
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/322145393

Benchmarking and Performance Analysis for Distributed Cache Systems: A

Comparative Case Study

Chapter · January 2018

DOI: 10.1007/978-3-319-72401-0_11

CITATIONS

2
READS

1,644

4 authors, including:

Some of the authors of this publication are also working on these related projects:

Diet4Elders (http://www.diet4elders.eu/) View project

Developing a more efficient filter FS for classification, named Enhanced Binary Cuckoo Search with frequent values and rough set theory for Feature Selection(EBCS).

View project

Haytham Salhi

Birzeit University

3 PUBLICATIONS   9 CITATIONS   

SEE PROFILE

Adel Taweel

Birzeit University

134 PUBLICATIONS   1,254 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Adel Taweel on 06 December 2020.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/322145393_Benchmarking_and_Performance_Analysis_for_Distributed_Cache_Systems_A_Comparative_Case_Study?enrichId=rgreq-cce4877761ffb407a31928dca1b8c399-XXX&enrichSource=Y292ZXJQYWdlOzMyMjE0NTM5MztBUzo5NjU3MTEyOTU5NjcyMzJAMTYwNzI1NDkyMzIxOQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/322145393_Benchmarking_and_Performance_Analysis_for_Distributed_Cache_Systems_A_Comparative_Case_Study?enrichId=rgreq-cce4877761ffb407a31928dca1b8c399-XXX&enrichSource=Y292ZXJQYWdlOzMyMjE0NTM5MztBUzo5NjU3MTEyOTU5NjcyMzJAMTYwNzI1NDkyMzIxOQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Diet4Elders-http-wwwdiet4elderseu?enrichId=rgreq-cce4877761ffb407a31928dca1b8c399-XXX&enrichSource=Y292ZXJQYWdlOzMyMjE0NTM5MztBUzo5NjU3MTEyOTU5NjcyMzJAMTYwNzI1NDkyMzIxOQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Developing-a-more-efficient-filter-FS-for-classification-named-Enhanced-Binary-Cuckoo-Search-with-frequent-values-and-rough-set-theory-for-Feature-SelectionEBCS?enrichId=rgreq-cce4877761ffb407a31928dca1b8c399-XXX&enrichSource=Y292ZXJQYWdlOzMyMjE0NTM5MztBUzo5NjU3MTEyOTU5NjcyMzJAMTYwNzI1NDkyMzIxOQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-cce4877761ffb407a31928dca1b8c399-XXX&enrichSource=Y292ZXJQYWdlOzMyMjE0NTM5MztBUzo5NjU3MTEyOTU5NjcyMzJAMTYwNzI1NDkyMzIxOQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Haytham-Salhi?enrichId=rgreq-cce4877761ffb407a31928dca1b8c399-XXX&enrichSource=Y292ZXJQYWdlOzMyMjE0NTM5MztBUzo5NjU3MTEyOTU5NjcyMzJAMTYwNzI1NDkyMzIxOQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Haytham-Salhi?enrichId=rgreq-cce4877761ffb407a31928dca1b8c399-XXX&enrichSource=Y292ZXJQYWdlOzMyMjE0NTM5MztBUzo5NjU3MTEyOTU5NjcyMzJAMTYwNzI1NDkyMzIxOQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Birzeit_University?enrichId=rgreq-cce4877761ffb407a31928dca1b8c399-XXX&enrichSource=Y292ZXJQYWdlOzMyMjE0NTM5MztBUzo5NjU3MTEyOTU5NjcyMzJAMTYwNzI1NDkyMzIxOQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Haytham-Salhi?enrichId=rgreq-cce4877761ffb407a31928dca1b8c399-XXX&enrichSource=Y292ZXJQYWdlOzMyMjE0NTM5MztBUzo5NjU3MTEyOTU5NjcyMzJAMTYwNzI1NDkyMzIxOQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Adel-Taweel?enrichId=rgreq-cce4877761ffb407a31928dca1b8c399-XXX&enrichSource=Y292ZXJQYWdlOzMyMjE0NTM5MztBUzo5NjU3MTEyOTU5NjcyMzJAMTYwNzI1NDkyMzIxOQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Adel-Taweel?enrichId=rgreq-cce4877761ffb407a31928dca1b8c399-XXX&enrichSource=Y292ZXJQYWdlOzMyMjE0NTM5MztBUzo5NjU3MTEyOTU5NjcyMzJAMTYwNzI1NDkyMzIxOQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Birzeit_University?enrichId=rgreq-cce4877761ffb407a31928dca1b8c399-XXX&enrichSource=Y292ZXJQYWdlOzMyMjE0NTM5MztBUzo5NjU3MTEyOTU5NjcyMzJAMTYwNzI1NDkyMzIxOQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Adel-Taweel?enrichId=rgreq-cce4877761ffb407a31928dca1b8c399-XXX&enrichSource=Y292ZXJQYWdlOzMyMjE0NTM5MztBUzo5NjU3MTEyOTU5NjcyMzJAMTYwNzI1NDkyMzIxOQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Adel-Taweel?enrichId=rgreq-cce4877761ffb407a31928dca1b8c399-XXX&enrichSource=Y292ZXJQYWdlOzMyMjE0NTM5MztBUzo5NjU3MTEyOTU5NjcyMzJAMTYwNzI1NDkyMzIxOQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Benchmarking and Performance Analysis
for Distributed Cache Systems:
A Comparative Case Study

Haytham Salhi1(B), Feras Odeh1(B), Rabee Nasser1(B), and Adel Taweel1,2(B)

1 Birzeit University, Birzeit, Palestine
hsalhi89@gmail.com, ferasodh@gmail.com, rabinasser@gmail.com,

ataweel@birzeit.edu
2 King’s College, London, UK

Abstract. Caching critical pieces of information in memory or local
hard drive is important for applications’ performance. Critical pieces of
information could include, for example, information returned from I/O-
intensive queries or computationally-intensive calculations. Apart from
such, storing large amounts of data in a single memory is expensive
and sometimes infeasible. Distributed cache systems come to offer faster
access by exploiting the memory of more than one machine but they
appear as one logical large cache. Therefore, analyzing and benchmark-
ing these systems are necessary to study what and how factors, such
as number of clients and data sizes, affect the performance. The major-
ity of current benchmarks deal with the number of clients as “multiple-
threads but all over one client connection”; this does not reflect the real
scenarios where each thread has its own connection. This paper consid-
ered several benchmarking mechanisms and selected one for performance
analysis. It also studied the performance of two popular open source dis-
tributed cache systems (Hazelcast and Infinispan). Using the selected
benchmarking mechanism, results show that the performance of distrib-
uted cache systems is significantly affected by the number of concurrent
clients accessing the distributed cache as well as by the size of the data
managed by the cache. Furthermore, the conducted performance analysis
shows that Infinispan outperforms Hazelcast in the simple data retrieval
scenarios as well as most SQL-like queries scenarios, whereas Hazelcast
outperforms Infinispan in SQL-like queries for small data sizes.

Keywords: Benchmarking · Performance analysis
Distributed cache systems · Hazelcast · Infinispan
Retrieval operations

1 Introduction

Studying the performance of distributed cache systems has received much atten-
tion in recent years due to their wide usage in improving latency and throughput
c© Springer International Publishing AG 2018
R. Nambiar and M. Poess (Eds.): TPCTC 2017, LNCS 10661, pp. 147–163, 2018.
https://doi.org/10.1007/978-3-319-72401-0_11



148 H. Salhi et al.

significantly for various applications. In computing, cache is a software com-
ponent that stores portions of datasets which would otherwise either take a
long time to calculate, process, or originate from an underlying back-end sys-
tem [16,21]. Caching is used mainly to reduce additional request round trips and
sometimes to reduce database querying time for frequently used data [16,21].

A typical methodology for analyzing the performance of distributed cache
systems is often done by performing a controlled- and an unbiased-study to
investigate these systems’ factors of influence. There have been extensive empir-
ical studies conducted by researchers [13,24] and industry [2,7,8] that attempt
to look into the performance of these systems. For example, Zhang et al. [24]
analyzed the performance of three systems: Memcached, Redis, and the Resilient
Distributed Datasets (RDD). More recently, Das et al. [13] studied the perfor-
mance for Hazelcast only. Nevertheless, although some of these studies have
studied more than one factor (such as number of client threads) and targeted
many types of cache operations, they studied multiple threads over one client
connection, and little attention has been paid to study number of client connec-
tions, where each client opens its own connection to distributed cache server, as
well as the behavior when varying the data sizes.

Thus, this paper presents the performance analysis of retrieval operations
(including get and SQL-like queries) of two popular open source distrib-
uted cache systems, namely Hazelcast (version 3.6.1) and Infinispan (version
8.1.2.Final), with a focus on two factors: different number of concurrent clients
for different sizes of data managed by the cache. In other words, to be able
to understand some of the intrinsic properties of distributed cache, the paper
studies the performance behavior of the two systems by varying the number of
concurrent client connections for different data sizes, through a controlled study,
which is the main objective of this paper. In addition, the paper considers several
potential benchmarking frameworks and identifies a suitable one, namely Yard-
stick. Yardstick is a benchmarking tool usually intended for general distributed
systems and captures the behavior of performance as a function of time (i.e.,
the duration of benchmark) only, which is not sufficient to understand the exact
performance behavior of distributed cache systems for our factors of interest.
To overcome, an additional mechanism has been developed and integrated into
Yardstick to benchmark distributed caches to capture the varying number of
clients and data sizes to ensure proper synchronization of run-times.

The evaluation results show that there is a clear relationship between the
performance of data retrieval operations and number of concurrent clients as
well as data sizes. In addition, the performance behavior of the two selected
systems can significantly be influenced by other implementation factors such
as data serialization, object formats, and indexing. The rest of this paper is
structured as follows: Sect. 2 presents related work. Section 3 describes the used
study design and setup. Section 4 shows the conducted study results. Section 5
discusses the results and the drawn interpretations. Finally, Sect. 6 draws the
conclusion and future work.



Benchmarking and Performance Analysis for Distributed Cache Systems 149

2 Related Work

Das et al. [13] studied the performance degradation of Hazelcast and suggested to
spawn fewer number of threads that process number of client requests in order
to improve the performance. While this study aimed to perform a controlled
study and add a capability to Yardstick for conducting a performance compar-
ison in the context of multi-client connections, some studies added utilities to
ease the process of performance analysis, such as an emulator e.g., InterSense,
to aid the performance analysis of distributed big-data applications and to facil-
itate the sensitivity analysis of complex distributed applications [22], and other
studies have performed empirical performance analysis on distributed systems
like SQL engines [23]. Several papers proposed different methods for conducting
performance analysis for general distributed systems [11,14,19,20]. However, our
approach focuses on distributed cache systems that use both virtual and physi-
cal configurations, which introduce additional factors that need to be taken into
consideration when conducting performance analysis.

Zhang et al. [24] analyzed the performance for in-memory data management
of three systems: Memcached, Redis, and Resilient Distributed Datasets (RDD)
implemented by Spark. The authors performed a thorough performance analysis
of object operations such as set and get. The results show that none of the sys-
tems handles efficiently both types of workloads. The CPU and I/O performance
of the TCP stack were the bottlenecks for Memcached and Redis. On the other
hand, due to a large startup cost of the get job, RDD does not support efficient
get operation for random objects.

Industry, on the other hand, especially the companies that offer distributed
cache systems, whether open-source or commercial, usually build benchmarks
to show the performance of their system or to compare it with another and
publish their results as white papers or on their web sites, which may carry
some bias. Hazelcast company [7], for example, built benchmark for get and
put operations only, to compare their distributed cache (3.6-SNAPSHOT) with
Red Hat Infinispan 7.2 (a version supported by Red Hat), using Radar-Gun
benchmarking framework1. Based on their results, they claim that they are up to
70% faster than Infinispan [7]. However, this comparative study performed did
not take into account the number of concurrent clients (where each client opens
its own connection to the cluster) nor did consider other retrieval operations,
such as SQL-like queries.

The Hazelcast company built other benchmarks comparing their distributed
cache system to other systems, such as Redis [8], using Radar-Gun framework. In
this study, the Hazelcast company investigated the effect of very small number of
clients (1 and 4) with different number of threads and showed Hazelcast outper-
form Redis for the get operation [8]. In another comparison between Grid Gain
and Apache Ignite [2] performed by Hazelcast, they studied the performance
of several operations including put/get and SQL-like queries, using Yardstick
framework. Others like Grid Gain company [1] built benchmarks, comparing

1 https://github.com/radargun/radargun/wiki.

https://github.com/radargun/radargun/wiki


150 H. Salhi et al.

between their system and Hazelcast for several operation types such as get, put,
SQL-like as well as transactional operations. In addition, they did the same for
Apache Ignite and Hazelcast [4].

All the above mentioned studies, except the one done by Zhang et al. [24],
show the performance behavior of cache operations as a function of time with a
fixed number of clients, a fixed number of threads per client, and a fixed data
size. These may be sufficient in some cases, but do not, however, reflect real-life
performance behavior, where number of concurrent clients dynamically varies
over the period of system run-time. To address this issue, the authors developed
a mechanism to maintain varying number of concurrent clients and data sizes,
along with the function of time, maintained by Yarkstick.

While other efforts have developed the “Yahoo! Cloud Serving Benchmark”
(YCSB)2 [12] into other extensions like YCSB+T [15] in order to produce metrics
for database operations within transactions and detect anomalies from any work-
load, Yardstick3 was chosen. Yardstick is a powerful framework, well-documented
and intended for benchmarking distributed operations. Its benchmarks can be
developed faster than other frameworks, such as Java Microbenchmarking Har-
ness (JMH)4, Radar Gun, and YCSB [12]. Moreover, Yardstick is open source,
written in Java and allows contributions to enhance and enrich its framework.

3 Study Design and Setup

This section discusses the main aspects of the study design on which the setup
relies. First, it presents the investigated key factors of interest that may have
greater effect on the performance of retrieval operations for distributed cache
systems. Second, it lists the queries that were used, with their specifications and
complexities.

Finally, it describes the used topology of machines, their setup, and the
mechanism of benchmarking.

3.1 Factors of Interest

The performance of a distributed cache system depends on several different
factors including number of concurrent clients [10,18], data sizes [9], type of
operations, complexity of queries, number of distributed caches, and so forth.
Since the dependent variable of interest is the performance of data retrieval
operations, this study is particularly concerned with the effect of two key factors
as follows:

– Number of concurrent clients: The more the number of concurrent clients
a system can handle efficiently, the more efficient the application is [10,18]. To
achieve reasonable performance system outlook, the study is run against eight

2 https://github.com/brianfrankcooper/YCSB/wiki.
3 https://github.com/yardstick-benchmarks/yardstick.
4 http://tutorials.jenkov.com/java-performance/jmh.html.

https://github.com/brianfrankcooper/YCSB/wiki
https://github.com/yardstick-benchmarks/yardstick
http://tutorials.jenkov.com/java-performance/jmh.html


Benchmarking and Performance Analysis for Distributed Cache Systems 151

variations of concurrent client numbers which includes: 1, 2, 4, 8, 16, 32,
64, and 128 clients to log the performance change as the number of clients
grows.

– Data size: As the data size increases in the cache, a distributed cache system
needs to maintain the maximum number of entries it can store [9]. To achieve,
this study examines five variations of data sizes as shown in Table 1. One
million data size (or records) was tested in all cases, except in benchmarking
SQL-like queries due to the huge number of records returned to the clients
which caused memory heap exceptions in some cases.

Variables that may affect the performance of data retrieval operations in a
distributed cache systems, such as those related to the environment (like CPU,
RAM, etc.) or related to the cache itself, were controlled and made similar as
much as possible for both systems. Systems’ internal configurations were kept
on default configurations. Furthermore, indexing on both systems was enabled.

Table 1. Data size variations used in initializing the distributed cache.

Number of entries Size (B)

100 9 KB

1000 89.8 KB

10,000 898 KB

100,000 8.8 MB

1,000,000 87.7 MB

3.2 Queries Specifications

In this study, the map data structure was used as data representation in both
systems. Two main types of queries on this data structure were investigated.
The first, is a basic query type, the get operation, a popular operation on map.
The second, is an SQL-like type, which can be used to retrieve a collection of
objects. In addition, we formulated four SQL-like queries, each with a different
complexity level. The reason behind choosing SQL-like queries is that they are
very useful for retrieving complex data from caches. Table 3 summarizes the
queries with their complexities. The complexity is generally defined as follows:
“The greater the query, in terms of SQL operations (i.e., the number of logical
and comparison operations), the higher the complexity value”. The metric for
calculating the value of a query complexity is described below.

The complexity is computed based on the number of logical operations (e.g.,
AND, OR, LIKE, etc.) and comparison operations (=,>,<, etc.). The defined
metrics assign a complexity value to each query based on the type and the
number of its operations. The complexity value for each query in Table 3 below
is computed by aggregating the complexity values for each operation appearing
in the query. Table 2 shows the complexity value for each operation. The higher
the complexity value, the greater its computation needs in terms of CPU and
memory.



152 H. Salhi et al.

Table 2. Complexity definitions for each SQL operation.

SQL operation Complexity value

>, <, = 1

AND 1

OR, LIKE 2

In order to be close to a real world scenario, two entities (Employee and Orga-
nization) were used as objects to hold data. Employee entity has four attributes:
id, name (indexed), age (indexed), password, and organization, whereas Organi-
zation has five attributes: id, name (indexed), acronym, and numberOfEmploy-
ees. The relationship between the two entities is a one-to-many association. The
single-attribute index was used for both systems. Moreover, in Hazelcast, non-
ordered index was used in order to make the index settings as much neutralized
as possible to match Infinispan’s index settings.

Table 3. Retrieval queries used in benchmarking with their complexities.

Label Query Complexity

get get(i) where i is a random number N/A

SQL-like0 SELECT employee FROM Employee WHERE age >50 1

SQL-like1 SELECT employee FROM Employee WHERE age >25
AND age <75

3

SQL-like2 SELECT employee FROM Employee WHERE age <25 OR
age >75

4

SQL-like3 SELECT employee FROM Employee WHERE age >50 AND
name like ‘A%’ AND organization.name LIKE ‘%tum%’

7

3.3 Topology and Mechanism

As shown in Fig. 1, the study setup included five machines and one switch to
conduct experiments within a local isolated network, to eliminate external net-
working issues. Out of the five, four machines, named host 1, 2, 3, and 4 were
used to run the client benchmarks. The nodes of cache cluster were set up on
the fifth machine, named workstation. The specifications for the machines are
detailed below.

In this study, HP Z230 Tower Workstation was used as the server machine.
Table 4 lists the specification of the server machine.

For clients, four machines were used, three of them with equal specifications.
The fourth machine has a different CPU (Intel(R) Core(TM) i7-3770 CPU @
3.40 GHz) tough. Table 5 lists the specifications of the client machines. One host
(host 1) was used to manage the running of benchmark clients, and the usage of
the other hosts is described in the algorithms below.

Table 6 lists the network switch specifications used during the study to enable
the networking between the four hosts and the workstation.



Benchmarking and Performance Analysis for Distributed Cache Systems 153

Fig. 1. Topology of experimental setup.

Table 4. Server machine specifications

Environment variable Specs

Operating system Ubuntu 14.04 (64 bit)

Platform Java 1.8 (64 bit)

CPU Intel(R) Xeon(R) CPU E3-1241 v3 @ 3.50 GHz

RAM 16 GB

Table 5. Client machines specifications

Environment variable Specs

Operating system Ubuntu 14.04 (64 bit)

Platform Java 1.8 (64 bit)

CPU Intel(R) Core(TM) i7-4770 CPU @ 3.40 GHz

Intel(R) Core(TM) i7-3770 CPU @ 3.40 GHz

RAM 8 GB

Table 6. Network specifications

Environment variable Specs

Switch Cisco Catalyst 3560-X Series WS-C3560X-24P-S 24 PoE+
715W

Switching Fabric 160 Gbps

DRAM 256 MB (51 2 MB for 3750X-12S and 3750X-24S)

Flash 64 MB (128 MB for 3750X-12S and 3750X-24S)

Total VLANs 1005

VLAN IDs 4 K

In order to set up and run the experiments, a cluster of distributed cache
nodes were set up on the workstation, and a script that generates clients for
requesting cache data on the clients machines (namely host 1, 2, 3, and 4). The
purpose of these four hosts is to run the client drivers. The steps to run the
cache cluster on the workstation are described in Algorithm 1.



154 H. Salhi et al.

Algorithm 1. RunningDistrbutedCachesOnServer
1: Let cacheSystems =[Hazelcast, Infinispan]
2: Let dataSizes =[100, 1000, 10000, 100000, 1000000]
3: for each cacheSystem ∈ cacheSystems do
4: for each dataSize ∈ dataSizes do
5: Run four nodes
6: Create a distributed map
7: Initiate the map with the data
8: Monitor the CPU/memory usage
9: Invoke Algorithm 2 � client benchmarks run here

10: Wait until client benchmarks finish
11: end for
12: end for

After the cache cluster was started and run in a stable mode, the four hosts
ran the client benchmarks. Each benchmark started generating requests for a
period of 180 s (the first 30 s are for warm-up). The benchmark recorded the
throughput (operations/sec) for the 150 s period. Each benchmark resulted in a
CSV file containing the throughput over 150 s for a specific number of concurrent
clients and a specific data size.

The generated results were then taken and further analyzed to produce an
overall throughput for each number of concurrent clients. To record throughput
with a varying number of clients and data sizes, managing the runs of bench-
marks is achieved through Algorithm 2, as shown below.

Algorithm 2. RunningBenchmarksOnClients
1: Let clientsNumbers =[1, 2, 4, 8, 16, 32, 64, 128]
2: Let queries =[get, SQL-like0, SQL-like1, SQL-like2, SQL-like3]
3: for each clientsNumber ∈ clientsNumbers do
4: for each query ∈ queries do
5: if clientsNumber = 1or2 then
6: Monitor the CPU/memory usage on host 1
7: Run benchmarks of clientsNumber concurrently on host 1
8: else
9: Let n = clientsNumber/4 � Number of client benchmarks on each host

10: Monitor the CPU/memory usage on host 1
11: Run benchmarks of n concurrently on host 1 asynchronously
12: Monitor the CPU/memory usage on host 2
13: Run benchmarks of n concurrently on host 2 asynchronously
14: Monitor the CPU/memory usage on host 3
15: Run benchmarks of n concurrently on host 3 asynchronously
16: Monitor the CPU/memory usage on host 4
17: Run benchmarks of n concurrently on host 4 asynchronously
18: end if
19: Wait until all benchmarks finish
20: end for
21: Aggregate data and covert results into throughput per number of clients
22: end for



Benchmarking and Performance Analysis for Distributed Cache Systems 155

All required benchmarks were implemented in Java using Yardstick frame-
work. Algorithms 1 and 2, described above, were implemented using both Java
and Shell programming languages. The project including the benchmarks as well
as shell scripts used in this study can be found on a public Github repository.
Here is the link5.

This design was developed and enhanced over many iterations of dry-runs and
trials. During the wet-run of the study, CPU/memory usage was also monitored
to ensure high fidelity of the study and make sure that systems’ performance is
not affected by machine limitations.

4 Study Results

The obtained study results are shown formatted below so that the relevant per-
formance results of both systems are brought together to compare between the
two systems. Each chart below contains more than one curve, each representing
the behavior of performance for a specific system and a specific data size, where
the Y-axis is the throughput (ops/sec), and the X-axis represents the number
of concurrent clients. Since readings were taken for only a subset of concurrent
clients (i.e., 1, 2, 4, 8, 16, 32, 64, 128), a linear approximation between points
was used.

4.1 Performance of get Query

As shown in Fig. 2, the throughput increases for both systems starting with 1
client increasing to 64 concurrent clients, for which Infinispan obviously does
better in this range. However, the throughput of Hazelcast drops down when
moving from 64 client to 128 clients, while Infinispan throughput keeps increas-
ing. It is worth noting that Infinispan did not reach a maximum throughput in
this case.

When increasing the data size from 100 to 1000000, the behaviour remains
the same over all concurrent client variations. Throughput, on the other hand,
drops down by around 19% on average for Hazelcast, whereas Infinispan drops
down by around 0.2%, as shown in Fig. 2. The average, minimum, and maximum
throughput for each data size for Hazelcast and Infinispan are shown in Tables 7
and 8, respectively. Each color in the leftmost column indicates a curve in Fig. 2.

4.2 Performance of SQL-like Queries

For SQL-like queries, which are more complex than the primitive get query, the
throughput of both systems is significantly small compared to what the case is
in the get query, as shown next. Moreover, it is clear that there is a significant
drop in throughput for both systems for a shift from 100 to 100000 data size.
The results also show that the effect of the number of concurrent clients becomes
less significant on larger data sizes.
5 https://github.com/ferasodh/Distributed-Caches-Benchmarking-Experiment.

https://github.com/ferasodh/Distributed-Caches-Benchmarking-Experiment


156 H. Salhi et al.

Fig. 2. Behavior of get performance in terms of throughput (ops/sec) as a function of
number of clients. Each color in the leftmost column of Tables 7 and 8 indicates a curve
in this figure. (Color figure online)

Table 7. Per data size average, minimum, and maximum throughput (in thousands
ops/sec) for Hazelcast.

- Data Size Avg Min Max

100 63.33 3.33 159.76

1000 59.48 3.37 147.36

10000 64.21 3.33 166.52

100,000 64.13 3.37 165.68

1,000,000 51.33 3.39 124.33

Performance of SQL-like0 Query: For SQL-like0 query, the number of rows
returned is directly proportional to data size. Hazelcast outperforms Infinispan
for 100 data size by 39.8%, as shown in Fig. 3. The throughput increases for both
systems for the range 1 to 64 clients. However, Infinispan outperforms Hazelcast
for all bigger data sizes. Moreover, it clearly shows Infinispan has more average



Benchmarking and Performance Analysis for Distributed Cache Systems 157

Table 8. Per data size average, minimum, and maximum throughput (in thousands
ops/sec) for Infinispan.

- Data Size Avg Min Max

100 126.51 4.80 397.97

1000 127.04 4.82 399.33

10000 125.39 4.79 390.36

100,000 124.62 4.74 389.51

1,000,000 126.25 4.73 395.70

throughput than Hazelcast by 34.6%, 64.7%, and 43% in 1000, 10000, and 100000
data sizes, respectively.

Performance of SQL-like1 Query: For SQL-like1 query, the throughput
increases for both systems as number of clients increases for 100 data size, while
for bigger data sizes the maximum throughput is reached at 16 clients. For this,
Hazelcast outperforms Infinispan for 100 data size by 57.9%, as shown in Fig. 4.
However, Infinispan outperforms Hazelcast for all bigger data sizes. Moreover, it
shows that Infinispan has a better average throughput than Hazelcast by 51%,
66.3%, and 66.9% at 1000, 10000, and 100000 data sizes, respectively.

However, with large data size at 10000, there is a drop in Infinispan per-
formance for the range of 16 to 64 clients, while Hazelcast achieves minimum
throughput at 100000 data size and 128 clients.

Performance of SQL-like2 Query: None of the systems reach the maximum
throughput in SQL-like2 query for 100 data size, while for bigger data sizes the
maximum throughput is reached with 32, 16, and 8 clients. In this case, Hazelcast
outperforms Infinispan for 100 data size by 55.9%, as shown in Fig. 5. However,
Infinispan outperforms Hazelcast for all bigger data sizes.

Fig. 3. Behavior of SQL-like0 performance in term of throughput (ops/sec) as a func-
tion of number of clients (1, 2, 4, 8, 32, 64, 128) for all data sizes.



158 H. Salhi et al.

Fig. 4. Behavior of SQL-like1 performance in term of throughput (ops/sec) as a func-
tion of number of clients (1, 2, 4, 8, 32, 64, 128) for all data sizes.

Fig. 5. Behavior of SQL-like2 performance in term of throughput (ops/sec) as a func-
tion of number of clients (1, 2, 4, 8, 32, 64, 128) for all data sizes.

Moreover, the results also show Infinispan has a better average throughput
than Hazelcast by 20.5%, 37.6%, and 40.9% at 1000, 10000, and 100000 data
sizes, respectively. For 10000 data size, there is a drop in Infinispan performance
for 16 to 64 clients, and Hazelcast achieves minimum throughput at 100000 data
size and 128 clients.

Performance of SQL-like3 Query: For SQL-like3 query, none of the systems
reaches the maximum throughput for 100 data size. For 1000 data size Hazelcast
does not reach a maximum throughput while Infinispan reaches a maximum
throughput at 32 clients. For bigger data sizes, the maximum throughput is
reached with 16 and 8 clients. Hazelcast outperforms Infinispan for 100 and
1000 data size by 261.65% and 285.7%, respectively, as shown in Fig. 6. However,
Infinispan outperforms Hazelcast for 10000 and 100000 data sizes.

It also shows that Infinispan has a better average throughput than Hazelcast
by 37.62% and 40.86% in 10000 and 100000 data sizes, respectively. However for
10000 data size, there is a drop in Infinispan performance for 16 to 64 clients.
Hazelcast achieves minimum throughput on 100000 data size and 128 clients.



Benchmarking and Performance Analysis for Distributed Cache Systems 159

Fig. 6. Behavior of SQL-like3 performance in term of throughput (ops/sec) as a func-
tion of number of clients (1, 2, 4, 8, 32, 64, 128) for all data sizes.

Table 9. Per data size average, max, and min throughput (ops/sec) for each query for
Hazelcast.

Data size Avg Min Max Avg Min Max

SQL-like0 SQL-like1

100 3,485.25 650.43 5,224.75 4,157.87 741.37 6,531.27

1,000 401.24 114.05 538.07 406.09 112.15 541.37

10,000 40.18 11.08 53.30 40.36 10.89 53.77

100,000 4.06 1.12 5.47 3.60 1.13 5.46

SQL-like2 SQL-like3

100 4,101.74 731.26 6,428.29 12,154.58 2,177.01 2,177.01

1,000 651.77 175.98 874.01 5,099.81 1,260.55 8,203.85

10,000 68.24 19.40 89.20 68.24 19.40 89.20

100,000 5.80 1.81 8.81 5.80 1.81 8.81

Tables 9 and 10 summarize results for the SQL-like queries showing the aver-
age, minimum, and maximum throughput for each query and for each data size
for Hazelcast and Infinispan, respectively.

5 Discussion

As shown above, Infinispan outperforms Hazelcast in all benchmarks except in
SQL-like queries at small data sizes. There are several factors that affect the
performance of Infinispan and Hazelcast and could be reasons for performance
bottlenecks; some of these factors are discussed below:

– Data serialization: In order to transfer cache objects across a network
between clients and a cache cluster or between cache cluster peers, objects
need to be serialized into bytes. When read by the application, those bytes



160 H. Salhi et al.

Table 10. Per data size average, max, and min throughput(ops/sec) for each query
for Infinispan.

Data size Avg Min Max Avg Min Max

SQL-like0 SQL-like1

100 2,493.22 449.31 3,875.48 2,633.41 480.84 4,103.19

1,000 612.90 140.89 827.48 613.40 149.24 829.77

10,000 66.20 22.35 88.85 66.44 23.09 88.61

100,000 5.81 2.07 7.27 6.01 2.11 7.59

SQL-like2 SQL-like3

100 2,631.53 479.09 4,077.35 3,360.91 667.01 5,242.86

1,000 785.25 182.37 1,085.06 1,322.45 282.71 1,899.73

10,000 93.91 31.86 122.82 93.91 31.86 122.82

100,000 8.17 2.92 10.10 8.17 2.92 10.10

need to be converted back to objects or deserialized. Whenever a request comes
to a cache system, about 20% of the processing time is spent in serialization
and deserialization in most configurations [5]. Obviously, data serialization is
one of the key factors that affects cache performance. However, the default
Java implementation, which is the used implementation for Hazelcast, is slow
in terms of CPU cycles and produces unnecessarily large bytes [3,5]. On the
other hand, Infinispan uses Jboss marshalling framework6 as its default seri-
alization scheme.
Jboss marshalling framework do not write full class definitions to the stream,
instead each known type is represented by a single byte by using magic num-
bers [5]. Moreover, Infinispan forces developers of applications to register an
“externalizer” for their application types to make use of Jboss marshalling
[5,6]. Based on this, serialization has a significant impact on both systems’
throughput and explains why Infinispan has a better performance in most
cases.

– In-memory objects format: When objects are stored in Hazelcast or Infin-
ispan they are serialized to byte arrays and deserialized when they are read.
In Hazelcast, the default format is the binary format. However, this format
is not efficient if the application is doing a lot of SQL-like queries where
serialization/deserialization happens on the server side. Moreover, Hazelcast
provides other formats like object and native format. One drawback of Object
format is that it adds an extra serialization/deserialization step for get and
put operations, while native format is only available for Hazelcast Enterprise
HD version [17]. This study used the default Hazelcast binary format which
explains the low performance of Hazelcast on SQL-like queries, especially with
large data sizes.
Even though the cost of serialization/deserialization maybe small for smaller

6 http://jbossmarshalling.jboss.org/.

http://jbossmarshalling.jboss.org/


Benchmarking and Performance Analysis for Distributed Cache Systems 161

data sizes, it will become large for larger data sizes especially in the SQL-like
queries where the returned result set is large.

– Indexing: One of the most significant factors in query performance is index-
ing. Although indexes were added to both systems, Hazelcast and Infinispan,
it may be possible that the engine for Infinispan, which is based on hibernate
search and Apache Lucene, is more optimized than Hazelcast default indexing
mechanism.

6 Conclusion and Future Work

Changing the number of concurrent clients and varying processed data sizes
affect the performance of data retrieval operations of distributed cache systems.
In this study, all known variables that can affect the performance of the two
systems except the factors of interest (i.e., number of concurrent clients and
data size) were as much as possible considered and neutralized.

Results show that studying performance analysis of systems with dynami-
cally varying number of concurrent clients and data sizes is critical in determin-
ing a more accurate performance readings. Measuring performance with static
independent variable or factors may provide misleading results, particularly in
systems where cache is a critical part of a system function or design. These
require building benchmarking tools that consider such dynamically changing
variables to reflect and replicate real-life usage of systems. The other significant
factors that may well affect cache systems’ performance are data serialization,
in-memory object formats and indexing, which their exact chosen implementa-
tion may improve a system’s performance over another. However, these need
further study and investigation in how best to address the implication of these
varying variables or factors.

In addition, results show that Infinispan (version 8.1.2.Final) outperforms
Hazelcast (version 3.6.1) in all tested cases except in SQL-like queries with small
data sizes. Moreover, the study shows that the concurrent clients, where each
client opens its own connection, has a considerable impact on the performance
of get and SQL-like queries. The data size, on the other hand, has very small
impact on the performance of get query but large impact on the performance of
SQL-like queries.

Further, based on the mechanism followed in this study, a more integrated
benchmarking framework, as proposed above, need to be developed that takes
into account the varying number of concurrent clients and data sizes for distrib-
uted caches. There are several other interesting issues to consider, first, it would
be interesting to study the effect of different data storage formats such as com-
pressed and uncompressed. Second, understanding the effect of larger data sizes
and cache access patterns would shed light on performance variations. Future
work may also include developing new techniques that improve the performance
with respect to data representations and communication protocols.



162 H. Salhi et al.

References

1. Gridgain vs. hazelcast benchmarks. http://go.gridgain.com/Benchmark GridGain
vs Hazelcast.html. Accessed 28 May 2016

2. Gridgain/apache ignite vs hazelcast benchmark. https://hazelcast.com/resources/
benchmark-gridgain/. Accessed 28 May 2016

3. Hazelcast documentation. http://docs.hazelcast.org/docs/3.6/manual/
html-single/index.html#distributed-query. Accessed 28 May 2016

4. Ignite vs. hazelcast benchmarks. http://www.gridgain.com/resources/
benchmarks/ignite-vs-hazelcast-benchmarks/. Accessed 28 May 2016

5. Infinispan. http://www.aosabook.org/en/posa/infinispan.html#fn10. Accessed 25
June 2017

6. Infinispan documentation. http://infinispan.org/docs/8.2.x/index.html. Accessed
01 May 2016

7. Red hat infinispan vs hazelcast benchmark. https://hazelcast.com/resources/
benchmark-infinispan/. Accessed 28 May 2016

8. Redis 3.0.7 vs hazelcast 3.6 benchmark. https://hazelcast.com/resources/
benchmark-redis-vs-hazelcast/. Accessed 28 May 2016

9. Agrawal, S., Chaudhuri, S., Das, G.: Dbxplorer: a system for keyword-based search
over relational databases. In: Proceedings of 18th International Conference on Data
Engineering, 2002, pp. 5–16. IEEE (2002)

10. Chen, S., Liu, Y., Gorton, I., Liu, A.: Performance prediction of component-based
applications. J. Syst. Softw. 74(1), 35–43 (2005)

11. Chen, X., Ho, C.P., Osman, R., Harrison, P.G., Knottenbelt, W.J.: Understand-
ing, modelling, and improving the performance of web applications in multicore
virtualised environments. In: Proceedings of the 5th ACM/SPEC International
Conference on Performance Engineering, pp. 197–207. ACM (2014)

12. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking
cloud serving systems with YCSB. In: Proceedings of the 1st ACM Symposium on
Cloud Computing, pp. 143–154. ACM (2010)

13. Das, A., Mueller, F., Gu, X., Iyengar, A.: Performance analysis of a multi-tenant
in-memory data grid. In: 2016 IEEE 9th International Conference on Cloud Com-
puting (CLOUD), pp. 956–959. IEEE (2016)

14. Denaro, G., Polini, A., Emmerich, W.: Early performance testing of distributed
software applications. In: Proceedings of ACM SIGSOFT Software Engineering
Notes, vol. 29, pp. 94–103. ACM (2004)

15. Dey, A., Fekete, A., Nambiar, R., Röhm, U.: YCSB+T: benchmarking web-scale
transactional databases. In: Proceedings of 2014 IEEE 30th International Confer-
ence on Data Engineering Workshops (ICDEW), pp. 223–230. IEEE (2014)

16. Engelbert, C.: White paper: caching strategies. Technical rep., Hazelcast Company.
https://hazelcast.com/resources/caching-strategies

17. Evans, B.: White paper: an architect’s view of hazelcast. Technical rep., Hazelcast
Company. https://hazelcast.com/resources/architects-view-hazelcast/

18. Fedorowicz, J.: Database performance evaluation in an indexed file environment.
ACM Trans. Database Syst. (TODS) 12(1), 85–110 (1987)

19. Khazaei, H., Misic, J., Misic, V.B.: Performance analysis of cloud computing cen-
ters using m/g/m/m+r queuing systems. IEEE Trans. Parallel Distrib. Syst. 23(5),
936–943 (2012)

20. Klems, M., Anh Lê, H.: Position paper: cloud system deployment and performance
evaluation tools for distributed databases. In: Proceedings of the 2013 International
Workshop on Hot Topics in Cloud Services, pp. 63–70. ACM (2013)

http://go.gridgain.com/Benchmark_GridGain_vs_Hazelcast.html
http://go.gridgain.com/Benchmark_GridGain_vs_Hazelcast.html
https://hazelcast.com/resources/benchmark-gridgain/
https://hazelcast.com/resources/benchmark-gridgain/
http://docs.hazelcast.org/docs/3.6/manual/html-single/index.html#distributed-query
http://docs.hazelcast.org/docs/3.6/manual/html-single/index.html#distributed-query
http://www.gridgain.com/resources/benchmarks/ignite-vs-hazelcast-benchmarks/
http://www.gridgain.com/resources/benchmarks/ignite-vs-hazelcast-benchmarks/
http://www.aosabook.org/en/posa/infinispan.html#fn10
http://infinispan.org/docs/8.2.x/index.html
https://hazelcast.com/resources/benchmark-infinispan/
https://hazelcast.com/resources/benchmark-infinispan/
https://hazelcast.com/resources/benchmark-redis-vs-hazelcast/
https://hazelcast.com/resources/benchmark-redis-vs-hazelcast/
https://hazelcast.com/resources/caching-strategies
https://hazelcast.com/resources/architects-view-hazelcast/


Benchmarking and Performance Analysis for Distributed Cache Systems 163

21. Paul, S., Fei, Z.: Distributed caching with centralized control. Comput. Commun.
24(2), 256–268 (2001)

22. Wang, Q., Cherkasova, L., Li, J., Volos, H.: Interconnect emulator for aiding per-
formance analysis of distributed memory applications. In: Proceedings of the 7th
ACM/SPEC on International Conference on Performance Engineering, pp. 75–83.
ACM (2016)

23. Wouw, S.V., Viña, J., Iosup, A., Epema, D.: An empirical performance evalua-
tion of distributed SQL query engines. In: Proceedings of the 6th ACM/SPEC
International Conference on Performance Engineering, pp. 123–131. ACM (2015)

24. Zhang, H., Tudor, B.M., Chen, G., Ooi, B.C.: Efficient in-memory data manage-
ment: an analysis. Proc. VLDB Endowment 7(10), 833–836 (2014)

View publication stats

https://www.researchgate.net/publication/322145393

	Benchmarking and Performance Analysis for Distributed Cache Systems: A Comparative Case Study
	1 Introduction
	2 Related Work
	3 Study Design and Setup
	3.1 Factors of Interest
	3.2 Queries Specifications
	3.3 Topology and Mechanism

	4 Study Results
	4.1 Performance of get Query
	4.2 Performance of SQL-like Queries

	5 Discussion
	6 Conclusion and Future Work
	References


