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A B S T R A C T

Developing intelligent analytical tools requires pre-processing data and finding relevant features that best rein-
force the performance of the predictive algorithms. Feature selection plays a significant role in maximizing the
accuracy of machine learning algorithms since the presence of redundant and irrelevant attributes deteriorates
the performance of the learning process and increases its complexity. Feature selection is a combinatorial opti-
mization problem that can be formulated as a multi-objective optimization problem with the purpose of maximiz-
ing the classification performance and minimizing the number of irrelevant features. It is considered an NP hard
optimization problem since having a number of (n) features produces a large search space of size ( ) of different
permutations of features. An eminent type of optimizer for tackling such an exhausting search process is evolu-
tionary, which mimic evolutionary processes in nature to solve problems in computers. Salp Swarm Algorithm
(SSA) is a well-established metaheuristic that was inspired by the foraging behavior of salps in deep oceans and
has proved to be beneficial in estimating global optima for optimization problems. The objective of this article
is to promote and boost the performance of the multi-objective SSA for feature selection. Therefore, it proposes
an enhanced multi-objective SSA algorithm (MODSSA-lbest) that adopts two essential components: the dynamic
time-varying strategy and local fittest solutions. These components assist the SSA algorithm in balancing explo-
ration and exploitation. Thus, it converges faster while avoiding locally optimal solutions. The proposed approach
(MODSSA-lbest) is tested on 13 benchmark datasets and compared with the well-regarded Multi-Objective Evo-
lutionary Algorithms (MOEAs). The results show that the MODSSA-lbest achieves significantly promising results
versus its counterpart algorithms.

1. Introduction

Owing to the rapid progress of industrial engineering and machine
learning, the dimension of the offered datasets is extremely increased
(Shen et al., 2016). Having large datasets exposes the process of ex-
tracting useful information to several challenges Zhao, Chen, Hu, Min,
and Jiang (2018). Some features of the datasets are detected as irrel-
evant and redundant, which leads to performance degradation of the
learning algorithms (Ibrahim, Elaziz, Ewees, Selim, & Lu, 2018),
yet it is a challenging concern to comprehend whether the features
can be detected as relevant or not (Wang et al., 2017; Zhao et al.,
2014). One of the approaches for addressing the problem of high-di-
mensionality is performing feature selection (FS), which is known

as a pre-analysis stage. FS help us to select only the relevant features
that best maximize the performance of the learning methods and de-
creases the time required for learning them (Dash & Liu, 1997; Ma-
farja, Aljarah, Heidari, Hammouri, et al., 2018). However, artic-
ulating FS is a challenging task since the features might be dependant
and have strong interactions (Gheyas & Smith, 2010). It is crucial to
search for the valuble features that can represent the hidden physiog-
nomies of the classes (Chen, Zhang, Luo, Xu, & Zhang, 2020; Wang
& Chen, 2020). Large search domains make the process of FS a more
perplexing task since the size of the search space increases exponentially
with the increasing number of features (Guyon & Elisseeff, 2003). For
example, if we have n dimensions, then, there can be possible solu-
tions. Hence, using an exhaustive search algorithms for FS case is not a
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true choice (Chandrashekar & Sahin, 2014); since they are compu-
tationally expensive. Generally, FS methods require two components:
First, it is the fitness equation, which is utilized to judge the excellence
of the selected features. Second, it is the heuristic way utilized to deal
with it and explore the feasible area of the domain to realize the optimal
set of features (Zhao et al., 2019). Broadly speaking, two directions of
FS methods are available: the filter-based and the wrapper-based. The
filter-based methodologies can select the features subsets freely with-
out being constrained to the predictors. Filtering-based FS methods are
like Information Gain (IG) (Quinlan, 1986), ReliefF (Yu & Liu, 2003),
and the Gain Ratio (Witten, Frank, Hall, & Pal, 2016). Unlike the
filter-based approaches, wrapper-based methodologies need to utilize
some predictors to estimate the superiority of the detected features (Ma
et al., 2017; Zhu, Ong, & Dash, 2007). These approaches include the
neural network-based methods (Setiono & Liu, 1997), the Sequential
Backward Selection (SBS) (Gheyas & Smith, 2010), and the Sequential
Forward Selection (SFS) (Bermejo, Gámez, & Puerta, 2009).

In particular, several search procedures can be applied to the appli-
cation domains to detect the optimal subset of features: one method is
the greedy search and the other choice is the random search (Langley,
1994). In the greedy search techniques, all appointments of the fea-
tures are produced and assessed, which makes this scheme timewasting.
Meanwhile, methods that are based on the random search techniques
explore the domain, randomly. However, there are also some drawbacks
and limits. For instance, there is a chance for stagnation issues and the
case of high time complexity.

To alleviate the drawbacks of the previously mentioned FS meth-
ods, researchers proposed to utilize the metaheuristic paradigms. Meta-
heuristic methods are global optimization approaches that follow the
physical, biological, and animal social activities in wildlife (Mirjalili &
Lewis, 2016). They have the ability to explore the search space glob-
ally and locally when applied to FS problems. Some examples of meta-
heuristics are Particle Swarm Optimization (PSO) (Banks, Vincent, &
Anyakoha, 2008; Eberhart & Kennedy, 1995), Genetic Algorithms
(GAs) (Han & Kim, 2002), Differential Evolution (DE) (Han & Kim,
2002), AntLion Optimization (ALO) (Mafarja & Mirjalili, 2018; Mir-
jalili, 2015), Grey Wolf Optimizer (GWO) (Ibrahim, Elaziz, & Lu,
2018; Mirjalili, Mirjalili, & Lewis, 2014), Artificial Bee Colony
(ABC) (Karaboga & Akay, 2009), Harris Hawks Optimization (HHO)
(Heidari et al., 2019), and Slime Mould Algorithm (SMA) (Li, Chen,
Wang, Heidari, & Mirjalili, 2020)

Metaheuristics can be divided into two categories: single-objective
and multi-objective. They can be configured and formulated to solve
problems in any of the two schemes depending on the nature of the
problems and the computational resources. In the former category, there
is one optimization function, where the search algorithm seeks to find
an optimal solution. In other words, considering a classification problem
where the objective is to maximize the classifier performance by
maximizing its classification accuracy , therefore . In sin-
gle-objective optimization, the solutions are single real numbers, while
comparing the best among all is achieved by a simple comparison op-
eration. On the other hand, the latter treats the problem as having at
least two optimization objectives. For example, assuming a classification
problem that has two objectives, which are the maximization of the ac-
curacy , and the maximization of the features reduction rate .
Thus, it is a multi-objective optimization problem, where the objective

is denoted by . The solutions of a multi-objective
optimization algorithm are represented as vectors, therefore, deciding
the best among all cannot be achieved by simple comparison, but rather
using the dominance relationship, as will be discussed further on.

Generally speaking, FS problems can be formulated to have two main
objectives: minimizing the number of final features, and the error

function. Therefore, it can be represented as a Multi-objective Optimiza-
tion Problem (MOP). The approaches of MOPs produce a set of solu-
tions called non-dominated (ND) solutions, which are used to balance all
the objectives (Coello, Lamont, & Van Veldhuizen, 2007; Mirjalili,
Jangir, & Saremi, 2017), and reach a satisfactory solution. In terms of
the MOP, the solution is called the ND solution, if there is no solution
better than it in terms of the objective function. Additionally, the set of
all ND solutions is called the Pareto Front. Based on the properties of the
MOP methods, they have been applied to several applications; such as
Cloud Computing (Yao, Ding, Jin, & Hao, 2017), Big Data (Ferranti,
Marcelloni, Segatori, Antonelli, & Ducange, 2017), Data Mining
(Bandaru, Ng, & Deb, 2017), and other (Antonio & Coello, 2017).
However, there are few MOP methods that have been applied for feature
selection.

Further, the performance of the MOP approaches is affected by the
behavior of the metaheuristic techniques. So, there are several MOP so-
lutions that have been proposed based on metaheuristic techniques, such
as PSO, GWO, and others. In the same context, the multi-objective salp
swarm algorithm (MOSSA) that proposed in (Mirjalili, Gandomi, et
al., 2017), aims to solve a benchmark of MOPs. The MOSSA is an exten-
sion of the SSA algorithm that mimics the swarming behavior of salps.
Based on these behaviors, the SSA has been applied to different appli-
cations such as the optimization problems (Rizk-Allah, Hassanien, El-
hoseny, & Gunasekaran, 2019), and the prediction of the activities of
the chemical compounds (Hussien, Hassanien, & Houssein, 2017).
As well as, the SSA was applied for the feature selection as in (Aljarah,
Mafarja, et al., 2018; Faris et al., 2018; Ibrahim, Ewees, Oliva,
Elaziz, & Lu, 2018; Sayed, Khoriba, & Haggag, 2018). However,
these SSA-based methods treating the FS problem as a single-objective
optimization problem by aggregating the two objectives and using para-
meters to balance among them. So, it is hard to determine the Pareto op-
timal set since it requires to run the algorithm many times, while chang-
ing the balance between the two objectives.

Nonetheless, most of the multi-objective feature selection techniques
stagnate at a locally optimal solution, which, in consequence, leads to
a poorly convergence toward optimal solutions and degrades the qual-
ity of the final solutions. Also, according to the No-Free-Lunch theorem
which assumes that the optimization techniques do not have the abil-
ity to solve all problems by the same quality (Wolpert & Macready,
1997). Therefore, this motivated us to propose an alternative wrapper
multi-objective feature selection method based on a modified version of
the MOSSA. Where the novel proposed approach uses an evolutionary
dynamic component alongside a local best component.

The aim of the dynamic component is to make the salps’ movement
more vital depending on an adaptive number of leaders that is variable
with time.

The main contributions of the proposed method are:

• Improving the search process of the MOSSA using the Dynamic and
local best operators.

• Modifying the MOSSA to handle the feature selection problem using
transfer functions.

• Evaluating the performance of the modified MOSSA on 13 UCI bench-
marks datasets to investigate its efficiency for the FS problem.

• To the best of our knowledge, this is the first time the proposed
MOSSA method is used as a feature selection technique to improve
the classification performance.

The rest of the paper is organized as follows. Section 2 provides a
review of related works. Section 3 represents a background of the the-
ories of multi-objective optimization, the SSA algorithm, including sin-
gle-objective SSA and multi-objective SSA. Section 4 shows a descrip-
tion of the problem and the proposed methodology. Section 5 describes
the experimental setup. Section 6 discusses the obtained results. Fi
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nally, Section 7 presents a concluding summary and potential future
works.

2. Review of related works

This section presents a review of research studies in the area of
evolutionary feature selection. It covers the single-objective and the
multi-objective approaches in various applications.

One of the early implementations of evolutionary feature selection
is the adoption of the GA algorithm. The proposed approach is used for
searching for the optimal feature subset for different optimization prob-
lems. For instance, Yang and Honavar (1998) demonstrated the feasi-
bility of the GA algorithm and Neural Networks (NN) in seeking the op-
timal subset of features. The NN method was used to assess the selected
subset of features by the GA algorithm. However, the authors depended
merely on the fitness measure to evaluate the proposed classification
approach, while other metrics (e.g., precision, sensitivity, required ex-
ecution time, and other measures) are important as well. Nonetheless,
the authors did not provide any statistical tests to quantify the signifi-
cant improvements of the proposed approach. Additionally, authors in
Kim, Y, Street, and Menczer (2000) proposed an unsupervised evolu-
tionary feature selection approach. In which, they adopted an evolution-
ary local selection algorithm (ELSA) with the k-means algorithm. ELSA
is used for searching for the best subset of features, while the k-means
method assesses the quality of potential features subsets. However, the
proposed approach was not applied to real or benchmark datasets. As
well as, the results were weakly presented. In Tan, Teoh, Yu, and
Goh (2009), a hybrid approach of the GA algorithm and Support Vec-
tor Machines (SVMs) was proposed for attribute selection.Even though
the authors were focusing on improving the classification performance
by selecting the relevant features, the performance of the learning al-
gorithms is highly influenced by the settings of the hyperparameters of
SVMs, which is not considered in this study. The evaluation results of the
performance were good in terms of the average classification accuracy
when applied to 5 UCI datasets Lichman (2013). However, testing the
proposed approach on a wider-set of benchmark datasets raises its relia-
bility and robustness. Several studies have used evolutionary algorithms
for features (genes) selection in the case of microarray data analysis. For
instance, Chuang, Yang, Wu, and Yang (2011) utilized the GA algo-
rithm with either the SVMs or the k-Nearest Neighbor (KNN) for gene se-
lection, respectively. In which, 11 microarray datasets were utilized. The
performance was assessed by using the classification accuracy based on
hold-one-out cross-validation. Even the authors achieved relatively good
results, but they relied mainly on the accuracy measure for the evalua-
tion, while they did not consider the data imbalanced problem with the
multi-class classification. In addition, they did not perform any statisti-
cal test to substantiate the strengths of the designed approach.

Schiezaro and Pedrini (2013) proposed an evolutionary feature
selection approach for classification based on the Artificial Bee Colony
(ABC) algorithm. The designed algorithm achieved a considerable in-
crease in the classification accuracy with a significant decrease in the
selected number of features when compared with other evolutionary al-
gorithms. However, it will be more convincing if the authors included
more metrics other than the accuracy for the performance evaluation.
Further, Ghosh, Datta, and Ghosh (2013) designed a self-adaptive
differential evolution algorithm for a supervised feature selection pro-
cedure. In which, a fuzzy KNN has utilized for the evaluation of a set
of candidate features subsets. The implemented method is tested on
three datasets in the context of hyperspectral images and compared with
the other four evolutionary algorithms. It exhibited promising results
regarding the classification accuracy and kappa coefficient. Although
the datasets were imbalanced, the authors should include other mea-
sures that are insensitive to the imbalanced problem. Also, Chen, Chen,
and Chen (2013) designed an evolutionary feature selection based on

Ant Colony Optimization (ACO) algorithm, where it applied for image
feature selection. Fifteen datasets were utilized for testing the proposed
approach using a weighted-sum evaluation criterion that depends on the
recall, precision, and the number of selected features. The experiments
performed and compared over 5-folds and 10-folds cross-validation set-
tings. The proposed algorithm showed very good improvement in com-
parison with the GA algorithm and other algorithms. However, since
the researchers followed a single-objective approach to address the fea-
ture selection problem, the comparison with multi-objective approaches
could have been explored. Furthermore, the authors compared the de-
signed approach with two variants of the GA; however, they did not con-
sider other well-established evolutionary algorithms.

Whereas, Xue, Zhang, Browne, and Yao (2015) provided a com-
prehensive survey of evolutionary computation for FS. The survey cov-
ered the search techniques, evaluation criteria, applications, and the
number of objectives. Upon that, the GA and PSO algorithms were the
most studied algorithms by the researchers. In addition, the authors re-
ported existing challenges such as scalability, computational cost, and
search algorithms.

Faris, Aljarah, and Mirjalili (2016) proposed a new mechanism
to handle the feature selection problem based on the Multi-Verse Op-
timizer (MVO) algorithm. The proposed approach outperformed PSO,
GA, DE, Firefly Algorithm (FA), Cuckoo Search (CS), Back-Propaga-
tion (BP), and the Levenberg-Marquardt algorithms. When it tested on
nine UCI medical datasets, it achieved outperforming results in terms
of convergence speed and gained the highest statistical ranking. More-
over, Mafarja, Aljarah, Heidari, Hammouri, et al. (2018) used
another search algorithm for building a wrapper-based feature selec-
tion method based on the Grasshopper Optimization Algorithm (GOA),
which achieved significantly better results. In this work, the authors fol-
lowed a weighted-sum approach to solve a multi-objective problem as
a single-objective, for which the weights parameters of the fitness func-
tion were assigned constant real values. Even these weighting parame-
ters significantly affect the algorithm’s performance. Also, an evolution-
ary feature selection approach based on the GOA algorithm and SVM
designed by (Aljarah et al., 2018). It obtained promising results re-
garding the classification accuracy when tested on eighteen benchmark
datasets. Additionally, Faris et al. (2018) proposed an approach for
FS using the SSA. The proposed algorithm experimented with 8 Transfer
Function (TF) and a crossover operator, where it achieved significantly
better results than other 5 evolutionary algorithms (i.e., binary GWO, bi-
nary PSO, binary Gravitational Algorithm, binary Bat Algorithm, and GA
algorithm). Worthwhile, diverse evolutionary algorithms were utilized
for feature selection as the implementation of the Dragonfly Algorithm
(DA) in Mafarja, Aljarah, Heidari, Faris, et al. (2018), fruit fly opti-
mization (FFO) in (Zhang et al., 2020), and the use of the Crow Search
Algorithm (CSA) in De Souza, dos Santos Coelho, De Macedo, and
Pierezan (2018), where they demonstrated remarkable ability in re-
ducing the number of redundant features and improving the classifica-
tion performance. Another study Sayed, Hassanien, and Azar (2019)
used a chaotic crow search algorithm for feature selection. The results
of the evaluation on 20 benchmark datasets were very effective, and sig-
nificant when compared with other 9 evolutionary algorithms. Further-
more, Ibrahim, Ewees, Oliva, Elaziz, and Lu (2019) adopted a hy-
brid of the SSA and PSO algorithms for feature selection. The new ap-
proach is tested versus the classical SSA on 15 benchmark functions, and
against different four evolutionary algorithms on UCI datasets. The hy-
brid of SSA and PSO outperformed other algorithms in terms of accuracy
and f-measure.

All the articles mentioned above were handling the problem of
FS as a single-objective or a weighted-sum single-objective. However,
feature selection problems have multiple criteria to optimize by na-
ture which will hypothetically improve the quality of potential solu
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tions. The classical weighted-sum (composite) approach faces challenges
in converging and finding optimal solutions due to the need to optimize
its weights to find an optimal solution on average. Nonetheless, it has a
higher complexity of function evaluations as the problem scales highly
while requiring multiple runs to optimize a single-objective function.

In the literature, very few have formulated the problem of feature
selection as a multi-objective optimization problem using the logic of
multi-criteria optimization. However, an early study has proposed a
multi-objective feature selection technique based on the multi-objec-
tive GA and NN algorithm by Emmanouilidis, Hunter, and MacIn-
tyre (2000). In this study, the number of features and the sum-squared
error were considered the objectives. However, it was an initial gen-
eral implementation of an evolutionary multi-objective framework for
feature selection. Pappa, Freitas, and Kaestner (2002) formulated
the GA algorithm with a sort of Decision Tree (DT) that is known by
(C4.5) for multi-objective feature selection. In which, the error rate and
the size of the obtained trees were the objectives. In addition, Coello
and Lechuga (2002) created an evolutionary multi-objective particle
swarm optimization (MOPSO), which is then used for feature selection
in various research studies Xue, Zhang, and Browne (2012), Xue,
Cervante, et al. (2014), Zhang, Gong, and Cheng (2015), Behra-
van et al. (2016), Zhang, Gong, Sun, and Guo (2017), Amooze-
gar and Minaei-Bidgoli (2018). Nonetheless, Wang and Huang
(2009) presented the implementation of Non-dominated Sorting GA
(NSGA-II) Deb, Agrawal, Pratap, and Meyarivan (2000) for fea-
ture selection, where the inter-correlation and intra-correlation were the
objective functions. Remarkably, the proposed method outperformed
many other utilized evolutionary single-objective approaches for fea-
ture selection. Tan, Lim, and Cheah (2014) proposed a multi-objec-
tive approach for feature selection. In which, the proposed approach
depends on a modified micro GA algorithm and neural networks for
optimizing two objectives: the number of features and the classifica-
tion accuracy. Although this method is evaluated just on two datasets,
the results were very good. Comparing the proposed approach with
other multi-objective evolutionary algorithms can further validate the
effectiveness of this method. Moreover, few studies afterward have
been implemented a multi-objective GA for feature selection, such as
in Khan and Baig (2015),Zhu, Liang, Chen, and Ming (2017),
Spolaôr, Lorena, and Diana Lee (2017). In the literature, various
recent multi-objective evolutionary algorithms were proposed and uti-
lized to address feature subsets optimization. For example, Xue, Fu,
and Zhang (2014, 2015) implemented a multi-objective differential
evolutionary algorithm (MOEA/D) for feature selection. Wang, Li, and
Li (2015) presented a multi-objective evolutionary approach for fea-
ture selection, which is the Strength Pareto Evolutionary Algorithm
(SPEA-II) that aims to maximize the relevance of features and mini-
mize the redundancy of them. Whereas, Dickson, Wang, Dong, and
Wen (2015) proposed a multi-objective gravitational search algorithm
for feature selection, which showed a remarkable reduction in error
rate. In Emary, Yamany, Hassanien, and Snasel (2015), the au-
thors presented a multi-objective GWO for feature selection that has
powerful strength in producing optimal solutions. Also, Hancer, Xue,
Zhang, Karaboga, and Akay (2018) constructed a multi-objective
ABC algorithm for feature selection that is combined with a non-dom-
inated sorting approach. Yet, Kiziloz, Deniz, Dokeroglu, and Cosar
(2018) designed a new multi-objective evolutionary algorithm based
on the teaching-learning optimization algorithm for feature selection,
which showed significant enhancement when compared with NSGA-II,
MOPSO, greedy search, and scatter search algorithms. On the other
hand, Soliman, Abou-El-Enien, Emary, and Khorshid (2018) cre-
ated a multi-objective moth-flame optimization algorithm for feature
selection. Even though it is achieved good results, the authors did
not compare its performance with other state-of-the-art multi-objective
evolutionary algorithms. The performance of multi-objective evolution

ary algorithms has been debated and reviewed by many studies as pre-
sented in Antonio and Coello (2017),Tian, Cheng, Zhang, Li, and
Jin (2019), Yu, Lu, and Yu (2018).

To sum up, the performance of the multi-objective SSA has not been
investigated in the literature for performing feature selection. Even in
Alresheedi, Lu, Elaziz, and Ewees (2019), the authors introduced an
improved multi-objective SSA algorithm for optimizing the placement of
virtual machines on the cloud. In which, the objectives were to maxi-
mize the time before the host shutdown and minimize the service level
agreement violations. Therefore, the objective of this article is to exam-
inegenerally the performance of the multi-objective SSA in optimizing
the process of feature selection.

3. Preliminaries

This section describes briefly the main concepts utilized in the pro-
posed approach, which are the multi-objective optimization, the conven-
tional SSA optimizer, and the multi-objective variant of SSA.

3.1. Multi-objective optimization

The real-world applications demand experts to take optimal deci-
sions based on different objectives that have different orientations which
conflict with each other. To illustrate, in the literature there are different
real problems such as the big data optimization (Wang et al., 2018),
remote sensing (Ma, Zhong, He, & Zhang, 2018), image segmenta-
tion (Sarkar, Das, & Chaudhuri, 2017), and feature selection (Xue,
Zhang, & Browne, 2013). The multi-objective optimization methods
have been used to resolve these kinds of problems, which have a high
ability to determine the solutions that balance the conflict between the
objectives (Coello, Lamont, & Van Veldhuizen, 2007; Mirjalili,
Jangir, & Saremi, 2017).

In general, the mathematical definition of the multi-objective opti-
mizations can be formulated as follows: considering that there is a set of
M objectives, the minimization of the objectives can be represented as
(Mirjalili, Jangir, et al., 2017):

(1)

where represents the M-th objective function. , and are
the inequality and equality constraints, respectively. The number of
variables (dimension of the given problem), the number of equality con-
straints, and the number of inequality constraints are represented by

and , respectively. and represent the lower and the up-
per boundaries of the variable , respectively.

In MOP, existing M objectives makes the comparison process be-
tween the solutions to determine the best of them is difficult when us-
ing the traditional relational operators. Unlike MOP, the single-objective
optimization can determine the best solution using these relational op-
erators, for example, if the solution is smaller than the solution then

is the best solution. Therefore, to find the best solutions that trade-
off the multi-criterion and the conflict between the objective functions,
the dominance concepts are used (Auer, Chiang, Ortner, & Drugan,
2016; Reddy & Kumar, 2015).

The solution is dominant (i.e., better than)
if and only if the following criteria is met.

(2)

where , based on Eq. (2), the solution dominates the
other solutions if it is better at least in one objective. Meanwhile,
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the solutions that are not dominated by any other solutions are called
Pareto-optimal (non-dominated) solutions, which represent the solution
for a multi-objective problem. The set of all the non-dominated solutions
is called Pareto optimal set (PS), and it is defined as:

(3)
The projection of the solutions of PS in the objective space is referred to
as Pareto optimal front (PF) and it is defined as:

(4)

From the previous definitions in Eqs. (2)–(4), the comparison between
the solutions of the multi-objective problems becomes more suitable and
easier. Based on the concepts of the multi-objective problem, feature se-
lection can be formulated to involve two objectives. Since the FS aims to
minimize the classification error rate and the number of features, simul-
taneously.

3.2. Salp Swarm Algorithm (SSA)

The foraging styles of salps has inspired Mirjalili, Gandomi, et al.
(2017) to propose a swarm-based method according to supposed chains
of search agents and a considered food source based on fitness values
(optimum solution). In this technique, we can divide the agents' set into
two classes, one sole salp is termed the leader, and the other agents will
be the follower salps. The location of the leader is located at the head of
the chain, and the other followers will make the body of the chain (Abd
Elaziz, Heidari, Fujita, & Moayedi, 2020). A simple chain is shown
in Fig. 1.

3.2.1. Single-Objective SSA
In the single-objective version, the set of agents X involves N salps

with d-dimensions, which is prepared as in Eq. (5):

(5)

To obtain the food source, the position vector of the chief agent (leader)
is updated using Eq. (6):

(6)

where is the leader's location and is the food source in the di-
mension, and show the limits of dimension, and denote
random numbers in [0, 1], and works as an adaptive parameter, as
presented in Eq. (7):

(7)

where t shows the iteration counter and L is the maximum iterations.
The parameter is so important to have balanced stability in terms of
explorative and exploitative trends. Follower salps are updated using Eq.
(8), where and denotes the position of salp at the dimen-
sion. The pseudo-code of the single-objective SSA is represented in Al-
gorithm 1.

(8)

Algorithm 1 Pseudo-code of the single-objective SSA

Input: Number of agents, number of iterations
Output: The best salp and its fitness
Generate the initial salps
while (Termination condition is not met) do
Evaluate the fitness values
Find the fittest salp and save it as the food source F
Update using Eq. (7)
for(any salp ( )) do
if ( ) then
Update the location vector of best salp by Eq. (6)
else
Update the locations of follower salps by Eq. (8)
Update all salps using the legal limits
Return back those salps that go over the true limits of feature space.
Return F

As it is presented in Algorithm 1, SSA initializes the agents and
then, it obtains the fitness (objective) results of current salps. Based on

Fig. 1. A salp chain.
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the loop condition, all agents evolve their positions based on the best
salp. To analysis all regions inside the searching area, the variable is
updated in each level based on rule in Eq. (7). Using equation in Eq.
(6), SSA generates the best agent, while using the logic in Eq. (8), algo-
rithm updates the follower salps. SSA will repeat its evolutionary steps
until the stopping condition reached and finding the best results (Abd
Elaziz, Heidari, Fujita, & Moayedi, 2020).

3.2.2. Multi-Objective SSA (MOSSA)
A solution for a multi-objective task is different from the solution to

a single-objective case, which we call the solutions of a multi-objective
case as the Pareto optimal set. The multi-objective variant of SSA was
originally proposed by Mirjalili, Gandomi, et al. (2017) in the origi-
nal work of SSA.

When solving multi-objective cases, two main questions should be
responded. First, in MOSSA, we need to store several salps as the lead-
ers in dealing with a multi-objective scenario. Second, the SSA needs to
update the food source in each iteration with regard to the best agent
(leader), but in a multi-objective scenario, we cannot separate a single
best salp. In MOSSA, to address the first problem, a repository of food
sources is added to the SSA. A series of non-dominated salps are stored
in this repository. During the optimization, any agent is compared with
all the residents that are available in the repository based on the mecha-
nisms of Pareto dominance. When a salp can dominate only a single agent
in the repository, it needs to be swapped. In another case, if a salp has
dominated a set of agents, we need to remove all of them and add that
salp to the repository. Now, if at least one of the residents dominates
an agent in the newly generated swarm, we need to discard it, quickly.
When the salp is non-dominated compared to entire repository residents,
we will include it in the archive. When we face a full repository, one of
the similar non-dominated salps is eliminated from the repository.

For addressing the second problem, an accepted approach is to pick
a solution (source food) from a set of non-dominated salps having the
least crowded neighborhood. This mechanism can be performed based
on the same ranking method and roulette wheel selection (RWS) utilized
in the repository maintenance operator Wang, Gao, and Chen (2018).
During the operation of the archive maintenance, the salps with better
ranks (crowded neighborhood) have more chances to be selected. While
the less populated neighborhood (the inferior rank) for a non-dominated
salp located in the repository, the more chance to be selected as the
source of food. The pseudo-code of MOSSA is represented in Algorithm
2.

Algorithm 2 Pseudo-code of multi-objective SSA

Input: Number of agents, maximum capacity of the archive (repository), number
of iterations

Output: Repository
Generate the initial set of randomly-generated salps
while (Termination condition is not met) do
Evaluate the fitness values of all search agents
Obtain the non-dominated solutions
Update the repository based on the attained non-dominated search agents
if the repository is full then
Perform the repository maintenance process to eliminate one repository resident
Insert the non-dominated agent to the repository
end if
Select a food source F from repository
Update using Eq. (7)
for (any salp ( )) do if ( ) then
Update the status (position vector) of leader salp by Eq. (6)
else ( and )
Update the status (position vector) of follower salps by Eq. (8)

end if

end for
Return back those search agents that go over the legal limits of feature space.
end while
Return repository

4. The proposed approach

The objective of this section is to introduce a wrapper feature selec-
tion strategy that efficiently finds a subset of features that minimizes
the classification error rate. The proposed approach (which will be re-
ferred to as MODSSA-lbest) is designed around a modified version of the
binary version of MOSSA for performing the search process. The mod-
ifications are the dynamic updating mechanism of the leaders and the
adoption of the local best strategy. The former divides the SSA popula-
tion into several sub-swarms with multiple leaders to perform more ex-
ploratory-oriented search at the first stages and then decreases over time
to be more exploitation-oriented. Also, the coefficient is configured to
change over time for providing a smoother transition from exploration
to exploitation. The latter enhances the exploitation capability of salps
by integrating their personal best experiences during the search process
into the position updating equation. So, the salps do not depend only on
their current experience and their neighbor experience, but further to
consider their best-obtained solutions throughout the search history. In
addition, the proposed algorithm used an S-shaped transfer function to
transform the algorithm from searching in a continuous space to search
in a discrete space. The general workflow of the proposed approach is
depicted in Fig. 2. The following subsections present the detail of the
proposed approach.

4.1. Dynamic Time-Varying MOSSA (MODSSA)

Population-based metaheuristics look to balance between diversifi-
cation (exploration) and intensification (exploitation) in order to avoid
the stagnation at local optimal solutions (X. Xu & Chen, 2014; Y. Xu
et al., 2019). Hence, the algorithm performs more exploration at the
first stages while later in the process tends to exploit the current re-
gions more. In the earlier implementation of SSA, the population is di-
vided into one leading salp and the follower salps. In which, the fol-
lowers adjust their movement regarding other salps, while the leader
depends on the source food F. However, this increases the likelihood
of trapping in local regions. Therefore, splitting the swarm into multi

Fig. 2. Abstract flowchart of the proposed MODSSA-lbest..
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ple sub-swarms with multi-leaders decreases the chance of the stuck
in local solutions while at the same time brings more exploration. Ini-
tially, the swarm of salps is divided into several sub-swarms, where each
sub-swarm has a leader salp and follower salps. Over time, the number
of leaders increases while the number of followers decreases. Hence, the
number of leaders (L) is defined in Eq. 9 , and the number of follow-
ers (Q) is described as in Eq. 10, where N is the number of salps in the
population, i is the salp’s index, and L is the number of the maximum
iterations. The presence of multiple leaders promotes the movement of
salps to be more adaptive and diversified during the search process.

(9)

(10)
Initially, the population is created by producing a set of random salps.
At each iteration, the fitness of each salp is calculated and the fittest salp
is set as the food source F. The parameter is updated by Eq. 7 so the
positions of the followers and leader salp will be updated accordingly.
The coefficient plays a significant role in enhancing the explorative
behaviors of the SSA algorithm. Designing a time-varying approach for

equips the SSA algorithm with the needed flexibility in searching in-
tensively globally at the beginning then decreasing gradually at the end-
ing search periods. Eq. 7 shows an exponential behavior that first allows
the algorithm to explore powerfully the search space then declines over
the course of iterations.

Indeed, the implementation of multiple leaders and the continuous
update of relying on time allow the population to relocate dynami-
cally during the search. So, it can converge to the optimal solutions more
smoothly.

4.2. A modified MODSSA with local best

A well-designed metaheuristic algorithm has the ability to balance
between performing local and global search operations, so as to avoid
the stagnation at local optimal solutions. In the early proposed version
of the SSA, each follower salp updates its position regarding its current
position and the position of the following salp, as illustrated in Eq. 8.
Meanwhile, the leader salp adjusts its position using Eq. 6 and depend-
ing on the source food position F. Therefore, to enhance the exploitation
capability of the salps, the best personal solution for each salp is also
considered in modifying their positions. This is done by equipping each
salp with internal memory to store its past experiences. Hence, the new
updating procedure, which is presented by Eq. 11, is based on the dif-
ference between the previous best solution and the current solution.

(11)

where the is the personal best solution of a salp (i) at the dimen-
sion (j). As the personal best of a salp is obtained by using the domi-
nance relationship. Thus, whenever a new, better solution is found, the
Pbest of the salp will be updated. Essentially, the salps update their
positions depending on their personal best and a threshold value. The
threshold value is expressed by the maximum Traveling Distance Rate
(TDR). TDR is set initially as in Eq. 12, which relies on the current (l)
and the maximum iterations (L).

(12)

The TDR parameter equips the algorithm to perform more exploita-
tion at the local regions of each salp at each sub-swarm, which consis-
tently increases with the increasing number of leaders. Fig. 3 illustrates

Fig. 3. Flowchart of the proposed MODSSA-lbest.
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the structural steps of the proposed methodology. Handling feature se-
lection problems demands the transforming of the continuous search
space into binary search space. The following subsection discusses the
implemented binary SSA algorithm.

4.3. The binary SSA

Primarily, the SSA algorithm was developed to address continuous
problems. Since the feature selection problem is a discrete problem, then
the SSA algorithm is transformed to search in discrete or binary search
spaces. A fundamental approach to convert continuous algorithms into
binary one is the use of the transfer function (TF). TF is a mathematical
operator that produces a probability for the input value being 1 or 0. A
popular family of TFs is the V-shaped and S-shaped functions Mirjalili
and Lewis (2013). Eq. 13 shows the S1 type of S-shaped transfer func-
tions, which utilized in this research for features encoding. In which, j is
the element of salp i at iteration t.

(13)

Using the produced probability of Eq. 13, the follower salps use it to
update their positions in the next iteration, as in Eq. 14. Where i is the
current element at the dimension.

(14)

Each salp in the population represents a potential solution, which is a
subset of features. The length of the salp’s dimension corresponds to the
total number of features. Thus, each dimension is a feature. The salps
positions that were updated by Eq. 11, they are encoded using the S1
transfer function. Therefore, the output of Eq. 13 is used to create an
encoded vector of a salp’s position representing the selected subset of
features, as it is given by Eq. 14. The generated encoded vectors trans-
mitted to a machine-learning algorithm to evaluate their performance
and to optimize the objective functions.

5. Experiments setup

5.1. Datasets

In order to assess the performance of the proposed algorithm, sev-
eral benchmark datasets were deployed. Thirteen datasets were drawn
from the UCI machine learning repository with different properties
from various fields. Mainly, the datasets vary in the number of attrib-
utes and instances, while three of them are high-dimensional datasets
(Glioma, Colon, and Leukemia). Table 1 presents the utilized

Table 1
Summary of utilized datasets.

# Dataset No. of features No. of instances No. Classes

1 Nci9 9712 60 9
2 Glioma 4434 50 4
3 Lymphography 18 148 4
4 PenglungEW 325 73 7
5 WaveformEW 40 5000 3
6 Zoo 16 101 7
7 Exactly 13 1000 2
8 Exactly2 13 1000 2
9 HeartEW 13 270 2
10 SonarEW 60 208 2
11 SpectEW 22 267 2
12 Colon 2000 62 2
13 Leukemia 7129 72 2

datasets, the number of classes, the number of features, and the number
of data instances.

5.2. Evaluation measures

Various evaluation measures were utilized including error rate,
g-mean, recall, specificity, and the number of features. The error rate is
the rate of incorrect predictions or classifications made by the learning
algorithm. It is defined as the total number of incorrectly classified in-
stances over the total number of instances in the dataset (Eq. 15), where
TP is the true positive, TN is the true negative, FP is the false positive,
and FN is the false negative.

(15)

G-mean: is the geometric mean. This measure indicates the tradeoff be-
tween the classification performances on the majority class and the mi-
nor class (see Eq. 16).

(16)

Recall: is the true positive rate which corresponds to how much the
learning algorithm can recognize the positively-classified records of
data. It is defined in Eq. 17.

(17)

Specificity: it is known by the true negative rate that presents the abil-
ity of the learning algorithm in recognizing the records of data with the
negative class. It is described as in (Eq. 18).

(18)

The number of features: corresponds that the superior classifier algo-
rithm is the one that has the minimal most significant number of fea-
tures which results in the minimum classification error rate.

5.3. Experimental settings

All experiments have been implemented on MATLAB R2019a, and
conducted on a computer, where the processor is Intel Core(TM) i5,
6 GB of memory, the hard drive is 500 GB, and the operating system is
Windows 10.

The proposed MODSSA-lbest is compared with traditional multi-ob-
jective evolutionary algorithms that are all adopted as wrapper fea-
ture selection methods. The used algorithms are the Multi-Objective
Particle Swarm Optimization (MOPSO), the Non-dominated Sorting Ge-
netic Algorithm (NSGA-II) Deb et al. (2000), and the Decomposition
based Multi-Objective Evolutionary Algorithm (MOEA/D) Zhang and
Li (2007). As they are wrapper methods, all the used algorithms inte-
grate the K-Nearest Neighbor (KNN) with k = 5 as the learning algo-
rithm for its simplicity and fast execution time Mohemmed and Zhang
(2008). All used algorithms have experimented on the same environ-
mental conditions. Table 2 presents the parameters settings of used
multi-objective evolutionary algorithms.

The datasets divided into training and testing sets with (70%, 30%),
respectively. Mainly, the training set is split into 5 subsets using the 5
folds cross-validation. The five subsets are used to perform an internal
evaluation of the generated subsets of features. On the other hand, at
the final stage, the testing set is utilized for assessing the performance of
the produced non-dominated subsets of features that are located in the
repository. Hence, the candidate solutions in the repository are evalu-
ated on the testing set and the average of them is reported.

The experiments repeated 30 times to ensure if the results are sta-
tistically reasonable. For all multi-objective evolutionary algorithms,
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Table 2
The initial settings of used classical MOEAs.

Algorithm Parameter Value

MOPSO , [1, 2]
w, [0.50, 0.99]
No. of grids 7

0.1
2
2

NSGA-II Crossover probability 0.9
Mutation probability 0.4

MOEA/D No. of sub-problems population size (N)
0.5

Neighbors ratio (T) min(max(ceil(0.15∗N,2),15))

the maximum number of agents in the population is 30, the maximum
number of iteration is 50, and the repository size is 100.

6. Results and discussions

This section discusses the obtained results of the proposed algo-
rithm (MODSSA-lbest) versus the standard MOSSA and other well-re-
garded multi-objective evolutionary algorithms (i.e., MOPSO, NSGA-II,
and MOEA/D).

6.1. The comparison with MOSSA

Table 3 compares the performance of the proposed MODSSA-lbest
with the Multi-Objective SSA (MOSSA) Mirjalili, Gandomi, et al.
(2017) for 13 benchmarks datasets. The assessment is conducted re-
garding the average error rate, g-mean, recall, specificity, and the num-
ber of features. In regard to the average error rate, MODSSA-lbest ac-
complished a lower error in 62% of the datasets in comparison with
MOSSA. Where it outperformed MOSSA at Glioma, Lymphography,
PenglungEW, WaveformEW, Exactly, HeartEW, SpectEW, Colon, and
Leukemia by obtaining (0.0140, 0.226, 0.230, 0.248, 0.272, 0.205,
0.198, 0.225, and 0.185), respectively, with feasible standard devia-
tion values. However, at Exactly2 and WaveformEW, both algorithms;
MODSSA-lbest and MOSSA had an equal error rate of (0.290 and 0.248),
respectively.

While looking at the average g-mean, MODSSA-lbest outperformed
MOSSA in 62% of the datasets (Nci9, Glioma, Lymphography,
PenglungEW, Exactly, Exactly2, HeartEW, and Colon). The
MODSSA-lbest had a maximum average g-mean at PenglungEW with
96.8%, which is considerably better than MOSSA that obtained 83.8%.
Also, at Lymphograrphy, MOSSA extremely failed to achieve well which
performed 0.0 in terms of g-mean. Whereas, MODSSA-lbest did signif-
icantly better by having (0.769). Nonetheless, at the Zoo dataset, even
that MOSSA achieved slightly better than MODSSA-lbest by obtaining
a maximum of 0.975, yet MODSSA-lbest could achieve 0.940. Overall,
MODSSA-lbest can perform significantly better in terms of g-mean in
most of the cases.

In terms of average recall, MODSSA-lbest outperformed MOSSA in
38% of the datasets; at Nci9, Glioma, Lymphography, PenglungEW,
and Exactly which achieved 0.994, 0.750, 0.840, 0.955, and 0.865, re-
spectively. Markedly, at Leukemia, MODSSA-lbest and MOSSA accom-
plished superb results by obtaining 1.000 of the true positive rate (re-
call). At Colon, SonarEW, HeartEW, Zoo, and waveformEW, even that
MODSSA-lbest did not achieve better than MOSSA, but it accomplished
somewhat close results justified by the standard deviation values. For
instance, at SonarEW, MOSSA gained an average 0.799 with standard
deviation equals to ( 0.027). Whereas, MODSSA-lbest had 0.755 with
standard deviation equals to ( 0.033).

Interestingly, regarding the true negative rate (specificity),
MODSSA-lbest accomplished better in 69% of the datasets. Where it ob-
tained 1.000 at Glioma and 0.989 at PenglungEW. In addition, both
MODSSA-lbest and MOSSA did the same at SonarEW by holding 0.908.
However, both MOSSA and MODSSA-lbest achieved relatively the same
having (0.980, 0.989) at PenglungEW and (0.870, 0.8733) at Wave-
formEW, respectively. Obviously, at Colon, MODSSA-lbest had approxi-
mately double the performance of MOSSA. Where the former had 0.463
and the latter had 0.823. Similarly, is at Leukemia, where MOSSA has
0.376, and MODSSA-lbest obtained 0.630.

Moreover, investigating the reduction in features is expressed by re-
porting the average number of features. At Nci9, both MODSSA-lbest
and MOSSA have decreased highly the number of features from 9712
to 5642.52 with a Reduction Rate (RR) is 42% in regard to MOSSA,
and decreased to 5753.19 for MODSSA-lbest (RR = 41%). While for
Glioma, the number of selected features is reduced nearly to the half,
where the dataset features demoted from 4434 to 2689.5 at MOSSA,
and to 2565.1 at MODSSA-lbest. Likewise, is at SonarEW, where the
RR = 50% for MOSSA, and RR = 48.6% for MODSSA-lbest. For Lym-
phography, the selected features have been decreased to less than half
with RR equals 59%. PenglungEW, had RR = 44.6% at MOSSA, and
equals to 44.4% for MODSSA-lbest. Similarly, WaveformEW dataset has
minimized the number of features from 40 to 21.52 in the case of
MOSSA, and to 21.47 for MODSSA-lbest. In addition, at Exactly, Exact-
ly2, HeartEW, and SpectEW, the features diminished to less than half
of the number of the original features. In which, MODSSA-lbest has
a better RR at HeartEW and SpectEW. Also, at Colon and Leukemia,
MODSSA-lbest had a superior RR, which obtained 40.9% for Colon and
45.8% for Leukemia. Furthermore, Table 3 provides the results of the
Wilcoxon non-parametric statistical test for reinforcing whether the dif-
ference in the performance of the algorithms is significant. This test is
based on the g-mean measure, and with the significance level alpha is
set to 5%. The probabilities (p-values) produced by the Wilcoxon are less
than 0.05 in 85% of the datasets. This indicates that the null hypothe-
sis is strongly rejected at the 5% significance level. Therefore, the pro-
posed approach MODSSA-lbest is significantly different from the stan-
dard method MOSSA, and the g-mean results obtained by the proposed
method are statistically significant and were not achieved by chance for
the used datasets.

Fig. 4 depicts the box-plots for comparing the proposed
MODSSA-lbest with the MOSSA algorithm. The horizontal axis shows
the algorithm and the vertical axis is the error rate. The start and the
end of the boxes present the first and third quartiles, while the mid-
dle line is the median. It is clear from the graph that MODSSA-lbest ac-
complished stunning minimized error results at Glioma, PenglungEW,
and Leukemia, as it is shown by sub-figures (b, d, and m), respectively.
However, it still achieves dramatically well with the obvious differ-
ences in the error rate at Colon and SpectEW. Yet, MODSSA-lbest per-
formed slightly better than MOSSA at Lymphography (c), WaveformEW
(e), Exactly (g), Exactly2 (h), and HeartEW (i). Where there is some
overlapping between the boxes which indicates that the two algorithms
achieved similarly at some runs. Nonetheless, at Nci9 (a), Zoo (f), and
SonarEW (j), the box-plots denote that MOSSA obtained better results
than MODSSA-lbest.

Essentially, evaluating a multi-objective algorithm depends mainly
on how much it can produce diverse, non-dominated solutions. In Fig.
5, the average Pareto front figures are characterized by presenting the
number of features at the horizontal axis, and the error rate at the ver-
tical axis. Whereas, the lines represent the Pareto non-dominated so-
lutions obtained and preserved at the repository. The red lines denote
the MODSSA-lbest algorithm, while the black one is the MOSSA. Ob-
viously, at Glioma (b), PenglungEW (d), SonarEW (k), Colon (l), and
Leukemia (m), MODSSA-lbest outperformed MOSSA in obtaining su-
perior Pareto solutions by having the best number of features with
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Table 3
Comparison between MODSSA_lbest and MOSSA used datasets in terms of error rate, g-mean, recall, specificity, and features ratios. For Wilcoxon test, when ( ) is underlined.

Datasets Algorithm Measure
Error
rate

G-mean (P-
values) Recall Specificity Features#

Nci9 MOSSA AVG 0.576 0.456
(2.872E-11)

0.337 0.640 5642.516

STD 0.020 0.044 0.069 0.021 513.014
MODSSA_lbest AVG 0.734 0.785 0.994 0.624 5753.193

STD 0.010 0.031 0.030 0.020 366.379
Glioma MOSSA AVG 0.489 0.649

(2.872E-11)
0.667 0.637 2689.489

STD 0.028 0.025 0.048 0.002 233.635
MODSSA_lbest AVG 0.140 0.866 0.750 1.000 2565.064

STD 0.007 0.000 0.000 0.000 167.484
multirow490ptLymphography MOSSA AVG 0.229 0.000

(2.872E-11)
0.000 1.000 7.224

STD 0.032 0.000 0.000 0.000 0.983
MODSSA_lbest AVG 0.226 0.769 0.840 0.713 7.400

STD 0.050 0.048 0.078 0.054 1.189
multirow490ptPenglungEW MOSSA AVG 0.408 0.838

(5.228E-11)
0.720 0.980 180.044

STD 0.016 0.032 0.060 0.010 12.424
MODSSA_lbest AVG 0.230 0.968 0.955 0.989 180.791

STD 0.016 0.032 0.057 0.009 16.156
multirow490ptWaveformEW MOSSA AVG 0.248 0.782(1.833E-01) 0.703 0.870 21.518

STD 0.012 0.012 0.016 0.008 1.709
MODSSA_lbest AVG 0.248 0.776 0.691 0.873 21.474

STD 0.018 0.018 0.023 0.013 1.712
multirow490ptZoo MOSSA AVG 0.097 0.975(4.639E-05) 0.996 0.955 7.318

STD 0.037 0.020 0.009 0.036 0.837
MODSSA_lbest AVG 0.126 0.940 0.972 0.917 6.685

STD 0.044 0.038 0.028 0.054 0.867
Exactly MOSSA AVG 0.293 0.537

(3.219E-01)
0.851 0.397 4.705

STD 0.023 0.052 0.036 0.050 0.424
MODSSA_lbest AVG 0.272 0.547 0.865 0.431 4.983

STD 0.030 0.070 0.035 0.066 0.476
Exactly2 MOSSA AVG 0.290 0.176

(1.479E-05)
0.950 0.072 4.948

STD 0.015 0.114 0.037 0.049 1.680
MODSSA_lbest AVG 0.290 0.298 0.902 0.133 5.887

STD 0.023 0.096 0.043 0.048 1.581
HeartEW MOSSA AVG 0.223 0.757

(1.336E-03)
0.840 0.690 5.626

STD 0.019 0.029 0.018 0.048 1.085
MODSSA_lbest AVG 0.205 0.786 0.824 0.758 5.567

STD 0.029 0.033 0.033 0.046 1.155
SonarEW MOSSA AVG 0.144 0.851

(9.845E-06)
0.799 0.908 29.976

STD 0.015 0.015 0.027 0.026 2.874
MODSSA_lbest AVG 0.153 0.827 0.755 0.908 30.834

STD 0.018 0.020 0.033 0.019 2.241
SpectEW MOSSA AVG 0.209 0.745

(5.709E-09)
0.699 0.807 9.481

STD 0.017 0.031 0.041 0.023 0.986
MODSSA_lbest AVG 0.198 0.670 0.522 0.895 9.142

STD 0.014 0.061 0.061 0.016 1.426
Colon MOSSA AVG 0.333 0.878(2.872E-11) 0.785 0.463 1182.899

STD 0.014 0.019 0.019 0.031 81.673
MODSSA_lbest AVG 0.225 0.784 0.753 0.823 1181.788

STD 0.024 0.029 0.027 0.053 90.767
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Table 3 (Continued)

Datasets Algorithm Measure
Error
rate

G-mean (P-
values) Recall Specificity Features#

Leukemia MOSSA AVG 0.227 0.613
(2.872E-11)

1.000 0.376 3904.030

STD 0.002 0.003 0.000 0.005 241.901
MODSSA_lbest AVG 0.185 0.794 1.000 0.630 3862.20

STD 0.006 0.008 0.000 0.012 246.339

Fig. 4. Comparison of average error rate for MOSSA and MODSSA-Lbest over all datasets using box-plots.
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Fig. 5. The Pareto front plots that compare MODSSA-lbest versus MOSSA over all datasets.

the minimal error rate. However, at Lymphography, WaveformEW, Zoo,
Exactly, HeartEW (c, e, f, g, and i), respectively, the produced solu-
tions fluctuate, which means at some runs the Pareto solutions from
MODSSA-lbest were with higher quality than the solutions generated
from MOSSA, whilst at other points, they are worse. In other words, at
WaveformEW dataset, first MOSSA produced better solutions, then it is
performance declined and MODSSA-lbest could obtain superior results
over the course of runs. Even that, MOSSA accomplished well and better
than MODSSA-lbest at Exactly2 (h) and SonarEW (j).

6.2. The comparison with MOEAs

Table 4 discusses the performance of MODSSA-lbest versus MOPSO,
NSGA-II, and MOEA/D, regarding the average error rate, g-mean, re-
call, specificity, and the selected number of features. As well as re-
ports the values of standard deviation. In terms of average error rate,
MODSSA-lbest accomplished superior results in 46.2% of the datasets.
Where it minimized the error rate optimally at Zoo dataset by hav-
ing 0.126, While MOPSO obtained 0.279, NSGA-II had the same er-
ror rate of 0.126, and MOEA/D had 0.186. Secondly, is at Glioma, it
had optimally 0.140, while MOSPO, NSGA-II, and MOEA/D had 0.394,
0.187, 0.362, respectively. At Lymphography, MODSSA-lbest achieved

slightly better than MOPSO and MOEA/D. Also, at WaveformEW, it had
superior yet close performance results to MOPSO and NSGA-II. Nonethe-
less, it outperformed the other algorithms in minimizing the error rate
at SonarEW and SpectEW by having 0.153, and 0.198, respectively.

Regarding the g-mean, MODSSA-lbest achieved better than MOPSO,
NSGA-II, and MOEA/D in 77% of the datasets with feasible standard de-
viation (STD) values. It had the best g-mean at the PenglungEW dataset,
where it had 0.968 and MOPSO, NSGA-II, and MOEA/D obtained 0.763,
0.964, 0.958, respectively. Also, at the Zoo dataset, it achieved mer-
its by having 0.940 while MOPSO, NSGA-II, and MOEA/D had (0.923,
0.751, 0.860), respectively. Even that at Lymphography, WaveformEW,
and HeartEW, MODSSA-lbest achieved superior results, but it slightly
performed close to the other algorithms. To illustrate, at WaveformEW,
MODSSA-lbest had 0.776, while MOPSO, NSGA-II, and MOEA/D ob-
tained 0.773, 0.761, and 0.736, respectively. On the contrast, at Nci9,
Glioma, and Leukemia, MOEA/D performed the best by having a g-mean
equals to 0.800, 0.873, and 0.854, respectively.

However, with respect to recall, MODSSA-lbest achieved better than
the other algorithms in 31% of the datasets, including Lymphogra-
phy, HeartEW, SonarEW, and SpectEW. At Lymphography, MOPSO,
NSGA-II, and MOEA/D accomplished 0.813, 0.802, and 0.808, respec-
tively. Whereas, MODSSA-lbest obtained 0.840. Also, at HeartEW,
MODSSA-
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Table 4
Comparison between MODSSA-lbest and classical multi-objective evolutionary algorithms over all datasets.

Datasets Algorithm
Error
rate

G-
mean Recall Specificity #Features

AVG

;STD

AVG

;STD

AVG

;STD
AVG
;STD

AVG
;STD

Nci9 MODSSA_lbest 0.733

;0.009

0.785

;0.031

0.994

;0.300

0.624
;0.200

5753.193

;366.379
MOPSO 0.559

;0.021

0.617

;0.059

0.666

;0.134

0.589
;0.016

4751.374
;26.441

NSGA-II 0.584

;0.036

0.505

;0.069

0.330

;0.080

0.792
;0.044

4627.570
;39.205

MOEA/D 0.722

;0.003

0.800

0.021

1.000

;0.000

0.64
;0.0340

4614.118
;69.889

Glioma MODSSA_lbest 0.140

;0.007

0.866

;0.000

0.750

;0.000

1.000
;0.000

2565.064

;167.484
MOPSO 0.394

;0.009

0.817

;0.000

0.667

;0.000

1.000
;0.000

2149.792
;19.961

NSGA-II 0.187

;0.031

0.508

;0.091

0.268

;0.096

1.000
;0.000

2058.221
;23.447

MOEA/D 0.362

;0.063

0.873

;0.069

0.873

;0.126

0.878
;0.041

2026.800
;42.196

Lymphography MODSSA_lbest 0.226

;0.050

0.769

;0.048

0.840

;0.078

0.713
;0.054

7.400
;1.189

MOPSO 0.228

;0.035

0.741

;0.042

0.813

;0.052

0.689
;0.055

5.132
;0.904

NSGA-II 0.300

;0.047

0.676

;0.042

0.802

;0.056

0.581
;0.047

4.227
;0.925

MOEA/D 0.287

;0.055

0.687

;0.071

0.808

;0.102

0.619
;0.089

4.332
;1.321

PenglungEW MODSSA_lbest 0.230

;0.016

0.968

;0.032

0.955

;0.057

0.989
;0.009

180.791
;16.156

MOPSO 0.320

;0.024

0.763

;0.064

0.596

;0.109

0.999
;0.004

142.209
;4.934

NSGA-II 0.277

;0.030

0.964

;0.062

0.961

;0.108

0.973
;0.032

116.146
;7.011

MOEA/D 0.148

;0.032

0.958

;0.020

1.000

;0.000

0.918
;0.039

125.129
;10.277

WaveformEW MODSSA_lbest 0.248

;0.018

0.776

;0.018

0.691

;0.023

0.873
;0.013

21.474
;1.712

MOPSO 0.263

;0.016

0.773

;0.015

0.701

0.021

0.853
;0.011

14.821
;1.071

NSGA-II 0.260

;0.015

0.761

;0.025

0.667

;0.032

0.887
;0.009

7.319
;0.594

MOEA/D 0.307

;0.031

0.736

;0.034

0.658

;0.043

0.825
;0.025

13.074
;2.266

Zoo MODSSA_lbest 0.126

;0.044

0.940

;0.038

0.972

;0.028

0.917
;0.054

6.6845
;0.867
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Table 4 (Continued)

Datasets Algorithm
Error
rate

G-
mean Recall Specificity #Features

AVG

;STD

AVG

;STD

AVG

;STD
AVG
;STD

AVG
;STD

MOPSO 0.279

;0.052

0.923

;0.087

0.904

;0.086

0.982
;0.021

4.402
;0.969

NSGA-II 0.126

;0.034

0.751

;0.048

0.999

;0.004

0.679
;0.058

3.143
;0.323

MOEA/D 0.186

;0.051

0.860

;0.085

0.865

;0.090

0.908
;0.051

4.545
;0.846

Exactly MODSSA_lbest 0.272

;0.030

0.547

;0.070

0.865

;0.035

0.431
;0.066

4.983
;0.476

MOPSO 0.270

;0.039

0.501

;0.059

0.859

;0.055

0.451
;0.059

4.424
;0.610

NSGA-II 0.258

;0.014

0.405

;0.068

0.945

;0.023

0.320
;0.072

3.837
;0.360

MOEA/D 0.289

;0.009

0.068

;0.118

0.980

;0.037

0.043
;0.078

1.767
;1.216

Exactly2 MODSSA_lbest 0.290

;0.023

0.298

;0.096

0.902

;0.043

0.133
;0.048

5.887
;1.581

MOPSO 0.286

;0.039

0.179

;0.109

0.905

;0.072

0.099
;0.075

3.412
;1.548

NSGA-II 0.238

;0.032

0.059

;0.084

0.979

;0.031

0.021
;0.033

2.272
;1.591

MOEA/D 0.243

;0.000

0.000

;0.000

1.000

;0.000

0.000
;0.000

1.400
;0.675

HeartEW MODSSA_lbest 0.205

;0.029

0.786

;0.033

0.824

;0.033

0.758
;0.046

5.567
;1.155

MOPSO 0.223

;0.041

0.768

;0.064

0.757

;0.060

0.802
;0.040

3.698
;0.835

NSGA-II 0.215

;0.007

0.783

;0.013

0.783

;0.021

0.787
;0.030

2.723
;0.341

MOEA/D 0.223

;0.036

0.727

;0.087

0.821

;0.027

0.716
;0.090

3.982
;0.857

SonarEW MODSSA_lbest 0.153

;0.018

0.827

;0.020

0.755

;0.033

0.908
;0.019

30.834
;2.241

MOPSO 0.234

;0.023

0.754

;0.027

0.667

;0.047

0.856
;0.019

21.257
;1.891

NSGA-II 0.232

;0.035

0.764

;0.037

0.692

;0.052

0.847
;0.040

9.178
;2.283

MOEA/D 0.232

;0.036

0.762

;0.039

0.694

;0.065

0.840
;0.032

17.934
;4.597

SpectEW MODSSA_lbest 0.198

;0.014

0.670

;0.061

0.522

;0.061

0.895
;0.016

9.142
;1.426

MOPSO 0.254

;0.015

0.122

;0.108

0.079

;0.089

0.964
;0.022

6.619
;0.824
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Table 4 (Continued)

Datasets Algorithm
Error
rate

G-
mean Recall Specificity #Features

AVG

;STD

AVG

;STD

AVG

;STD
AVG
;STD

AVG
;STD

NSGA-II 0.206

;0.009

0.360

;0.108

0.236

;0.098

0.932
;0.028

3.907
;0.557

MOEA/D 0.205

;0.013

0.380

;0.270

0.335

;0.241

0.909
;0.068

4.878
;2.829

Colon MODSSA_lbest 0.225

;0.024

0.784

;0.029

0.753

;0.027

0.823
;0.053

1181.788
;90.767

MOPSO 0.286

;0.020

0.530

;0.039

0.955

;0.023

0.301
;0.045

948.436
;12.868

NSGA-II 0.210

;0.045

0.740

;0.072

0.833

;0.048

0.667
;0.120

894.621
;17.106

MOEA/D 0.311

;0.057

0.662

;0.066

0.773

;0.070

0.574
;0.105

894.987
;31.488

Leukemia MODSSA_lbest 0.185

;0.006

0.794

;0.008

1.000

;0.000

0.630
;0.012

3862.202

;246.339
MOPSO 0.135

;0.007

0.818

;0.010

1.000

;0.000

0.671
;0.017

3475.702
;25.214

NSGA-II 0.141

;0.030

0.847

;0.035

0.999

;0.006

0.719
;0.058

3365.504
;30.451

MOEA/D 0.110

;0.022

0.854

;0.032

1.000

;0.000

0.730
;0.053

3344.983
;58.627

lbest had 0.824, while the other algorithms in the same order at-
tained 0.757, 0.783, and 0.821. Additionally, at SonarEW, it performed
0.755, whilst the other algorithms reached an average equals to 0.667
for MOPSO, 0.692 for NSGA-II, and 0.694 for MOEA/D. In essence,
at SpectEW, MODSSA-lbest achieved approximately the double perfor-
mance of the other algorithm. Where MOPSO, NSGA-II, and MOEA/D
had 0.079, 0.236, and 0.335, respectively. At Leukemia, MODSSA-lbest,
MOPSO, and MOEA/D achieved the same by having 1.000, while
NSGA-II performed very closely by obtaining 0.999. Remarkably, at
Nci9, Glioma, PenglungEW, Exactly, and Exactly2, MOEA/D accom-
plished the best by having 1.000, 0.873, 1.000, 0.980, and 1.000, re-
spectively. Nonetheless, MOPSO did the best at Colon (0.955) and Wave-
formEW (0.701), whereas NSGA-II performed the best at the Zoo dataset
(0.999).

Regarding the true negative rate (specificity), MODSSA-lbest ob-
tained the best in 31% of the datasets. At Lymphography (0.840),
Exactly2 (0.133), SonarEW (0.908), and Colon (0.823). At Glioma,
MODSSA-lbest, MOPSO, and NSGA-II performed the optimally the same
average of 1.000, while MOEA/D had a declined performance of average
specificity of 0.878. However, NSGA-II accomplished the best at Nci9
and WaveformEW (0.792, 0.887), respectively. While MOPSO obtained
superior results at PenglungEW (0.999), at Zoo (0.982), at HeartEW
(0.802), and at SpectEW (0.964).

Minimizing the number of redundant features is crucial. Assessing
the algorithms’ ability to diminishing the irrelevant features is presented
in the last column in Table 4. Where the average numbers of selected
features over the 30 runs were reported besides the standard devia-
tion. Even that MODSSA-lbest significantly reduced the original num-
ber of features, yet the other algorithms could obtain a fewer num

ber of features. For instance, at Nci9 dataset, MODSSA-lbest has reduced
the number of features from 9712 to 5753.2 with a reduction rate of
41%, while the MOEA/D reduced the number of features by 52.1%.
Whereas at Glioma, MODSSA-lbest could minimize the features nearly
to one third, however, MOEA/D reduced them approximately to the half
with a RR of 54.3%. At Lymophography, MODSSA-lbest decreased the
features by 58.9%, but the NSGA-II has decreased them by 76.5%. No-
ticeably, NSGA-II had eminent reduction rate over the other algorithms
at PenglungEW, WaveformEW, Zoo, HeartEW, SonarEW, SpectEW, and
Colon. Where MODSSA-lbest and NSGA-II had RR (44.4%, 64.3%),
(46.3%, 81.7%), (58.2%, 80.4%), (57.2%, 79.1%), (48.6%, 84.7%),
(58.4%, 82.2%), (40.9%, 55.3%) for the aforementioned datasets, re-
spectively. Also, MOEA/D has merits in decreasing the number of fea-
tures at Exactly, Exactly2, and Leukemia. While in comparison with
MODSSA-lbest, they minimized the features with a reduction rate of
(61.6%, 86.4%), (54.7%, 89.2%), (45.8%, 53.1%) for MODSSA-lbest and
MOEA/D, respectively, in order with the three datasets. Even the ob-
tained results for MODSSA-lbest regarding the number of selected fea-
tures; in most of the cases, it still demonstrates a superb ability in reduc-
ing the number of features to approximately 50% at most of the datasets
with reasonable standard deviation values.

Measuring the significance of MODSSA-lbest results can be achieved
by statistical tests. Friedman test is a non-parametric statistical test,
which tests the differences between the four used algorithms whether
they are considerable or not. The average Friedman ranking is utilized,
the smaller the rank, the more significant is the difference. From Table
4, MODSSA-lbest achieved the best results in terms of g-mean. where it
had 1.385, while MOPSO, NSGA-II, and MOEA/D had 2.923, 2.923, and
2.769, respectively.
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Fig. 6 compares the error presented by the box-plots between the
proposed MODSSA-lbest and MOPSO, NSGA-II, and MOEA/D. It is clear
from the figure that MODSSA-lbest performed competitively better at
Glioma, WaveformEW, Zoo, HeartEW, SonarEW, and SpectEW datasets
at sub-figures (b, c, e, f, i, j, and k, respectively). While at Nci9 (a) and
Leukemia (m), MODSSA-lbest did not achieve better than other MOEAs,
even that it could obtain satisfying results particularly at Leukemia
(0.180). Noticeably, at sub-figures (l and h), NSGA-II outperformed all
algorithms. Also, at Exactly dataset (g), all of MODSSA-lbest, MOPSO,
and NSGA-II performed slightly the same.

Whereas, Fig. 7 presents the average Pareto front plots of
MODSSA-lbest, MOPSO, NSGA-II, and MOEA/D which depict the ob-
tained Pareto front (non-dominated) solutions. In which, the red line is
the MODSSA-lbest. At Glioma (b), Lymphography (c), Zoo (f), SonarEW
(j), SpectEW (k), and Colon (l), MODSSA-lbest can achieve superior so-
lutions most of the time. Yet at some other points, the other MOEAs
can accomplish better results. For example, at Glioma, MODSSA-lbest
performed bet

ter than MOPSO, NSGA-II, and MOEA/D, however, it produced a solu-
tion with a higher number of features. As well as, at SpectEW, obvi-
ously MODSSA-lbest achieved two non-dominated solutions with the op-
timal number of features and minimal error rate. At Nci9 (a), Colon (l),
SonarEW (j), and WaveformEW (e), MOPSO performed better than the
used MOEAs. At PenglungEW (d) and Leukemia (m), MOEA/D obtained
promising solutions among all.

Table 5 shows the P-values based on Wilcoxon test Gehan (1965),
with a significance level ( ). The test illustrates whether there is a
significant difference between the proposed MODSSA-lbest and MOPSO,
NSGA-II, and MOEA/D. The table shows P-values for the three algo-
rithms overall used datasets. Remarkably, the P-values indicate signifi-
cant results with P . However, at Glioma and MOEA/D the P-value
was greater than 0.05. Also, at PenglungEW, HeartEW, and SpectEW
with NSGA-II they were above 0.05. While for MOPSO, the P-values
were more than 0.05 at WaveformEW and HeartEW.

Fig. 6. Comparison of average error rate for MODSSA-lbest versus MOPSO, NSGA-II, and MOEA/D over all datasets using box-plots.
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Fig. 7. The Pareto front plots that compare MODSSA-Lbest versus NSGA-II, MOPSO, and MOEAD over all datasets.

To sum up, the addition of a dynamic population (multiple leaders)
with a local best updating mechanism brought an eminent capability of
MODSSA-lbest in converging toward optimal solutions. Where it is jus-
tified by the outperforming results of g-mean and error rate. However,
even that MODSSA-lbest maintained efficient performance results but it
minimized the number of features to some extent where NSGA-II had the
minimal reduction rate. Deciding the best solution in terms of efficiency
and number of features depends highly on the decision-maker which re-
lates to the respective problem. Yet, MODSSA-lbest proved highly com-
petitive results to be considered for various problems.

Table 6 presents the results of comparing filter-based methods with
the proposed MODSSA_lbest regarding the g-mean. The used filter-based
methods are the ReleifF, Correlation, Information gain, and the Sym-
metrical filtering method. The same experimental settings were ap-
plied, which includes using the simple split approach of (70%,30%) for
training, and testing, respectively. Now that a KNN classifier was also
used with k = 5. The experiment was conducted on the Weka platform
Hall et al. (2009). The results show that the proposed MODSSA_lbest
can perform better than the traditional filter-based methods in 70%

of the datasets. For instance, at the Nci9, the Lymphography, and the
Zoo datasets, all filter-based methods failed to achieve any correct clas-
sification, while the MODSSA_lbest achieved a g-mean of (0.785) at
the Nci9, (0.769) at the Lymphography, and (0.940) at the Zoo. Also,
it achieved better results at Glioma, PenglungEW, Exactly, SonarEW,
SpectEW, and Colon, by having (0.866, 0.968, 0.547, 0.827, 0.670, and
0.784), respectively. However, it did not perform better than other fil-
ter-based methods at the WaveformEW, Exactly2, HeartEW, and the
Leukemia dataset.

7. Conclusion

Feature selection is a decisive preprocessing step, which highly af-
fects the performance of machine learning algorithms. This article has
formulated the problem of feature selection as a multi-objective opti-
mization problem. In this work, the SSA algorithm is utilized for ad-
dressing the problem. The MOSSA algorithm is modified to handle bi-
nary problems using the S1 transfer function. Moreover, it adopted
two operators to enhance its convergence ability toward optimal solu-
tions. First, the use of multiple leader salps and multiple sub-swarms in
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Table 5
The P-values based on G-mean, where are underlined.

Dataset MOPSO NSGA-II MOEA/D

Nci9 1.04E-10 2.87E-11 3.09E-02
Glioma 2.87E-11 2.87E-11 underline1.00E + 00
Lymphography 1.47E-02 1.63E-08 6.97E-06
PenglungEW 4.40E-10 underline3.79E-01 3.85E-02
WaveformEW underline1.98E-01 1.60E-02 1.93E-06
Zoo 5.44E-01 4.73E-11 1.29E-04
Exactly 2.03E-02 1.93E-08 2.87E-11
Exactly2 1.48E-05 1.77E-09 5.32E-10
HeartEW underline4.51E-01 underline5.54E-01 1.25E-02
SonarEW 5.77E-11 4.00E-09 6.26E-08
SpectEW 2.87E-11 underline1.35E-01 3.39E-07
Colon 2.87E-11 7.13E-03 7.04E-10
Leukemia 2.49E-10 1.93E-08 5.32E-10

stead of relying on one leader to guide the whole population. Sec-
ond is modifying the salps positions in regard to their best past so-
lutions. The proposed MODSSA-lbest is compared with the standard
MOSSA and other MOEAs, including MOPSO, NSGA-II, and MOEA/D.
The MODSSA-lbest achieved significant results in terms of average error
rate and g-mean over the 13 benchmark datasets.
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Table 6
The g-mean values of the filter-based methods versus the proposed MODSSA_lbest.

Datasets ReleifF Correlation Information gain Symmetrical MODSSA_lbest

Nci9 NAN NAN NAN NAN 0.785
Glioma 0.707 0.707 0.707 0.707 0.866
Lymphography NAN NAN NAN NAN 0.769
PenglungEW 0.944 0.944 0.944 0.944 0.968
WaveformEW 0.812 0.803 0.809 0.809 0.776
Zoo NAN NAN NAN NAN 0.940
Exactly 0.527 0.099 0.195 0.195 0.547
Exactly2 0.394 0.219 0.000 0.000 0.298
HeartEW 0.712 0.788 0.764 0.764 0.786
SonarEW 0.784 0.791 0.784 0.784 0.827
SpectEW 0.603 0.609 0.609 0.609 0.670
Colon 0.666 0.577 0.666 0.666 0.784
Leukemia 1.000 1.000 1.000 1.000 0.794

∗NAN: The algorithm failed to classify correctly any instance for some classes.
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