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Abstract: Blue-green algae, or cyanobacteria, may be prevalent in our rivers and tap water. These
minuscule bacteria can grow swiftly and form blooms in warm, nutrient-rich water. Toxins produced
by cyanobacteria can pollute rivers and streams and harm the liver and nervous system in humans.
This review highlights the properties of 25 toxin types produced by 12 different cyanobacteria genera.
The review also covered strategies for reducing and controlling cyanobacteria issues. These include
using physical or chemical treatments, cutting back on fertilizer input, algal lawn scrubbers, and
antagonistic microorganisms for biocontrol. Micro-, nano- and ultrafiltration techniques could be
used for the removal of internal and extracellular cyanotoxins, in addition to powdered or granular
activated carbon, ozonation, sedimentation, ultraviolet radiation, potassium permanganate, free
chlorine, and pre-treatment oxidation techniques. The efficiency of treatment techniques for removing
intracellular and extracellular cyanotoxins is also demonstrated. These approaches aim to lessen the
risks of cyanobacterial blooms and associated toxins. Effective management of cyanobacteria in water
systems depends on early detection and quick action. Cyanobacteria cells and their toxins can be
detected using microscopy, molecular methods, chromatography, and spectroscopy. Understanding
the causes of blooms and the many ways for their detection and elimination will help the management
of this crucial environmental issue.

Keywords: cyanobacteria blooms; cyanotoxins; Microcystis; Anabaena; cylindrospermopsin; satellite
imagery; biocontrol

Key Contribution: This article focuses on cyanobacteria, looking into their origins, how they spread,
and any issues connected to this type of toxicity diffusion in water. Many strategies are also discussed
to reduce these risks and secure drinking water.

1. Introduction

On occasion, drinking tap water results in an earthy flavor that is detectable right
away. In addition to colored scum that can develop on river surfaces, foam can occasionally
form on lake or rive’ surfaces. Cyanobacteria are depicted in Figure 1 [1–4] as the colorful
scum and the earthy taste of tap water. This unpleasant, old-growth organism contaminates
many of our freshwater supplies, which threatens human health. While cyanobacteria
are naturally present in our rivers and water supply, green growth and environmental
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modifications brought on by human activity might hasten their spread [2–7]. Our rivers
and tap water may include cyanobacteria. These tiny bacteria can swiftly produce blooms
in warm, nutrient-rich water, endangering humans and aquatic life. Toxins produced by
cyanobacteria include Microcystins, which are well-known for their toxicity and capacity to
harm plants. These poisons contaminate rivers and streams and threaten our drinking water
supply since they can sneak through standard water treatment systems unnoticed [6–8].

 

Figure 1. Cyanobacterial growth and dissemination on lake (a–c) and river (d) surfaces [3,8]. Repro-
duced with permission from Tao Lyu, Lirong Song, Qiuwen Chen, and Gang Pan, Water Journal;
published by MDPI, 2020. Reproduced with permission from Moreira, C.; Vasconcelos, V.; Antunes,
A., Earth Journal; published by MDPI, 2022.

Since these bacteria thrive in warmer climates, they pose a severe risk when river
levels rise in the summer. To make matters worse, getting rid of cyanobacteria from nearby
bodies of water can be challenging once a bloom has occurred. Because of this, we must
comprehend the dangers of cyanobacteria and how to stop their spread in our drinking
water [2,7–9].

When there is an abundance of warm, stagnant water and high amounts of phospho-
rus and nitrogen from sources like agricultural runoff or untreated sewage, cyanobacteria
blooms commonly take place. Additionally, elements like global warming and the fre-
quency of extreme weather events may make these blooms more likely [8–10].

The summer months experience mild temperatures, when these blossoms most fre-
quently appear. They can also happen throughout extended periods of low precipitation
and dryness. Due to long-term excess nutrient loading in a specific body of water, heavy
rains may occasionally result in cyanobacterial blooms [11].

It is essential to remember that blooms can occur at any moment, so it is best to exercise
caution when swimming in water bodies susceptible to blooming. Even if tests show that
a river or lake’s cyanobacterial toxin levels are low, if a bloom happens when a person is
swimming there, they may still be at risk [10–12]. In more detail, we will examine the topic
in this review, learning where cyanobacteria originate, how they spread, and what dangers
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come with this form of toxicity diffusion in our waters. We will also discuss some measures
implemented to reduce these hazards and maintain the safety of our tap water.

2. Common Genera of Cyanobacteria and Their Characteristics

In practically every freshwater ecosystem, cyanobacteria can be found alone or in
combination with other organisms. In addition, there are numerous distinct cyanobac-
teria genera, each with unique properties. The common cyanobacteria genera discov-
ered in freshwater systems are Synechococcus, Anabaena, Rivularia, Gloeotrichia, Oscillatoria,
Cylindrospermopsis, Aphanizomenon, Planktothrix, Scytonema, Tolypothrix, Merismopedia, and
Microcystis [13–16].

2.1. Microcystis: Colonial, Spherical Cells, Toxin Producer, Toxic, and Bloom-Forming

One of the most prevalent genera of cyanobacteria found in freshwater environments
is Microcystis, a genus of colonial, spherical cells. Microcystis can produce toxins; they are
poisonous and can cause blooms. Their colonies can be any shade of green, from deep
olive to vivid blue-green. Microcystis colonies expand swiftly and have a milliliter cell
density of over 1 million [14–16]. They prefer to form mats on the water’s surface along
with other species like Anabaena, Oscillatoria, or Aphanizomenon and are photosynthetic
organisms [17–19].

Moving water like rivers or streams and standing water like ponds, lakes, or reservoirs
can harbor Microcystis. Because of the lower levels of oxygen and warmer temperatures
throughout the summer, blooms are more likely to happen. Due to decreased oxygen levels
and the development of chemicals that can harm humans and plant life, the blooms may
result in drop-down water quality [20,21].

2.2. Anabaena: Filamentous, Heterocysts for Nitrogen Fixation and Diazotrophic

Anabaena inhabits environments in freshwater. These cyanobacteria are particularly
important for their capacity to fix nitrogen since they include heterocyst cells capable of
doing so. Anabaena also has akinetes cells, which act as protective spores and can withstand
harsh environmental conditions [22,23].

The filaments that make up an Anabaena comprise individual trichome cells, which
are one cell thick. Each trichome contains photosynthetic cells with a thick cell wall and an
external peptidoglycan coating. The nucleoids, thylakoids, and carboxysomes of the cells
are home to the enzymes involved in photosynthesis. Along the length of the trichome,
heterocysts act as the central locations for nitrogen fixation [23–25]. Anabaena has undergone
extensive research due to its ability to produce diazotrophic endospores that can be used
to study other cyanobacterial species further. It is commonly used in aquatic systems to
increase their nutritional content because of its ability to fix atmospheric nitrogen [25,26].
By doing so, it can supply other species with fixed nitrogen in settings where it is scarce
or absent.

2.3. Oscillatoria: Filamentous, Motile, No Heterocysts

Oscillatoria is a widespread genus of freshwater cyanobacteria, the bacteria that cause
bodies of water to get murkier and greener. It has a slimy, thin filamentous structure.
Inhabiting shallow and deep regions of nutrient-rich water, such as seas, rivers, and lakes,
Oscillatoria prefers to coil in an oscillatory motion [27,28].

It belongs to the cyanobacteria family and is not heterocytic, meaning it does not
have heterocysts, a specific cell that fixes nitrogen in plants’ roots. Oscillatoria is frequently
grouped with the Chroococcales family regarding their growth and physiological circum-
stances [29].

Under some circumstances, these mobile bacteria can create floating mats of colonies
on the water’s surface. Oscillatoria can withstand dry seasons’ droughts thanks to the
viscous slime that coats its cell walls. Furthermore, by utilizing nitrates to generate energy,
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it can survive in low light or even complete darkness because of its unique photosynthesis
style [28–30].

2.4. Cylindrospermopsis: Filamentous, Motile, Toxin Producer

A filamentous and mobile genus of cyanobacteria called Cylindrospermopsis makes
toxins. Freshwater systems like lakes and rivers and artificial reservoirs like ponds and
canals frequently contain it. In temperate areas, this genus displays sporadic flowers in the
summer [31].

Cylindrospermopsis spreads swiftly and takes over a system due to its motile habit,
which makes it tough to eradicate. Despite being filamentous creatures, they can develop
both deep blooms that can extend several meters below the surface of the water and
enormous mats close to the water’s surface [32,33].

In addition to hepatotoxins (cyanotoxins), neurotoxins (ciguatoxins), and components
of bacterial cell walls (lipopolysaccharides or LPS), Cylindrospermopsis species also pro-
duce toxins. Scientists must watch for these species in freshwater systems because these
cyanotoxins are very hazardous to people and animals, even at low concentrations [32–34].

2.5. Aphanizomenon: Filamentous, Motile, Nitrogen Fixer

The genus Aphanizomenon of motile, free-floating filamentous cyanobacteria is widely
found in freshwater bodies of water. They are known as nitrogen fixers because they
can convert atmospheric nitrogen into a form that plants can utilize. As a result, they
contribute nutrients to the food chain and maintain high water quality, making them
vital to aquatic environments [35,36]. Certain Aphanizomenon species can harm humans
and other animals when present in more significant proportions than usual. To further
comprehend the potential risks these cyanobacteria pose, it is essential to frequently sample
water and evaluate the levels of cyanobacterial metabolites [37]. Aphanizomenon is usually
found in blossoms; therefore, that should also be considered. This indicates that an increase
in their population may be caused by their quick growth, spurred by an abundance of
nutrients or higher temperatures. It can help to prevent possible damage from increased
toxin production or other negative impacts on aquatic plants and fauna by routinely
checking for bloom indications [38,39].

2.6. Planktothrix: Filamentous, Motile, No Heterocysts

Numerous distinct species of cyanobacteria that have evolved to flourish in freshwater
ecosystems comprise the Planktothrix genus. Planktothrix agardhii, P. rubescens, and P.
limnetica are the most prevalent species. Due to their preference for nutrient-rich waters,
these organisms are frequently found in eutrophic lakes with high levels of phosphate and
nitrogen [40–42].

Phytotoxicity diffusion is the process of producing toxic exudates on the cell walls
of Planktothrix species due to dense blooms that decompose. Due to the pigments (such
as carotenoids) they produce, Planktothrix blooms can also cause water to become discol-
ored [43]. In addition, Planktothrix is renowned for its capacity to multiply quickly and,
under the right circumstances, to create dense aggregates or mats at the water’s surface.
Optimal temperatures for Planktothrix development and survival in freshwater systems are
between 15 and 25 ◦C and photosynthetically active radiation (PAR) [43,44].

2.7. Synechococcus: Unicellular and Colonial

The most prevalent genus of cyanobacteria is Synechococcus. It can be single-celled
or colonial, consisting of one or more cells that can cluster and form filaments or colonies
containing single or multiple cells. These colonies typically have a spherical form, a single
gas exchange aperture, and a polysaccharide wall [45,46].

Synechococcus is renowned for its capacity to endure harsh conditions, including
acidic and hypersaline waters. Due to its tolerance for high salt concentrations, it is
also a significant species in coral reefs and soils, both aquatic environments. Its capacity



Toxins 2023, 15, 582 5 of 38

for photosynthesis has also made it a vital component of the oxygen cycle in aquatic
settings [47–49].

2.8. Rivularia: The Bubble-like Colonies

Rivularia create colonies that resemble bubbles, with each cell living inside a separate,
protective “home”. Several characteristics set Rivularia apart from other cyanobacterial taxa.
First, unlike most other cyanobacteria, Rivularia colonies are relatively solid in the water.
The individual cells each have a distinct shape, with flat bottoms and rounded tops [50–52].

Additionally, depending on their environment, Rivularia colonies can appear very
varied. When exposed to large amounts of light or oxygen, the colonies turn a deeper shade
of green or even blue-black. However, colonies deprived of oxygen and light become paler
and more transparent [53,54].

2.9. Gloeotrichia: Filamentous Cyanobacteria with Distinct Branching

The Gloeotrichia genus is distinguished by its distinctive branching, which gives its
members the appearance of a starburst or a dandelion gone berserk. Due to their character-
istic morphology, Gloeotrichia members are frequently observed in freshwater or brackish
water habitats. They are anoxygenic phototrophs, producing sulfur rather than needing
oxygen to use the light energy from photosynthesis [55,56].

These creatures’ internal sheaths have a spiral arrangement of cells that facilitates their
movement through their environment, improving nutrition intake and mobility throughout
your aquascape. The cell’s structure and surface area influence its interaction with its
surroundings [56–58].

Most organisms have a variety of photosynthetic pigments in their photosynthetic
system, allowing them to utilize light from locations where it is most abundant efficiently.
Additionally, they have a variety of flagella to assist them in moving around in water defi-
cient in nutrients or containing a lot of dissolved materials, such as salts and metals [58,59].

2.10. Scytonema: Irregularly Branched Filaments

Cyanobacteria belonging to the genus Scytonema have filaments that are erratically
branched. When growing in colonies, cells can form cords, tufts, and even mats and are
typically oriented spirally. The second name of this particular cyanobacterium species
refers to the color of its distinctive brilliant reddish-brown spores. It can be found on
mosses and lichens and often grows on damp surfaces [60,61].

Scytonema stands out from other cyanobacteria in several ways. It does not require
light for photosynthesis, enabling it to flourish in dark places like caves or deep-sea cracks.
A bud forms from the side of the bacteria cell and splits off to create a new organism, which
is how they mainly reproduce [61,62].

They can also continue for extended periods without water because they enter a latent
stage when they do not require oxygen. On the other hand, several species have unique
pigments that enable them to absorb various light wavelengths, allowing them to adapt to
multiple habitats [61–63].

2.11. Tolypothrix: Pseudoparenchymatous Filaments

Because of its pseudo-parenchymatous filaments, Tolypothrix can be identified. As
a filamentous cyanobacterium that resembles a thread, Tolypothrix can join with other
Tolypothrix cells to form lengthy chains of cells. This genus is extensively distributed
worldwide and can be found in fresh and saltwater settings [64].

Typically comprised of four to six cells, Tolypothrix cells are protected from external
challenges like UV radiation and drying out by a rigid coating consisting of glycoproteins
and polysaccharides. The glycoprotein sheath keeps Their cell walls together, making it
easier for them to build long chains [64–66].

Contrary to other cyanobacterial genera, such as rivularia or Gloeotrichia, Tolypothrix
filaments rely on robust glycoprotein sheaths to make these connections rather than a
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visible sheath or stalk-like structure. This distinctive structure provides them a distinct
edge when adapting to various settings, which explains why they are such a widespread
genus globally [65,67].

2.12. Merismopedia: Cubicpacket-Shaped Cells

Merismopedia, a common genus of cyanobacteria, has a distinctive cubic packet-shaped
cell and can split up to four times before finally dispersing. Merismopedia cells typically
come in two shapes: flattened and cubed, ranging in size from 2 to 6 m [68,69]. When
these cells cluster together in their surroundings, their morphology enables them to create
a slimy, jelly like substance. This characteristic slimy mass typically comprises numerous
layers with various types of Merismopedia cells [70].

Although it can also be found in wet soil and other moist habitats, Merismopedia is pri-
marily found in oceans, seas, and other aquatic environments. Additionally, Merismopedia
is frequently linked to cyanobacterial mats because of its ability to adapt to different light,
temperature, and salt concentrations [71,72].

Merismopedia needs specific minerals like potassium and nitrogen to thrive appropri-
ately and does it best in direct sunshine. It can grow rather quickly under ideal circum-
stances, such as temperatures between 25 and 35 ◦C and pH levels between 6 and 8.1. It
is crucial to understand where Merismopedia is typically located and how to recognize it
because this tiny but mighty genus of cyanobacteria can create toxins that can be dangerous
to people if swallowed or even inhaled [71–73].

3. Cyanobacteria Diffusion and Spreads in Water Bodies

When cyanobacteria, single-celled organisms, disperse in water bodies, a process
known as cyanobacteria diffusion and spread takes place. This may lead to higher con-
centrations of blue-green algae, or cyanobacteria, in certain conditions. It is critical to
comprehend the elements that encourage bloom production and dissemination to under-
stand the spread of this group of organisms [74–76].

3.1. Natural Factors Promoting Cyanobacteria Bloom Formation and Diffusion

The availability of nutrients greatly influences blooms, and both phosphorus and
nitrogen are crucial elements for the growth of cyanobacterial blooms. As a result, it is
expected that some bloom may develop in water bodies where these nutrients are present
in high concentrations [76–78]. Other factors as water temperatures, light availability and
penetration will be discussed in this section and Figure 2.

First of all, phosphorus promotes cyanobacterial development and the production of
toxic toxins. This is so it can function appropriately in cyanobacterial photosynthesis and
cellular metabolism. Additionally, an overabundance of phosphorus can cause populations
of cyanobacteria to increase quickly, resulting in a bloom [79]. On the other hand, because
it is both a source of energy and a crucial element for the synthesis of cyanobacteria
biomolecules, nitrogen also significantly impacts bloom development. As a result, too
much nitrogen can alter the chemistry of the water, which can lead to a bloom [79,80].

Conversely, high water temperatures significantly aid cyanobacteria bloom develop-
ment and dissemination. A body of water stratifies into two or more strata (thermoclines)
according to its density as the temperature rises. This stratification prevents vertical mixing,
which would otherwise separate nutrients near the surface from those in deeper waters,
giving the cyanobacteria a surplus of food resources [81]. Additionally, a decline in vertical
mixing may cause the near-surface waters to stagnate. Due to their tolerance to low oxygen
levels, cyanobacteria can flourish in oxygen-depleted systems, creating the perfect setting
for their growth. Additionally, high water temperatures tend to accelerate the growth of
present cyanobacteria, which promotes the creation and diffusion of blooms [81–83].

Light availability and penetration are the third elements favoring the creation and
diffusion of cyanobacterial blooms. The cyanobacteria bloom’s ability to photosynthesize
depends on the presence of light and its capacity to penetrate the water’s surface. There are
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two types of light availability; depending on the atmosphere, it may be direct or indirect.
While indirect light is sunlight reflected off an object or surface before entering the water,
natural light enters the water directly but may be constrained by shadowing from other
creatures. This could lead to uneven lighting, which would impact cyanobacteria blooms’
photosynthesis rate differently than direct light [83–86].

 

Figure 2. Factors promoting cyanobacteria bloom formation and diffusion.

It is necessary to consider light penetration via water in addition to direct and in-
direct light. This depends on variables such as those that alter water clarity due to dis-
solved organic matter and the presence of other species suspended in the water column,
which may limit the depth to which sunlight can penetrate. Knowing how light penetra-
tion and availability affect cyanobacteria blooms helps us understand where, when, and
why these blooms occur as well as how to prevent them from occurring in undesirable
locations [87,88].

The growth and diffusion of cyanobacteria blooms are significantly aided by water
mixing and movement. One of the leading promoters or inhibitors of blooms is hydro-
dynamics, the study of the movement of fluids, which includes ocean currents, water
flow, and wave action. Geographical location, seasonality, and a variety of environmental
conditions, like as temperature gradients, all have a role in this. For example, a large-
scale temperature gradient in the water might boost mixing, which is suitable for algae
development—because of the blending, nutrients from the bottom rise to the surface, giving
the algae more food [88–90].

Another significant aspect in the production and dispersion of cyanobacteria blooms
is wind because it helps to stir up the water column, which again aids in bringing vital
nutrients up from the bottom for algae growth. Additionally, it aids in spreading out
free-floating cells over a more extensive region, which improves their chances of survival
by giving them access to more resources throughout their environment [91,92].
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These are all strongly connected to human activity, including climate change and
eutrophication from excessive fertilizer runoff. It is well known that the presence of these
elements alters the behavior of bacteria: they become less mobile, and their metabolic
activity rises, assisting them in settling on substrates and remaining there more quickly.
This causes cyanobacteria to spread throughout a river or even into drinkable water sources.

3.2. Artificial Factors Promoting Growth of Cyanobacteria Bloom Formation

The main artificial factors promoting the growth of cyanobacteria bloom formation
are sewage treatment plant effluent, industrial activity, industrial contaminants, and plant
fertilization; these sources will be discussed in this section and Figure 2.

One of the most critical sources of cyanobacterial toxicity in aquatic bodies is sewage
treatment plant (STP) effluent. This is because STP effluent typically contains high con-
centrations of nitrogen and phosphorus released into water bodies, creating the perfect
conditions for cyanobacteria to flourish. Additionally, these nutrients may build up in the
water, causing eutrophication. As a result, cyanobacteria and other microbes proliferate
quickly, causing blooms that may be hazardous to aquatic life. By disrupting oxygen levels
and elevating pH levels, the chemicals emitted by these blooms can harm both plants and
animals [93–97].

Wastewater treatment facilities must be appropriately maintained to ensure adequate
nutrient removal from the effluent before it enters the receiving waterbody. This will help
to limit the effects of STP effluents on water bodies. Additionally, to minimize excessive
algal growth and lessen its impact on aquatic life, effective management measures should
be implemented when dealing with excessive nutrients from agricultural runoff or urban
areas [98–102].

Industrial activity is one of the main causes of cyanobacterial toxicity. Pollutants are
released into the environment by factories, farms, and other sources, which can significantly
accelerate the growth of cyanobacteria, or blue-green algae [103–105]. Nutrient runoff is the
main factor driving the proliferation of cyanobacteria. Rainfall typically causes neighboring
water bodies to rapidly expand in population by introducing nutrients like nitrogen and
phosphorus [105–109].

Other industrial contaminants also aid the development of phytotoxic cyanobacteria.
Heavy metals, dangerous to both people and aquatic life, are among the pollutants that
chemical plants frequently produce. Additionally, agricultural practices can lead to a rise
in contaminants like pesticides and fertilizers, which can lower the quality of water bodies
by raising the likelihood of cyanobacterial growth [110–116].

Plant fertilization can result in cyanobacterial growth. Too much fertilizer can produce
an excess of nutrients for cyanobacteria, leading them to flourish and create toxins that can
harm aquatic ecosystems when they enter a water body. Therefore, it is crucial to take care
while applying fertilizer close to their local water bodies [117–119]. In addition to causing
cyanobacterial toxicity, excessive fertilizer use also causes eutrophication, in which algae
density and biomass exceed normal levels due to an abundance of nutrients, depleting the
water’s oxygen content and upsetting the local ecosystem [120–123].

4. The Common Toxins Produced from Cyanobacterial Blooms

Hazardous toxins, also called cyanotoxins, are present in cyanobacterial blooms.
These cyanotoxins have been linked to several health issues, including cancer, liver damage,
neurological problems, rashes, and skin irritation. Hepatotoxins, neurotoxins, derma-
toxins, cytotoxins, and endotoxins are the most typical cyanotoxins produced by water
blooms [124–128].

Hepatotoxins and neurotoxins are the two most prevalent cyanobacterial toxins. Hepa-
totoxins are harmful substances that harm the liver and can result in nausea, vomiting, and
in severe cases, jaundice. When the neurological system is targeted by neurotoxins, symp-
toms such as headaches, nausea, muscle weakness, and even paralysis may result from
exposure to excessive dosages. In addition, there are reproductive poisons that harm both
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men’s and women’s reproductive systems. If pregnant women are exposed to dangerous
levels of cyanobacteria, this can lead to infertility or even miscarriage [126,127].

Hepatotoxic conditions are brought on by cyanotoxins, among which microcystin is
one of the most often produced by cyanobacteria. Hepatotoxic chemicals build up in the
water during dangerous cyanobacterial blooms, where they can be consumed through
contaminated drinking water or inhaled. When a toxin enters the bloodstream and builds
up in the liver, it damages the liver cells by rupturing their membranes [129–131].

Abdominal pain, nausea, and vomiting, as well as weakness, exhaustion, jaundice,
dark urine, and abnormal liver enzymes, are indications of this disruption. Acute liver fail-
ure and possibly death can result from microcystin poisoning in severe situations [132–134].

When consuming food from polluted water, neurotoxic shellfish poisoning (NSP),
which is brought on by the cyanotoxin anatoxin-A, is a serious cause for concern. Research
suggests that it attaches to nicotinic acetylcholine receptors and interacts with our nervous
system. This binding causes motor neurons to become paralyzed, which can cause problems
with coordination, weakness, and in severe cases, even death [135,136].

However, it may take up to 12 h for symptoms to appear. They could include nausea,
vomiting, headaches, and dizziness. When ingested in high doses, anatoxins can cause
respiratory failure and muscle paralysis, which, if not treated right away, can soon result in
death [136,137].

The common toxins created by cyanobacterial blooms is described in this section, and
the analysis, methodologies, and mitigation techniques of cyanobacteria and cyanotoxins
in water are discussed in Section 5.

4.1. Microcystin

A class of cyclic hepatotoxins known as microcystins (compound 1 in Figure 3) are
produced by many cyanobacterial species, including Microcystis aeruginosa, Anabaena spp.,
and Planktothrix spp. It is one of the cyanobacterial blooms’ most often made cyanotox-
ins [129–131].

Figure 3. Chemical structures of microcystin (1), microcystin-LR (2), microcystin-LA (3), microcystin-
YR (4), microcystin-RR (5), microcystin-LF (6), Nodularin (7), Cylindrospermopsin (8), Anatoxin-a
(9), Homoanatoxin (10), Oscillatoxin A (11), and Nakienones A–C (12–14).
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Small peptides known as microcystins can be classified into various structural groups
according to the amino acid make-up of their molecules [132,133]. Microcystin-LR (com-
pound 2 in Figure 2), which has a leucine (L) and an arginine (R) residue in its struc-
ture, is the most extensively researched and toxic microcystin. Among others [134–138],
other microcystin variants include microcystin-LA, microcystin-YR, microcystin-RR, and
microcystin-LF (compounds 3–6 in Figure 3).

Microcystins are toxic to liver cells and can cause serious liver damage or even liver
cancer in both humans and animals. They inhibit protein phosphatases, which are respon-
sible for removing phosphate groups from proteins [139]. Because of the accumulation of
phosphorylated proteins in liver cells, normal cellular function is disrupted, which is bad
for the liver [140]. The kidney, reproductive system, and liver are all adversely affected by
microcystins [141–143].

Ingestion of tainted water, skin contact, or inhalation of aerosolized water droplets
containing the toxin are all ways people can be exposed to microcystins [141,142]. Although
various nations may have their standards and laws regarding cyanotoxins in drinking
water, the World Health Organization (WHO) has set a provisional recommendation value
for microcystin-LR in drinking water of 1 g/L [143,144].

4.2. Nodularin

Nodularia spumigena, Nodularia harveyana, and Nodularia moravica are three species of
cyanobacteria that generate nodularin (compound 7 in Figure 3), a cyclic hepatotoxin [145–147].
It exhibits the same toxicity mechanism as microcystin and is structurally identical to
it. Nodularin inhibits protein phosphatases, which causes phosphorylated proteins to
accumulate in liver cells and harm the liver. Nodularin is known to affect other organs,
including the kidneys, and has been associated with the development of tumors in test
animals [148–150].

Nodularin exposure can happen when a person consumes tainted water, comes into
contact with it while touching their skin, or breathes in water droplets that have been
aerosolized and contain the toxin [151–154]. Nodularin in drinking water has a provisional
guideline value of 0.2 µg/L, according to the World Health Organization (WHO) [155–158].

4.3. Cylindrospermopsin

The cyanobacteria Cylindrospermopsis raciborskii, which is currently known as Raphid-
iopsis raciborskii and Aphanizomenon ovalisporum generate the toxin known as cylindrosper-
mopsin (compound 8 in Figure 3). It is a tricyclic alkaloid that can be hazardous to humans
and animals in acute and chronic phases [159–162]. Strong liver toxins, such as cylindros-
permopsin, can cause cirrhosis and liver necrosis in people and experimental animals. In
severe cases, it can also harm the kidneys, leading to renal failure. Cylindrospermopsin has
also been shown to cause oxidative stress and DNA damage in cells [163,164].

When contaminated water is drunk, comes into contact with the skin, or is breathed
as aerosolized water droplets, cyanospermopsin exposure can occur [165,166]. The World
Health Organization (WHO) has set a preliminary recommended threshold for cylindros-
permopsin in drinking water at 1 µg/L [167–169].

4.4. Anatoxin-a

Anabaena spp., Aphanizomenon spp., and Cylindrospermum spp. are cyanobacteria
species that generate the powerful neurotoxin anatoxin-a (compound 9 in Figure 3). A
secondary, bicyclic amine alkaloid with acute neurotoxicity, anatoxin-a is also referred to
as Very Fast Death Factor. It was initially found in Canada in the early 1960s, and it was
isolated in 1972. The potent nicotinic acetylcholine receptor agonist anatoxin-A irreversibly
binds to these receptors in the central and peripheral nervous systems. As a result of the
receptors being overstimulated, the release of the neurotransmitter acetylcholine, which
causes muscle contractions, occurs. At high doses, anatoxin-A can cause respiratory
collapse and death [170,171].
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Ingestion of tainted water, skin contact, or inhalation of water droplets that have been
aerosolized can all result in anatoxin-a exposure. Animal deaths and illnesses brought
on by cyanobacterial blooms have frequently been attributed to anatoxin-a. The World
Health Organization (WHO) has established a provisional guideline value for anatoxin-a
in drinking water of 0.2 µg/L [172,173].

4.5. Homoanatoxin

Anabaena circinalis and Anabaena lemmermannii are cyanobacteria species that generate
the toxin known as homoanatoxin (compound 10 in Figure 3). It is a cyclic alkaloid and a
member of the anatoxins toxin subclass [174–177].

Homoanatoxin is a powerful neurotoxin that functions as a cholinergic agonist, much
like anatoxin-a. In the central and peripheral neurological systems, it binds to nicotinic
acetylcholine receptors, overstimulating the receptors and causing the release of acetyl-
choline, a neurotransmitter that causes muscle contractions. At high doses, homo-anatoxin
can cause respiratory collapse and death [178].

The ingestion of tainted water, skin contact, or inhalation of water droplets that
have been aerosolized can all lead to homoanatoxin exposure. Numerous cases of ani-
mal fatalities and human illness linked to cyanobacterial blooms have been attributed to
homoanatoxin [179,180].

4.6. Oscillatoxin A

Several cyanobacterial species, such as Oscillatoria spp. and Phormidium spp., produce
the toxin known as oscillatoxin A (compound 11 in Figure 3). It has strong hepato- and
neurotoxic properties [181,182]. Oscillatoxin A is a cyclic peptide toxin that shares structural
similarities with microcystins. Protein phosphatases 1 and 2A, crucial enzymes involved in
various cellular functions like cell division, metabolism, and death, are strongly inhibited
by it. Cell damage, particularly in the liver and neurological system, can result from this
inhibition [183].

Risks for exposure include drinking polluted water and consuming fish or shellfish
that have collected oscillatoxin A. In some instances of animal deaths and human illness,
liver damage and neurological symptoms, including paralysis, have been connected to
it [182–184].

4.7. Nakienones A–C

Toxins known as nikienones A–C (compounds 12–14 in Figure 3) are made by specific
cyanobacteria, such as Nostoc and Anabaena. They are referred to as lipopeptides and
are cytotoxic and antifungal. While nakienone C comprises three separate non-cyclic
polypeptides, nakienones A and B are cyclic heptapeptides [185,186].

Toxins from nikienones A–C can cause the body harm, such as digestive problems,
skin rashes, liver damage, infertility, and even death. Furthermore, it has been established
that each of the three may have medical applications. Nakienone A is an anti-inflammatory
and an antifungal, whilst nakienone B and C may potentially inhibit the proliferation of
cancer cells. In some cell cultures, nikienone B has been found to have an anti-prostate
cancer effect [185–187].

It is critical to remember that, like all cyanotoxins, these toxins can be deadly when
consumed or inhaled in high doses, even though they may have qualities that make them
useful for some medical therapies [188].

4.8. Aphantoxin

Aphantoxin made by Anabaena flosaquae and Aphanizomenon spp. It is a neurotoxin
and a member of the PSPs (paralytic shellfish poisons) family. Aphantoxins work by
blocking the neurotransmitters that regulate the relaxation and contraction of human
muscle [189,190]. This results in severe muscle cramps or paralysis along with a variety of
additional systemic symptoms like vomiting or altered mental states [191].
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Consuming tainted water or shellfish that have collected the toxin are two ways people
can be exposed to aphantoxin. Animal deaths and human illnesses related to cyanobacterial
blooms have been linked to aphantoxin in multiple instances [192]. For aphantoxin in
shellfish, the World Health Organization (WHO) has established a provisional guideline
value of 20 µg/kg [192,193].

4.9. Debromoaplysiatoxin and Aplysiatoxin

Aplysiatoxin and debromoaplysiatoxin (compounds 15 and 16 in Figure 4) are lipophilic
toxins made by the fungi Lyngbya majuscula, Lyngbya sordida, and Schizothrix [194–197].

 

Figure 4. Chemical structures of aphantoxin (15), debromoaplysiatoxin (16), scytophycins A-E (17–21),
lyngbyatoxins A-C (22–24), and acutiphycin (25).

It is well known that these poisons are highly poisonous and can have various adverse
health impacts on people and animals [190]. Exposure to these poisons can result in liver
damage, neurotoxicity, and even death in extreme situations. Additionally, it has been
discovered that they possess mutagenic and carcinogenic qualities, raising the risk of cancer.
These poisons can be consumed through contact with contaminated water while engaging
in recreational activities [196–199].

4.10. Scytophycins and Lyngbyatoxin

Both groups of toxins are lipophilic. Scytonema hofmanni produces scytophycins A to E
(compounds 17 to 21 in Figure 4), which have been discovered in freshwater and marine
settings and are harmful to aquatic and terrestrial species [200–202]. While Moorea producens
and Lyngbya majuscula produce lyngbyatoxins A to C (compounds 22 to 24 in Figure 4). It
has been demonstrated to have cytotoxic and apoptotic effects on cells [203,204] and is a
potent protein synthesis inhibitor.

Exposure to scytophycin and lyngbyatoxin can have a variety of negative health effects
on both humans and animals. It has been linked to skin irritation, respiratory problems, and
liver damage [205]. Lyngbyatoxin has been demonstrated in lab studies to have a tumor-
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promoting effect, increasing the risk of cancer. Scytophycin has also been shown to have
cytotoxic and apoptotic effects on cells, as well as neurotoxic effects on animals [205–207].

4.11. Acutiphycin

Acutiphycin is a class of indole alkaloid poisons produced by the genera Westiellopsis,
Fischerella, and Hapalosiphon [208–210].

Acutiphycin exposure had a variety of adverse health impacts on both people and
animals. This toxin’s ability to influence ribosomes and prevent the formation of pep-
tide bonds makes it a potent protein synthesis inhibitor. Animals were also exposed to
hepatotoxicity and neurotoxicity [211].

Consumption of tainted food sources, such as shellfish and fish, or water can result
in ingesting acutiphycin toxin. Additionally, it can be ingested in recreational activities in
contaminated water bodies and exposed to aerosolized toxins [209–212].

5. Managing and Mitigating Cyanobacterial Blooms and Toxins

Cyanobacteria can survive and grow in practically any environment. Increased hu-
man activity has caused climatic conditions to change, which favors the occurrence and
severity of dangerous cyanobacterial blooms everywhere in the world. Even while some
environmental variables, such as water temperature, pH, and nutrient levels, may be asso-
ciated with higher cyanotoxin levels, the interaction of these variables with the particular
cyanobacteria species present makes the issue complex. Effective management of a poi-
sonous cyanobacterial bloom requires an understanding of how different environmental
conditions affect the regulation of cyanotoxins [213–215].

As cyanobacterial blooms can occur in any body of fresh or salt water, it is crucial to
know how to spot them. Early detection is essential because it enables quicker response
times and more efficient management [216,217]. Additionally, it is critical to comprehend
the hazards and probable health issues connected to cyanobacterial blooms [218,219].

Monitoring cyanobacteria is a crucial procedure that aids in assessing the condition of
water bodies and identifying potential health risks to people and animals. Accurate sample
collection is essential for producing results representative of the population. Choosing
sampling sites that are indicative of the region of interest, such as those that are close to the
coast, in the middle of the water body, or in areas where there is a high likelihood of finding
cyanobacteria, are some factors that must be considered while collecting cyanobacteria
samples. The site’s accessibility and security must also be considered [220–223]. Addition-
ally, using sterile and non-toxic sampling tools like a plastic bucket or a sampler made
specifically for cyanobacteria sampling. Avoid using metal containers, as they may change
the material’s chemical. To obtain a representative sample of the water body, sample the
water column vertically as another sampling technique. To capture any fluctuation, take
repeated samples at various depths, particularly deep lakes or reservoirs. Each sample
should include a minimum of 500 cc of water. Since samples are taken during the cyanobac-
teria’s active growing season, typically from late spring to early fall, it is crucial to pick
the proper time to collect them. To prevent any time-of-day variations, collect samples
simultaneously every day. To keep the samples from oxidizing, sodium thiosulfate at 0.1%
is added. Within 24 h, transfer samples to the lab while keeping them on ice [223–226].
Techniques and methods for managing and mitigating cyanobacterial blooms and toxins
are summarized in Figure 5.

5.1. Identifying and Measuring Cyanobacteria and Cyanotoxins

Cyanobacterial blooms may be identified with the naked eye due to their unusual
appearance and color. If a blue-green algal bloom is observed, experts recommend sampling
a nearby water source to learn more about the local flora and fauna. Furthermore, scientific
examination of bloom samples might reveal the existence of specific bacterial strains and
any possible toxins [227–229].
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Figure 5. Techniques and methods for managing and mitigating cyanobacterial blooms and toxins.

Microcystin, saxitoxin, cylindrospermopsin, anatoxin-A, sumoyltoxin A, and lyngbya-
toxin A are the most prevalent cyanotoxins that must be watched. Toxin concentrations
should be measured as part of a comprehensive risk assessment for aquatic or human
health [230,231]. To track the growth of cyanobacteria in lakes and reservoirs, France
established the Cyanobacteria Monitoring Network (CyMNet). More than 50 stations
comprise this network, tracking variables like temperature, nutritional concentrations, and
microcystin toxin levels [232–234].

These metrics offer crucial data for tracking and evaluating the dangers posed by
cyanobacteria in various global ecosystems. To prevent and mitigate potentially deadly
cyanobacterial blooms, one of the most important measures is accurately detecting and
measuring cyanotoxins [235,236].

5.1.1. Microscopy Technology

Cyanobacteria cells are frequently found and recognized using a microscope. A stan-
dard method for locating and identifying cyanobacteria cells is light microscopy. The sam-
ple is viewed under a microscope when a light source and the cells illuminate. Cyanobac-
teria cells may be recognized by their distinctive blue-green hue, and the shape and size
of the cells can determine different species. Another method for locating and identifying
cyanobacteria cells is fluorescence microscopy. In this method, the cells are marked with a
fluorescent dye and viewed using a fluorescence microscope. The fluorescent label can dis-
tinguish between various cyanobacteria cell types and find toxin concentrations [237,238].

A high-resolution method that can be utilized to see cyanobacteria cells and their
structures at the nanoscale level is electron microscopy. In this method, the material is
illuminated by an electron beam, and the cells are viewed via an electron microscope.
Electron microscopy can be used to identify many structures, including thylakoids and gas
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vesicles, and can provide precise information on the internal structure of the cells. Confocal
microscopy is a method that can be used to produce three-dimensional, high-resolution
images of cyanobacteria cells. In this technique, a laser illuminated the sample, and several
photographs are taken using various focus planes. A three-dimensional representation of
the cells is then created by combining the photos [239,240].

There are not many case studies that show how to employ microscopy to find cyanobac-
terial cells. The blooms in Lake Taihu, a huge freshwater lake in China, were found during
a survey to identify potentially harmful cyanobacterial blooms. The cyanobacterium
Microcystis aeruginosa bloom caused a water crisis for millions of people in the vicinity.
Cyanobacteria were found and identified using microscopy in the lake water sampled. The
results of the microscope showed that the dominant cyanobacterium in the bloom was
M. aeruginosa, which produces the potent hepatoxin microcystin [241]. Another study
used microscopy to monitor the cyanobacterial populations during a 12-month period in a
Brazilian eutrophic reservoir. The cyanobacteria population was dominated by Microcystis,
Planktothrix, and Anabaena, according the microscope findings. The cyanobacteria commu-
nities fluctuated seasonally, with more diversity and abundance in the warmer months,
according to another study finding [242].

The disadvantage of microscopic strategies is their lack of accuracy. The detection
of microscopic cells is difficult due to the 200 nm resolution limit of optical microscopy.
Erroneous cell estimations and non-homogeneous cell distribution may be brought on
by the presence of dense colonies. An erroneous estimation of cell abundance results
from the diverse dispersion of cells. However, the aggregation state of some Microcystis
cyanobacterial colonies enables species identification based on morphology. Furthermore,
lethal species identification and bloom lethality prediction are not possible with microscope
examination. The inability to distinguish between toxic and non-toxic cyanobacteria, which
prevents the risk assessment of a bloom, is increasingly the fundamental drawback of this
technique [243,244].

5.1.2. Molecular Techniques

Cyanobacteria cells can also frequently be found using molecular methods. These
methods entail searching for particular DNA identifiers or genes exclusive to cyanobac-
teria. Cyanobacteria can be found and identified using the molecular technique known
as polymerase chain reaction (PCR). Specific DNA sequences of the cyanobacteria are
amplified via PCR, making it simple to find and classify them. Other molecular methods
include next-generation sequencing (NGS), which can sequence the entire genome of the
cyanobacteria and compare it to known sequences in databases to identify the specifics,
and fluorescent in situ hybridization (FISH), which uses fluorescently labeled DNA probes
to bind to specific DNA sequences in the cyanobacteria cells [245–247].

In many studies, researchers used quantitative polymerase chain reaction PCR (qPCR)
to locate and measure cyanobacteria in water samples from an Australian river. This is
an illustration of how cyanobacterial cells can be found using molecular methods. The
researchers extracted DNA from the water samples and used qPCR to amplify and quantify
the mcyA gene, which is involved in producing microcystin, a characteristic cyanobacteria
toxin. They found that cyanobacteria that produce microcystin were heavily concentrated
in the river [248].

In a different investigation, quantitative polymerase chain reaction (qPCR) was used
to count the cyanobacteria in a Japanese eutrophic lake. The qPCR method, which concen-
trated on the cyanobacteria’s 16S rRNA gene, facilitate the detection and quantification of a
number of species, including Microcystis, Anabaena, and Aphanizomenon. The most common
cyanobacterium in the lake, according to the study, was Microcystis, and its abundance
was positively correlated with both the total nitrogen concentration and water tempera-
ture [249]. Additionally, qPCR and fluorescence in situ hybridization (FISH) were used
in a study in a reservoir in Spain to identify and quantify harmful cyanobacterial species.
FISH was used to determine the cyanobacteria’s physical features, and qPCR experiments
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concentrated on genes specific to Microcystis and Anabaena. Microcystis was found to be the
dominant cyanobacterium in the reservoir and to be capable of producing the hepatotoxin
microcystin [250].

qPCR has some limitations, one of which is the decrease in amplification efficiency
with the length of the reaction product, despite the significant advantages in the detection
and quantification of cyanobacteria and the genes that encode toxins, as well as the ability to
detect toxic cyanobacteria in water long before the manifestation of cyanobacterial blooms.
Furthermore, the transcription and translation of the toxin’s product by cyanobacteria are
not always associated with the presence of an enlarged toxin-encoding gene. As a result,
other techniques, such as chemical and biological processes, must be used to integrate and
confirm qPCR results [251,252].

5.1.3. Chromatography and Spectroscopy

Chromatography and spectroscopy, two trusted techniques for examining in-water
cyanobacterial cells, can be used to identify the presence of cyanobacterial pigments. While
spectroscopy involves examining molecules via light absorption or reflection, chromatogra-
phy is based on differences in the rate at which components migrate down a column or
thin layer of adsorbent material. These two approaches work together to give researchers
a thorough grasp of the toxins in a particular water system. In addition to identifying
pigments, spectroscopy provides helpful information about the relative abundance or ratio
of various pigments, which helps scientists more precisely assess potential risk levels.
Numerous watery pigments, including beta-carotene, chlorophylls a and b, diadinoxanthin,
and diatoxanthin, can be detected using chromatography. Microcystins and Cylindrosper-
mopsin, compounds found in drinking water sources, can be seen by spectroscopy at very
low quantities (1ppb) [253,254].

In a Lake Taihu, China investigation, HPLC was used to test and identify the micro-
cystins produced by the common cyanobacterium Microcystis aeruginosa, which is respon-
sible for harmful algal blooms. The investigation revealed that M. aeruginosa produced
several microcystins, including the potent liver toxin microcystin-LR [255]. In another
2018 study—the authors used fluorescence spectroscopy to locate cyanobacteria cells and
their toxic byproducts in water samples. Fluorescence spectra were utilized to differentiate
between different cyanobacteria cell types and to detect the presence of microcystin in water
samples. In order to swiftly and affordably identify cyanobacteria species and their toxins
in water samples, fluorescence spectroscopy was used [256]. A portable, high-resolution
fiber-optic Raman system and an ab-based Raman system, used for cell detection and
identification, were used to study the cyanobacteria diffusion in the Adriatic Sea. In order
to distinguish between distinct cyanobacterial species based on their spectral signatures,
Raman spectroscopy was discovered to offer great sensitivity and specificity for detecting
small amounts of cyanobacterial cells [257].

In a study conducted in a freshwater lake in France using GC/MS, volatile organic
compounds (VOCs) produced by the common filamentous cyanobacterial species An-
abaena flosaquae were investigated. Depending on the growth stage and environmental
variables, A. flosaquae produces a variety of VOCs, including alkanes, alkenes, ketones,
and alcohols [258].

Due to the existence of additional substances with comparable absorbance spectra,
identification only based on UV absorbance is insufficient. Cyanotoxins are not specifically
detected by the diode-array detector, which is also susceptible to interference from other
analytes. Results are typically presented as microcystin-LR equivalents because many
microcystin variants are difficult to identify and lack standards. Additionally, because some
chemicals quickly degrade into anatoxin-A, chromatographic methods combined with UV
spectroscopic detection are insufficiently sensitive, necessitating derivatization to increase
their detection limits. Better sensitivity and selectivity are made possible by coupling with
MS. On the other hand, the various LC-MS techniques make it rather simple and easy
to analyze microcystins, nodularin, and cylindrospermopsin. However, utilizing LC-MS
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techniques to analyze highly polar chemicals with multiple isomers, such as saxitoxins, is
extremely challenging [259–261].

Due to its outstanding sensitivity and selectivity, liquid chromatography with triple
quadrupole mass spectrometry (LC-MS/MS) enables the precise identification and quan-
tification of various and unidentified toxins in environmental materials. These MS/MS
transitions are found when specific daugh-terons are produced from the precursor molecu-
lar ion in a collision cell [262].

m/z 135 [263] is a distinctive fragment ion shared by the majority of microcystins and
nodularin. Despite having a different chemical structure from microcystins and nodularins,
cylindrospermopsin is frequently analyzed alongside these cyanotoxins via LC-MS/MS
using the particular MS-MS transitions m/z 416 > 336, 274, and 194 [264,265]. Anatoxin-a
can be detected using the particular MS/MS transitions m/z 166 > 149, 131, 107, and
91 [266,267]. With the precise MS/MS transitions m/z 300 > 282, 204, saxitoxins can
be found [268]. Table 1 lists various LC-MS and LC-MS/MS techniques for analyzing
various cyanotoxins.

Chromatography techniques have some limits when it comes to detecting cyanotoxins,
despite being effective and frequently used for the detection and analysis of many sub-
stances, including cyanotoxins. One type of sample complexity is as follows: the isolation
and identification of cyanotoxins can be hampered by the presence of a complex matrix of
organic and inorganic substances in water samples taken from natural bodies like lakes,
rivers, and reservoirs. Reduced sensitivity and accuracy in quantification can be caused by
matrix effects [269].

The use of chromatography techniques has drawbacks and limits due to sample
complexity and sample preparation. A complex matrix of organic and inorganic chemicals,
with varying chemical and physical properties, can obstruct the isolation and detection
of cyanotoxins in water samples taken from lakes, rivers, and reservoirs. The sensitivity
and accuracy of quantification can be decreased by matrix effects. Detection limits are
also considered as one of the limitations of using chromatography techniques, as some
cyanotoxins can be present in water at very low concentrations, which requires highly
sensitive detection methods. Achieving lower detection limits using chromatography may
be limited by factors such as sensitivity of the equipment and interference from the sample
matrix. In addition to the development and validation of a chromatographic method for the
analysis of cyanotoxins can be time consuming and resource intensive. The need to validate
different methods for cyanotoxins and sample matrices can complicate the process [270].

In order to overcome these restrictions, chromatographic techniques are frequently
combined with other techniques like immunoassays and biosensors.

5.1.4. Immunoassays

Immunoassays are frequently employed methods for identifying and measuring
cyanotoxins. These methods, which rely on antibodies that are particular to the target
cyanotoxin, can offer an efficient way to identify and measure these toxins in various envi-
ronmental samples [271]. Cyanotoxins can be found using several different immunoassays,
such as the following:

Enzyme-Linked Immunosorbent Assay (ELISA)

The Enzyme-Linked Immunosorbent Assay (ELISA) is an antibody-based assay which
can be either monoclonal, specific for a certain molecule variant, or polyclonal, recognizing
several types of molecules. ELISA are rapid and sensitive, and a low level of expertise
is required. They are useful as primary quantitative screening tools with limits of de-
tection around 0.1 µg/L, but they are susceptible to interferences that limit their use for
quantitative analyses.

Anatoxin, microcystins, and cylindrospermopsin are a few examples of particular
cyanotoxins that can be detected and measured using the widely used immunoassay
known as ELISA. This method involves adding a sample to a microtiter plate coated with
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antibodies specific to the target cyanotoxin. A secondary antibody that is connected to
an enzyme is introduced after the cyanotoxin in the sample binds to the antibodies. A
reaction that the enzyme then catalyzes results in a measurable signal that may be measured
using a spectrophotometer [272]. In a study published in 2019, ELISA was used to find
anatoxin-a in surface water samples gathered from all around Victoria, Australia, where
a cyanobacteria bloom occurred. They found anatoxin-a gene sequences in Cuspidothrix
issatschenkoi, Aphanizomenon sp., D. circinale, Anabaena sp., and Oscillatoria sp., as well as
their existence and distribution. The results indicate that the ELISA approach could be used
to check water bodies for harmful algal blooms regularly and was successful in detecting
anatoxin-a in water samples [272]. Table 1 summarizes the ELISA methods for the detection
of microcystins, nodularins, and saxitoxins.

The use of widely accessible Enzyme-Linked Immunosorbent Assay (ELISA) test kits,
which do not require pricey equipment or intensive training to use, is one of the most used
cyanotoxin testing approaches. Semi-quantitative field screening ELISA kits for detecting
the presence or absence of cyanotoxins are available. A repeat study using a quantitative
ELISA test or one of the other analytical techniques is recommended if cyano-toxins are
found by a field screening kit. More accurate, quantitative ELISA test kits are available
for microcystins, nodularins, saxitoxin, anatoxin-a, and cylindrospermopsin. While ELISA
kits offer quick results, their selectivity is limited, and they are not congener-specific.
Additionally, the quantitative ability of ELISA to distinguish unique variants or congeners
of cyanotoxins may vary due to varying cross-reactivities [272,273].

Abraxis Microcystins Kits, Microcystin-ADDA Test Strips, and the Microcystins-DM
ELISA Kit are the top three microcystin test kits available today. Microcystin-LR and
microcystin-RR-specific antibodies are used in the Abraxis kit’s ELISA to detect micro-
cystins. The strips identify the ADDA moiety present in all types of microcystin. Although
they are good for on-site screening, they are not as accurate as the Abraxis ELISA kit.
Microcystins-DM from Abraxis employs the ELISA technique as well, but it uses an an-
tibody to detect microcystins by binding to the D-glutamic acid (DM) component of the
microcystin molecule. It gives reliable results for the most prevalent microcystin variants
but may not pick up on other less prevalent forms [274,275].

Protein Phosphatase Inhibition Assay (PPIA)

Microcystins and nodularins, which are potent inhibitors of protein phosphatase, can
be detected using a biochemical Protein Phosphatase Inhibition Assay (PPIA). This assay is
a simple, rapid, sensitive, and reproducible colorimetric method [268]. The inhibition of eu-
karyotic protein phosphatases is a well-established indicator of toxin concentration. There
are two methods for measuring this inhibition: radio-isotopic techniques using radiolabeled
substrates and colorimetric assays using substrates like p-nitrophenyl phosphate [267,273].
The radio-isotopic method relies on radiolabeled proteins and is not suitable for routine
monitoring. In the PPIA, the enzyme is exposed to a sample containing the toxin before
incubation with the substrate [276]. By measuring the absorbance of the mixture at a
specific wavelength, the substrate (or its transformation product) can be detected, and
the enzyme activity can be assessed. The enzyme activity is inversely proportional to the
concentration of the toxin. The PPIA method facilitates toxin detection within a few hours
and can quantify microcystin-LR with a detection limit of 0.01 µg/L [268].

However, it is important to note that PPIA cannot differentiate between co-occurring
variants of microcystins or distinguish microcystins from nodularins. Therefore, the results
are often reported as equivalent microcystin-LR/L. Additionally, when analyzing water
containing blooms, potential interferences with unknown compounds may lead to overesti-
mation or underestimation of toxin concentration. Furthermore, since PPIA only detects
microcystins and nodularins, further analysis is necessary to detect other cyanotoxins that
may be present in the sample [277]. Depending on the class of microcystins, the PPIA
method exhibits varying sensitivities to different classes of toxins. It provides a measure of
relative toxicity, but it cannot identify the specific toxins [267,268,271,277,278]. A commer-
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cially available PPIA test in a 96-well microplate format is currently available [279]. Table 1
shows the analytical PPIA methods for the determination of microcystins and Nodularin.
The analytical PPIA methods for determining microcystins and nodularin are displayed
in Table 1.

Table 1. LC-MS, LC-MS/MS, ELISA, and PPIA methods for the analysis of cyanotoxins in environ-
mental samples.

ID Method Cyanotoxin Detection Limit
Sample
Preparation

Water Type

LC-MS
Anatoxin-a [280] 0.0021 µg/L

Solid phase
extraction disk

Freshwaters

Microcystins [261] 1 µg/g
Solid phase
dispersion

Cyanobacteria
strain-cultures
water

LCMS/MS

Microcystins [281] 0.002 µg/L
Solid phase
extraction

Spiked
surfacewater

Nodularin [282] 0.1 µg/L
Solid phase
extraction

Lake water

Anatoxin-a [283] 0.5 µg/L
Freezing and
thawing of cells

Surface waters

Cylindrospermopsin
[284]

0.3 µg/L
Solid phase
dispersion

Lake waters

Microcystins [285] <0.02 µg/L
Solid phase
dispersion

Surface and
Drinking waters

ELISA

Saxitoxin [260] 0.02 µg/L
Filtration and
sonication

Freshwater
ecosystems

Microcystins [286] 0.05 µg/L
Solid phase
dispersion

River

Nodularin [287] 0.1 µg/L Filtration Surface waters

Microcystin LR in
clams [288]

0.1 ng/mL
Solid phase
dispersion

Coastal ponds

Microcystins in
mussels [289]

0.1 µg Lyophilisation Estuary

PPIA
Microcystins [290] 0.2 µg/L Freeze drying Lake water

Nodularin [291] Not given
Solid phase
dispersion

Lake water

Microcystins [292] 0.01 µg/L Filtration Water supply

5.1.5. Biosensors and Satellite Imagery

Using a biosensor is the most reliable method for determining whether cyanobacteria
and their toxins are in the environment. Specialized devices called biosensors use receptors
that bind to specific toxins and send out signals when they are present. These sensors
can detect low-concentration contaminants in water samples, enabling early detection and
prompt action [293].

Whole-Cell Biosensors

Whole-cell biosensors use entire, living cells as sensing components to find the target
analytes’ existence. These biosensors can react to particular cyanobacterial metabolic path-
ways or molecular markers. By detecting the metabolic activity of the cells and producing
an electrical signal, for instance, a biosensor based on immobilized whole-cell cyanobacteria
was utilized to determine the presence of cyanobacteria in water samples [293,294].
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Antibody-Based Biosensors

Immobilized antibodies are used in antibody-based biosensors to selectively capture
and detect particular chemicals or biomolecules linked to cyanobacteria. For instance, phy-
cocyanin was found in water samples using a biosensor based on immobilized antibodies.
The biosensor measured the binding of phycocyanin to the immobilized antibodies using
a fluorescence-based method, which was detected through variations in the fluorescence
signal [295].

Aptamer-Based Biosensors

To specifically bind and detect particular chemicals or biomolecules connected to
cyanobacteria, aptamer-based biosensors use synthetic nucleic acid molecules known as
aptamers. A biosensor based on immobilized aptamers was employed to find microcystin
in water samples. The biosensor measured the binding of microcystin to the immobilized
aptamers using a colorimetric assay, which was detected by variations in the color of the
test solution [296].

Enzyme-Based Biosensors

Immobilized enzymes are used in enzyme-based biosensors to catalyze particular
processes connected to the presence of cyanobacteria cells or their metabolic activity. It can
be assumed that a phosphorus-containing substance-based biosensor based on immobilized
alkaline phosphatase was employed to identify the molecule’s presence in water samples
after cyanobacteria cells discharged it. The biosensor used a colorimetric test to quantify the
immobilized enzyme’s activity, which was picked up via alterations in the assay solution’s
color [297].

Using satellite imagery as a detection method, authorities can cheaply and effectively
monitor broad regions of water thanks to the ability to detect cyanobacteria blooms from
space based on changes in the color of the water. To monitor blooms in the future, it is
beneficial to pinpoint regions where they have already occurred. The National Oceanic
and Atmospheric Administration (NOAA) and the European Space Agency’s Sentinel-3
satellite use satellite photography for cyanobacteria detection and monitoring [298].

The Ocean and Land Color Instrument (OLCI) on the Sentinel-3 satellite can identify
the spectral signature of cyanobacteria pigments in water bodies. Scientists may recognize
and monitor cyanobacteria blooms’ spatial extent and temporal dynamics by examining
the OLCI data. The Baltic Sea experienced a significant bloom of poisonous cyanobacteria
in 2019 that was observed by the Sentinel-3 satellite and connected to multiple incidences
of respiratory sickness in humans and animals [299].

The Cyanobacteria Monitoring Program of NOAA uses satellite imagery and other
data sources to monitor cyanobacteria blooms throughout the United States. The initiative
frequently informs resource managers and the general public about the location and severity
of cyanobacterial blooms. Numerous beaches and fishing sites had to be closed as a result of
a massive cyanobacteria bloom that occurred in the Florida lake Okeechobee in 2018 [300].

5.1.6. Enzyme Inhibition Methods

To find cyanotoxins in the environment, biochemical approaches are frequently used.
Enzyme inhibition techniques are one such highly effective strategy for achieving this.
By exposing the material to enzymes, this technique determines how much the enzymes
are inhibited. Even in complicated water samples, modest quantities of cyanobacterial
toxins can be found using enzyme inhibition techniques. This implies it is an excellent
instrument for identifying tiny levels of poisons that other techniques might miss. Ad-
ditionally, it can detect various poisons, including cylindrospermopsin, anatoxins, and
microcystins [301,302].

Since cyanobacteria depend on photosynthesis to generate energy, their existence can
be detected using photosynthesis inhibitors. Cyanobacteria are found in water samples
using a substance known as 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), a photo-
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synthesis inhibitor. The DCMU stopped the cyanobacteria from producing oxygen, which
reduced oxygen production—a cyanobacteria indicator—and was used to ascertain the
presence of the cyanobacteria [303]. Others were successful in controlling the growth
of bloom-forming M. aeruginosa by employing 2-Hydroxychalcone as a cyanobacterial
photosynthesis inhibitor [304].

Since cyanobacteria are known to fix nitrogen, their presence can be determined
using inhibitors of nitrogen fixation. The acetylene nitrogen fixation inhibitor can be
used to find cyanobacteria in sediments from eutrophic lakes. Because the acetylene re-
duced the cyanobacteria’s ability to fix nitrogen, less ethylene, a cyanobacterium indicator,
was produced [305]. Researchers also used L-phenylalanine, a phosphatase inhibitor,
to find cyanobacteria in water samples. Because L-phenylalanine inhibits cyanobacte-
rial phosphatase activity, orthophosphate, a cyanobacteria indicator, was secreted less
frequently [306].

5.2. Control of Cyanobacteria and Cyanotoxins

5.2.1. Strategies for Managing the Spread and Control of Cyanobacteria

Fortunately, many tactics may be used to manage the cyanobacteria’s spread and
containment.

Biocontrol

One typical biocontrol technique is the introduction of a naturally occurring bacterium
that has antagonistic effects on cyanobacteria, either through competition for resources
or via the creation of chemicals toxic to cyanobacteria, such as Bacillus spp. and Pseu-
domonas spp. [307–309]. On the other side, cyanophages, a natural virus that feeds on
cyanobacteria cells and infects them, can kill cyanobacteria when introduced into infected
waters [310]. Other biocontrol strategies involve adding plant extracts or certain aquatic
organisms to waters that are already infested [311–313]. Several plant extracts, including
Salvinia molesta [313–315] inhibit cyanobacteria growth. Phytoplanktivorous fishes, in-
cluding silver carp, big-head carp (Hypophthalmichthys nobilis, previously Aristichys nobilis)
and tilapia (Oreochromis niloticus) are direct consumers of phytoplankton (including MC-
producing M. aeruginosa) and zooplankton, and thus are widely used in the non-traditional
bio-manipulation of cyanobacterial blooms [142]. Aquatic creatures that consume cyanobac-
teria, like filter-feeding invertebrates and zooplankton Daphnia, can aid in lowering their
population. Long-term monitoring of this approach can be challenging and it is not always
effective [142,315].

Source Reduction

It is a management strategy that aims to reduce the nutrient inputs that support
cyanobacteria growth and, as a result, aids in controlling the spread of cyanobacterial
blooms. Reducing fertilizer use (primarily nitrogen and phosphorus) on surrounding
agricultural fields, reducing wastewater inputs, and regulating storm water runoff are
all examples of nutrient management strategies [316,317]. Additionally, vegetation is
crucial in controlling cyanobacterial reproduction because it lowers nutrient inputs and
offers shade, reducing the quantity of light available for cyanobacterial growth. The
restoration or creation of wetlands, the planting of buffer strips, and the application of
riparian zone management techniques are among the vegetation management options used
there [318,319].

Septic systems are an essential source of nutrients added to water bodies, particularly
in places where residences are built close to bodies of water. Nutrient inputs are reduced
and the spread of cyanobacteria is controlled through proper septic system management
and maintenance. Additionally, soil degradation increases the amount of nutrients added to
water bodies, which might promote the growth of cyanobacteria. Soil erosion and nutrient
inputs are reduced by implementing soil conservation practices, such as no-till farming
and cover crops [315,318,319].



Toxins 2023, 15, 582 22 of 38

Algal Turf Scrubbers (ATS)

By eliminating extra nutrients from bodies of water, algal turf scrubbers (ATS) are a
sort of device that can be used to control the growth of cyanobacteria blooms [320,321]. ATS
is an algae-growing substrate that is a flow-through channel lined with mesh or another
material. Pumping contaminated water through the channel causes the algae to absorb
nutrients like nitrogen and phosphorus from the water as it passes over the substrate [322].
After being cleaned up, the water is released back into the environment, which can help
control the growth of cyanobacterial blooms [322,323]. ATS can offer additional advantages
besides nutrient removal, including carbon sequestration, habitat building, and erosion
prevention [323–325].

5.2.2. Physical and Chemical Control and Removal of Cyanobacterial Blooms

Physical management and chemical removal techniques can be used to control and
reduce cyanobacterial blooms. Chemical removal entails utilizing chemical agents to lower
the population of the bacteria or the toxins they produce, whereas physical control involves
adding mechanical mechanisms to disturb the blooms [326,327].

Physical Control

Cyanobacteria blooms can be physically removed or prevented from spreading using
physical control methods. For example, adding oxygen to the water (aeration) can help to
disrupt cyanobacteria blooms by encouraging the growth of beneficial bacteria that compete
with cyanobacteria for nutrients [328,329]. The water column can be mixed up by aeration,
which might lessen the amount of light accessible for cyanobacteria growth. A different
approach is to stop their spread by harvesting cyanobacteria from water bodies using nets,
screens, or other collecting tools [329,330]. Cyanobacterial blooms can be stopped from
spreading to other parts of a body of water by using physical barriers like curtains or
booms. In regions where cyanobacteria blooms are concentrated, such as close to a point
source of nitrogen inputs, barriers can be beneficial [329–331].

By lowering the amount of water available for cyanobacteria growth, water draw-
downs can occasionally be employed to control cyanobacteria blooms. This strategy may
work well in smaller bodies of water, but it might not be practical or efficient in bigger
ones [332,333].

Chemical Control

Algicides, copper sulfate, and hydrogen peroxide are a few chemical tools that can
be employed to control the growth of cyanobacteria blooms. However, due to potential
dangers to the environment and public health, chemical management measures are often
only used as a last option [334–337]. Due to its toxic qualities, copper sulfate mainly kills
smaller organisms like cyanobacteria. Still, hydrogen peroxide is frequently employed as a
non-toxic substitute for larger organisms or in areas with sensitive species [338–340]. Addi-
tionally, sodium carbonate peroxyhydrate can be utilized to restrict cyanobacterial growth
by removing their ability to photosynthesize by releasing oxygen into the water [339,341].

All of these compounds are efficient at lowering cyanobacterial blooms and toxicities.
Still, they should only be used when necessary because they might negatively affect the
environment in the long term [337–341].

5.2.3. Cyanobacteria Removal Methods

Cyanobacterial cells and small amounts of toxins were successfully eliminated using
conventional portable water treatment techniques such as coagulation, sedimentation,
filtration, and chlorination [342,343]. The removal strategy, however, must be carefully
chosen during a strong bloom when there are significant amounts of cyanobacterial cells
and/or their cyanotoxins in the water because some cyanotoxins can be treated with this
strategy, while others cannot [343].
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To choose the best course of action for treatment, one must have a thorough under-
standing of the cyanobacteria species, growth patterns that make up the majority of the
bloom, and the characteristics of the cyanotoxins. Cyanotoxins that are intracellular and
extracellular (dissolved) can be removed using various techniques. Numerous techniques
have been utilized to remove internal cyanotoxins, including coagulation/sedimentation,
coagulation-dissolved air flotation (DAF), micro- and ultrafiltration, and pre-treatment
oxidation [343–349]. While some techniques for eliminating extracellular (dissolved) cyan-
otoxins have been mentioned in the literature, these techniques include membranes (nano-
and ultrafiltration), potassium permanganate, ozonation, the use of free chlorine, ultraviolet
radiation, physical cyanotoxin adsorption using powdered activated carbon (PAC), granu-
lar activated carbon (GAC), and activated carbon adsorption [350–354]. Each method has
benefits and is effective, and the efficacy depends on several variables, including chemical,
physical, and biological variables [342,349].

Table 2 shows how well various water treatment methods work to get rid of intact
cyanobacteria cells, and Table 3 shows how well different treatment methods work to
eliminate extracellular dissolved toxins from many of the most important cyanobacteria.

Table 2. A summary of the effectiveness of removal methods for intracellular cyanotoxins.

Treatment Technique Effectiveness of the Technique

Oxidation (pre-treatment) [343]
Oxidation stresses or kills cyanobacteria cells that release
cyanotoxin into the water.

Coagulation/Sedimentation
/Filtration [346,347]

After sludge separation, it must be guaranteed that the
supernatant sludge does not re-enter the supply.

Filter membranes [349]

Intracellular cyanotoxins (cyanobacteria cells) can be
effectively removed. Microfiltration and ultrafiltration work
well when cells are not allowed to accumulate on membranes
for extended periods of time. More frequent cleaning may be
required during a bloom episode.

Flotation [350]
Since many cyanobacteria that produce toxins are buoyant,
flotation techniques like Dissolved Air Flotation (DAF) are
effective at removing cyanotoxins from the body.

Table 3. A summary of the effectiveness of removal methods for extracellular cyanotoxins.

Treatment Technique Effectiveness of the Technique

Filter membranes [350]

- Cell lysis is highly probable, albeit influenced by the type of
membrane material, how the membrane pore sizes are
distributed, and the caliber of the influent water.

- Nanofiltration is often effective at eliminating extracellular
microcystins.

- Reverse osmosis filtering is frequently used to eliminate
cylindrospermopsin and microcystins.

KMnO4 [351] Microcystins and anatoxins are effectively oxidized, whereas
saxitoxin is not.

Ozone [352] Microcystins, anatoxin-a, and cylindrospermopsin are all quite
effective at being oxidized. Saxitoxin oxidation is ineffective.

Free Chlorine [351]
As long as the pH is less than 8, it is effective for oxidizing
microcystins. Cylindrospermopsin and saxitoxin are effectively
oxidized. Anatoxin-a oxidation is ineffective.

Ultraviolet radiation [354]

Microcystins and cylindrospermopsin cannot be oxidized by UV
radiation alone at dosages typically used in drinking water
treatment. UV light is effective at oxidizing anatoxin-a,
cylindrospermopsin, and, at high UV dosages, microcystins when
mixed with ozone or hydrogen peroxide.
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Table 3. Cont.

Treatment Technique Effectiveness of the Technique

Activated Carbon
Adsorption [354]

- The efficiency of PAC adsorption varies with carbon type,
pore size, cyanotoxin type, and other indicators of water
quality such the amount of natural organic matter (NOM).
For instance, activated carbons derived from wood are
frequently the best in adsorbing microcystins. The efficiency
of GAC (granulated activated carbon) adsorption varies
with carbon type, pore size, cyanotoxin type, and other
aspects of water quality, including NOM level. GAC is
effective against microcystins and is predicted to be effective
against saxitoxin, anatoxin-a, and cylindrospermopsin.

6. Summary and Conclusions

The risks linked with cyanobacteria, sometimes referred to as blue-green algae, spread-
ing in bodies of water are discussed in the manuscript. When conditions are ideal, cyanobac-
teria can spread swiftly. Their growth may be aided by surplus nitrogen and phosphorus
from sewage and fertilizer runoff sources. The toxins they produce are toxic to both people
and aquatic life.

This review also outlines the characteristics of many cyanobacterial taxa. Oscillatoria,
Microcystis, Anabaena, and other organisms are listed. Numerous cyanobacterial species,
such as microcystins, nodularin, anatoxin-a, and cylindrospermopsin, can produce toxins
that harm the liver and nervous system.

Overabundances of nutrients, warm temperatures, lots of sunlight, and slow water
flow all encourage cyanobacteria blooms. Sewage treatment facilities and industrial and
agricultural endeavors provide the nutrients required for cyanobacteria to flourish.

Different techniques are discussed for finding and getting rid of cyanobacteria.
Cyanobacteria cells and their toxins can be found using microscopy, molecular meth-
ods, chromatography, and spectroscopy. Biosensors and immunoassays are also reliable
detection techniques. Large bodies of water can be monitored with satellite images.

The manuscript also discussed ways to control and lessen cyanobacteria problems.
These techniques include physical or chemical treatments, fertilizer input reduction, the
use of algal lawn scrubbers, and biocontrol utilizing antagonistic bacteria. These solutions
strive to reduce the dangers that cyanobacterial blooms and their toxins offer. Cyanobac-
teria in water systems must be managed effectively, which requires early diagnosis and
quick action.

Risks associated with abridgment and cyanobacteria dispersion call for thorough
monitoring and mitigation measures. Management of this crucial environmental issue can
be enhanced by better understanding the elements that encourage blooms and the many
detection and eradication options available.
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