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Abstract

Smart connected appliances expand the boundaries of the conventional Internet into
the new Internet of Things (IoT). IoT started to hold a significant role in our life, and in
several fields as in transportation, industry, smart homes, and cities. However, one of the
critical issues is how to protect IoT environments and prevent intrusions. Attacks detection
systems aim to identify malicious patterns and threats that cannot be detected by traditional
security countermeasures. In literature, feature selection or dimensionality reduction has
been profoundly studied and applied to the design of intrusion detection systems. In this
paper, we present a novel wrapper feature selection approach based on augmented Whale
Optimization Algorithm (WOA), which adopted in the context of IoT attacks detection and
handles the high dimensionality of the problem. In our approach, we introduce the use of
both V-shaped and S-shaped transfer functions into WOA and compare the superior variant
with other well-known evolutionary optimizers. The experiments are conducted using N-
BaIoT dataset; wherein, five datasets were sampled from the original dataset. The dataset
represents real IoT traffic, which is drawn from the UCI repository. The experimental results
show that WOA based on V-shaped transfer function combined with elitist tournament
binarization method is superior over S-shaped transfer function and outperforms other well-
regarded evolutionary optimizers based on the obtained average accuracy, fitness, number of
features, running time and convergence curves. Hence, we can conclude that the proposed
approach can be deployed in IoT intrusion detection systems.

Keywords: Internet of things, Whale optimization algorithm, Feature selection, Attacks
detection, Classification

Email addresses: mmafarja@birzeit.edu, mmafarjeh@gmail.com (Majdi Mafarja),
as_heidari@ut.ac.ir, aliasghar68@gmail.com, aliasgha@comp.nus.edu.sg, t0917038@u.nus.edu
(Ali Asghar Heidari), hossam.faris@ju.edu.jo (Hossam Faris), thaer.thaher@gmail.com (Thaer
Thaher), aljarah@ju.edu.jo (Ibrahim Aljarah)

Preprint submitted to Journal Name December 10, 2021



1. Introduction

Owing to the massive proliferation of IoT devices, IoT security is a stepping stone that1

has growing attention. Hung [1] -Gartner research vice president- predicted that the volume2

of IoT would reach almost 20 billion devices by 2020. IoT is a network of Internet-connected3

devices that collects information about the surrounding environment using embedded sen-4

sors and communicate together to exchange, process, and store the data [2]. Nowadays,5

IoT devices are deployed in a wide range of applications as transportation, healthcare, and6

military. This vast number of smart connected devices brings new security and privacy7

challenges. However, computational and technical limitations are critical bottlenecks for im-8

proving the security and privacy of IoT. IoT is vulnerable to network and software attacks9

as well as to privacy leakage [2]. This has been observed as a large scale Distributed Denial10

of Service attack (DDoS) in 2016, conducted by Mirai botnet and targeted Dyn (Domain11

name system provider), which disrupted a large number of services like CNN, PayPal and12

Netflix [1]. Nonetheless, by 2020, 25% of the recognized attacks in enterprises are attacks13

targeting IoT systems [3].14

IoT devices are equipped with low computational resources that make them relatively15

more comfortable to be flooded, and vibrant platform for performing attacks [4]. IoT is16

plug-and-play devices that make them highly vulnerable to brute force attacks; since they17

have default passwords by their manufacturing settings [2]. Mainly, IoT is vulnerable to a18

wide range of attacks like sinkhole attacks, wormhole attacks, selective forwarding attacks,19

Sybil attacks, hello flooding attacks, and DoS attacks [5]. Generally, IoT systems consist of20

three main layers; the perception layer, the network layer, and the application layer, where21

each layer exposed to different types of attacks [4]. In this paper, we emphasize on network22

layer attacks, mainly on TCP, UDP, ACK, and SYN flooding attacks. Owing to the limited23

computational-power of IoT environments, applying traditional security countermeasures24

like encryption and authentication is not effective [5]. Consequently, more robust security25

techniques are crucial. Researchers have developed new technologies to adapt to the hetero-26

geneity and scalability of the IoT system and elevate its security. Such emergent technologies27

are like blockchain [6], fog and cloud computing techniques [7]. However, these techniques28

still encounter high time latency and scalability issues [6]. One of the common techniques29

to maintain the security of such networks is the use of Intrusion Detection Systems (IDSs).30

IDSs analyze the network traffic in order to identify malicious activities or attacks. Upon31

successful identification, the IDSs send a warning to the decision-making system, in order32

to take an action [8]. Typically, IDSs were classified based on the detection technique into33

several groups; statistical-based, machine learning and data mining-based, rule-based, and34

other [8].35

In literature, there is a tendency towards data mining and machine learning techniques36

into IoT. Data mining is the process of extracting novel, intriguing, and potentially valuable37

knowledge from large amounts of data that is stored in databases, data warehouses, or38

information repositories [9]. The aim of data mining is not just creating a classification or39

description models of data that can best fit with it, but also to generalize with the new data40

[9]. However, analyzing IoT data in order to detect anomalies, outliers, frauds or predict41

traffic is a very complex and challenging task. This is because IoT data is high-dimensional42

and can be represented by hundreds to thousands of dimensions. This large number of43
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features could include irrelevant, noise, and redundant features which can negatively affect44

the learning process in model development [10]. Moreover, with high-dimensional data,45

machine learning models require an enormous amount of training data, which this is well-46

known as the curse of dimensionality [11]. As a solution, the Feature Selection (FS) process47

can tackle this problem by choosing a set of relevant features. FS is one of the significant48

pre-processing tasks in machine learning and data mining. Evaluating the selected subset49

of features is done using filters or wrapper methods. Wrapper-based FS methods use an50

induction (learning) algorithm during the selection process [12]. On the other hand, filter-51

based approaches evaluate each feature independently on the induction algorithm [12]. The52

size of the search space is highly dependent on the number of features, thus searching for the53

best subset of features is considered as an exhaustive task [10]. A variety of search methods54

have been proposed to address the problem of searching for the optimal subset like Tabu55

search [13], sequential search [14], Harmony search [15], and Greedy search [14]. However,56

traditional search methods suffer from the stagnation in local optima or high computational57

cost [10].58

The rapid developments in science and technology increase the complexity of different59

real-world problems [16, 17, 18]. Taking as an example the emergence of hard optimiza-60

tion problems, like energy consumption in IoT devices, transport fuel consumption, water61

distribution networks optimization, and many more [19, 20]. Roughly speaking, hard opti-62

mization problems are difficult to solve within the reasonable, deterministic amount of time63

[21, 22]. However, metaheuristic algorithms attempt to find an optimal approximation of the64

solution for hard optimization problems [21, 23]. As the name implies, a heuristic is a pro-65

cess of exploring and experiencing things [21]. Metaheuristic algorithms are mostly nature-66

inspired algorithms that use stochastic components as stated by Thaher et al. [24], Chen67

et al. [25, 26], Xu et al. [27]. Metaheuristics are popular in the field of FS for their excellent68

performance [12] and global search abilities [10].69

WOA is a metaheuristic algorithm that mimics the foraging behavior of the humpback70

whales found in nature [28]. This paper aims to promote the performance of anomalies de-71

tection or traffic classification into normal or attacks for IoT environments, by addressing the72

curse of dimensionality of IoT traffic by proposing a wrapper-based feature selection method,73

which is based on augmented WOA. Since WOA is originally developed to deal with continu-74

ous problems; hence, we implement the main version of WOA [28] with a new modification to75

deal with binary problems, in which both the V-shaped and S-shaped transfer functions have76

been integrated into WOA. The superior variant of transfer function among all is compared77

with well-regarded evolutionary optimizers; which they are grasshopper optimizer, grey wolf78

optimizer, gravitational search algorithm, particle swarm optimizer, ant lion optimizer, bat79

algorithm, and the salp swarm algorithm. All the experiments were conducted on real-IoT80

data, where the IoT datasets were drawn from UCI repository [29]. A new five datasets have81

been constructed from the original data, in which, the training data contains and trained82

on two types of attacks. Whereas, the testing data contains the prior two attacks, besides83

eight new unseen attacks. The results reveal that the V-shaped transfer function with elitist84

tournament method is the superior binary WOA, overall other transfer function variants and85

over other evolutionary optimizers.86

The rest of the paper is organized as follows. Section 2 is a review of related works.87

Section 3 presents the WOA algorithm. Section 4 discusses the proposed methodology.88
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Section 5 discusses the used datasets and their characteristics. Lastly, Section 6 presents the89

experimental results and analysis.90

2. Review of related works91

There are several practices have been proposed to analyze network traffic data. This92

section presents a review of metaheuristic algorithms for malicious traffic detection in IoT93

networks as well as about the deployment of evolutionary algorithms for feature selection94

tasks.95

2.1. IoT IDSs based on metaheuristic algorithms96

Several Metaheuristic algorithms were used in cybersecurity like an artificial neural net-97

work, swarm optimization algorithms, and genetic algorithm. Hamamoto et al. [30] proposed98

a network anomaly detection technique based on genetic algorithm and fuzzy logic. Whereas,99

Bin Ahmad et al. [31] used the genetic algorithm for detecting insider threats. Hajimirzaei100

and Navimipour [32] proposed a new intrusion Detection System (IDS) that filters network101

traffic into normal and malicious using Multilayer Perceptron, which is trained by applying102

an artificial bee colony algorithm. Another relevant study in [33], in which Ali et al. [33] de-103

signed a supervised IDS in order to detect new attacks, by using particle swarm optimization104

(PSO) to build a fast learning network. Also, Selvakumar and Muneeswaran [34] proposed105

IDS using Bayesian networks and C4.5 to classify the network traffic, in which they deployed106

the firefly algorithm to make the feature selection. Nonetheless, Panigrahi and Patra [35]107

built an efficient IDS using a layered model. Five rule-based classifiers were used alongside108

three evolutionary search methods (Ant search, genetic search, and PSO), where at each109

layer different search method is deployed. All the methods mentioned above were dedicated110

to classical network types and not particularly for IoT networks. Moreover, all the available111

IDSs are not convenient for the evolved IoT networks since they were developed to traditional112

Internet networks or typical wireless sensor networks [36]. Developing an IDS is a challenging113

task since IoT devices are accessible globally, have limited resources, use low-power links,114

and connected via untrusted IPv6 and 6LoWPAN network protocols [36]. To the best of115

our knowledge, there are few studies in the literature on using evolutionary algorithms for116

intrusion detection in IoT networks. However, Sanchez-Pi et al. [37] used Voronoi diagram-117

based Evolutionary Algorithm (VorEAl) for IoT intrusion detection. VorEAl evolves Voronoi118

diagrams that are used to classify IoT data into anomalous or normal. In which it repre-119

sents the input as Voronoi cells. Particularly, VorEAl is convenient with IoT since it has120

low computational complexity. Despite the promising achieved results, but they intended to121

build a dataset that represents more real IoT traffic. Hodo et al. [38] proposed an approach122

based on artificial neural networks for intrusion detection and identifying DDoS attacks. The123

results achieved good performance; however, they used simulated IoT data. Greensmith [39]124

discussed how the problem of IoT security could be solved using the responsive artificial125

immune system. Additionally, he investigated the current immune inspired algorithms and126

how they can be modified to fit with the IoT system’s requirements. Another effort by He127

et al. [40], where they discussed major challenges with emergent technologies (like supply128

chain and big data) in IoT networks and suggested how the use of evolutionary algorithms129

and computational intelligence can enhance and improve the security of IoT.130
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2.2. Metaheuristic based feature selections for IoT131

Recently, evolutionary algorithms have been utilized in feature selection tasks and showed132

successful performance results [12]. To the best of our awareness, there is a lack of deploying133

evolutionary algorithms for protecting IoT as well as in implementing evolutionary feature134

selection to promote attack detection. However, Li et al. [41] proposed a wrapper-based FS135

for IoT intrusion detection systems. They utilized the Bat algorithm with Swarm Division136

and Binary Differential Mutation in order to select the relevant features. However, they did137

not use real-IoT data.138

In addition, few studies have been conducted on using evolutionary algorithms for FS139

and intrusion detection in traditional networks. For instance, Xue et al. [42] adopted a140

self-adaptive differential evolution algorithm for FS in Wireless Sensor Networks (WSNs); in141

order to detect intrusions. Moreover, Liu et al. [43] utilized an improved social spider opti-142

mization (ISSO) algorithm for feature extraction and selection in WSNs intrusion detection.143

Another relevant study, where Popoola and Adewumi [44] designed wrapper-based FS for144

network intrusion detection, by using discretized differential evolution algorithm. Moreover,145

Guendouzi and Boukra [45] presented a new FS technique for intrusion detection using Bio-146

geography Based Optimization (BBO) algorithm. Gharaee and Hosseinvand [46] proposed147

an anomaly IDS, in which they used the genetic algorithm for feature selection. Even that,148

Till now, no one used the WOA for feature selection in IDSs, neither in traditional networks149

nor in IoT networks.150

Generally, different evolutionary algorithms have been applied for the feature selection151

process. For example, Zawbaa et al. [47] used Ant Lion optimizer. Emary et al. [48] utilized152

the Grey Wolf Optimizer. Moreover, the use of Particle Swarm Optimization (PSO) algo-153

rithm as in [49]. Additionally, the adoption of Ant Colony Optimization in [50]. Ghamisi154

and Benediktsson [51] designed a hybrid method of Genetic Algorithm (GA) and PSO for155

feature selection. Nonetheless, the integration of Grasshopper Optimization by Mafarja156

et al. [52]. The usage of the multi-verse optimizer algorithm for FS presented by Faris et al.157

[53]. Whereas, Faris et al. [54] deployed the Salp Swarm Algorithm. Additionally, Mafarja158

et al. [55] utilized Dragonfly Optimization alongside time-varying transfer functions for fea-159

ture selection. Also, several works by Taradeh et al. [56], Aljarah et al. [57], Mafarja et al.160

[58], Zhang et al. [59], Faris et al. [60] utilized other competitive methods for this area.161

Mostly, all the aforementioned studies were dedicated to traditional networks more than162

IoT networks. However, most of the studies devoted to IoT, use simulated network data.163

Nonetheless, few of them deployed the evolutionary algorithms for attack detection. For the164

first time, we are presenting the use of a whale optimization algorithm; in order to enhance165

attack detection in real IoT scenarios.166

3. Preliminaries167

3.1. Whale Optimizer168

Mathematical modeling and simulation are two cores of many analytical methods [61, 62,169

63, 64]. Long-term styles and behaviors of Humpback whales have been inspired by Mirjalili170

and Lewis [28] to develop a reliable population-based optimizer as one of the well-established171

models. In the WOA method, we have a set of whales, searching for the food source (quarry),172

and they move based on some spiral trajectories [65]. They also have some intelligent tactics173
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such as bubble net attacking, which helps them to confuse the prey and then swim around174

him. In this method, the exploration phase is intensified enough and almost half of the175

iterations are devoted to the diversification phase. Then, this optimizer can focus on the176

exploitation phase. The next parts explain the different phases of WOA.177

3.1.1. Exploitation step178

To represent and mimic the hunting behaviors of search agents, the rules in Eqs. (1) and
(2) are performed in each iteration [28].

D =| C. ~X ∗(t)− ~X (t) | (1)

~X (t+ 1) = ~X ∗(t)− ~A .D (2)

where t is iteration, X∗ represents the best whale (leader) attained so far, X is the position
of an agent, | | presents the absolute value and <.> is used to show an element by element
multiplication [66]. The parameters of A and C can be realized by the rules in Eqs. (3) and
(4).

~A = 2~a .~r − ~a (3)

~C = 2.~r (4)

where we need to decrease −→a from 2 to 0 and −→r is a random number in [0,1] [67]. Referring
to Eq. (2), the whales will move toward the prey. The parameter a is obtained using Eq.
(3):

a = 2(1− t

L
) (5)

where t is iteration and L is the upper bound of iterations. The helix-formed moving step is
updated via rule in Eq. (6):

~X (t+ 1) = D′.ebl.cos(2πl) + ~X ∗(t) (6)

D′ =| C. ~X ∗(t)− ~X (t) | (7)

where b is a constant value and l shows a random value inside [-1,1] [68]. Therefore, we have179

the following rule:180

~X (t+ 1) =

{
Shrinking encircling via Eq.(2) p < 0.5

Spiral shaped path via Eq.(6) p ≥ 0.5
(8)

where p is another random value inside [0,1].181

3.1.2. Exploration step182

The diversification phase is executed using rules in Eqs. (9) and (10).

D =| C. ~Xrand (t)− ~X (t) | (9)

~X (t+ 1) = ~Xrand (t)− ~A .D (10)

where the ~Xrand represents a search agent which is determined, randomly.183
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The pseudo-code of the described method is shown in Algorithm 1.184

Algorithm 1 Pseudo-code of WOA
Initiate the parameters (e.g., maximum iterations L and number of agents)
Generate initial agents, randomly Xi(i = 1, 2, . . . , n)
Obtain the fitness values
Set X∗ as the best agent
while (t < L) do

for each whale do
Update a, A, C, l, and p
if (p < 0.5) then

if (| A |< 1) then
Update the current whale by Eq. (2)

else if (| A |> 1) then
Select a random whale
Update the agents using Eq. (10)

else if (p > 0.5) then
Update the whales based on Eq. (6)

Check the bounding conditions
Obtain the fitness values
Update X∗, if a better agent exists
t = t+ 1

return X∗

3.2. k-Nearest Neighbor (k-NN) Classifier185

The k-NN technique is a well-established classifier, which is classified as a non-parametric186

and instance-based method. This approach can classify the datasets based on unlabeled187

instances. For this aim, it checks the distance between a selected instance and the other k188

instances in its neighborhood [69]. To evaluate the distance, we can utilize different rules189

studied in the previous works. The Euclidean distance is often used, which is shown in Eq.190

(11):191

D(s1, s2) = (
n∑

i=1

(x1,i − x2,i)2)
1
2 (11)

where s1 and s2 are points having n dimensions. In most of the wrapper FS methods, KNN192

is used to classify the datasets.193

4. The proposed approach194

Evolutionary algorithms were originally designed to tackle the continuous optimization195

problems [70, 71]. To deal with binary problems, they need to be converted efficiently.196

according to Crawford et al. [72], Transfer functions (TFs) are the most frequently used197

methods for this conversion. When using TFs for conversion purposes, two steps need to198
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be noticed. In the first step, the TF is used to compute the probability of updating a199

corresponding dimension in the solution vector to 1 (selected) or 0 (not selected). While200

the second step, which called binarization method, is to update that dimension based on201

the resulted probability from the first step. In other words, the TF is applied on the real-202

values step vector produced by WOA such that a high probability of change is given to203

the dimension with a large value (which indicates that the current solution is far from the204

optimum solution obtained so far). While the dimension with small value, which means that205

the position of the processed solution is close to the best solution attained so far, is given206

a lower probability of being changed. A binarization rule is required to map the resulted207

intermediate solution into binary form.208

In the literature, the TFs are categorized based on their shape into two main families:209

S-shaped and V-shaped functions. The sigmoid function, which belongs to S-shaped family,210

was firstly utilized by Kennedy and Eberhart [73] to propose a binary variant of PSO using211

Eq. (12), while Rashedi et al. [74] used tanh (V-shaped) to binarize the GSA algorithm212

using Eq. (13). These TFs are visualized in Fig.1.213

According to Mirjalili and Lewis [75], different TFs have a major impact on the perfor-214

mance of the algorithm. They introduced six new variants of S-shaped and V-shaped TFs215

and investigated them with the PSO. The results revealed that the new introduced V-shaped216

TFs obtained the best results among all used TFs.217
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Figure 1: (a) S-shaped and (b) V-shaped Transfer functions

T (xij(t)) =
1

1 + e−x
i
j(t)

(12)

T (xij(t)) = | tanh(xij(t))| (13)

where xji represents the jth dimension of the ith solution at iteration t, and T (xji (t)) is the218

probability value obtained by TF.219

For the binarization step, different methods have been incorporated with the above-
mentioned TFs [72, 76]. The first binarization is the standard method used by Kennedy
and Eberhart [73] with the S-shaped TF. According to Eq. (14), the dimension with a high
probability value (outputted from the TF) is most likely to take the value of 1, otherwise, it
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is set to 0. Based on this concept, search agents that are far from the best solution are forced
to take values of 1, while those that are very close to the best solution are forced to take
values of 0. The disadvantage of this process is that it does not consider the current values
of the solution and therefore, it leads to the premature convergence problem. The second
most used binarization method (called complement method) was used by Rashedi et al. [74]
with the V-shaped TF. In the complement method (as in Eq. (15)), the search agents are
forced to stay in their current positions, when they are very close to the best solution, or flip
to their complements when they move away from the best solution. This approach showed
a high performance in handling various binary optimization problems [77, 75]. It overcomes
the stagnation problem by exploring more search regions. However, this method does not
consider the fittest solutions in the updating process.

Xk
i (t+ 1) =

{
1 r < T (xij(t)))
0 Otherwise

(14)

Xk
i (t+ 1) =

{
v Xj

i (t) r < T (xij(t)))

Xj
i (t) Otherwise

(15)

where r is a random number in [0, 1] interval, v indicates the complement, and Xj
i (t+1) is220

the new binary output.221

Some improvements have been introduced based on the standard binarization rule. In222

the work of Crawford et al. [78, 79], the best solution so far was employed in the updating223

mechanism. Furthermore, Crawford et al. [80] proposed a binarization rule in which an-224

other solution selected via a roulette wheel selection method is employed. This method was225

presented as Eq. (16). It can be noticed that the agent which moves away from the best226

solution is re-positioned toward the fittest solution. While the agent that is close to the best227

solution is forced to take values of 0. However, The exploitation behavior in nature-inspired228

algorithms makes all search agents moving gradually towards the best solution. By consid-229

ering this fact and based on the updating rule in Eq. (16), the probability for search agents230

to fall in local optimum becomes too high after some iterations.231

Xk
i (t+ 1) =

{
Xk
∗ (t) r < T (xij(t)))
0 Otherwise

(16)

where Xk
∗ is the guide solution (the best as in Crawford et al. [78, 79], or selected by roulette232

wheel as in Crawford et al. [80])233

Due to the drawbacks of the existing binarization approaches, we have proposed an234

augmented version of the complement method, in which stagnation problem of standard235

method and the exploration limitations of the complement method will be resolved. For this236

purpose, we utilized the evolutionary selection methods to select the guide solution which237

employed with the complement binarization rule to re-position the current solutions.238

In this work, two-step binarization technique is used to convert the continuous search239

space to the WOA in binary form. In the first step, two basic TFs: S-shaped (Sigmoid TF)240

and V-shaped (tanh TF) are used to produce an intermediate vector where each element241

defines the probability of mutating the corresponding dimension in the position vector to 0242

or 1. You can see rules in Eqs. (12) and (13), respectively243
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To transform the probability vector into a binary solution, six different binarization rules244

have been utilized in this paper to improve the convergence behavior of WOA: Standard245

(S) and Complement (C) are selected from the existing literature, while four new rules are246

introduced, namely Elitist (E), Elitist Tournament (ET), Elitist Roulette Wheel (ERW), and247

Elitist Rank (ER). Consequently, twelve versions of WOA (six per TF) are evaluated, which248

are WOA-S-S, WOA-S-C, WOA-S-E, WOA-S-ET, WOA-S-ERW, WOA-S-ER (for S-shaped249

TF), and WOA-V-S, WOA-V-C, WOA-V-E, WOA-V-ET, WOA-V-ERW, WOA-V-ER (for250

V-shaped TF). The general procedure of two-step binarization approach used in this research251

is illustrated in Fig. 2. The proposed approaches are explained in details in the following252

subsections.253
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4.1. Basic binarization methods for WOA254

4.1.1. Standard method (WOA-S)255

In WOA-S, the standard binarization rule is employed in WOA. This method was initially256

used by Kennedy and Eberhart [73] with the S-shaped TF. According to Eq. (14), the257

new value for each dimension of the binary solution is either set to 1 or 0 based on the258

corresponding probability value of intermediate solution regardless of the current value.259

4.1.2. Complement method (WOA-C)260

The complement rule explained in Eq. (15) is incorporated with WOA-C. This rule261

was originally introduced by Rashedi et al. [74]. The idea is that the values of the cur-262

rent processed position are randomly flipped or kept according to the calculated mutation263

probability.264

4.2. Natural selection operators with binarization methods265

As aforementioned in the necessary binarization procedures, it is clear that the other266

solutions are not considered for re-positioning the current ones. This limits the possibility267

of exploring more regions of the search space. Therefore, the traditional binarization mecha-268

nisms should be modified to benefit from the fittest properties of other solutions (not only the269

current solution) in the updating mechanisms and thus, overcoming the lack of population270

diversity.271

Furthermore, the binarization behavior is identical to the binary mutation operator used272

in the evolutionary algorithms (EAs) where each value of the solution is switched between273

1 and 0 or vice versa with a given mutation probability [76]. The selection process that274

determines which solutions are allowed to be a guide to re-position the current solutions is275

an important operator in EAs that ensures the balance between exploratory and exploitative276

potentials [81, 82]. This idea motivated our attempts to utilize various selection schemes to277

be employed with the discretization methods.278

Different techniques are proposed to implement selection mechanism, the major three279

types are: tournament [83], roulette wheel (or proportional) [84], and rank-based selection280

[85]. Selection methods are based on the principle of "survival of the best" [86], where the281

fittest solution has a higher chance of being selected and thus leads to a better population282

(intensification). However, the worst solutions are not discarded and have a lower chance of283

being selected (diversification). The major factor that affects the efficiency of the selection284

process is called ’selective pressure’, which can be defined as the tendency to select the285

fittest individuals of the current population [87]. The amount of selective pressure affects286

the balance between intensification and diversification. That is, too much pressure will287

introduce a bias toward the fittest solutions that will cause a lack of diversity and premature288

convergence, while a small amount of pressure maintains diversity and slows the convergence.289

In this work, four binarization rules are proposed based on four different selection schemes290

for the guide solution used to update the current one. Those selection schemes are the291

fittest solution (Elitist), elitist tournament (ET), elitist roulette wheel (ERW), and elitist292

rank (ER). Equation (17) illustrates the general procedure for re-positioning the current293

processed solution according to the selected one (Xselected). The dimension with a high294

mutation probability (as calculated using the TF) has a higher chance to be the complement295

of the corresponding dimension of the selected solution, while the dimension with a low296
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mutation probability has a higher chance to be set to the actual value of the corresponding297

dimension of the selected solution. The proposed variants of binarization methods for WOA298

will be discussed in the following subsections.299

Xk
new(t+ 1) =

{
v XK

selected(t) r < T (vki (t+ 1))
XK

selected(t) Otherwise
(17)

4.2.1. Elitist-based WOA (WOA-E)300

The discretization method of WOA-E utilizes the fittest solution obtained so far to pro-301

duce the new solution. The procedure can be viewed as the solution being processed is302

replaced by the best one; then, each element value is randomly flipped or kept based on303

the mutation probability as in Eq. (17). In the elitist method, the fittest solution is only304

considered (selection probability equal to 1), while the others are discarded (selection prob-305

ability equal to 0). This method generates a population with characteristics derived from306

the best solution and thus leads to accelerate the convergence behavior [82]. However, high307

exploitation in this method may cause a premature convergence problem.308

4.2.2. Elitist roulette-based WOA (WOA-ERW)309

In WOA-ERW, the binarization step is incorporated with a roulette wheel (RW) selection310

scheme to identify the guide solution in Eq. (17). RW method was originally introduced to311

the Genetic Algorithm (GA) by Holland et al. [84]. The key notion of this method is that312

each solution has a non-zero opportunity to be selected. The probability of selection given313

for the ith individual (pi) is proportional to its absolute fitness value (f(xi)) as in Eq. (18).314

pi =
f(xi)∑N
j=1 f(xj)

(18)

where N is the population size, and f(xi) is calculated by Eq. (19) for the minimization315

problem: [88].316

f(xi) =
1

1 + f(xi)
(19)

The process of RW can be presented as a spinning roulette wheel, which divided into segments317

with different sizes, where each individual occupies a segment proportional to its fitness value.318

The fittest individuals (i.e large segments) have a higher chance of being selected than the319

poor ones (i.e small segments). The general steps of the described method are shown in320

Algorithm 2.321

The main advantage of the roulette wheel selection mechanism compared to the elitist322

mechanism is that all individuals have a chance to be chosen and thus preserve the diversity323

of the population. However, the outstanding solutions have a high selection pressure, which324

will introduce a bias towards the best solutions, especially in the early stages of the search325

process, and therefore lead to the problem of stagnation in local optima. Moreover, as the326

population converges (i.e have individuals with similar fitness values), it is difficult to identify327

a better solution [89].328
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Algorithm 2 Pseudo-code of general proportional roulette wheel
Set c=0, i=1
// calculate cumulative probability vector.
while (i ≤ N) do

calculate the selection probability of each solution (pi)
c = c + pi
i = i + 1

generate random number r between 0 and the summation of probabilities (c[N])
set i=1
while (i ≤ N) do

if (r ≤ c(i)) then
selected_index = i
break

i = i + 1
return (selected_index)

4.2.3. Elitist rank-based WOA (WOA-ER)329

The guide solution for the binarization method in WOA-ER is identified by utilizing the
rank-based selection mechanism. Rank selection method was proposed by [85] as a variant of
the roulette wheel method to overcome the premature convergence problem. Each individual
has a chance to be chosen based on its rank rather than its fitness. The process starts by
sorting the individuals according to their fitness so that the rank N (where N is the population
size) is assigned to the best individual while rank one is assigned to the worst one. Thus, the
rank of each individual i in the sorted list is mapped to its selection probability (pi) using
the expression in Eq. (20):

pi =
ranki

n× (n− 1)
(20)

Once selection probabilities have been computed, the selection process is performed by330

the roulette wheel mechanism as in Algorithm 2. It is noticeable that depending on the rank331

instead of fitness values prevents the domination of outstanding solutions since all individuals332

always have the same selection probabilities, and thus avoid the early stagnation problem.333

However, this method may lead to slow convergence. Moreover, it is computationally expen-334

sive because the population needs to be sorted on every cycle [82].335

4.2.4. Elitist tournament-based WOA (WOA-ET)336

In WOA-ET, tournament selection mechanism proposed by Goldberg et al., [83] is em-337

ployed with the discretization method to chose the guide solution. Due to its simplicity338

and efficiency, it is the most popular selection method in EAs [90]. This method can be339

considered as a two-step selection mechanism. In the first step, k individuals are selected340

randomly from the current population, where k referred to as tournament size. In the second341

step, the fittest solution among the competitive individuals in the tournament is selected.342

The main benefit of this scheme is that it preserves diversity by giving each individual an343

equal probability of being selected for the competition step. However, this may lead to slow344
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convergence [90, 82].345

The tournament size (k) is an essential factor that used to adjust the selection pressure346

and thus, trad-off between the exploitative and exploratory potentials [87]. Larger values of347

k (higher selection pressure) will cause a bias toward the best solutions (i.e intensification)348

while lower values of k (lower selection pressure) shift the search toward a random behavior349

(i.e diversification). However, determining the proper value of the k parameter is challenging350

and depends on the nature of the problem being solved [88]. It is worth mentioning that351

WOA-E is a special case of WOA-ET when k = N . The pseudo-code of how WOA-ET select352

the guide solution is shown in Algorithm 3:353

Algorithm 3 Pseudo-code of tournament selection
//Tournament selection for one solution
Identify the tournament size k
r = generate random index within [0, N]
set best = r
set i = 2
while (i ≤ k) do

r = generate random index within [0, N]
if (fit(Xr) < fit(Xbest)) then

best = r
i = i + 1

return (best)

5. Dataset description, characteristics and preparation354

The dataset used in this work is called N-BaIoT, and it was collected from real network355

traffic of nine IoT devices [91]. The dataset before processing consists of several files where356

each file belongs to a device that contains the traffic of normal and attack packets. There are357

ten classes of attacks that were generated using two families of botnet attack codes from the358

Github repository (Mirai, and BASHLITE). Botnet attack is a type of DDOS attack, where359

the attacker uses a large number of IoT devices to participate in the DOS to overwhelm a360

specific target. This type of attack is hard to detect since the device keeps function normally,361

and the user or the owner of the device will not notice if his device is a part of an attack, in362

some cases, the device may suffer from a delay of its functionality. The conducted attacks363

stand for five attacks from Mirai botnet, and another five attacks from Gafgyt botnet.364

The Mirai botnet attacks are automatic scanning for vulnerable devices, Acknowledgement365

(Ack) packets flooding, Synchronize (Syn) packets flooding, User Datagram Protocol (UDP)366

packets flooding, and UDP flooding with fewer options. Whereas the Gafgyt botnet attacks367

are sending spam data, UDP flooding, Transmission Control Protocol (TCP) packets flooding368

and sending spam data with specified Internet Protocol (IP) address and port. Table 1 shows369

the distribution of normal and attack traffic in the nine devices. The ratio of normal traffic370

to attacks is 1 to 13; therefore, the dataset can be considered highly imbalanced. It can be371

also noticed that device 3 and 7 contain only one class of attacks.372

14



Table 1: Distribution of normal traffic and attacks in the 9 IoT devices, represented by the number of
instances (packets) in each file

Normal Mirai_udpPlain Mirai_udp Mirai_SYN Mirai_Scan Mirai_ack gafgyt_tcp gafgyt_udp gafgyt_scan gafgyt_junk gafgyt_combo Total attacks

File 1 40,395 81,982 237,665 122,573 107,685 102,195 92,141 105,874 29,849 29,068 59,718 968,750

File 2 13,110 87,368 151,481 116,807 43,192 113,285 95,021 104,791 27,494 30,312 53,012 822,763

File 3 34,692 0 0 0 0 0 101,536 103,933 28,120 29,797 53,014 316,400

File 4 160,137 80,808 217,034 118,128 103,621 91,123 92,581 105,782 27,859 28,349 58,152 923,437

File 5 55,169 56,681 156,248 65,746 96,781 60,554 104,510 104,011 29,297 30,898 61,380 766,106

File 6 91,555 53,785 158,608 61,851 97,096 57,997 89,387 104,658 28,397 29,068 57,530 738,377

File 7 46,817 0 0 0 0 0 97,783 110,617 27,698 28,305 58,669 323,072

File 8 42,784 78,244 151,879 125,715 45,930 111,480 88,816 103,720 27,825 28,579 54,283 816,471

File 9 17,936 84,436 157,084 122,479 43,674 107,187 98,075 102,980 28,572 27,413 59,398 831,298

Total 502,595 523,304 1,229,999 733,299 537,979 643,821 859,850 946,366 255,111 261,789 515,156 6,506,674

In this work, five datasets are sampled and prepared from the original dataset. In our373

sampling approach, we constructed the training set for each dataset in a way to have only374

two different types of attacks, whereas the testing set contains all the types of attacks (i.e375

ten types of attacks). In other words, the developed model will be trained using just two376

types of attacks in addition to the normal traffic and will be tested on ten. This approach377

will form more challenging for the model as eight types of attacks will not be presented378

for the model before the testing time. It is worth mentioning that the training set has a379

balanced class distribution. In contrast, the testing set is imbalanced and reflects the original380

class distribution, in which the ratio of normal traffic to malicious traffic is 1:13. Table 2381

summarize the characteristics of the five sampled datasets along with their class distribution382

ratios.383

Table 2: A Description of the distribution of data for both training & testing parts, as well as the distribution
of normal and attacks instances (packets) for each the training & testing sets

Training dataset Testing dataset
Normal traffic Attack traffic Types of attacks Normal traffic Attack traffic Normal to attack ratio Types of attacks

Dataset1 1664 1664 {COMBO,UDP} 128 1600 1:13 All (10 types)
Dataset2 1664 1664 {TCP,UDP} 128 1600 1:13 All (10 types)
Dataset3 1664 1664 {SCAN,SYN} 128 1600 1:13 All (10 types)
Dataset4 1664 1664 {UDP,ACK} 128 1600 1:13 All (10 types)
Dataset5 1664 1664 {TCP,UDPPLAIN} 128 1600 1:13 All (10 types)

6. Experimental results and simulations384

All experiments in this study are coded in MATLAB 2018 licensed software under the385

same computing system. Table 3 shows the details of the system and user environments.386

6.1. Parameter settings387

One of the necessary conditions for the experiments is to perform a fair comparison. For388

this goal, we established the same condition for all evaluations, and all peers are wrapper389

methods that involve a learning model. For all algorithms, we used KNN with K = 5 to390

ensure the simplicity of the tests.391
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Table 3: The detailed settings of the system

Name Setting
Hardware
CPU Intel Core(TM) i5 processor
Frequency 3.1GHz
RAM 4GB
Hard drive 500 GB
Software
Operating system Windows 7
Language MATLAB R2018a

6.2. Results and discussions392

In this section, we deeply investigate the performance of the proposed variants with393

different binarization schemes. To recognize the best variant, all versions are substantiated394

on various datasets, and then, the results are compared in terms of the primary metrics.395

After detecting the best variant, it is compared with the other well-established methods396

from the literature. Details of experiments are presented in the next subsections.397

6.2.1. Different variants with S-shaped TF398

In this subsection, we assess the effectiveness of each variant using S-shaped TF. Hence,399

each method has a different binarization strategy, but the same S-shaped TF.400

The average accuracy rate, number of features, fitness, and running time results of the401

proposed BWOA using S-Shaped TF with various binarization techniques are exposed in402

Tables 4-7.403

As per accuracy rates in Table 4, we see that the WOA_S_E version shows the best404

results for all cases. Based on F-test results, the best method is WOA_S_E, followed by405

WOA_S_ERW, WOA_S_C, WOA_S_ET, WOA_S_ER, and WOA_S_S, respectively.406

There is a very close competition between the top three methods, according to the obtained407

rates for all cases.408

Table 4: The average accuracy results for S-Shaped TF with various binarization techniques

Benchmark Measure WOA_S_S WOA_S_C WOA_S_E WOA_S_ERW WOA_S_ET WOA_S_ER

Data 1
AVG 0.9733 0.9861 0.9881 0.9829 0.9837 0.9824
STD 0.0240 0.0098 0.0080 0.0116 0.0080 0.0108

Data 2
AVG 0.9861 0.9878 0.9893 0.9891 0.9875 0.9867
STD 0.0026 0.0043 0.0052 0.0053 0.0042 0.0029

Data 3
AVG 0.9151 0.9183 0.9238 0.9197 0.9190 0.9176
STD 0.0059 0.0039 0.0202 0.0056 0.0026 0.0039

Data 4
AVG 0.9194 0.9204 0.9228 0.9204 0.9203 0.9203
STD 0.0008 0.0007 0.0111 0.0007 0.0007 0.0007

Data 5
AVG 0.9147 0.9168 0.9175 0.9170 0.9175 0.9166
STD 0.0041 0.0036 0.0038 0.0039 0.0032 0.0033

Ranking F-Test 1 3.9 5.9 4.3 3.8 2.1

Based on the average number of features in Table 5, we see that the WOA_S_E version409

outperforms other variants with satisfactory STD values for all datasets. Referring to fi-410
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nal ranks, the WOA_S_C, WOA_S_ERW, WOA_S_S, WOA_S_ER, and WOA_S_ET411

have obtained the next stages, respectively.412

Table 5: The average number of features for S-Shaped TF with various binarization techniques

Benchmark Measure WOA_S_S WOA_S_C WOA_S_E WOA_S_ERW WOA_S_ET WOA_S_ER

Data 1
AVG 54.8000 50.6000 45.8333 51.4333 54.3333 51.7333
STD 6.9798 6.6312 5.6022 5.0150 5.7615 5.9996

Data 2
AVG 44.2333 46.7000 42.3000 49.1000 47.7667 46.5000
STD 4.3840 7.3819 6.9933 6.4560 6.5951 6.0215

Data 3
AVG 54.0667 53.9667 45.5667 52.4000 54.3333 54.4333
STD 8.6699 5.6231 6.0211 6.0663 4.0115 5.9346

Data 4
AVG 47.0000 49.4667 44.6000 51.2333 49.6667 50.4333
STD 6.3300 6.1405 5.6300 6.3555 6.0988 5.0901

Data 5
AVG 56.5000 51.9667 44.7333 51.4667 53.8333 51.6333
STD 12.0766 8.0921 7.8298 6.7606 5.4715 6.0257

Ranking F-Test 4 3.2 1 3.8 4.8 4.2

If we observe the average fitness results in Table 6, the WOA_S_E version pro-413

vides the fittest results compared to other variants. As per F-test results, the best414

approach with satisfactory STD rates is the WOA_S_E, followed by WOA_S_C,415

WOA_S_ET, WOA_S_ERW, WOA_S_ER, and WOA_S_S, respectively. It is seen that416

the WOA_S_C and WOA_S_ET show very competitive results.417

Table 6: The average fitness results for S-Shaped TF with various binarization techniques

Benchmark Measure WOA_S_S WOA_S_C WOA_S_E WOA_S_ERW WOA_S_ET WOA_S_ER

Data 1
AVG 0.0312 0.0182 0.0158 0.0215 0.0209 0.0220
STD 0.0237 0.0097 0.0078 0.0113 0.0080 0.0108

Data 2
AVG 0.0176 0.0162 0.0143 0.0151 0.0166 0.0172
STD 0.0024 0.0039 0.0050 0.0050 0.0038 0.0026

Data 3
AVG 0.0888 0.0856 0.0795 0.0841 0.0849 0.0863
STD 0.0054 0.0038 0.0202 0.0057 0.0027 0.0038

Data 4
AVG 0.0839 0.0831 0.0804 0.0833 0.0832 0.0833
STD 0.0007 0.0005 0.0111 0.0006 0.0006 0.0007

Data 5
AVG 0.0894 0.0869 0.0856 0.0867 0.0864 0.0871
STD 0.0034 0.0035 0.0038 0.0038 0.0031 0.0031

Ranking F-Test 6 3 1 3.1 3 4.9

The time records in Table 7 disclose that the WOA_S_E is the fastest method, followed418

by WOA_S_ER, WOA_S_ERW, WOA_S_ET, WOA_S_C, and WOA_S_S methods,419

respectively.420

Convergence behaviors of the proposed WOA-based methods with different binarization421

methods and S-shaped TF are demonstrated in Fig. 3. Based on the curves in Fig. 3, it is422

observed that the WOA_S_E is the best method in terms of convergence speed, while other423

peers almost reveal a competitive efficacy.424

To investigate the significant differences between the results in terms of different metrics,425

we performed the Wilcoxon test. The obtained p-values are shown in Table 8. The reported426
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Table 7: The average running time for S-Shaped TF with various binarization techniques

Benchmark Measure WOA_S_S WOA_S_C WOA_S_E WOA_S_ERW WOA_S_ET WOA_S_ER

Data 1
AVG 1115.0790 507.8244 388.1752 505.4321 519.2185 506.8822
STD 30.5503 23.5766 5.5141 22.4777 27.4476 22.5719

Data 2
AVG 1089.0823 515.7779 408.7167 501.1311 561.4072 493.7255
STD 18.3113 24.1248 6.3923 25.1599 22.6492 6.4625

Data 3
AVG 979.4945 575.7358 387.7059 545.1944 498.2963 571.3142
STD 46.9451 12.3219 9.5411 23.8602 10.2730 20.5155

Data 4
AVG 936.4449 546.9681 387.1246 501.9455 499.7265 509.2292
STD 37.3279 22.4782 11.9758 21.7710 11.9152 27.0674

Data 5
AVG 1125.7411 529.0892 395.9502 581.6452 554.7243 494.9861
STD 41.6083 21.7797 10.0535 19.0502 23.9955 10.8201

Ranking F-Test 6 4.2 1 3.2 3.6 3
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Figure 3: Convergence curves of the proposed variants with different binarization methods and S-shaped TF
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p-values in Table 8 show that the differences in results are significantly meaningful for most427

of the cases.428

Table 8: p-values of the Wilcoxon test for the accuracy, number of features, fitness, and running time results
of WOA-S-E and other methods for S-shaped TF (p≤0.05 are bolded)

Accuracy Features
dataset WOA_S WOA_C WOA_ERW WOA_ET WOA_ER WOA_S WOA_C WOA_ERW WOA_ET WOA_ER
Data 1 4.87E-03 3.87E-01 5.90E-02 4.34E-02 3.15E-02 3.57E-06 6.41E-03 1.78E-04 2.15E-06 4.00E-04

Data 2 2.04E-04 1.48E-01 5.04E-01 3.46E-02 1.40E-02 1.49E-01 1.58E-02 8.19E-04 4.91E-03 1.88E-02

Data 3 1.84E-02 5.77E-01 9.47E-01 8.49E-01 1.87E-01 2.40E-04 4.28E-06 1.84E-04 3.76E-07 3.85E-06

Data 4 3.34E-08 3.42E-02 3.42E-02 1.02E-02 1.02E-02 3.46E-01 4.62E-03 1.48E-04 3.12E-03 1.38E-04

Data 5 9.69E-03 4.90E-01 7.72E-01 8.97E-01 3.58E-01 4.83E-05 6.43E-04 3.71E-04 2.62E-06 8.72E-05

Fitness Time
Data 1 5.55E-04 2.20E-01 1.80E-02 6.23E-03 1.03E-02 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11

Data 2 3.11E-08 5.67E-04 2.09E-03 4.34E-06 2.84E-06 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11

Data 3 1.28E-04 2.91E-02 9.61E-02 3.97E-02 3.02E-03 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11

Data 4 1.87E-08 2.91E-05 1.65E-06 4.73E-06 3.71E-06 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11

Data 5 4.06E-05 5.64E-02 1.35E-01 1.05E-01 4.05E-02 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11

6.2.2. Different variants with V-shaped TF429

In this subsection, we assess the efficiency of each variant using V-shaped TF. Hence,430

each method has a different binarization strategy, but the same V-shaped TF.431

The average accuracy rates, number of features, fitness results, and running time records432

of the BWOA using S-Shaped TF with various binarization techniques are shown in Tables433

9-12.434

As per the accuracy results of the developed WOA-based methods in Table 9, we see that435

the WOA_V_ET provides the fittest results, despite the WOA_V_S, which could not find436

a better place than the 6th-stage. The results of the F-test expose that the WOA_V_E,437

WOA_V_ERW, WOA_V_ER, WOA_V_C, and WOA_V_S are the next preferences in438

terms of accuracy metric, respectively. It is observed that the rates of all variants are very439

competitive.440

According to the number of features, we observe that WOA_V_E is the best technique.441

The ranking results reveal that the WOA_V_C and WOA_V_S variants are the second442

and the third-best alternatives in terms of obtained relevant features.443

As per fitness results, the best variant is WOA_V_ET, followed by WOA_V_E,444

WOA_V_ER, WOA_V_ERW, WOA_V_C, and WOA_V_S methods. These results445

show that the elitist tournament method can provide the best results, while the quality446

of results in the case of the standard method, which is known as the conventional binary447

WOA, is not very satisfying as the worst-ranked alternative. This observation emphasizes448

the significant role of the binarization technique on the excellence of binary WOA methods.449

Based on the running times of variants, we see that the fastest performance of the pro-450

posed variants is experienced in the case of the elitist method, while the elitist roulette451

wheel method has led to the slowest speed. We also see that the binarization methods with452

a selection scheme are significantly slower than methods without a selection scheme, as it is453

expected.454

The p-values in Table 13 also show that the detected differences in most of the cases and455

based on different metrics are significantly meaningful.456
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Table 9: The average Accuracy results for V-Shaped TF with various binarization techniques

Benchmark Measure WOA_V_S WOA_V_C WOA_V_E WOA_V_ERW WOA_V_ET WOA_V_ER

Data 1
AVG 0.9980 0.9986 0.9990 0.9999 0.9999 0.9998
STD 0.0060 0.0053 0.0025 0.0003 0.0004 0.0004

Data 2
AVG 0.9927 0.9962 0.9981 0.9987 0.9978 0.9976
STD 0.0065 0.0049 0.0033 0.0027 0.0043 0.0046

Data 3
AVG 0.9670 0.9895 0.9922 0.9850 0.9941 0.9961
STD 0.0421 0.0208 0.0230 0.0312 0.0173 0.0144

Data 4
AVG 0.9732 0.9876 0.9954 0.9888 0.9952 0.9921
STD 0.0350 0.0256 0.0115 0.0248 0.0172 0.0186

Data 5
AVG 0.9641 0.9800 0.9846 0.9806 0.9890 0.9854
STD 0.0343 0.0234 0.0132 0.0267 0.0139 0.0212

Ranking F-Test 1 2.2 4.4 3.9 5.1 4.4

Table 10: The average number of features for V-Shaped TF with various binarization techniques

Benchmark Measure WOA_V_S WOA_V_C WOA_V_E WOA_V_ERW WOA_V_ET WOA_V_ER

Data 1
AVG 2.5000 2.3000 1.8333 2.3333 2.2000 3.7333
STD 0.9002 0.7497 0.4611 0.8841 0.7611 2.0331

Data 2
AVG 2.1667 2.1333 2.4333 3.4667 3.5333 4.5333
STD 0.5921 0.6814 0.5683 2.0126 2.6876 2.3004

Data 3
AVG 2.7000 2.1333 2.5333 5.6000 2.6667 5.7333
STD 1.3933 0.7761 1.1666 7.2474 1.5388 7.9217

Data 4
AVG 2.0667 2.1333 2.0000 2.6000 2.5333 4.0667
STD 0.5833 0.5074 0.4549 1.6316 1.4320 2.2118

Data 5
AVG 2.4667 2.4000 2.1000 4.5667 4.4667 4.2000
STD 1.2794 0.9685 0.8030 3.5398 3.4415 1.6484

Ranking F-Test 3.2 2 1.6 4.8 3.8 5.6

Table 11: The average fitness results for V-Shaped TF with various binarization techniques

Benchmark Measure WOA_V_S WOA_V_C WOA_V_E WOA_V_ERW WOA_V_ET WOA_V_ER

Data 1
AVG 0.0022 0.0016 0.0011 0.0003 0.0003 0.0005
STD 0.0059 0.0052 0.0024 0.0004 0.0004 0.0005

Data 2
AVG 0.0074 0.0039 0.0020 0.0016 0.0025 0.0028
STD 0.0064 0.0049 0.0033 0.0027 0.0042 0.0046

Data 3
AVG 0.0329 0.0106 0.0079 0.0153 0.0061 0.0044
STD 0.0417 0.0206 0.0229 0.0314 0.0171 0.0149

Data 4
AVG 0.0267 0.0124 0.0047 0.0113 0.0049 0.0082
STD 0.0347 0.0253 0.0114 0.0246 0.0171 0.0184

Data 5
AVG 0.0358 0.0200 0.0154 0.0196 0.0113 0.0148
STD 0.0339 0.0232 0.0130 0.0265 0.0138 0.0210

Ranking F-Test 6 4.8 2.6 3.1 1.9 2.6
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Table 12: The average runing time for V-Shaped TF with various binarization techniques

Benchmark Measure WOA_V_S WOA_V_C WOA_V_E WOA_V_ERW WOA_V_ET WOA_V_ER

Data 1
AVG 72.3882 36.2237 34.9567 125.8332 141.3283 178.4947
STD 9.9035 2.9508 5.1691 21.6767 20.9900 28.3152

Data 2
AVG 70.8111 38.6849 41.5443 157.5332 158.8498 193.6005
STD 6.7289 4.5432 4.9965 35.0779 28.7516 23.3072

Data 3
AVG 80.8584 44.0454 39.5868 201.5595 179.3935 208.5372
STD 7.6494 5.3780 4.0352 39.7943 25.3290 30.8352

Data 4
AVG 85.2780 46.3031 43.3901 189.8144 169.7138 200.4964
STD 10.1481 4.2200 5.8868 30.6690 25.5382 25.6574

Data 5
AVG 82.6338 46.6991 44.0449 195.6686 174.8223 201.8014
STD 11.4962 6.8935 4.3402 44.0607 24.2564 23.9331

Ranking F-Test 3 1.8 1.2 4.6 4.4 6

Convergence behaviors of all methods with V-shaped TF are demonstrated in Fig. 4.457

As curves show, the elitist and complement binarization methods present a better trend458

compared to other variants for all datasets, then, they have inertia to local optima; therefore,459

we see that the final results of binary WOA with elitist tournament method is slightly better460

than other peers.461
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Figure 4: Convergence curves for WOA with different binarization methods for V-shaped TF

6.2.3. Impact of TFs on WOA with each binarization technique462

To study the impact of TF on the excellence of results, Tables 14, (A.25, A.26, and A.27463

at Appendix A) compare the variants with S-shaped and V-shaped TF and utilization of464

each binarization technique in terms of different metrics.465
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Table 13: p-values of the Wilcoxon test for the accuracy, number of features, fitness, and running time results
of WOA-V-ET and other methods for V-shaped TF (p≤0.05 are bolded

Accuracy Features
dataset WOA_S WOA_C WOA_E WOA_ERW WOA_ER WOA_S WOA_C WOA_E WOA_ERW WOA_ER
Data 1 1.29E-02 1.41E-02 2.21E-02 4.68E-01 4.53E-01 5.92E-02 3.29E-01 1.14E-02 4.80E-01 7.45E-05

Data 2 3.70E-04 1.41E-01 8.16E-01 4.26E-01 4.53E-01 2.47E-03 2.69E-03 5.05E-02 5.60E-01 5.41E-03

Data 3 6.74E-02 1.25E-01 5.71E-01 4.86E-01 6.23E-01 9.67E-01 1.88E-01 9.67E-01 6.55E-02 8.79E-03

Data 4 7.98E-02 3.46E-01 3.47E-02 9.60E-02 2.36E-01 9.75E-02 2.51E-01 4.73E-02 5.58E-01 1.42E-03

Data 5 3.15E-03 4.33E-02 5.52E-02 5.24E-01 8.71E-01 6.47E-04 1.14E-03 1.93E-05 7.57E-01 2.82E-01
Fitness Time

Data 1 4.02E-02 2.62E-02 7.68E-02 4.92E-01 4.89E-04 2.61E-10 3.02E-11 3.02E-11 4.86E-03 4.11E-07

Data 2 5.65E-04 1.20E-01 7.48E-01 9.28E-01 3.85E-01 3.02E-11 3.02E-11 3.02E-11 8.07E-01 1.09E-05

Data 3 8.48E-02 1.90E-01 6.34E-01 5.39E-01 9.94E-01 3.02E-11 3.02E-11 3.02E-11 6.97E-03 8.56E-04

Data 4 3.44E-01 7.05E-01 1.37E-01 3.54E-01 2.21E-02 3.34E-11 3.02E-11 3.02E-11 1.91E-02 3.59E-05

Data 5 3.39E-03 5.35E-02 6.66E-02 5.34E-01 8.42E-01 3.02E-11 3.02E-11 3.02E-11 1.27E-02 1.49E-04

As per accuracy results, we see that the all variants with V-shaped TF are superior to466

alternative versions with S-shaped TF in dealing with 100% of datasets. For dataset 3-5,467

using V-shaped instead of S-shaped TF has led to more than 5-8% of improvements in the468

accuracy rates. The same observation is experienced in the case of the number of features,469

fitness values, and running time of methods. All of the variants with V-shaped TF have470

outperformed other peers with S-shaped TF in dealing with all datasets. We see there is a471

big gap between AVG and STD results of variants with V-shaped and S-shaped TF in terms472

of the number of features in all cases. As per fitness values, we detect that the V-shaped TF473

leads to superior results for all variants, in the case of any binarization method.474

As per running time results, we observe that the variants with V-shaped TF are much475

faster than variants with S-shaped TF. For instance, in dealing with the dataset 5 with the476

standard binarization scheme, we need only 82.6338 (s) when using V-shaped TF, while in477

the case of S-shaped TF, the essential time increases to 1125.7411 (s). It can be seen that the478

most time-consuming scheme in the case of S-shaped TF is the standard method, whereas479

other binarization methods are faster, remarkably.480

According to the results, first, we see that both TF and binarization techniques can change481

the quality of results, significantly, and the final set of features will be different based on the482

effectiveness of utilized binarization method. The main reason for the better performance483

of the methods with V-shaped functions is that they can perform a more smooth transition484

from exploration to exploitation. V-shaped TF can help the methods to aggressively explore485

the feature space and allocate higher mutation probabilities for both nearby and far optimal486

solutions. Typically, we observe that V-shaped variants are much faster than S-shaped487

variants, which is more desired for achieving real-time detection, especially when proposing488

an intrusion detection system. That can be interpreted by the V-shaped ability of smoothly489

moving from the exploration to exploitation; therefore, it can more efficiently locate the490

optimal solutions.491

6.3. Comparison of top variants of WOA492

In this part, we are interested in comparing the top variants in terms of different metrics.493

Tables 15 is dedicated to the comparison of only top variants WOA_S_E and WOA_V_ET494

in terms of the accuracy, the number of features, fitness, and running time. As per the results495
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Table 14: Comparison between S-shaped and V-shaped TF with each binarization technique based on the
average accuracy

Benchmark Measure
WOA_S WOA_C WOA_E WOA_ERW WOA_ET WOA_ER

S-Shaped V-Shaped S-Shaped V-Shaped S-Shaped V-Shaped S-Shaped V-Shaped S-Shaped V-Shaped S-Shaped V-Shaped

Data1
AVG 0.9733 0.9980 0.9861 0.9986 0.9881 0.9990 0.9829 0.9999 0.9837 0.9999 0.9824 0.9998
STD 0.0240 0.0060 0.0098 0.0053 0.0080 0.0025 0.0116 0.0003 0.0080 0.0004 0.0108 0.0004

Data2
AVG 0.9861 0.9927 0.9878 0.9962 0.9893 0.9981 0.9891 0.9987 0.9875 0.9978 0.9867 0.9976
STD 0.0026 0.0065 0.0043 0.0049 0.0052 0.0033 0.0053 0.0027 0.0042 0.0043 0.0029 0.0046

Data3
AVG 0.9151 0.9670 0.9183 0.9895 0.9238 0.9922 0.9197 0.9850 0.9190 0.9941 0.9176 0.9961
STD 0.0059 0.0421 0.0039 0.0208 0.0202 0.0230 0.0056 0.0312 0.0026 0.0173 0.0039 0.0144

Data4
AVG 0.9194 0.9732 0.9204 0.9876 0.9228 0.9954 0.9204 0.9888 0.9203 0.9952 0.9203 0.9921
STD 0.0008 0.0350 0.0007 0.0256 0.0111 0.0115 0.0007 0.0248 0.0007 0.0172 0.0007 0.0186

Data5
AVG 0.9147 0.9641 0.9168 0.9800 0.9175 0.9846 0.9170 0.9806 0.9175 0.9890 0.9166 0.9854
STD 0.0041 0.0343 0.0036 0.0234 0.0038 0.0132 0.0039 0.0267 0.0032 0.0139 0.0033 0.0212

Ranking W|T|L 0|0|5 5|0|0 0|0|5 5|0|0 0|0|5 5|0|0 0|0|5 5|0|0 0|0|5 5|0|0 0|0|5 5|0|0

in Table 15, we see that WOA_V_ET is superior to the WOA_S_E in tackling all datasets.496

The WOA_V_ET approach can provide almost 99% of the classification rate with a faster497

running time. It provides almost 100% of accuracy for dataset 1.498

Based on overall ranks, and results for each dataset, we conclude that using the elitist499

tournament method and V-shaped TF can generate the best binary WOA version. The500

superiority of the WOA_V_ET can be reasoned due to the use of V-shaped TF and higher501

exploration trends within the feature space. This mechanism can assist WOA_V_ET to502

escape convergence to any local optimum during iterations. In the case of any stagnation503

problem, it also has this capacity to jump out of them because of the enriched exploration504

trends. The other reason is because of the Elitist Tournament scheme, which helps the505

WOA_V_ET to avoid stagnation drawbacks in each step. The tournament scheme brings506

a higher chance to randomly select a better guiding solution instead of a global solution. In507

the case of any stagnation problem, the proposed method can help the algorithm to jump508

out of LO based on the tournament mechanism. Hence, in the rest of the experiments, we509

investigate the efficacy of WOA_V_ET as the best variant of the binary WOA.510

Table 15: Comparison between the WOA-S-E and WOA-V-ET in terms of accuracy, number of features,
fitness, and running time

Benchmark Mesure
Accuracy Number of Features Fitness Time

WOA-S-E WOA-V-ET WOA-S-E WOA-V-ET WOA-S-E WOA-V-ET WOA-S-E WOA-V-ET

Data1
AVG 0.9881 0.9999 45.8333 2.2000 0.0158 0.0003 388.1752 141.3283
STD 0.0080 0.0004 5.6022 0.7611 0.0078 0.0004 5.5141 20.9900

Data2
AVG 0.9893 0.9978 42.3000 3.5333 0.0143 0.0025 408.7167 158.8498
STD 0.0052 0.0043 6.9933 2.6876 0.0050 0.0042 6.3923 28.7516

Data3
AVG 0.9238 0.9941 45.5667 2.6667 0.0795 0.0061 387.7059 179.3935
STD 0.0202 0.0173 6.0211 1.5388 0.0202 0.0171 9.5411 25.3290

Data4
AVG 0.9228 0.9952 44.6000 2.5333 0.0804 0.0049 387.1246 169.7138
STD 0.0111 0.0172 5.6300 1.4320 0.0111 0.0171 11.9758 25.5382

Data5
AVG 0.9175 0.9890 44.7333 4.4667 0.0856 0.0113 395.9502 174.8223
STD 0.0038 0.0139 7.8298 3.4415 0.0038 0.0138 10.0535 24.2564

Ranking W|T|L 0|0|5 5|0|0 0|0|5 5|0|0 0|0|5 5|0|0 0|0|5 5|0|0

The Boxplots of fitness values for the best S-shaped and V-shaped variants are shown511

in Fig. 5 for all datasets. Also, the performance of WOA-V-ET versus WOA-S-E based on512
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accuracy rates, the number of selected features, and fitness values are compared in Fig. 6.513

(a) Data1 (b) Data2 (c) Data3

(d) Data4 (e) Data5

Figure 5: Boxplots for fitness values of the best S and V shaped variants for all datasets

6.4. Comparison of WOA-V-ET with other optimizers514

In this section, we compared the proposed WOA_V_ET variant with other well-515

established optimizers from literature in terms of different metrics. These experiments can516

reveal the core exploratory and exploitative merits of the proposed wrapper WOA_V_ET-517

based FS method compared to other existing wrappers in previous works. For this purpose,518

we compared the effectiveness of WOA_V_ET in terms of different measures with binary519

versions of Grasshopper Optimization Algorithm (GOA) [92], Grey Wolf Optimizer (GWO),520

Gravitational Search Algorithm (GSA), Particle Swarm Optimizer (PSO), Ant Lion Opti-521

mizer (ALO), Bat Algorithm (BAT/BA), and Salp Swarm Algorithm (SSA) [54]. These522

wrapper-based evolutionary FS approaches have recently revealed an excellent efficacy in523

dealing with different FS test problems and real-life cases. The initial parameters of these524

methods are set based on those recommended and set in the original papers.525

Table 16, and Tables (A.28, A.29, and A.30) at Appendix A, expose the results of the526

proposed WOA_V_ET versus all other approaches in terms of accuracy, number of features,527
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Figure 6: The performance of WOA-V-ET versus WOA-S-E in terms of accuracy rates, number of selected
features, and fitness values
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fitness, and running time values, respectively. Table 17 also reveals the significance of results528

based on the p-values of the statistical test. While Figure 7, indicates the convergence efficacy529

of the proposed WOA_V_E versus other peers. Tables (18-19) describe the most influential530

selected features among all datasets.531

As per accuracy results in Table 16, it is detected that the proposed WOA_V_ET has532

attained the best AVG rates for all cases. If we check the F-Test ranks, it is clear that533

the best method is WOA_V_ET and the well-established BGOA, BPSO, bGWO, BSSA,534

bALO, BGSA, and BBA have attained the next ranks, respectively. For datasets 3-5, there535

is a substantial improvement in the accuracy rates compared to those realized by prior536

techniques.537

Table 16: Comparison between WOA-V-ET and other optimizers based on average accuracy

Benchmark Measure WOA-V-ET BGOA bGWO BGSA BPSO bALO BBA BSSA

Data1
AVG 0.9999 0.9989 0.9692 0.9193 0.9941 0.9263 0.8366 0.9465
STD 0.0004 0.0006 0.0354 0.0222 0.0076 0.0152 0.1026 0.0263

Data2
AVG 0.9978 0.9901 0.9861 0.9802 0.9869 0.9855 0.8690 0.9856
STD 0.0043 0.0058 0.0026 0.0247 0.0034 0.0000 0.1320 0.0003

Data3
AVG 0.9941 0.9264 0.9105 0.8914 0.9189 0.9079 0.7751 0.9117
STD 0.0173 0.0252 0.0056 0.0251 0.0045 0.0024 0.1256 0.0053

Data4
AVG 0.9952 0.9378 0.9192 0.9051 0.9200 0.9190 0.7518 0.9193
STD 0.0172 0.0327 0.0005 0.0227 0.0009 0.0000 0.1434 0.0007

Data5
AVG 0.9890 0.9253 0.9138 0.9016 0.9161 0.9115 0.7859 0.9134
STD 0.0139 0.0217 0.0102 0.0298 0.0052 0.0025 0.1335 0.0035

Overall Ranking F-Test 8 7 4.6 2 6 3 1 4.4

As per results for AVG number of features (Table A.29), we see that the WOA_V_ET538

is better than all methods. We see that the bGWO, BGOA, BPSO, BBA, BGSA, BSSA,539

and bALO have achieved the subsequent stages, respectively. It is vividly observed that the540

size of the feature set gotten by the WOA_V_ET is much smaller than those returned by541

other peers.542

As per fitness rates, it is detected that the WOA_V_ET is the best method by fittest543

results compared to other competitors (Table A.30). F-Test results show that the BGOA is544

the second top algorithm, followed by the bGWO, BPSO, BSSA, bALO, BBA, and BGSA545

techniques.546

The results indicate that the proposed WOA_V_ET has shown superior efficacy com-547

pared to other competitors. This can be reasoned owing to several main reasons: first, the548

higher intrinsic exploration potentials of the WOA compared to other optimizers. Besides,549

the proposed method utilizes the Elitist Tournament scheme, which alleviates the possible550

premature convergence and stagnation behaviors of the WOA_V_ET in each step, while551

optimizers such as BBA and BSSA cannot show a more stable performance. Also, the Elitist552

Tournament scheme helps WOA_V_ET to reach a more stable balance between exploration553

and exploitation trends.554

In terms of running time (Table A.28), the WOA_V_ET is the second-best optimizer,555
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followed by BGOA, BBA, BPSO, BGSA, bALO, and BSSA techniques. It is seen that the556

bGWO shows a fast performance as well.557

According to p-values in Table 17, it is vividly detected that the differences between the558

results of the proposed WOA_V_ET versus other peers are significantly meaningful in all559

cases.560

Table 17: p-values of the Wilcoxon test for the accuracy, number of features, fitness, and running time results
of WOA-V-ET and other optimizers (p≤0.05 are bolded)

Accuracy Features
dataset BGOA bGWO BGSA BPSO bALO BBA BSSA BGOA bGWO BGSA BPSO bALO BBA BSSA
Data 1 5.64E-09 2.28E-08 2.19E-12 1.69E-11 4.83E-13 3.48E-12 2.74E-12 3.12E-12 5.44E-12 3.08E-12 3.10E-12 3.06E-12 3.08E-12 3.07E-12

Data 2 5.03E-07 1.36E-10 5.61E-11 4.62E-09 1.21E-11 7.12E-11 2.20E-11 2.84E-11 9.05E-09 2.26E-11 2.24E-11 2.31E-11 2.30E-11 2.30E-11

Data 3 9.91E-10 4.11E-11 5.70E-11 7.61E-11 4.85E-12 3.23E-11 1.02E-10 1.56E-11 9.45E-11 1.53E-11 1.52E-11 1.56E-11 1.56E-11 1.53E-11

Data 4 8.12E-10 6.79E-12 2.50E-11 7.72E-11 2.02E-12 2.02E-11 1.71E-11 1.89E-11 9.37E-11 1.81E-11 1.82E-11 1.83E-11 1.80E-11 1.80E-11

Data 5 6.41E-10 7.91E-12 2.24E-11 2.21E-11 6.38E-12 2.92E-11 1.74E-11 3.54E-11 1.39E-07 2.58E-11 2.59E-11 2.61E-11 2.59E-11 2.62E-11

Fitness Time
Data 1 9.92E-12 2.83E-11 5.20E-12 5.20E-12 5.15E-12 5.22E-12 5.20E-12 3.02E-11 7.17E-01 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11

Data 2 4.33E-09 8.90E-11 2.77E-11 7.38E-11 2.80E-11 2.82E-11 2.78E-11 3.02E-11 1.41E-01 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11

Data 3 7.57E-10 5.57E-11 4.58E-11 3.15E-10 2.76E-11 3.08E-11 8.16E-11 3.02E-11 5.75E-02 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11

Data 4 3.85E-10 1.53E-10 2.47E-11 2.45E-11 2.46E-11 2.47E-11 2.43E-11 3.02E-11 1.06E-03 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11

Data 5 6.67E-10 3.57E-11 2.99E-11 2.95E-11 2.98E-11 2.99E-11 2.97E-11 3.02E-11 7.01E-02 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11

As per the curves in Fig. 7, we detect that the proposed WOA_V_ET can outperform561

previous methods in terms of convergence speed, and it shows a superior tendency to find562

a better solution faster than other methods. We see that the BGSA, bALO, and BBA563

algorithms cannot show a good enough performance to avoid local optima; hence, their564

potential to escaping local optima is not remarkable.565
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Figure 7: Convergence curves for WOA-V-ET and other meta-heuristics
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The WOA_V_ET can avoid immature convergence and show an accelerated convergence566

trend. The reason is that this method utilizes the Elitist tournament scheme, which increases567

the potential of the algorithm in enriching the excellence of found feature sets in a gradual568

manner. It also establishes a fair balance between the exploration in initial phases and569

exploitation in later steps. Hence, if we monitor the behavior of the proposed WOA_V_ET,570

a smooth convergence trend can be observed.571

The selected features for Data1 dataset are shown in Table 18. The total number of572

selections for the most informative features are also shown in Table 19. The results in573

Table 19 are obtained after conducted 30 independent runs for each dataset (i.e the total574

number of runs is 150). By inspecting the results, it can be noticed that (H_L0.01_weight)575

feature achieved the best selection ratio (28.66%) followed by ( MI_dir_L0.01_weight),576

which selected in 20% of total runs. The (H_L0.01_weight) feature is corresponding to the577

weight of the attack stream at a certain time and specific streaming source that is specified578

by an Internet Protocol (IP) address. Similarly, the (MI_dir_L0.01_weight) feature is the579

weight of the attacks packets stream at a specific time and specific streaming source that is580

defined by an IP and MAC addresses. For more information, Appendix A (Table A.24) shows581

a detailed description of the features of the dataset. This confirms that these two features582

are the most effective, therefore they have a high influence on the prediction accuracy of the583

learning model and should not be ignored for IoT Attacks data.584

Table 18: The selected features for Data1 over 30 independent runs

Selected Features Accuracy No. features FN FP Sensitivity Specificity
H_L0.01_weight 0.99884 1 0 0 1 0.984375
MI_dir_L0.01_weight 0.99884 1 0 0 1 0.984375
H_L0.01_weight HH_jit_L5_mean 1 2 0 0 1 1
MI_dir_L0.01_weight HH_L5_mean 1 2 0 0 1 1
H_L0.01_weight HH_L0.01_mean 1 2 0 0 1 1
MI_dir_L0.01_weight HpHp_L1_magnitude 1 2 0 0 1 1
H_L0.01_weight HpHp_L3_magnitude 1 2 0 0 1 1
H_L0.01_weight HH_L3_magnitude 1 2 0 0 1 1
MI_dir_L0.01_weight HpHp_L0.1_mean 1 2 0 0 1 1
H_L0.01_weight HH_L0.1_mean 1 2 0 0 1 1
H_L0.01_weight HH_L0.1_mean 1 2 0 0 1 1
H_L0.01_weight HpHp_L3_mean 1 2 0 0 1 1
H_L0.01_weight HH_L0.01_magnitude 1 2 0 2 1 1
H_L0.01_weight HH_jit_L5_mean 1 2 0 0 1 1
H_L0.01_weight HH_L1_mean 1 2 0 0 1 1
H_L0.01_weight HH_L1_mean 1 2 0 0 1 1
H_L0.01_weight HH_L0.01_magnitude 1 2 0 2 1 1
MI_dir_L0.01_weight HpHp_L0.01_mean 1 2 0 0 1 1
H_L0.01_weight HpHp_L0.01_magnitude 1 2 1 0 0.999375 1
MI_dir_L0.01_weight HH_L0.01_magnitude 1 2 0 0 1 1
H_L0.01_weight HH_L1_magnitude 1 2 0 0 1 1
H_L0.01_weight HpHp_L5_mean 1 2 0 0 1 1
MI_dir_L0.01_weight HH_L1_magnitude 1 2 0 0 1 1
H_L0.01_weight HpHp_L5_magnitude 1 2 0 0 1 1
MI_dir_L0.01_weight HpHp_L3_mean 1 2 0 0 1 1
MI_dir_L0.01_weight HpHp_L5_radius HpHp_L3_mean 1 3 0 0 1 1
MI_dir_L0.01_weight HH_L1_radius HpHp_L5_magnitude 1 3 0 2 1 1
MI_dir_L0.01_weight HH_L1_weight HpHp_L1_magnitude 1 3 0 0 1 1
MI_dir_L5_weight MI_dir_L0.1_weight HpHp_L3_std HpHp_L0.01_mean 1 4 0 0 1 1
MI_dir_L3_weight H_L3_weight H_L3_mean HpHp_L0.1_std 0.99884 4 0 0 1 0.984375

0.99988 2.20000 0.03333 0.20000 0.99998 0.99844

Nonetheless, Table 20 exhibits the performance of WOA_V_ET against the Decision585

Trees algorithm (DT). In literature, the DT algorithm is used mainly for classification, where586

it creates a flowchart or tree-like structure of the classification rules. Each internal node587

denotes a feature, whereas the leaf nodes refer to the potential classification. To split the588
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Table 19: The total number of selections for the most informative features (selections ≥ 10)

Feature Data1 Data2 Data3 Data4 Data5 Total
H_L0.01_weight 17 11 5 9 1 43
MI_dir_L0.01_weight 11 9 4 3 3 30
H_L1_weight 0 2 1 0 11 14
MI_dir_L1_weight 0 3 5 1 4 13
H_L0.1_weight 0 5 1 5 2 13
HH_L0.01_magnitude 3 8 0 2 0 13
MI_dir_L0.1_weight 1 3 5 2 0 11
MI_dir_L3_weight 1 2 3 2 2 10
HpHp_L3_mean 3 3 0 2 2 10

data into different classes, the decision tree algorithm selects the optimal feature based on589

some measures such as the Gini index or the information gain. Afterward, the algorithm stops590

depending on a predefined stopping criterion, for example, reaching a maximum size of the591

tree [93]. In fact, the DT algorithm has been adopted in various feature selection problems592

which demonstrated intriguing performance results [94]. However, according to Table 20,593

it is clear that WOA_V_ET algorithm outperformed the DT algorithm remarkably in594

terms of accuracy, False Negative (FN), and sensitivity. Nevertheless, it performed better595

at some datasets regarding the False Positive (FP) and the specificity. For instance, looking596

at the accuracy results, WOA_V_ET behaved considerably better than DT at most of the597

datasets, reaching a maximum of (0.999) at the first dataset. Regarding the FN, it showed598

a superb decreasing rate of misclassifying the normal as an anomaly, where the FN results599

are dramatically better than the DT algorithm. Similarly is for identifying the anomalies600

represented by the sensitivity measure. Evidently, WOA_V_ET accomplished the best601

in terms of sensitivity at Data1 reaching a value of 1.000. Furthermore, WOA_V_ET602

outperformed DT in terms of FP and specificity at Data2 and Data3, while for specificity,603

both WOA_V_ET and DT accomplished very close performance.604

Table 20: A comparison between WOA_V_ET and DT algorithm based on accuracy, FP, FN, sensitivity,
and specificity

Benchmark
Accuracy FP FN sensitivity specificity

WOA_V_ET DT* WOA_V_ET DT* WOA_V_ET DT* WOA_V_ET DT* WOA_V_ET DT*
Data1 0.9999 0.9624 2.0000 0.0000 0.0333 65.0000 1.0000 0.9594 0.9846 1.0000

Data2 0.9978 0.7558 1.4000 2.0000 2.4667 420.0000 0.9985 0.7375 0.9891 0.9844
Data3 0.9941 0.7402 2.7667 82.0000 7.4667 367.0000 0.9953 0.7706 0.9784 0.3594
Data4 0.9952 0.7384 3.4667 0.0000 4.7667 452.0000 0.9970 0.7175 0.9729 1.0000

Data5 0.9890 0.8582 6.4667 0.0000 12.5000 245.0000 0.9922 0.8469 0.9495 1.0000

The observed trends vividly indicate that the WOA_V_ET reveals superior convergence605

drifts compared to other peers. Besides, stagnation behaviors of other methods can be ob-606

served when dealing with all datasets. According to these experiments, we conclude that the607

WOA_V_ET shows excellent efficacy compared to other well-regarded optimizers in liter-608

ature. Since we are looking for an efficient, accurate, and usable intrusion detection system609

over IoT environments, WOA_V_ET proves spectacular abilities to distinguish normal be-610

haviors from intrusions. Therefore, owing to WOA_V_ET’s better detection performance611
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and generalization ability, we highly recommend it as a deployable intrusion detection method612

for dealing with IoT scenarios.613

6.5. Performance of WOA_V_ET on general benchmarks614

This section investigates the behavior of WOA_V_ET algorithm on several general-615

purpose datasets, as well as compares it with DT and KNN algorithms. The datasets were616

drawn from the UCI repository. Table 21 presents the used datasets, their names, number617

of features, and the number of instances. It is clear from Table 21 that the datasets are with618

a different number of features and instances.619

Table 21: List of various UCI datasets

Dataset No. of Features No. of instances

Breastcancer 9 699
BreastEW 30 569
Exactly 13 1000
Exactly2 13 1000
HeartEW 13 270
Lymphography 18 148
M-of-n 13 1000
PenglungEW 325 73
SonarEW 60 208
SpectEW 22 267
CongressEW 16 435
IonosphereEW 34 351
KrvskpEW 36 3196
Tic-tac-toe 9 958
Vote 16 300
WaveformEW 40 5000
WineEW 13 178
Zoo 16 101

All conducted experiments in this section followed the same experimental settings of620

previous experiments; were all implemented on MATLAB 2018, withholding out 80% of the621

data for training and 20% for testing, while the k=5 for the KNN algorithm.622

Table 22 reports the average accuracy of the proposed algorithm WOA_V_ET over the623

used UCI datasets, and against WOA_V_ET against WOA_V_S, WOA_V_C, KNN, and624

DT. WOA_V_ET achieved higher average classification accuracy on 50% of the datasets625

with the significant reasonable F-test values. Also, it can obtain most of the time an accuracy626

rate higher than 90% while reaching 100% accuracy at the Zoo dataset. However, the rest of627

the algorithms fails to achieve better than at most 17% of the datasets. On the other hand,628

Table 23 presents the average selected number of features for WOA_V_ET, WOA_V_S,629

and WOA_V_C regarding all datasets and against the original number of features of the630

datasets. Clearly, we can see that WOA_V_ET reduced the selected number of features631

for 56% of the datasets with significant F-test values. While WOA_V_S minimized the632

features’ ratio to not more than 28% of the datasets, where WOA_V_C showed the weakest633

ability in reducing the features’ ratio.634

To sum up, WOA_V_ET algorithm achieved very-well on common general-purpose635
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Table 22: A comparison of average accuracy for WOA_V_ET against WOA_V_S, WOA_V_C, KNN,
and DT over all datasets

Benchmark
with FS without FS

WOA_V_S WOA_V_C WOA_V_ET KNN DT
Breastcancer 0.9750 0.9745 0.9838 0.9643 0.9500
BreastEW 0.9450 0.9828 0.9746 0.9386 0.9211
CongressEW 0.9797 0.9605 0.9962 0.9425 0.9425
Exactly 0.9043 0.7443 0.9198 0.6750 0.7100
Exactly2 0.7420 0.7550 0.7600 0.7800 0.6600
HeartEW 0.8426 0.8303 0.8438 0.8148 0.8148
IonosphereEW 0.9704 0.8953 0.9779 0.8451 0.9437
KrvskpEW 0.9609 0.9328 0.9559 0.9438 0.9938

Lymphography 0.9526 0.9092 0.8992 0.7333 0.7667
M-of-n 0.9605 0.8820 0.9740 0.8950 1.0000

penglungEW 0.9422 0.9778 0.9752 0.9231 0.3333
SonarEW 0.9437 0.9103 0.9691 0.9048 0.7857
SpectEW 0.8883 0.8728 0.8438 0.8148 0.8148
Tic-tac-toe 0.7971 0.8004 0.8325 0.8646 0.8490
Vote 0.9728 0.9794 0.9806 0.9533 0.9333
WaveformEW 0.7399 0.7194 0.7392 0.7780 0.7200
WineEW 0.9898 0.9815 0.9954 0.9722 0.8889
Zoo 1.0000 0.9984 1.0000 0.8571 1.0000

Rank (F-Test) 2.39 3.11 1.83 3.81 3.86

Table 23: A comparison of average selected number of features for WOA_V_ET against WOA_V_S,
WOA_V_C over all datasets

Benchmark WOA-V-S WOA-V-C WOA-V-ET Actual No. of features
Breastcancer 3.83 3.20 3.53 9.00
BreastEW 7.53 8.07 4.23 30.00
CongressEW 3.70 2.37 1.63 16.00
Exactly 6.00 6.20 5.20 13.00
Exactly2 5.30 1.00 1.00 13.00
HeartEW 4.33 3.80 2.30 13.00
IonosphereEW 6.20 7.43 4.17 34.00
KrvskpEW 12.23 11.80 8.03 36.00
Lymphography 4.33 5.90 4.97 18.00
M-of-n 5.83 6.03 6.13 13.00
penglungEW 8.47 14.00 8.77 325.00
SonarEW 10.80 12.83 8.93 60.00
SpectEW 4.93 7.23 1.30 22.00
Tic-tac-toe 4.63 5.30 4.80 9.00
Vote 2.03 3.50 2.23 16.00
WaveformEW 12.87 11.77 9.40 40.00
WineEW 4.63 3.20 4.53 13.00
Zoo 4.63 4.03 4.23 16.00
Rank(F-test) 2.17 2.31 1.53 4
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datasets, justifying it is reliable implementation and qualifying it for the objective of ac-636

curately identifying anomalies in a superior way over other algorithms.637

7. Conclusion and future works638

In this study, we proposed a augmented whale-inspired feature selection-based method639

for IoT attacks that is capable of being deployed in intrusion detection systems. In which,640

we tested both the S-shaped and V-shaped TFs with six different binarization methods641

for discretizing the continuous search space of WOA. We have created five new datasets by642

sampling the original N-BaIoT dataset. So, the algorithm is trained on two attacks and tested643

on ten attacks, where eight of them are new unseen attacks. In comparison with other well-644

regarded and recent algorithms, the binarization technique proved to be significant for the645

proposed optimizer efficiency. The Elitist tournament has ensured excellent capabilities in646

avoiding immature convergence, and in the potential of finding the optimal set of features in647

competitive time. Hence, we conclude that WOA_V_ET is able and worthy to be integrated648

within intrusion detection systems for IoT environments.649

Future works can focus on the development of other binary optimizers such as harris650

hawks optimizer and investigate how efficient it can be. Evaluation of more classifiers and651

analyzing more datasets are also welcomed. In future works, we will extend the proposed652

framework for more variety of IoT datasets with different characteristics and scales.653
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Appendix A.

Table A.24: Description of collected IoT features

Stream aggregation

H Source Internet Protocol (IP); stats summarizing the recent traffic from this packet’s host (IP)
MI Source MAC-IP; stats summarizing the recent traffic from this packet’s host (IP + MAC)
HH Channel; stats summarizing the recent traffic going from this packet’s host (IP) to the packet’s destination host.
HH-jit Channel jitter; stats summarizing the jitter of the traffic going from this packet’s host (IP) to the packet’s destination host.
HpHp Socket; stats summarizing the recent traffic going from this packet’s host + port (IP) to the packet’s destination host + port.
Time-frame (The decay factor Lambda)

How much recent history of the stream is captured in these statistics
L5, L3, L1, L0.1 and L0.01
The statistics extracted from the packet stream

weight The weight of the stream
mean The mean of the stream
std The standard deviation of the stream
radius The root squared sum of the two streams’ variances
magnitude The root squared sum of the two streams’ means
cov An approximated covariance between two streams
pcc An approximated correlation coefficient between two streams
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Table A.25: Comparison between S-shaped and V-shaped TF with each binarization technique based on the
average number of features

Benchmark Measure
WOA_S WOA_C WOA_E WOA_ERW WOA_ET WOA_ER

S-Shaped V-Shaped S-Shaped V-Shaped S-Shaped V-Shaped S-Shaped V-Shaped S-Shaped V-Shaped S-Shaped V-Shaped

Data1
AVG 54.8000 2.5000 50.6000 2.3000 45.8333 1.8333 51.4333 2.3333 54.3333 2.2000 51.7333 3.7333
STD 6.9798 0.9002 6.6312 0.7497 5.6022 0.4611 5.0150 0.8841 5.7615 0.7611 5.9996 2.0331

Data2
AVG 44.2333 2.1667 46.7000 2.1333 42.3000 2.4333 49.1000 3.4667 47.7667 3.5333 46.5000 4.5333
STD 4.3840 0.5921 7.3819 0.6814 6.9933 0.5683 6.4560 2.0126 6.5951 2.6876 6.0215 2.3004

Data3
AVG 54.0667 2.7000 53.9667 2.1333 45.5667 2.5333 52.4000 5.6000 54.3333 2.6667 54.4333 5.7333
STD 8.6699 1.3933 5.6231 0.7761 6.0211 1.1666 6.0663 7.2474 4.0115 1.5388 5.9346 7.9217

Data4
AVG 47.0000 2.0667 49.4667 2.1333 44.6000 2.0000 51.2333 2.6000 49.6667 2.5333 50.4333 4.0667
STD 6.3300 0.5833 6.1405 0.5074 5.6300 0.4549 6.3555 1.6316 6.0988 1.4320 5.0901 2.2118

Data5
AVG 56.5000 2.4667 51.9667 2.4000 44.7333 2.1000 51.4667 4.5667 53.8333 4.4667 51.6333 4.2000
STD 12.0766 1.2794 8.0921 0.9685 7.8298 0.8030 6.7606 3.5398 5.4715 3.4415 6.0257 1.6484

Ranking W|T|L 0|0|5 5|0|0 0|0|5 5|0|0 0|0|5 5|0|0 0|0|5 5|0|0 0|0|5 5|0|0 0|0|5 5|0|0

Table A.26: Comparison between S-shaped and V-shaped TF with each binarization technique based on the
average fitness

Benchmark Measure
WOA_S WOA_C WOA_E WOA_ERW WOA_ET WOA_ER

S-Shaped V-Shaped S-Shaped V-Shaped S-Shaped V-Shaped S-Shaped V-Shaped S-Shaped V-Shaped S-Shaped V-Shaped

Data1
AVG 0.0312 0.0022 0.0182 0.0016 0.0158 0.0011 0.0215 0.0003 0.0209 0.0003 0.0220 0.0005
STD 0.0237 0.0059 0.0097 0.0052 0.0078 0.0024 0.0113 0.0004 0.0080 0.0004 0.0108 0.0005

Data2
AVG 0.0176 0.0074 0.0162 0.0039 0.0143 0.0020 0.0151 0.0016 0.0166 0.0025 0.0172 0.0028
STD 0.0024 0.0064 0.0039 0.0049 0.0050 0.0033 0.0050 0.0027 0.0038 0.0042 0.0026 0.0046

Data3
AVG 0.0888 0.0329 0.0856 0.0106 0.0795 0.0079 0.0841 0.0153 0.0849 0.0061 0.0863 0.0044
STD 0.0054 0.0417 0.0038 0.0206 0.0202 0.0229 0.0057 0.0314 0.0027 0.0171 0.0038 0.0149

Data4
AVG 0.0839 0.0267 0.0831 0.0124 0.0804 0.0047 0.0833 0.0113 0.0832 0.0049 0.0833 0.0082
STD 0.0007 0.0347 0.0005 0.0253 0.0111 0.0114 0.0006 0.0246 0.0006 0.0171 0.0007 0.0184

Data5
AVG 0.0894 0.0358 0.0869 0.0200 0.0856 0.0154 0.0867 0.0196 0.0864 0.0113 0.0871 0.0148
STD 0.0034 0.0339 0.0035 0.0232 0.0038 0.0130 0.0038 0.0265 0.0031 0.0138 0.0031 0.0210

Ranking W|T|L 0|0|5 5|0|0 0|0|5 5|0|0 0|0|5 5|0|0 0|0|5 5|0|0 0|0|5 5|0|0 0|0|5 5|0|0

Table A.27: Comparison between S-shaped and V-shaped TF with each binarization technique based on the
average running time

Benchmark Measure
WOA_S WOA_C WOA_E WOA_ERW WOA_ET WOA_ER

S-Shaped V-Shaped S-Shaped V-Shaped S-Shaped V-Shaped S-Shaped V-Shaped S-Shaped V-Shaped S-Shaped V-Shaped

Data1
AVG 1115.0790 72.3882 507.8244 36.2237 388.1752 34.9567 505.4321 125.8332 519.2185 141.3283 506.8822 178.4947
STD 30.5503 9.9035 23.5766 2.9508 5.5141 5.1691 22.4777 21.6767 27.4476 20.9900 22.5719 28.3152

Data2
AVG 1089.0823 70.8111 515.7779 38.6849 408.7167 41.5443 501.1311 157.5332 561.4072 158.8498 493.7255 193.6005
STD 18.3113 6.7289 24.1248 4.5432 6.3923 4.9965 25.1599 35.0779 22.6492 28.7516 6.4625 23.3072

Data3
AVG 979.4945 80.8584 575.7358 44.0454 387.7059 39.5868 545.1944 201.5595 498.2963 179.3935 571.3142 208.5372
STD 46.9451 7.6494 12.3219 5.3780 9.5411 4.0352 23.8602 39.7943 10.2730 25.3290 20.5155 30.8352

Data4
AVG 936.4449 85.2780 546.9681 46.3031 387.1246 43.3901 501.9455 189.8144 499.7265 169.7138 509.2292 200.4964
STD 37.3279 10.1481 22.4782 4.2200 11.9758 5.8868 21.7710 30.6690 11.9152 25.5382 27.0674 25.6574

Data5
AVG 1125.7411 82.6338 529.0892 46.6991 395.9502 44.0449 581.6452 195.6686 554.7243 174.8223 494.9861 201.8014
STD 41.6083 11.4962 21.7797 6.8935 10.0535 4.3402 19.0502 44.0607 23.9955 24.2564 10.8201 23.9331

Ranking W|T|L 0|0|5 5|0|0 0|0|5 5|0|0 0|0|5 5|0|0 0|0|5 5|0|0 0|0|5 5|0|0 0|0|5 5|0|0
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Table A.28: Comparison between WOA-V-ET and other optimizers based on average running time

Benchmark Measure WOA-V-ET BGOA bGWO BGSA BPSO bALO BBA BSSA

Data1
AVG 141.3283 378.4813 146.4914 541.6860 460.2917 1343.3640 425.2024 1393.7636
STD 20.9900 20.0269 33.7014 24.8681 11.8739 188.1298 29.9367 47.1594

Data2
AVG 158.8498 371.4675 147.3034 511.1896 415.3392 1074.9705 419.9024 1297.9845
STD 28.7516 13.3798 30.0253 16.7741 10.6119 114.1334 25.1458 28.8753

Data3
AVG 179.3935 388.6952 158.0929 515.2675 443.7511 1181.5459 419.8148 1317.7268
STD 25.3290 19.6799 37.2793 24.9507 9.3245 173.0044 23.4784 29.2337

Data4
AVG 169.7138 350.0157 143.8717 514.3160 432.3967 1119.8705 427.9225 1316.8528
STD 25.5382 11.2023 27.8197 22.8927 8.7900 145.2760 33.2796 27.9399

Data5
AVG 174.8223 366.0586 157.1096 519.8671 434.1215 1167.9915 428.8212 1320.0643
STD 24.2564 17.5830 39.7709 16.3028 9.8424 180.7015 19.4970 31.8269

Overall Ranking F-Test 1.8 3 1.2 6 4.8 7 4.2 8

Table A.29: Comparison between WOA-V-ET and other optimizers based on the average number of features

Benchmark Measure WOA-V-ET BGOA bGWO BGSA BPSO bALO BBA BSSA

Data1
AVG 2.2000 27.3000 9.1000 52.8667 47.6333 75.0000 45.8000 63.0667
STD 0.7611 7.8131 3.4576 5.0701 5.4487 12.7144 7.4436 5.5766

Data2
AVG 3.5333 25.8667 9.0333 53.6333 39.3333 59.7667 47.2333 56.7333
STD 2.6876 9.0544 2.6061 4.9024 5.6038 10.8681 5.5191 4.1267

Data3
AVG 2.6667 28.5667 10.1667 52.9333 46.6667 69.7333 43.1667 62.1333
STD 1.5388 9.2836 3.9661 4.4251 4.2858 13.5340 8.6785 5.7878

Data4
AVG 2.5333 21.2333 8.8000 52.6333 41.0000 65.5000 47.6667 60.0667
STD 1.4320 6.5794 1.9191 6.6461 5.2850 14.8968 6.0077 5.0099

Data5
AVG 4.4667 26.0667 10.1667 54.0000 44.1000 72.3667 44.2667 62.2333
STD 3.4415 7.1820 4.4263 4.4256 5.8566 14.6605 7.0169 6.2239

Overall Ranking F-Test 1 3 2 6 4.4 8 4.6 7

Table A.30: Comparison between WOA-V-ET and other optimizers based on average fitness

Benchmark Measure WOA-V-ET BGOA bGWO BGSA BPSO bALO BBA BSSA

Data1
AVG 0.0003 0.0035 0.0313 0.0846 0.0101 0.0796 0.0758 0.0585
STD 0.0004 0.0009 0.0349 0.0220 0.0075 0.0149 0.0368 0.0259

Data2
AVG 0.0025 0.0121 0.0146 0.0243 0.0164 0.0196 0.0206 0.0192
STD 0.0042 0.0053 0.0025 0.0245 0.0032 0.0010 0.0092 0.0004

Data3
AVG 0.0061 0.0754 0.0895 0.1121 0.0844 0.0973 0.1153 0.0929
STD 0.0171 0.0252 0.0054 0.0248 0.0042 0.0026 0.0390 0.0050

Data4
AVG 0.0049 0.0635 0.0808 0.0986 0.0828 0.0860 0.1045 0.0851
STD 0.0171 0.0323 0.0005 0.0225 0.0006 0.0013 0.0218 0.0006

Data5
AVG 0.0113 0.0763 0.0862 0.1021 0.0870 0.0939 0.1020 0.0912
STD 0.0138 0.0217 0.0100 0.0295 0.0048 0.0022 0.0165 0.0032

Overall Ranking F-Test 1 2 3.4 7.6 3.6 6.2 7.2 5
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