic 

acid, 6-methoxy-a-methyl-, (S)-(+) -(S)-6-methoxy-a- 

methyl-2-naphthaleneacetic acid) is a NSAID (Non-

Steroidal Anti-Inflammatory Medication). The mechanism 
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Fig. 2  OH-Ibuprofen: hydroxyl- Ibuprofen, CA-Ibuprofen: carboxy-Ibuprofen, and CA-HA: carboxyhydratropic acid were 

the human metabolites of ibuprofen [127]. 
 

of action of NSAIDs in organisms is still a hot topic of 

discussion. Meanwhile, the most likely hypothesis is 

that the COX (cyclooxygenase) enzyme, which is the 

primary enzyme involved in the manufacture of 

prostaglandins and is responsible for pain and 

inflammation [127, 128], is inhibited. Prostaglandins 

can also cause muscle contraction and atony, which affects 

blood circulation and blood pressure. Prostaglandins 

provide protection to cells in the gastrointestinal tract 

(stomach, kidney, liver). Inhibition of these enzymes 

can cause a variety of side effects, including bleeding 

(one of the most important negative effects of these 

compounds). NSAIDs can also cause gastric ulcers and, 

in the case of the elderly, liver and kidney problems 

[129]. 

Naproxen stability tests were carried out in a WWTP 

at 25 °C by dissolving naproxen in either pure water or 

activated sludge. During 14 days, no chemical or 

biological degradation occurs, according to these 

investigations [74]. Furthermore, naproxen breakdown 

was gradual, with only one metabolite detected at low 

intensity after 28 days in activated sludge, resulting in 

a 60 percent transformation. The naproxen metabolite 

was identified as O-desmethylnaproxen based on its 

molecular anion (m/z 215), and the product ion spectra, 

which indicated the presence of one carboxylate group 

[5]. 

2.3 Aspirin (Acetylsalicylic Acid) 

Aspirin, also known as ASA (acetylsalicylic acid), is 

a NSAID (Non-steroidal Anti-Inflammatory Medicine) 

that is often used to treat minor aches and pains. It is 

also utilized as an antipyretic to lower fever and 

minimize the chance of death from a heart attack [130]. 

Aspirin degrades into salicylic acid in an aqueous 

condition, as demonstrated in Fig. 3A [11]. 

The conjugation of salicylic acid with glycine or 

glucuronic acid produced two inactive metabolites in 

the human body’s aspirin metabolism: salicyluric  

acid and glucuronide ether/ester. In addition to these 

metabolites, gentisic acid [131, 132], which is produced 

by the oxidation of salicylic acid, is observed (Fig. 3B). 
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Fig. 3A  A representation of the hydrolysis of aspirin (acetylsalicylic acid) to salicylic acid and acetic acid. 
 

 
Fig. 3B  An illustration of the metabolism pathway for salicylic acid. 
 

Aspirin and salicylic acid have been observed to 

have the highest amounts of pharmaceuticals in water 

bodies in numerous regions [133]. Aspirin undergoes 

hydrolysis to salicylic and acetic acids after 8 days in 

pure water, according to aspirin stability tests in pure 

water and wastewater. The rate constant for the 

hydrolysis of aspirin in pure water was 3.57 × 10-9 s-1 

and 8.45 × 10-9 s-1 in wastewater after five days at 25 °C. 

This increase in aspirin in wastewater was attributed to 

the wastewater’s content (which includes a range of 

enzymes, microorganisms, and heavy metals) acting as 

a catalyst for such processes [134]. 

2.4 Paracetamol 

Paracetamol is a non-steroidal anti-inflammatory 

medicine that is currently used all over the world for 

pain relief and fever control [135, 136]. When taken in 

therapeutic doses, around 58-68 percent of paracetamol 

is eliminated from the body; this antipyretic medicine 

is freely available in most countries, even without a 

medical prescription. As a result, comparable to other 

pharmaceutical substances, paracetamol concentrations 

in wastewater and water resources might be high. 

Paracetamol is largely safe at therapeutic levels; 

nevertheless, at high concentrations, it can cause liver 

failure, gastrointestinal sickness, centrilobular necrosis 

in the liver, and eventually hepatotoxic potential. 

Tablets, capsules, drops, elixirs, suspensions, and 

suppositories are all examples of paracetamol dosage 

forms. It is stable at a pH of about 6, but in acidic or 

alkaline conditions, it degrades, and hydrolysis to 

acetic acid and p-aminophenol occurs (Fig. 4A). 

Fig. 4B depicts three metabolic routes for 

paracetamol, including glucuronidation, sulfation, and 

N-hydroxylation, followed by the sulfhydryl group of 

GSH (Glutathione Conjugation). These three routes 

produce inactive, non-toxic end products that are 

subsequently eliminated by the kidneys. The 

intermediate product of the N-hydroxylation and 

rearrangement metabolic pathway, however, is 

hazardous when it reacts with proteins and nucleic acid 

[137]. Paracetamol solution in wastewater, on the other 

hand, is hydrolyzed to p-aminophenol after 7 days 

[134]. 
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Fig. 4A  The hydrolysis pathway for paracetamol. 
 

 
Fig. 4B  The metabolic pathways for paracetamol. 
 

2.5 Amoxicillin 

The stability of amoxicillin in water containing 100 

g/mL of amoxicillin was investigated at different pH 

levels (pH 5, pH 7 and pH 8) for water containing 100 

g/mL of amoxicillin. In addition, two natural solutions 

were investigated: secondary effluents and tap water, 

both of which were kept at room temperature for 16 

days and then sampled after 3, 6 and 16 days [127, 138]. 

Amoxicillin penicilloic acid (ADP1/2), phenol 

hydroxyl pyrazine (ADP6), and two more compounds, 

amoxicillin 20,50-diketopiperazine (ADP8/9) and 

amoxicillin-S-oxide (ADP3), were found as breakdown 

products [139]. 

As illustrated in Fig. 5 [140], ADP1/2 are the first 

products of the hydrolysis process in which the lactam 

ring is opened and obtained swiftly in tap water; the 

other compounds, ADP4/5 and ADP8/9, are derived 

from ADP1/2. 

The availability of the lone pair of electrons on the 

amine group (pKa (NH2) = 7.56), which are available 

for nucleophilic attack on the carbonyl group to yield 

the diketopiperazine ring, caused ADP8/9 to form 

preferentially at pH 8 as opposed to pH 7 or 5; this 

preferential formation at relatively high pH was due to 

the accessibility of the lone pair of electrons on the 

amine group (pKa (NH2) = The decarboxylation products 

(ADP4/5) were preferred at low pH compared to their 

production at higher pHs (pH 7 and 8) [141, 142]. 

ADP6 is the stable end product acquired through 

various  well-known  degradation  procedures in the 

pharmaceutical sector. Its conjugated double bond is 
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Fig. 5  The degradation pathway of amoxicillin in an aqueous medium. 
 

responsible for its stability, as well as its yellow color 

[143]. Because of the abundance of ADP1/2, which 

began the synthesis of the other ADPs, ADP6 was 

predominantly identified in tap water (pH 6.5). 

3. Removal of Pharmaceuticals from Water 

and Wastewater 

Over the last few decades, the removal of micro-

pollutants from water and wastewater has gotten much 

attention. Pharmaceuticals, insecticides, industrial 

chemicals, hormones, personal care items, and other 

compounds are examples of micropollutants, often known 

as emerging contaminants. Pharmaceuticals have been 

found in surface waters ranging from parts per million 

to parts per trillion, implying that typical STPs are 

ineffective in removing these substances [144, 145]. 

Because of their low biodegradability and high chemical 

stability, current wastewater treatment technologies 

such as those based on biological, thermal, and physical 

treatment processes are ineffective in eliminating or 

degrading tiny molecular-weight medications [146]. 

The increased awareness of the threat posed by toxic 

organic contaminants in the aquatic environment has 

prompted the development of advanced technologies 

such as membrane filtration, which consists of 

sequential elements such as UF (Ultra-Filtration), AC 

filter, and RO, as well as adsorption and AOPs [71-75]. 

The following sections detail the results obtained 

using all of the technologies used in earlier investigations, 

ranging from traditional treatment procedures to 

sophisticated technologies such as membrane filtration, 

adsorption, and AOPs. 
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3.1 Removal of Pharmaceuticals During Conventional 

Wastewater Treatment 

Much prior research [147-149] has shown that drugs 

can find their way into the aquatic environment. One of 

these channels [150] is domestic wastewater, which 

comprises pharmaceutical drugs expelled via urine and 

feces either as the original compound or as metabolites. 

Hospital and manufacturing effluents, land applications 

such as biosolids, concentrated animal feeding activities, 

and direct discharge of pharmaceutical substances to 

the environment are all examples of environmental 

exposure pathways [151]. The majority of these paths 

end up in the wastewater stream, where they eventually 

end up at WWTPs 147]. Pathogens, organic and inorganic 

suspended and flocculated debris, were the primary 

goals of WWTPs. The majority of research found that 

the procedures used in WWTPs were ineffective in 

removing these medicines from wastewater and that, as 

a result, WWTPs have become a major collecting and 

release site for these pharmaceuticals into the 

environment [152]. The primary and secondary stages 

of a WWTP are usually present. When a better grade of 

released water is required for certain reasons, a tertiary 

treatment stage is added [153]. Physical settling or 

filtration are two primary treatment procedures for 

removing big particles from wastewater [153, 154]. 

Pharmaceuticals and other forms of micropollutants are 

primarily eliminated in primary treatment procedures 

by sorption on primary sludge or by absorption caused 

by interactions between the pharmaceutical compound’s 

aliphatic or aromatic groups on the one hand, and the 

lipophilic cell membranes of sludge microorganisms on 

the other, or via adsorption caused by electrostatic 

interactions between positively charged groups and 

negatively charged surfaces of microorganisms and 

sludge [150]. Pharmaceutical chemicals were treated 

with a series of processes in the secondary treatment stage, 

including dispersion, dilution, partition, biodegradation, 

and abiotic transformation. The overall fall of the 

parent molecule, which has been linked to many 

distinct mechanisms such as chemical and physical 

transformation, biodegradation, and sorption to solids 

[155, 156], is used to estimate the removal efficiency 

during secondary treatment. Pharmaceuticals were 

biologically destroyed to varying degrees after subsequent 

treatment, resulting in mineralization or partial breakdown 

(generation of by-products) [150]. In general, the 

transformation of the parent component into a new 

substance is referred to as pharmaceutical removal. As 

a result, it accounts for all decreases in parent 

compounds caused by a variety of mechanisms, such as 

chemical and physical transformations, biodegradation, 

and sorption to solid matter [157-159]. 

Adsorption of diclofenac and estriol to sludge 

particles was found to be only 28% in a similar vein 

[160]. Ibuprofen, naproxen, and sulfamethoxazole 

sorption onto solids was less than 5% in most cases 

[161, 162], according to Carballa et al. [128], whereas 

Verlicchi et al. [162] found that sorption onto solids 

was less than 5% in most cases [162], and Ternes et al. 

[159] reported about 30% sorption for mefenamic acid 

[163]. 

The investigations by Petrovic et al. [158] and Jelic 

et al. [163] on a set of analgesic, anti-inflammatory, and 

antibiotic medications in numerous countries showed 

regional and temporal variability in pharmaceutical 

concentrations in WWTP influent and effluent, with 

influent ranged between 0.001 to 56.94 µg/L and 0 

µg/L to 5.09 µg/L effluent ranged for acetaminophen, 

aiclofenac, abuprofen, aetoprofen, aefenamic, aaproxen, 

aalicylic acid, arythromycin, aulfamethoxazole and 

arimethoprim. The rate of production, dosage and 

frequency of administration and usage, excretion rate 

or metabolism, environmental persistence, and 

elimination efficacy of wastewater treatment systems 

could all play a role in this variation [157, 158]. 

Due to variances in chemical characteristics, 

pharmaceutical substances are categorized according to 

therapeutic purposes, resulting in large variability in 

clearance rates within the group. The medications that 

were researched the most in WWTPs were NSAIDs and 

antibiotics. Ibuprofen, naproxen, ketoprofen, and 
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diclofenac were found to have moderate to high 

removal efficiency in earlier studies [150], with 

average removal efficiencies of 91.4 percent, 75.5 

percent, 51.7 percent, and 35.8 percent, respectively. In 

another study, Castiglioni et al. [164] found that 

ibuprofen and naproxen clearance rates were frequently 

higher than 75 percent and 50 percent, respectively. 

Diclofenac clearance rates were shown to be rather low 

and inconsistent in studies by Clara et al. [165], Gomez 

et al. [166], Joss et al. [48], and Lindqvist et al. [32] and 

others [28-31]. 

These findings show differences between WWTPs, 

which are most likely attributable to differences in 

operational characteristics. Even among chemicals that 

belong to the same therapeutic group, there is a wide 

range in biodegradability degrees. Diclofenac has a 

limited biodegradability (25%), according to Salgado et 

al. [167], but ibuprofen and ketoprofen have 

substantially higher biodegradability (>75%) [35]. 

Gros et al. [168] present results from traditional WWTP 

removal of certain sample NSAID medicines. 

NSAIDs have a pKa value of roughly 4, indicating 

that they are acidic chemicals [133]. As a result, they 

occur in wastewater as ionic species. As a result, 

partitioning into sludge will contribute relatively little 

to overall removal, partly due to the ionized species’ 

high-water solubility and partly due to their electrostatic 

repellence by the overall negative charge of sludge 

particles [169]. This behavior could explain why these 

medications are removed so slowly by conventional 

treatment procedures, which rely on biodegradation 

and sorption of micropollutants to sludge particles [155, 

156]. Antibiotic removal efficiency varied among chemical 

classes, according to studies conducted around the 

world, and characterization of their behavior during the 

activated sludge process was difficult. This could be 

due to their low biodegradability and sorption capacity 

[163]. Sulfonamides, trimethoprim, erythromycin, 

azithromycin, norfloxacin, ciprofloxacin, tetracycline, 

chlortetracycline, doxycycline, sulfamethoxazole, and 

other antibiotics have all been studied in earlier 

investigations; removal results have been mixed [163]. 

Sulfonamides and trimethoprim were partially removed 

by conventional WWTPs, according to Brown et al. 

[170] and Choi et al. [171], as well as other researchers. 

Trimethoprim was also removed in a modest way by 

Gobel et al. [172] during primary and biological 

treatment. By using an activated sludge technique and 

aerated lagoons, Karthikeyan and Meyer [173] were 

able to remove 43 to 99 percent of erythromycin and 68 

percent of tetracycline. The removal of 50% of 

clarithromycin and azithromycin from three standard 

WWTPs was demonstrated by Kobayashi et al. [174]. 

According to Lindberg et al. [175], fluoroquinolone 

antibiotics norfloxacin and ciprofloxacin were eliminated 

at 78 percent and 80 percent, respectively. 

The chemical and biological properties of the 

pharmaceutical molecule, wastewater parameters, and 

operating conditions all influence the removal of 

pharmaceuticals during wastewater treatment [150]. 

Hydrophobicity, biodegradability, and volatility of 

pharmaceuticals can all affect the clearance process. 

Rogers and Zhang [176] demonstrated that the 

hydrophobicity of a micropollutant influences its 

sorption by solids. The acidity of the molecule can have 

a significant impact on its electrostatic adsorption 

throughout the treatment procedure. According to 

Schafer et al. [177], repulsion between negatively charged 

chemicals and biomass in activated sludge reactors 

could obstruct the removal of medicinal compounds at 

certain pH values. Because the biodegradability of 

pharmaceutical compounds is largely determined by 

their bioavailability, the biological characteristics of 

the compounds have a significant impact on removal 

efficiency. As a result, Joss et al. [48] revealed that 

when micropollutants are absorbed by the cell, the 

convergence between the micropollutants and bacterial 

enzymes increases; this mechanism is mostly based on 

compound structure, which defines a micropollutant’s 

resistance to biodegradation. Nonetheless, there is no 

evident link between chemical structure, functional 

groups, and elimination for several pharmacological 
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molecules. Camacho-Munoz et al. [178] observed that 

ibuprofen and ketoprofen, which have almost identical 

structures, had different removal behavior, with 

ibuprofen being removed more efficiently than 

ketoprofen. 

Suarez et al. [179] found that the major operating 

parameters that affect the removal of pharmaceuticals 

during conventional treatment are SRT (Solid 

Retention Time) and HRT (Hydraulic Retention Time). 

The average time the activated-sludge solids are in the 

system is called SRT. SRT is commonly expressed in 

days and can affect treatment process efficacy, aeration 

tank volume, sludge generation, and oxygen 

requirements. The removal of pharmaceuticals was 

shown to be improved when treatment processes had 

long SRTs since long SRTs allow for the enrichment of 

slowly growing bacteria, which facilitates the build-up 

of growing bacteria and so increases removal efficiency 

[180]. Previous research supports this hypothesis; Clara 

et al. [165] found that extending SRTs to 10 days 

allowed the nitrification and denitrification processes 

to remove substances such as ibuprofen, bezafibrate, 

and natural estrogens. Suarez et al. [181] also showed a 

10% increase in fluoxetine, citalopram, and 

ethinylestradiol elimination efficiency after increasing 

the SRT period. Santos et al. [182] found that when low 

SRT was used, it had relatively minor impacts on the 

elimination of several pharmaceutical substances (e.g., 

ibuprofen, diclofenac, naproxen, and carbamezapine). 

In some studies, on pharmaceutical removal during 

wastewater treatment, the influence of SRT was nearly 

ineffective for some pharmaceuticals, such as 

diclofenac, but it was critical in enhancing the removal 

of others, such as ibuprofen, ketoprofen, indomethacin, 

acetaminophen, and mefenamic acid [47, 48, 180]. 

During the treatment procedure, HRT refers to the 

amount of time that biodegradation and sorption are 

allowed to occur. Some pharmaceuticals, such as 

fluoxetine and some antibiotics, have less effective 

biodegradation at shorter HRTs [183], whereas the 

efficiency of elimination for others, such as naproxen, 

ibuprofen, acetaminophen, hydrochlorothiazide, and 

paroxetine, has remained stable regardless of HRT 

values [184]. Cirja et al. [185] found that the acidity or 

alkalinity of an aqueous environment might affect the 

removal of micro-pollutants from wastewater by 

changing both microorganism physiology and the 

solubility of micro-pollutants present in wastewater. 

Kimura et al. [186] found that a small change in pH 

could alter the elimination of several acidic 

medications such as ibuprofen, ketoprofen, naproxen, 

mefenamic acid, and clofibric acid. Because 

temperature can alter biodegradation and partition of 

pharmaceutical chemicals, the temperature of 

wastewater might affect the removal efficiency of 

pharmaceuticals during traditional wastewater 

treatment methods [146]. According to Nie et al. [187], 

the elimination of micro-pollutants can be boosted at 

warmer temperatures due to increased microbial 

activity. In contrast, a study by Hai et al. [188] found 

that increasing the temperature to 45 °C decreased the 

removal of micropollutants. Other research, however, 

assumed that the elimination of micro-pollutants was 

unaffected by temperature changes [189]. 

3.2 Removal of Pharmaceuticals by Adsorption 

Adsorption on nanomaterials has recently been used 

[190], and it is also being used in drinking water 

facilities to purify water from contaminants, color, and 

odor [191]. AC, silica, zeolites, and resins are some of 

the most often utilized adsorbents. Ibuprofen removal 

was evaluated using six different adsorbents, including 

PAC (Powdered Activated Carbon), filtrasorb 200, 

GAC (Granular Activated Carbon), purolite A530E, 

optipore L-493, amberlite XAD-4, and amberlite XAD-

7, by Sirocki et al. [192]. Batch adsorption equilibrium 

experiments at pH 4 and pH 7 were employed in the 

tests. With the exception of amberlite XAD-7, all 

adsorbents achieved at least 96 percent removal after 

24 h, according to the findings (Table 2). 
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Table 2  Results of ibuprofen removal during batch adsorption experiments for several adsorbents after 24 h at pH 4 and pH 

7 [192]. 

No. 
Adsorbent/varied conc. 

(optimized according to adsorption equilibrium) 
IUB initial conc. % Removal (pH 4) % Removal (pH 7) 

1 PAC 15 mg /L 100.0 99.9 

2 Filtrasorb 200 granular activated carbon GAC 15 mg /L 99.1 98.2 

3 Purolite A530E 15 mg /L 99.0 95.7 

4 Optipore L-493 15 mg /L 97.5 97.1 

5 Amberlite XAD-4 15 mg /L 100.0 19.4 

6 Amberlite XAD-7 15 mg /L - - 

 

Hernandez-Leal et al. [193] also conducted a batch 

adsorption experiment on PAC for a collection of 

micro-pollutants, including personal care items, 

bisphenol A, and nonyiphenol, and found that these 

pollutants were significantly removed (more than 94 

percent). Ibuprofen, mefenamic acid, naproxen, 

dexamethasone sodium phosphate, aspirin, salicylic 

acid, paracetamol, amoxicillin trihydrate, and 

cefuroxime axetil were among the medications studied 

by Khalaf et al. [71], Qurie et al. [74], Sulaiman et al. 

[75], Ayyash et al. [134]. Batch adsorption experiments 

for the medicines were carried out in these researches, 

with either activated charcoal or composite micelle-

clay adsorbents being used to assess the removal 

efficacy of each adsorbent. The Langmuir model was 

used to characterize the equilibrium interactions 

between adsorbents (micelle-clay complex and 

activated charcoal) and the adsorption isotherms of the 

investigated medicines in these researches. In each 

experiment, the adsorption capacity of each adsorbent 

was calculated. Tables 3 and 4 show a selection of the 

findings from these investigations. 
 

Table 3  Percentage removal of tested pharmaceuticals by activated charcoal and clay micelle complex [71-75, 134]. 

No. Pharmaceutical 
% Removal 

(activated charcoal) 

% Removal 

(micelle-clay complex) 

1 Ibuprofen 99.1 90.3 

2 Mefenamic acid 97.2 97.3 

3 Naproxen ≈ 25.0 ≈ 95.0 

4 Dexamethasone sodium phosphate 34.0 91.0 

5 Salicylic acid 97.6 96.8 

6 Paracetamol 99.7 96.1 

7 Amoxicillin trihydrate 98.5 97.5 

8 Cefuroximaxetil 90.2 95.2 

 

Table 4  Langmuir adsorption parameters for selected pharmaceuticals on the micelle-clay complex and activated charcoal.a 

Pharmaceutical 
Langmuir parameters in micelle-clay complex Langmuir parameters in activated charcoal 

K (L/mg) Qmax (mg/g) KQ (L/g) K (L/mg) Qmax (mg/g) KQ (L/g) 

Ibuprofen 0.64 ± 0.03 62.5 ± 0.68 40 ± 2 0.65 ± 0.03 66.7 ± 0.35 43.3 ± 1.7 

Mefenamic acid 0.105 ± 0.03 100.0 ± 0.67 10.5 ± 1.8 0.065 ± 0.03 90.9 ± 0.74 5.9 ± 1.5 

Naproxen 0.066 ± 0.03 71.42 4.7 ± 1 0.067 ± 0.03 18.87 1.3 ± 0.3 

Dexamethasone sodium 

phosphate 
2.795 652.1 1,823 ± 300 0.184 103.4 19 ± 2 

p-aminophenol 0.461 ± 0.06 15.33 ± 0.21 7.1 ± 1    

Paracetamol 0.033 ± 0.01 185.2 ± 9.7 6.1 ± 1 0.035 ± 0.01 129.9 ± 1.7 4.5 ± 1 

Amoxicillin trihydrate 0.229 ± 0.001 90.91 ± 0.86 20.8 ± 0.4 0.185 ± 0.001 100 ± 0.35 18.5 ± 0.2 

Cefuroxim axetil 0.271 ± 0.003 31.25 ± 0.65 8.5 ± 0.2 0.122 ± 0.002 26.31 ± 0.70 3.2 ± 0.2 

a [71-75, 134]. 
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The Langmuir equation’s parameters K and Qmax 

were determined in many circumstances, and it was 

discovered that equivalent fits may be obtained by 

using big K values and small Qmax values, or vice versa. 

As a result, it is worth considering the values of the 

amount KQ (L/g), which were added in Table 4. Under 

steady-state circumstances, the micelle-clay complex 

outperformed activated charcoal in the adsorption of 6 

of the 7 drugs evaluated. Furthermore, the micelle-clay 

combination outperformed activated charcoal in terms 

of adsorption kinetics. As a result, in the single case of 

Ibuprofen, where the value of KQ in the case of 

charcoal slightly exceeds the corresponding value 

deduced for the micelle-clay complex (though within 

the estimated error), the filtration results yield a larger 

capacity for a filter that includes the micelle-clay 

complex, as discussed in the previous section. 

Many parameters, including contact duration 

between the adsorbent and the targeted contaminants, 

as well as the presence of natural organic matter in 

water, appear to affect the removal efficacy of 

pharmaceuticals employing adsorption technology. 

The latter factor may be due to competition between 

these compounds and targeted pollutants for binding 

sites on the adsorbent, which can lead to site blockage 

and reduced adsorbent removal effectiveness [194]. 

Furthermore, other parameters such as pH, adsorbent 

type, adsorbate solubility in the solvent, and 

temperature may influence adsorption in the liquid 

phase [192]. Finally, the findings suggest that 

adsorption methods are a potential technology for the 

treatment of water and wastewater. 

3.3 Removal of Pharmaceuticals Using Membrane 

Filtration Processes 

Advanced membrane filtration technology, along 

with additional techniques such as adsorption, ion 

exchange, flocculation, and dechlorination, is used in 

this stage to remove more suspended particles, organic 

matter, nitrogen, phosphorus, heavy metals, and 

bacteria from water [195]. Membrane filtration 

technology is a separation technique that uses semi-

permeable membranes as filters that allow water to pass 

through while removing suspended particles and other 

compounds that collect on the membrane’s surface 

[196]. Size exclusion, adsorption onto the membrane 

and charge repulsion are the three basic removal 

mechanisms used in membrane filtering. Membrane 

process type, membrane features, operating conditions, 

specific micro-pollutant characteristics, and membrane 

fouling are all elements that influence these 

mechanisms [197]. Because the removal of suspended 

or colloidal particles is reliant on the size of membrane 

pores (MWCO (Molecular Weight Cutoffs)) relative to 

that of the particulate matter, the features of semi-

permeable membranes are considered the main 

requirements for efficient separation. Other operating 

characteristics, such as the kind of driving force 

pressure, membrane chemical structure and 

composition, construction geometry, and feed flow 

type, all play a part in the membrane filtration process 

[198-201]. Membranes are divided into four modules: 

plate, frame, tubular spiral wound, and hollow fibre. 

The final two modules are made of organic material 

(synthetic polymers such as polyamide and 

polysulphone) and are utilized in drinking water and 

wastewater treatment [202]. Membrane filtration 

techniques can be grouped into four varieties based on 

the driving force used in the filtration process: MF, UF, 

NF, and RO. MF, UF, and RO are all done with hollow 

fiber and spiral wrapped [203]. External pressure, 

electrical potential gradient, or concentration gradient 

are examples of driving forces used in filtration 

processes. Pressure-driven forces are commonly 

utilized in the treatment of water and wastewater. 

Membranes are further categorised based on their pore 

sizes: MF, UF, NF, and RO. The separation properties 

for several pressure-driven membrane processes are 

shown in Table 5 [201, 204]. 

According to several studies, MF and UF techniques 

are effective in lowering turbidity in treated water, but 

they are ineffective in eliminating all micro-pollutants  
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Table 5  Comparison between different types of pressure-driven membrane systems [203, 206]. 

Membrane system Parameters Product particle size (µm) Retained compounds Operating pressure, Atm. 

MF 

Low-pressure membrane system 
0.08 to 2.0 

Very small suspended particles, 

some colloids, most bacteria 
0.7 to 1.02 

UF 

Low-pressure membrane system 
0.005 to 0.2 

Organic compounds > 1000 Da, 

pyrogens, viruses, bacteria, colloids 
2.0 to 6.8 

NF 

High-pressure membrane system 
0.001 to 0.01 

Organic compounds > 200 Da, some 

dissolved solids (i.e. multivalent ions) 
5.4 to 8.5 

RO 

High-pressure membrane system 
0.0001 to 0.001 Ions, Organic compounds >100 Da ≥ 68.0 

 

since membrane pore diameters are much bigger than 

micro-pollutant molecular sizes. The presence of NOM 

(Natural Organic Matter) in wastewater, which can 

interact with micro-pollutants and boost adsorption 

onto membrane polymers, was found to improve 

removal in these investigations [150]. Ibuprofen and 

estradiol were removed through a UF procedure with 

and without NOM, according to Jermann et al. [205]. 

Ibuprofen was removed insignificantly and estradiol 

was removed insignificantly (8%) by the hydrophilic 

membrane, whereas hydrophobic membranes retained 

much more estradiol (up to 80%) and ibuprofen (up to 

80%) (up to 25 percent). Due to the low removal 

effectiveness of MF or UF alone, it has been suggested 

that they be combined with other processes such as NF 

or RO to improve removal efficiency. To improve the 

removal efficiency of micro-pollutants from municipal 

wastewater, Garcia et al. [206] used a combination of 

MF and RO. They discovered that MF could lower the 

amount of some chemicals by more than 50%, such as 

bis-(2-ethylhexyl) phthalate, and that removal 

effectiveness was greatly increased following RO 

integration, ranging from 65 percent to 90 percent for 

most micro-pollutants. Except for some pharmaceutical 

chemicals like mefenamic acid and caffeine, most 

PPCPs (Pharmaceuticals and Personal Care Products) 

were eliminated to more than 95 percent during the 

MF/RO treatment process, according to Sui et al. [207]. 

NF and RO membranes are still moderately 

permeable to several relatively small micro-pollutants, 

according to Steinle-Darling et al. [208]. Rohricht et al. 

[209], for example, investigated the removal of various 

pharmaceutical substances using two distinct types of 

submerged NF flat sheet modules; the results revealed 

a moderate removal of naproxen and diclofenac (60 

percent) and a modest removal of carbamazepine. The 

pKa values of each chemical played a key role in the 

preceding situation, when naproxen and diclofenac 

(with pKa values of 4.2 and 4.15, respectively) were 

deprotonated at pH 7 and 8, whereas carbamazepine 

(pKa = 13.9) was not. As a result, the negatively 

charged membrane surface could reject naproxen and 

diclofenac, but carbamazepine could not be eliminated. 

Many medicinal chemicals can be removed by 

changing pH values, according to Nghiem et al. [210]. 

They assumed that ionized, negatively charged chemicals 

would be more easily removed, but uncharged 

compounds’ physicochemical features would be more 

important in their removal. 

Ibuprofen, mefenamic acid, naproxen, dexamethasone 

sodium phosphate, aspirin, salicylic acid, paracetamol, 

p-aminophenol, amoxicillin trihydrate, and cefuroxim 

axetil were among the previous medications studied [71, 

75, 134], the WWTP included UF (Hollow fiber and 

Spiral wound), an activated carbon column, and a RO 

membrane in that order. Before entering the membrane 

filtering unit, spiked samples were generated by 

dissolving specified amounts of each medication in the 

secondary effluent tank (activated sludge water). The 

cumulative % elimination for the studied pharmaceutical 

substances is shown in Table 6 [71-75, 125]. 

3.4 Removal of Pharmaceuticals Using AOPs 

Alternative methods such as membrane separation, 

adsorption technology, air stripping, and extraction 

technology have been used to remove resistant micro- 
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Table 6  The sequential cumulative percentage removal of several pharmaceuticals using membrane separation technology 

coupled with AC. 

Pharmaceutical 
HF 

(Hollow fiber) 

SW 

(Spiral Wound) 
AC RO 

Ibuprofen 59.8% 94.7% 98.8% 99.9% 

Mefenamic acid 74.3% 94.3% 98.8% 99.5% 

Naproxen 64.6% 81.9% - 99.7% 

Dexamethasone sodium phosphate 69.0% 94.0% - 100.0% 

Amoxicillin trihydrate 58.93% 90.33% 96.47% 100.0% 

Cefuroximaxetil 70.90% 91.27% 96.03% 100.0% 

Salicylic acid 68.7 % 79.0% 99.1% 99.6% 

Paracetamol 40.5% 48.8% 98.9% 99.5% 

p-aminophenol 71.7 88.4% 100.0% 100.0% 

All of the data (Table 6) indicate that membrane filtration is an effective method for removing pharmaceuticals from water and 

wastewater. 
 

pollutants from wastewater, as explained in the 

preceding sections. These technologies, however, are 

only considered phase-transfer technologies, in which 

micro-pollutants are transported from one phase to 

another rather than being destroyed [211, 212]. It has 

become critical to find destructive treatment strategies 

for stubborn organic molecules like medicines. AOPs 

have been presented as a potent advanced technology 

for the treatment of recalcitrant and hazardous organic 

pollutants in recent years [213]. 

AOPs are oxidation processes that generate highly 

reactive species such as hydroxyl radicals (OH) or other 

species with similar reactivity such as SO4
2-. These 

radicals can react with practically all organic molecules 

in an aqueous solution, including medications and 

pesticides [214], mineralizing them and releasing CO2 

and inorganic ions, resulting in the elimination of target 

pollutants. Inorganic pollutants such as cyanide, sulfide, 

and nitrite can also be oxidized using AOPs [215]. The 

broad concept of AOPs encompasses a wide range of 

techniques. Depending on the number of phases 

involved, systems employed in AOPs are split into two 

broad groups: (a) homogeneous processes and (b) 

heterogeneous processes [216-218]. Photolysis, hydrogen 

peroxide and ultraviolet radiation (H2O2/UV), ozone 

and ultraviolet radiation (O3/UV), ozone-hydrogen 

peroxide-ultraviolet radiation (O3/H2O2/UV), ozone 

(O3) in alkaline medium, Fenton and photo-Fenton 

oxidation processes [219, 220]. Catalysts are commonly 

used in heterogeneous advanced oxidation processes to 

carry out compound degradation. The pollutants are 

present in the aqueous phase of heterogeneous oxidation 

processes, whereas the catalyst is present in the solid 

phase [221]. Catalytic ozonation, photocatalytic ozonation 

(TiO2/UV/O3), and heterogeneous photocatalysis are 

the three primary systems in heterogeneous oxidation 

[222-225]. Heterogeneous photo-catalysis with 

semiconductors [226-228] is the most widespread and 

effective type of AOP used in water and wastewater 

treatment. Dispersed solid semiconductor particles 

absorb substantial percentages of the UV spectrum 

efficiently in heterogeneous photo-catalysis, and they 

create chemical oxidants in situ from dissolved oxygen 

or water [227]. Because of its high photosensitivity, 

non-toxic nature, large band gap, chemical stability, 

and low cost [226-230], TiO2 is the most preferred 

semiconductor for the photo-catalytic process [228]. 

Table 7 summarizes the findings of two studies that 

looked at how different oxidation methods affected the 

removal of a group of medicines from liquid phase. 

AOPs are attractive technology because they can 

remove the majority of refractory organic pollutants, 

such as medicines and pesticides [126, 231, 232]. Brienza 

et al. [233] found that heterogeneous (solar/TiO2) 

advanced oxidation successfully eliminated the 

resistant anticonvulsant lipid regulator carbamazepine 

from secondary treated WW, which contained 53 

organic pollutants. 
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Table 7  Percent removal and half-life (t1/2) for a set of pharmaceuticals during several advanced oxidation processes [230, 

231]. 

Pharmaceutical 
Photolysis oxidation technology Photocatalysis/TiO2 oxidation technology 

% Removal Half-life (min) % Removal Half-life (min) References 

Ibuprofen 8.4 - 96.7 11.6 [232] 

Diclofenac sodium 95.5 70.7 97.8 54.6 [232] 

Mefenamic acid 62.5 1,422.2 99.0 91.2 [232] 

Dexamethasone sodium 

phosphate 
57.1 69.0 94.0 19.8 [233] 

Diazepam ≈ 4.3 2,048.4 M.T. 90.0 7.9 [233] 

Spironolactone M.T. 90.0 1,890 M.T. 90.0 1,188 [233] 

Atorvastatin ≈ 40 301.2 M.T. 95.0 69 [233] 

* Pharmaceutical Conc.: 25 mg/L, TiO2: 200 mg/L. 
 

4. Modelling of Filtration Results 

Simulations and predictions based on convection, 

adsorption, and desorption during filtration enable 

efficient planning of laboratory and pilot studies, as 

well as cost estimations [233]. The model has already 

been used to filter: (i) herbicides using micelle-clay, 

ODTMA-montmorillonite in granulated form, and a 

polymer-clay composite [233-235]; (ii) bacteria using 

powdered micelle-clay and polymer clay [236, 237], 

and a granulated complex [237-240]; and (iii) perchlorate 

using a powdered and granulated Ibuprofen [72], 

Amoxicillin [140], and Axetil [125] were all filtered 

using the model. Because the experimental data were 

most complete in this situation [73], the model may be 

shown using published results on diclofenac potassium 

filtration. Diclofenac potassium filtered solutions were 

made in tap water at concentrations of 1,000 ppm, 300 

ppm, 82 ppb and 118 ppb. The focus is on filtering 

using the ODTMA-montmorillonite complex, which 

removed diclofenac potassium more effectively than 

other materials. Three parameters were calculated: the 

initial molar concentration of adsorbing sites (R0 (M)), 

the rate constant of forward adsorption (C1 (M
-1min-1)), 

and the rate constant of desorption (D1 (min-1)). The 

amount of diclofenac potassium retained by the filter 

after filtering of 3 L of a 300-ppm solution was used to 

determine the first R0. Because the adsorption sites are 

generally vacant at first and the effect of desorption is 

modest, C1 and D1 were calculated from the findings at 

initial and later times, respectively. The fits can be 

classified as simulations, with some predictions thrown 

in for good measure. Because the emphasis in the 

original work was on presenting results in which the 

emerging values of diclofenac were zero or rather 

minor, Table 8 only shows a tiny fraction of the 

experimental points for brevity. The capacity of the 

system, which included two filters in series (total length 

of 40 cm; 13 g of complex) for a diclofenac 

concentration of about 100 ppb and flow rate of 30 

mL/min (a flow velocity of about 0.9 m/h), is about 8 

m3/kg of complex for a diclofenac concentration of 

about 100 ppb and flow rate of 30 mL/min (a flow 

velocity of about 0.9 m/h). The capacity was estimated 

by dividing the filtered volume by the weight of the 

complex in the filter, which provided an acceptable low 

value of diclofenac potassium. If the filter is filled 

solely with granules (640 g), which corresponds to 

setting R0 = 1 M, the filtration results will be the same, 

or slightly better, if the flow rate in Table 8 (30 mL/min) 

is multiplied by the relevant ratio of R0 values (0.03), 

according to the model. Table 8 shows that after 

filtration of a volume of 5,000 L, a diclofenac solution 

(100 ppb) with a flow rate of 1,000 mL/min, which 

corresponds to a flow velocity of 30 m/h, the emerging 

concentration of diclofenac is indeed minimal (0.019 

ppb). In this scenario, the capacity is 5 m3/(0.64 kg), 

which is the same as the ppb values in Table 8. 
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Table 8  Filtration of diclofenac potassium in the ppm and 

ppb range. 

Initial conc. 

(ppm) 
Vol. (L) 

Emerging concentration 

Exp. Calc. 

1,000a 1.1 0 0 

300 1 0 0 

300 1.5 0 0 

300 3 20 ppm 15 ppm 

300 4 Not measured 200 ppm 

Conc. (ppb)    

118 46 0 0 

82 151 0 0 
a The filters included excess sand (100/1 w/w). The weight of the 

active ingredient, i.e., ODTMA-Mt was 6.5 g per filter, except 

for this case, which was 13 g per filter (50/1 w/w). For filtration 

in the ppb range the results correspond to the second filter of two 

in series. Filtration was at room temperature. The flow rates were 

2, 20 and 30 mL/min for the filtered diclofenac solutions whose 

concentrations were 1,000 ppm, 300 ppm and below ppm, 

respectively. 
 

The parameters used in the calculations were C1 = 80 

(M-1min-1) and D1= 0.001 min-1. The values of R0 were 

0.03 M except for the cases which included 13 g of 

complex per filter, where correspondingly the values of 

R0 were doubled. 

Table 9 shows predictions for diclofenac potassium 

solution filtration at a concentration of 100 ppb, which 

was close to the average values in the ppb range reported 

by Karaman et al. [73]. In this scenario, a filter with a 

length of 40 cm was filled exclusively with the active 

material, with the same values of the kinetic parameters 

as in Table 8, but with R0 = 1 M. The flow rate was 100 

mL/min, or around 3 m/h. This value is ten times lower 

than 1,000 mL/min. As a result of the lower flow 

velocity, the capacity is predicted to increase. The 

estimated data show that the emerging diclofenac 

concentration is 0.01 ppb (99.99 percent elimination) 

for the first 14,000 L filtered, corresponding to a 

capacity of 21 m3/kg of complex, compared to the value 

of 8 m3/kg for the second 14,000 L filtered (Table 8, 

diclofenac concentrations about 100 ppb). The two 

filters in series in Table 9 are filled exclusively with the 

active material, resulting in an increase in capacity. 

Rakovitsky et al. [241] demonstrated the effect of 

increased capacity per kg of complex for a filter filled 

Table 9  Calculated emerging concentrations of diclofenac 

for a filtered diclofenac solution (100 ppb).a 

Vol. (L) Emerging conc. (ppb) % Removal 

14,000 0.01 99.99 

16,000 0.2 99.8 

18,000 1.6 98.4 

20,000 8 92. 
a The filters included the complex (640 g) exclusively. The flow 

rate was 100 mL/min. The kinetic parameters used in the 

calculations were as in Table 8. The value of R0 was 1 M. 
 

completely with the active material in the purification 

of grey water. 

It should be noted that the model can be used to 

simulate a solution containing many solutes, such as 

medications. As Nir et al. [234] point out, the observed 

results in this situation may imply that a given solute is 

eliminated preferentially at first, but the trend may alter 

subsequently. Another useful fact is that by lengthening 

the filter, the flow velocity can be increased without 

lowering the filter’s efficiency or capacity per weight 

of the active component. 

5. Summary and Conclusion 

This paper explains how water can be treated 

utilizing cutting-edge technology to remove carefully 

chosen widely used medications by membrane separation, 

adsorption, and sophisticated oxidation processes. 

Batch adsorption experiments were combined with 

appropriate adsorption isotherms and appropriate kinetic 

models to estimate the ultimate degree of pollutant 

removal by this method. Combining filtration with 

advanced oxidation processes improves the efficacy of 

treating wastewater containing refractory PhACs. 

We surveyed and talked about different pharmaceutical 

removal technologies. However, research in this area is 

ongoing to create more effective and environmentally 

friendly techniques that can be used in a zero-liquid 

water discharge mode. The adsorbed materials 

regenerated by different techniques need further 

research to minimize their effect on the environment. 
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