See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/358343967

## Image segmentation of Leaf Spot Diseases on Maize using multi-stage Cauchy-enabled grey wolf algorithm

Article in Engineering Applications of Artificial Intelligence • March 2022
DOI: 10.1016/j.engappai.2021.104653

## Citations

62

8 authors, including:


Chen Cheng
Jilin University
13 PUBLICATIONS 336 CITATIONS

SEE PROFILE


Huiling Chen
Wenzhou University
400 PUBLICATIONS 23,081 CITATIONS
SEE PROFILE


Ali Asghar Heidari
National University of Singapore
231 PUBLICATIONS $\mathbf{1 6 , 6 1 7}$ CITATIONS
SEE PROFILE
8) Atef Zaguia

Taif University
76 PUBLICATIONS 832 CITATIONS
SEE PROFILE

[^0]Binary Salp Swarm Algorithm for discrete optimization problems View project

Machine learning for financial distress prediction View project

# Image Segmentation of Leaf Spot Diseases on Maize using Multi-Stage Cauchy-enabled Grey Wolf Algorithm 

Helong $\mathrm{Yu}^{1}$, Jiuman Song ${ }^{1}$, Chengcheng Chen ${ }^{2}$, Ali Asghar Heidari ${ }^{3}$, Jiawen Liu ${ }^{1}$, Huiling Chen ${ }^{3}$, Atef Zaguia ${ }^{4}$, Majdi Mafarja ${ }^{5}$<br>${ }^{1}$ College of Information Technology, Jilin Agricultural University, Changchun 130118, China yuhelong@aliyun.com, songiiuman@mails.jlau.edu.cn, liu_jia_wen_ljw@163.com<br>${ }^{2}$ College of Computer Science and Technology, Jilin University, Changchun 130012, China<br>chencc18@mails.jlu.edu.cn<br>${ }^{3}$ Department of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou 325035, China chenhuiling.jlu@gmail.com, aliasghar68@gmail.com<br>${ }^{4}$ Department of computer science, College of Computers and Information Technology, Taif University, P.O. BOX 11099, Taif 21944, Saudi Arabia<br>zaguia.atef@tu.edu.sa<br>${ }^{5}$ Department of Computer Science, Birzeit University, POBox 14, West Bank, Palestine<br>mmafarja@birzeit.edu

* Corresponding Author: Huiling Chen

E-mail: chenhuiling.jlu@gmail.com (Huiling Chen)


#### Abstract

: Grey wolf optimizer (GWO) is a widespread metaphor-based algorithm based on the enhanced variants of velocity-free particle swarm optimizer with proven defects and shortcomings in performance. Regardless of the proven defect and lack of novelty in this algorithm, the GWO has a simple algorithm and it may face considerable unbalanced exploration and exploitation trends. However, GWO is easy to be utilized, and it has a low capacity to deal with multi-modal functions, and it quickly falls into the optima trap or fails to find the global optimal solution. To improve the shortcomings of the basic GWO, this paper proposes an improved GWO called multi-stage grey wolf optimizer (MGWO). By dividing the search process into three stages and using different population updating strategies at each stage, the MGWO's optimization ability is improved while maintaining a certain convergence speed. The MGWO cannot easily fall into premature convergence and has a better ability to get rid of the local optima trap than GWO. Meanwhile, the MGWO achieves a better balance of exploration and exploitation and has a rough balance curve. Hence, the proposed MGWO can obtain a higher-quality solution. Based on verification on the thirty benchmark functions of IEEE CEC2017 as the objective functions, the simulation experiments in which MGWO compared with some swarmbased optimization algorithms and the balance and diversity analysis were conducted. The results verify the effectiveness and superiority of MGWO. Finally, the MGWO was applied to the multi-threshold image segmentation of Leaf Spot Diseases on Maize at four different threshold levels. The segmentation results were analyzed by comparing each comparative algorithm's PSNR, SSIM, and FSIM.


The results proved that the MGWO has noticeable competitiveness, and it can be used as an effective optimizer for multi-threshold image segmentation.

Keywords: Grey wolf optimizer; Salp swarm algorithm; Global optimization; Multi-threshold image segmentation; Kapur's entropy; Leaf Spot Diseases on Maize

## 1. Introduction

### 1.1 Motivation

Optimization problems have three critical components that are decision, objective, and constraint (Ba et al., 2020; Gupta et al., 2019; Liang et al., 2020; Zhang et al., 2020a). The constraint is optional, and optimization problems can have one or more constraints. According to the number of objectives, optimization problems can be divided into single-objective optimization and multi-objective optimization. Moreover, according to the types of independent variables of the objective function, optimization problems can be divided into continuous optimization and discrete optimization. Solving optimization problems is to obtain the actual optimal solution or its approximate solution by achieving one or several maximizations or minimization goals under certain constraints. Recently, the optimization algorithms have applied many fields, including wind speed prediction (Chen et al., 2019c), detection of foreign fiber in cotton (Zhao et al., 2015; Zhao et al., 2014), medical data classification (Hu et al., 2017; Huang et al., 2019; Li et al., 2018; Zhao et al., 2019b), fault diagnosis of rolling bearings (Deng et al., 2020a; Zhao et al., 2020d), gate resource allocation (Deng et al., 2020c; Deng et al., 2020e), and the hard maximum satisfiability problem (Zeng et al., 2011a).

Gradient Descent, Newton's method, Quasi-Newton method, and Conjugate Gradient can solve simple optimization problems in real life and production. The Lagrange multiplier method can be used when the objective is a constrained optimization problem. However, as the complexity, dimensions, or objectives of optimization problems increases, it becomes impractical to use precise methods. The solution is to use bio-inspired methods or heuristic algorithms or meta-heuristic algorithms (MAs) (Pang et al., 2018; Zhou et al., 2018), which can help us to find the optimum or approximate optimum value (Wang et al., 2020c). MAs are widely concerned and applied because of their simplicity of implementation and openness to various improvements (Hu et al., 2021b; Li et al., 2017a; Liu et al., 2015; Zhang et al., 2020b; Zhang et al., 2020d). MAs do not seek the answer with specific steps but explore and exploit the search space with an empirical rule to approach the optimal solution as much as possible (Zhao et al., 2020b; Zhao et al., 2020c). MAs overcome the shortcomings of the traditional methods, such as slow convergence speed and low precision (Pang et al., 2018; Zhou et al., 2018). After appropriate improvement, improved MAs can solve the multi-objective optimization problems and constrained optimization problems. At present, there are many MAs, including particle swarm optimizer (PSO) (Kennedy and Eberhart, 1995), artificial bee colony algorithm (ABC) (Karaboga and Basturk, 2007), ant colony optimization (ACO) (Dorigo and Blum, 2005), firefly algorithm (FA) (Yang, 2010), bacterial foraging optimization (BFO) (Fan et al., 2018), fruit fly optimization (FOA) (Shen et al., 2016), and Bat-inspired Algorithm (BA). MAs that have been proposed in the past three years include slime mould algorithm (SMA) (Li et al., 2020b), hunger games search (HGS) (Yang et al., 2021a), Runge Kutta
optimizer (RUN) ${ }^{1}$ (Ahmadianfar et al., 2021), and Harris hawks optimization (HHO) ${ }^{2}$ (A et al., 2019). Slime mould algorithm ${ }^{3}$ (SMA) was proposed based upon the oscillation mode and the cooperative behavior of slime mould in nature. HHO was inspired by the chasing style of Harris' hawks in nature called surprise pounce. Hunger games search ${ }^{4}$ (HGS) was developed based on the hunger-driven activities of animals for searching for food. Moreover, RUN was developed based on the concepts of Runge Kutta methods in mathematics. However, performance aspects of HGS and RUN still need further verifications for different problems in the future. In addition, these MAs has found there application in many fields such as the hard maximum satisfiability problem (Zeng et al., 2011b; Zeng et al., 2012), bankruptcy prediction (Cai et al., 2019; Yu et al., 2021; Zhang et al., 2020c), parameter optimization (Heidari et al., 2019a; Shen et al., 2016; Wang and Chen, 2020; Wang et al., 2017b), PID optimization control (Zeng et al., 2015; Zeng et al., 2014; Zeng et al., 2019), gate resource allocation (Deng et al., 2020d; W et al., 2020), fault diagnosis of rolling bearings (Deng et al., 2020b; Zhao et al., 2019a), cloud workflow scheduling (Chen et al., 2018; Wang et al., 2019c), energy vehicle dispatch (Liang et al., 2019), and design of power electronic circuit (Liu et al., 2021; Zhan et al., 2016).

GWO is an optimization method centered around three optimal individuals. GWO controls the algorithm's exploration and exploitation processes through the unexpected change of variable $C$ and the linear change of parameter $a$. Compared with other swarm intelligence optimization algorithms, GWO has apparent advantages when dealing with unimodal functions, with a fair balance between exploration and exploitation. When the objective function is multimodal, GWO pays more attention to the exploration process. The algorithm's convergence rate is not considerable, and it quickly falls into the local optima trap or obtains the solution with low precision. Each swarm intelligence optimization algorithm has two processes of exploration and exploitation when solving optimization problems. The algorithm tries to discover the problem search space areas that are more likely to contain the optimal solution in the exploration process. In the exploitation process, the primary goal is to gain better solutions by searching the neighborhood of each solution obtained in the exploration process. Enhancing the algorithm's exploration ability is bound to sacrifice the convergence rate, and enhancing the algorithm's exploitation ability will increase the algorithm's risk of falling into the local optima trap. Therefore, exploration and exploitation are two conflicting processes in an algorithm's optimization for a given problem. Balancing the exploration and exploitation in the search process is the main challenge of the swarm intelligence algorithms. Given the shortcomings of primary GWO, we hope to improve its performance on multimodal functions, achieve a fairer balance between exploration and exploitation and improve the obtained solution's accuracy.

### 1.2 Literature review

Complex feature spaces often bring many possibilities and variables into the loop. Decision-makers always need to have a set of optimal choices to make their operation cost-efficient. This cost can be subject to constraints and the project's target, but choosing and finding the best set of solutions is a global requirement. These real-world problems are from different classes, such as data-to-text

[^1]generation (Jiang et al., 2020a), crowdsensing (Jiang et al., 2020c), service function chains (Cai et al., 2021; Luo et al., 2020a), airline crew rostering problem (Zhou et al., 2020), design of power electronic circuit (Liu et al., 2021; Zhan et al., 2016), and scene alignment (Zhong et al., 2022). One of the possible methods for dealing with such feature spaces and complex cases is a branch of solver called metaheuristic. GWO is a metaphor-based algorithm that is technically a variant of PSO (Villalón et al., 2020). Regardless of its novelty and defects, we pay attention on its performance procedures. GWO divides the whole process into three main steps. Limited by the population updating mechanism, GWO has a certain convergence speed in the early iterations, which is not excellent in the later iterations. Niu et al. (Niu et al., 2019b) found that for optimization problems with an optimal solution of 0 , GWO has a good performance. Still, the farther the optimal solution of the function is from 0 , the worse its performance will be. GWO has a low capacity to deal with the objective with a multi-modal search landscape, as it seems that all three alpha, beta, and gamma agents have a tendency to converge to the same point. In such a case, GWO quickly falls into the optima trap or fails to find the global optimal solution. Faris et al. (Faris et al., 2018) have proposed that adding more random components to mutate the solutions during optimization will increase finding the global optimum.

Many researchers have proposed different improved GWO algorithms because of the GWO's shortcomings. There are many approaches to enhance the performance of the primary GWO. Introduce effective mechanisms into GWO to improve the global exploration and local exploitation capacities, the algorithm's convergence rate, and the solution's quality (Amirsadri et al., 2018; Fan et al., 2020; Gupta and Deep, 2019; Ibrahim et al., 2018; Saxena et al., 2018; Zhang et al., 2018; Zhao et al., 2019b). Lu et al. (Lu et al., 2020) investigated three chaotic strategies with eleven various chaotic map functions and incorporated the most suitable one into GWO to enhance the algorithm's performance. Many improved GWOs use different chaos strategies to initialize a population or change individuals' positions during iterations(Saxena et al., 2019; Teng et al., 2019). Li et al. (Wang et al., 2020a) utilized Kent chaotic algorithm to initialize the population, proposed an adaptive adjustment strategy of a control parameter, and introduced the individual speed and position updates of PSO into the primary GWO. These strategies enhance the population's diversity, balance exploration, and exploitation, and accelerate the convergence speed, respectively. Gupta et al. (Gupta and Deep, 2020) proposed the memory-based GWO. The wolves' search mechanism is modified based on the personal best history of each individual wolves, crossover, and greedy selection. Experiments showed that this algorithm has better search efficiency, solution accuracy, and convergence speed. Wang et al. (Wang et al., 2019a) introduced the Gaussian estimation of distribution (GED) strategy into GWO. Gauss probability model is used to estimate the distribution of the selected superior individuals and shifts the weighted mean to adjust the search directions to enhance the local search ability.

The performance of GWO can be improved by changing the leadership hierarchy of grey wolves. Cai et al. (Cai et al., 2019) proposed an improved GWO (IGWO) with a new mechanism in which random local search around the optimal grey wolf was introduced in beta grey wolves. A random global search was introduced in omega grey wolves, improving the grey wolves' stochastic behavior and exploration capability. The reconfiguration of the position updating formula of wolves is also a method to improve the GWO. After introducing the fitness-based self-adaptive weight coefficients to simulate the grey wolf hierarchy, Miao et al. (Miao et al., 2020) proposed an improved position-updating equation to improve the advanced leadership wolves, thus strengthening the GWO's global exploration ability. Other optimization algorithms can be combined with GWO to make up for the shortcomings of the primary GWO. Tang et al. (Tang et al., 2020b) introduced FA and opposition-based learning into the

GWO and took advantage of them to mitigate the immature convergence of GWO. Zhang et al. (Li et al., 2020a) adjusted the exploration rate of basic GWO based on reinforcement learning principles, improved neural network algorithm (NNA) by discarding transfer operator, introducing random modification factors, and combining them with dynamic population mechanisms. The proposed grey wolf optimization with a neural network algorithm (GNNA) makes full use of the NAA's good global search ability and the GWO's fast convergence. Qu et al. (Qu et al., 2020) used GWO to modify the commensalism phase of the symbiotic organisms search (SOS) algorithm, proposed HSGWO-MSOS, which combines the simplified grey wolf optimizer (SGWO) and the modified SOS. Long et al. (Long et al., 2020b) proposed a hybrid algorithm based on GWO and cuckoo search (CS). A new opposition learning strategy for the decision layer individuals was added to enhance the population's diversity and enable the algorithm to balance exploration and exploitation. Al-Betar et al. (Al-Betar et al., 2020) integrated the beta-hill climbing optimizer (beta HC ) into GWO, where GWO is mainly used for exploration. In contrast, beta HC is used primarily for exploitation to better balance exploration and development in a single optimization framework.

With appropriate improvements, GWO can be adapted to solve multi-objective optimization problems. A novel multi-objective GWO called MMOGWO (Liu et al., 2020) based on adaptive chaotic mutation strategy, boundary mutation strategy, and elitism strategy was proposed by Liu et al. Lu et al. (Lu et al., 2019) proposed a novel multi-objective cellular GWO (MOCGWO) that integrates the merits of cellular automata (CA) for diversification and variable neighborhood search (VNS) for intensification, to balance exploration and exploitation. For optimization problems with a high dimension, Dong et al. (Dong and Dong, 2020) proposed a surrogate-assisted GWO (SAGWO) algorithm in which radial basis function (RBF) is employed as the surrogate model. The knowledge gained from the RBF model assists the generation of new wolf leaders in each iteration. Moreover, some researchers have improved GWO to variants suitable for binary problems. Luo et al. (Luo and Zhao, 2019) proposed binary GWO to tackle the multidimensional knapsack problems. The new algorithm contains an initial elite population generator, a pseudo-utility-based quick repair operator, and a differentiated position updating strategy.

Due to the significant advantages of GWO, it has been widely used in various applications from crucial domains, and there have been many improved GWO for specific applications. These domains include machine learning, engineering applications, wireless sensor network (WSN), medical diagnosis, and image processing. There are some overlapping and combinative cases among the above domains.

The significant applications of GWO and variants in machine learning are feature selection, neural network training, and support vector machine (SVM) optimization. Pathak et al. (Pathak et al., 2019) proposed a novel levy flight-based GWO and used it to select the steganalysis algorithm's prominent features from a set of original features. To tackle the Arabic text classification problem, Chantar et al. (Chantar et al., 2020a) proposed an enhanced binary GWO within a wrapper FS approach, where binary GWO played the role of a wrapper-based feature selection technique. Li et al. (Li et al., 2017b) proposed an improved GWO, a feature selection approach used to find the optimal feature subset for medical data. Then, the kernel extreme learning machine (KELM) was integrated into the improved GWO and formed a new predictive framework for medical diagnosis. Wei et al. (Wei et al., 2017) combined SVM with an improved GWO to develop a new and effective prediction system, in which the improved GWO was used to identify the most discriminative features for significant prediction. Path planning is an engineering application that can use GWO and variants to realization. Dewangan et al. (Dewangan et al., 2019) utilized GWO to solve three Dimensional multi-Unmanned Aerial Vehicle (UAV). And it is proved by experiments that GWO outperforms the other deterministic algorithms in path planning
for 3D multi-UAV. Lipare et al. (Lipare et al., 2019) proposed two novel fitness functions for clustering and routing problems and applied the GWO approach for energy-efficient clustering and routing in WSN. To handle the zero-day security attacks in open WSN, Davahli et al. (Davahli et al., 2020) presented a lightweight machine learning-based intrusion detection technique with high performance based on the hybridization of genetic algorithm (GA) and GWO. Sundaramurthy et al. (Sundaramurthy and Jayavel, 2020) enhanced the capability of C4.5 by using the hybridization of GWO and PSO to develop an effective Rheumatoid Arthritis prediction system. Ma et al. (Ma et al., 2019) introduced GWO into the fractional grey model to find the optimal value of fractional order and improve forecasting methods. To deal with the least square representation problem more effectively to obtain optimal reconstruction weights, Rajput et al. (Rajput et al., 2019) proposed a GWO based face image super-resolution algorithm. Dappuri et al. (Dappuri et al., 2020) proposed an enhanced GWO. They used it to optimize the proposed algorithm called singular value decomposition in translation-invariant wavelet (SVD-TIW), a non-blind color image watermarking approach.

Aiming at the development and improvement of MAs, part of the related work of the team is as follows: SMA (Li et al., 2020b) and HGS (Yang et al., 2021b) have been developed, and the IGWO (Cai et al., 2019) briefly described above has been proposed. Wang et al. (Wang et al., 2017a) proposed a new KELM parameter tuning strategy using GWO for bankruptcy prediction. Heidari et al. (Heidari et al., 2019b) took advantage of several exploratory and exploitative mechanisms, including random leaders, opposition-based learning, Lévy flight, random spiral-form motions to boost the convergence rate and the performance of the GWO, then called the improved algorithm OBLGWO. Hu et al. (Hu et al., 2021b) used the advantages of covariance matrix adaptation evolution strategy, Lévy flight, and orthogonal learning strategy to enhance the GWO's performance for dealing with complex optimization problems. To boost the BA's stability and convergence speed, Yu et al. (Yu et al., 2020) proposed a chaos-enhanced BA, which uses a threshold to control the steps of chaotic mapping as well as uses a velocity inertia weight to synchronize agents' velocity. Chen et al. (Chen et al., 2019a) drew Lévy flight and chaotic local search into the original WOA to guide the swarm and boost the whole algorithm's exploratory capacity. Huang (Huang et al., 2020) presented an improved SCA called CLSCA, utilizing two strategies which are Lévy flight and chaotic local search mechanism, to boost the algorithm's exploratory and exploitative abilities respectively for dealing with optimization problems with different dimensions. To relieve the original GOA's disadvantages, including premature convergence and slow convergence rate, Luo et al. (Luo et al., 2018) combined three strategies which are Gaussian mutation, Lévy flight, and opposition-based learning into GOA, then proposed an effective kernel extreme learning machine model based on the improved GOA for financial stress prediction.

Image segmentation is the process of dividing an image into several groups of uniform and mutually exclusive pixels, and it is the preprocessing step of many advanced image processing and target recognition. Image segmentation can be performed by recursively segmenting the entire image or merging a number of small regions until the predetermined conditions are met. At present, the widely used image segmentation is thresholding segmentation, region growing, region splitting and merging, segmentation based on neural network, segmentation based on clustering analysis, and so on. Thresholding segmentation is one of the essential techniques in the image segmentation field. The traditional threshold segmentation method using the histogram to segment the foreground and background of an image has the advantages of simplicity, good robustness, short convergence time, and high accuracy. However, with the increase of thresholds level and limited by the inherent fuzziness
of natural images, the exhaustive search method becomes lower in efficiency and accuracy. Therefore, many evolutionary algorithms and swarm intelligence algorithms are applied to search for the optimal thresholds. After reasonable improvement, the traditional threshold segmentation method also can be applied to color image segmentation (Rahkar Farshi et al., 2018).

Bhandari (Bhandari, 2020) proposed a new beta differential evolution (BDE)-based fast color image multi-threshold scheme. Ahmed et al. (Ahmed et al., 2018) proposed an alternative hybrid swarm algorithm that combined the WOA and the PSO for multi-threshold image segmentation. Gao et al. [56] proposed a segmentation method based on a new ABC algorithm for doing more fine-tuning searches and further enhancing image segmentation achievements. Chakraborty et al. (Chakraborty et al., 2019) presented a novel improved PSO (IPSO)-based multi-threshold algorithm to search the nearoptimal minimum cross-entropy thresholding thresholds. Xu et al. (Xu et al., 2019a) presented a memetic algorithm of dragonfly algorithm (DA) and DE for color image segmentation.

The Otsu algorithm can be used to evaluate the optimal thresholds. Moreover, other adaptive methods that are used to evaluate the optimal thresholds can also be encapsulated as the objective functions of swarm intelligence optimization algorithms, such as Rényi entropy (Mittal and Saraswat, 2018), Shannon entropy (Naidu et al., 2018), Fuzzy entropy (Bhandari and Rahul, 2019), Kapur's entropy (Upadhyay and Chhabra, 2020), Tsallis entropy (Wang et al., 2019b) and Masi entropy (Khairuzzaman and Chaudhury, 2019). Habba et al. (Habba et al., 2018) presented a novel evaluation criterion based on the Gini index and the entropy calculation. Pare et al. (Pare et al., 2018) presented a modified fuzzy entropy (MFE) function to perform the multi-threshold segmentation of color images. Oliva et al. (Oliva et al., 2019) proposed using evolutionary computation algorithms combined with the Type II Fuzzy entropy as the objective function. The quality of image segmentation essentially affects the performance of automatic image analysis systems. Therefore, how to evaluate the quality of image segmentation is also a crux. The assessment indexes widely used in present researches are as follows: feature similarity (FSIM), peak signal-to-noise ratio (PSNR), structural similarity (SSIM) and mean structural similarity (MSSIM) (Boubechal et al., 2019). There are many multi-threshold image segmentation applications, such as breast cancer thermography image segmentation, magnetic resonance image (MRI) segmentation in the medical field, color satellite image segmentation, weather radar image segmentation, and so on.

### 1.3 Contribution and paper organization

This paper's contributions are as follows: 1) The iterative search process of the original algorithm is divided into three stages. At the first stage, the MGWO takes full advantage of the primary GWO's strong exploration capability. SSA has a reasonable convergence rate and is not easily fall into the local optima trap. Therefore, at the second stage, part of the position update formula of the SSA algorithm is used to change the individual grey wolf's position to alleviate the shortcomings of the primary GWO. Thus, the proposed algorithm's convergence rate and the ability to jump out of the local optima trap are improved. At the last stage, the algorithm is dedicated to exploiting promising areas. A more accurate solution can be obtained by performing Cauchy mutation on each dimension of the current optimal solution. Based on the above innovations, a new, improved multi-stage GWO (MGWO) is proposed. Besides, by comparing with other competitors, the superiority of MGWO is proved. 2) The proposed MGWO was applied to the multi-threshold image segmentation of Leaf Spot Diseases on Maize, and experiments prove that MGWO has apparent competitiveness over other comparative algorithms at
four threshold levels.
The remainder of the paper is organized as follows. Section 2 describes the original GWO and SSA. The details of the proposed MGWO are described in Section 3. Section 4 shows and discusses the experimental results. Section 5 contains the summary and prospect of this research.

## 2. Overview

In this section, the details of the GWO, SSA, and Kapur's entropy are described.

### 2.1 Grey wolf optimizer

GWO is a popular variant of PSO with a metaphor language first appeared in 2014 (Mirjalili et al., 2014; Niu et al., 2019a; Villalón et al., 2020). The algorithm is not so pure in its novelty, but a popular method, as its novelty is denied by researchers in (Villalón et al., 2020). It simulates the grey wolf population's hierarchy and the behavior of hunting prey in the natural environment (Mirjalili et al., 2020). Search agents of this method follow alpha, beta, and delta to encircle and attack prey, which is the global optimal solution of the optimization problem (Aljarah et al., 2019; Chantar et al., 2020b; Hu et al., 2021b; Tang et al., 2020a).

Based on the mathematical modeling of the hunting behavior of grey wolves, the position update formula of grey wolves is obtained as follows:

$$
\begin{equation*}
X_{t+1}=X_{t}-A \cdot D \tag{1}
\end{equation*}
$$

where $t$ is the current iteration, $X_{t}$ is the wolf's current position and $X_{t+1}$ is the next position. $A$ is a coefficient matrix, and $D$ is a coefficient vector. They are essential parameters to control the connection and transformation of exploration and exploitation. $D$ is determined by the position of the prey and can be calculated according to the following formula:

$$
\begin{gather*}
D=\left|C \cdot X_{P}-X_{t}\right|  \tag{2}\\
C=2 r_{2} \tag{3}
\end{gather*}
$$

where $r_{2}$ is a randomly generated vector from the interval $[0,1]$.

$$
\begin{gather*}
A=2 a \cdot r_{1}-a  \tag{4}\\
a=2-F E s \cdot\left(\frac{2}{M a x_{-} F E s}\right) \tag{5}
\end{gather*}
$$

where Max_FEs is the maximum evaluations and FES is the current number of evaluations. $a$ decreases linearly from 2 to 0 with the increase of evaluation numbers. $r_{1}$ is a randomly generated vector from the interval $[0,1]$, so that numerical values in matrix $A$ is are limited in an interval $[-2 a$, $2 a]$. Other wolves have to update their positions, and the calculation formula is as follows:

$$
\begin{equation*}
X_{\text {new }}=\frac{X_{1}+X_{2}+X_{3}}{3} \tag{6}
\end{equation*}
$$

where $X_{1}, X_{2}$ and $X_{3}$ are calculated as follows:

$$
\begin{align*}
& X_{1}=X_{\text {Alpha }}-A_{1} \cdot D_{1} \\
& X_{2}=X_{\text {Beta }}-A_{2} \cdot D_{2} \\
& X_{3}=X_{\text {Delta }}-A_{3} \cdot D_{3}  \tag{7}\\
& D_{1}=\left|C_{1} \cdot X_{\text {Alpha }}-X_{o l d}\right| \\
& D_{2}=\left|C_{2} \cdot X_{\text {Beta }}-X_{\text {old }}\right| \\
& D_{3}=\left|C_{3} \cdot X_{\text {Delta }}-X_{o l d}\right| \tag{8}
\end{align*}
$$

The pseudo-code of the GWO algorithm is presented in Algorithm 1.

```
Algorithm 1 Pseudo code of the GWO algorithm
Objective function \(f(X), X=\left(x_{1}, \ldots, x_{d}\right)^{T}\)
Parameters initialization: \(N\) is the population size, Max_FEs is maximum function evaluations. Set
current evaluation number \(\mathrm{FEs}=0\).
Initialize the grey wolf population \(X_{i}(i=1,2, \ldots, n)\)
while (FEs \(\leq\) Max_FEs)
    Calculate each wolf's fitness
    \(X_{\text {Alpha }}=\) the current best solution,
    \(X_{B e t a}=\) the current second-best solution,
    \(X_{\text {Delta }}=\) the current third-best solution.
    Update the number of FEs
    Update parameters: \(a\) by Eq. (5)
    for each individual wolf
                Update the current wolf's position by Eq. (4) and (6) - (8)
        end for
    end while
    Postprocess results and visualization
```


### 2.2 Kapur's entropy in multi-threshold image segmentation

This section detailed the nonlocal mean filtering, two-dimensional (2D) histogram, and Kapur's entropy.

Among many multi-threshold image segmentation methods, Kapur's entropy is widely used by related researchers and workers in the field of image segmentation due to its efficient performance and easy implementation. Kapur's entropy was firstly proposed by Kapur et al. (Kapur et al., 1985) in 1985 to segment the gray scale image by maximizing the entropy of the histogram. The method of calculating Kapur's entropy using a one-dimensional histogram is as follows: assuming that the image with a grey value range $[0, L-1]$ and size $M \times N$ is divided into $K$ regions, and the number of the thresholds is $K-1$. Let $f_{0}, f_{1}, f_{2}, \ldots, f_{i}, \ldots, f_{L-1}$ be the grey-level frequencies and let $h_{a}(a=1,2, \ldots, K-1)$ is the image thresholds.

$$
\begin{gather*}
P_{i}=\frac{f_{i}}{M \times N}, i=1,2, \ldots, L-1  \tag{9}\\
P_{1}=\sum_{i=0}^{h_{1}} P_{i}, P_{2}=\sum_{i=h_{1}+1}^{h_{2}} P_{i}, \ldots, P_{K}=\sum_{i=h_{K-1}+1}^{L-1} P_{i}  \tag{10}\\
H_{1}(h)=\sum_{i=0}^{h_{1}} \frac{P_{i}}{P_{1}} \cdot \ln \frac{P_{i}}{P_{1}}, \\
H_{2}(h)=\sum_{i=h_{1}+1}^{h_{2}} \frac{P_{i}}{P_{2}} \cdot \ln \frac{P_{i}}{P_{2}}, \\
H_{K}(h)=\sum_{i=h_{K-1}+1}^{L-1} \frac{P_{i}}{P_{K}} \cdot \ln \frac{P_{i}}{P_{K}}
\end{gather*}
$$

Then, the Kapur's entropy is calculated by:

$$
\begin{equation*}
H(h)=\sum_{i=1}^{K} H_{i} \tag{12}
\end{equation*}
$$

In the multi-threshold image segmentation experiments in Section 4.5, a 2D histogram will be used to calculate Kapur's entropy. The following will detail the calculation methods of non-local mean filtering, 2D histogram, and Kapur's entropy-based on the 2D histogram.

Non-local mean filtering is an image denoising algorithm proposed by Buades et al. (Buades et al., 2005). Its idea is to set a fixed size neighborhood block around a point to be filtered as the current block and set a reference block of the same size as the current block, then traverse the whole image pixel by pixel (this point is the center pixel of the reference block), and calculate the Euclidean distance between the reference block and the current block. In image $I, I(i)$ and $I(j)$ are the grey values of pixel $i$ and $j$, respectively. $L(i)$ and $L(j)$ are square areas of length $m$ centered on pixels $i$ and $j$, respectively. Firstly, the local mean values of two center pixels are calculated as follows:

$$
\begin{align*}
& u(i)=\frac{1}{m \times m} \sum_{i \in L(i)} I(i)  \tag{13}\\
& u(j)=\frac{1}{m \times m} \sum_{j \in L(j)} I(j) \tag{14}
\end{align*}
$$

Then the weight $\omega(i, j)$ between two blocks is calculated as follows:

$$
\begin{equation*}
\omega(i, j)=e^{-\frac{|u(i)-u(j)|^{2}}{\sigma^{2}}} \tag{15}
\end{equation*}
$$

where $e$ is the base of the natural logarithm. Finally, the non-local mean filtering value of pixel $i$ is obtained as follows:

$$
\begin{equation*}
N L(i)=\frac{\sum_{i \in I} I(i) \cdot \omega(i, j)}{\sum_{i \in I} \omega(i, j)} \tag{16}
\end{equation*}
$$

The corresponding 2D histogram is generated by the combination of non-local mean image and grey image. The grey image $G(i, j)$ of an image $I(i, j)$ with size $M \times N$ and the non-local mean image $N L(i, j)$ generated by this grey image are both $M \times N$ in size, and the grey value range is $[0, L-1]$. The grey value $G(i, j)$ in the grey image and corresponding grey value $N L(i, j)$ in the non-local mean image of a specific pixel constitutes a point $(x, y)$ in the $x O y$ plane of the 2 D histogram, and $h(i, j)$ is the total number of occurrences of $(x, y)$. The final 2 D histogram is obtained by normalizing the statistical times according to the following equation:

$$
\begin{equation*}
P_{i j}=\frac{h(i, j)}{M \times N} \tag{17}
\end{equation*}
$$

Assuming that the image is divided into $K$ regions, the number of the thresholds is $K-1$. In the 2 D histogram, $t_{a}(a=1,2, \ldots, K-1)$ represent the thresholds of the grey image and $s_{a}(a=$ $1,2, \ldots, K-1)$ represent the thresholds of the non-local mean image.

The Kapur's entropy of the image is calculated for K subregions on the main diagonal of the 2D histogram, and the calculation formulas are as follows:

$$
\begin{gather*}
H(s, t)=-\sum_{j=0}^{s_{1}} \sum_{i=0}^{t_{1}} \frac{P_{i j}}{P_{1}} \cdot \ln \frac{P_{i j}}{P_{1}}-\sum_{j=t_{1}+1}^{s_{2}} \sum_{i=t_{1}+1}^{t_{2}} \frac{P_{i j}}{P_{2}} \cdot \ln \frac{P_{i j}}{P_{2}}- \\
\ldots \sum_{j=t_{K-1}+1}^{L-1} \sum_{i=t_{K-1}+1}^{L-1} \frac{P_{i j}}{P_{K}} \cdot \ln \frac{P_{i j}}{P_{K}}  \tag{18}\\
P_{1}=\sum_{j=0}^{s_{1}} \sum_{i=0}^{t_{1}} P_{i j}, P_{2}=\sum_{j=t_{1}+1}^{s_{2}} \sum_{i=t_{1}+1}^{t_{2}} P_{i j}, P_{K}=\sum_{j=t_{K-1}+1}^{L-1} \sum_{i=t_{K-1}+1}^{L-1} P_{i j} \tag{19}
\end{gather*}
$$

Taking $H(s, t)$ as the optimization algorithms' objective function, the optimal thresholds are
obtained by the following formula:

$$
\begin{equation*}
T^{*}=\operatorname{argmax}(H) \tag{20}
\end{equation*}
$$

In this optimization problem, the independent variables of the objective function are all thresholds $t_{a}(a=1,2, \ldots, K-1)$, and the dependent variable is the Kapur's entropy $H(s, t)$ of 2 D histogram. The objective function is a single objective bound constraint function. There are no other constraints except boundary constraints. When the number of thresholds is specified, this optimization problem aims to gain a combination of thresholds that maximizes Kapur's entropy.

## 3. Proposed MGWO

### 3.1 Mechanism of multi-stage search

The whole algorithm's iterative process of searching for the optimal value is divided into several different stages. Different effective search strategies at each stage are an effective way to interfere with the connection and transformation of exploration and exploitation. This method can be used to achieve a better balance between exploration and exploitation. According to the objective function's characteristics, we can emphasize one of the two exploration and exploitation processes to get a solution with higher quality. For example, when the search domain of the objective function is wide, but the optimal value neighborhood is relatively smooth, the algorithm's exploration process can be emphasized. Suppose the search domain of the objective function is small, but the optimal value neighborhood is steep. In that case, the algorithm's exploitation process can be emphasized to gain a high precision solution. Pelusi et al. (Oliva et al., 2019) divided the search process into three segments, the first for exploration, the last for exploitation, and the middle is the transition stage of exploration and exploitation. However, this method has the consequences of reducing the convergence speed and increasing the algorithm's time complexity due to the forced segmentation of the whole optimization process according to the number of iterations or evaluation times.

In the proposed MGWO algorithm, we divide the whole search process into three stages to better balance exploration and exploitation, especially in dealing with problems with a multi-modal function. At the first stage, the primary GWO algorithm with a strong ability to explore the search domain with an extensive range is used to explore the candidate solutions. The strategy used at the second stage makes the algorithm not easily converge prematurely and improves the convergence rate. At the last stage, the exploitation in the neighborhood of candidate solutions is emphasized to obtain a solution with higher precision and accuracy. The evaluation number is divided into the intervals $I_{1}, I_{2}$ and $I_{3}$, which are defined:

$$
\begin{align*}
& I_{1}=\left[1, \lambda * M a x_{\_} F E s\right] \cap \mathbb{N}, \\
& I_{2}=\left[\lambda * M a x_{-} F E s, \mu * M_{2} \text { _FEs }\right] \cap \mathbb{N}, \\
& I_{3}=[\mu * \text { Max_FEs,Max_FEs }] \cap \mathbb{N} \tag{21}
\end{align*}
$$

where $\mathbb{N}$ is the set of natural numbers. $\lambda$ and $\mu$ are two parameters that control the intervals of the whole evaluation process. Note that these two parameters need to satisfy the condition $0<\lambda<\mu<$ 1. And their values are 0.4 and 0.7 respectively in MGWO, which are proved by the following comparative experimental results. In the comparative experiment, the population size is 30 , the dimension of the objective function is 30 , the maximum number of evaluations is 300000 , and the number of parallel random runs is 30 . Table 1 displays the test results obtained by algorithms with
different values of $\lambda$ and $\mu$ on 30 benchmark functions of IEEE CEC 2017. Avg is the average of the ranks obtained on 30 benchmark functions by algorithms with different values of $\lambda$ and $\mu$, and Rank is the final rank that can visually observe the performance of the algorithms. According to the Avg and Rank, setting the $\lambda$ and $\mu$ to 0.4 and 0.7 respectively is the best choice.

Table 2 displays the standard deviations (STD) obtained by the MGWO with different values of $\lambda$ and $\mu$ on 30 benchmark functions with 30 parallel random runs. The value of standard deviation reflects the influence of hyper-parameters on the stability of the algorithm. Therefore, the minimum one among the standard deviations obtained by MGWO with different parameter values is marked in bold on each benchmark function. It can be seen that the stability of MGWO is better on unimodal functions and simple multimodal functions. On the hybrid functions, MGWO7 has the best stability, and MGWO is second only to it. MGWO4 has better stability on the composition functions, but when the comparison algorithms are ranked using the average of the results obtained in 30 parallel random runs, MGWO still ranks first.

Figure 1 reveals the box plots of MGWO with different values of $\lambda$ and $\mu$ on 30 benchmark functions with 30 times of parallel random runs. The tick labels of the x -axis respectively represent MGWO~MGWO7 in Table 1. Box plot is composed of the minimum observation value (min), the maximum observation value (max), the lower quartile ( $Q^{1}$ ), the median, the upper quartile ( $Q^{3}$ ), and outliers. Set the length of the box $I Q R=Q 3-Q 1$, then the $\min =Q 1-1.5^{*} I Q R$, and the $\max =Q^{3}+1.5^{*} I Q R$. The red line located inside the box represents the median of the dataset. There is an extension line called whisker between $Q^{3}$ and max. If a point whose value is larger than the maximum observation value, the point is called an outlier and is plotted with " + ".

Similarly, there is a whisker between Q1 and min, and outliers whose values are smaller than the minimum observation value are plotted with " + ". Box plots can visually identify the abnormal values in the data and judge the data's degree of dispersion and bias. It can be seen from Figure 1 that when the parameters $\lambda$ and $\mu$ are set to 0.4 and 0.7 , on most benchmark functions, the boxes obtained by MGWO are closer to the x -axis and shorter in length than other competitors, the median is also significantly lower, and the number of outliers is significantly reduced. This shows that MGWO can obtain more accurate optimization results and has stronger stability than other competitors. Box plots further prove that setting $\lambda$ and $\mu$ to 0.4 and 0.7 is a correct choice.

Table 1. Comparative experimental results of MGWO with different values of $\lambda$ and $\mu$

|  |  | MGWO | MGWO2 | MGWO3 | MGWO4 | MGWO5 | MGWO6 | MGWO7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Value | $\boldsymbol{\lambda}$ | 0.4 | 0.1 | 0.2 | 0.3 | 0.4 | 0.4 | 0.4 |
|  | $\boldsymbol{\mu}$ | 0.7 | 0.7 | 0.7 | 0.7 | 0.6 | 0.8 | 0.9 |
| Avg | 3.23 | 4.60 | 3.50 | 3.73 | 3.83 | 4.13 | 4.97 |  |
| Rank | 1 | 6 | 2 | 3 | 4 | 5 | 7 |  |

Table 2. The STD obtained by the MGWO with different values of $\lambda$ and $\mu$

|  | F1 | F2 | F3 | F4 | F5 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| MGWO | $3.8959 \mathrm{E}+04$ | $\mathbf{1 . 0 8 0 9 E}-03$ | $\mathbf{1 . 5 0 3 9 E - 0 1}$ | $\mathbf{2 . 2 7 8 4 E}+\mathbf{0 1}$ | $1.4418 \mathrm{E}+01$ |
| MGWO2 | $\mathbf{2 . 5 4 5 1 E}+\mathbf{0 4}$ | $1.6215 \mathrm{E}-03$ | $2.0303 \mathrm{E}-01$ | $2.3586 \mathrm{E}+01$ | $1.5983 \mathrm{E}+01$ |
| MGWO3 | $2.9891 \mathrm{E}+04$ | $1.3524 \mathrm{E}-03$ | $2.2546 \mathrm{E}-01$ | $2.5328 \mathrm{E}+01$ | $1.4206 \mathrm{E}+01$ |
| MGWO4 | $3.3942 \mathrm{E}+04$ | $1.4565 \mathrm{E}-03$ | $1.7151 \mathrm{E}-01$ | $2.6625 \mathrm{E}+01$ | $\mathbf{1 . 3 9 4 2 E}+\mathbf{0 1}$ |
| MGWO5 | $6.4580 \mathrm{E}+05$ | $1.4702 \mathrm{E}+01$ | $2.7567 \mathrm{E}+00$ | $2.4792 \mathrm{E}+01$ | $1.5410 \mathrm{E}+01$ |


| MGWO6 | $6.0441 \mathrm{E}+04$ | $1.4792 \mathrm{E}-03$ | $1.5715 \mathrm{E}-01$ | $2.6603 \mathrm{E}+01$ | $1.4876 \mathrm{E}+01$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| MGWO7 | $6.9686 \mathrm{E}+04$ | 1.8872E-03 | $1.9434 \mathrm{E}-01$ | $2.7909 \mathrm{E}+01$ | $1.4953 \mathrm{E}+01$ |
|  | F6 | F7 | F8 | F9 | F10 |
| MGWO | 3.7576E-01 | $2.2075 \mathrm{E}+01$ | $9.7239 \mathrm{E}+00$ | $2.8198 \mathrm{E}+02$ | $4.4804 \mathrm{E}+02$ |
| MGWO2 | $5.7130 \mathrm{E}-01$ | $2.6873 \mathrm{E}+01$ | $1.6123 \mathrm{E}+01$ | $6.5763 \mathrm{E}+02$ | $6.1719 \mathrm{E}+02$ |
| MGWO3 | $5.9772 \mathrm{E}-01$ | $1.8129 \mathrm{E}+01$ | $1.5568 \mathrm{E}+01$ | $4.6786 \mathrm{E}+02$ | $5.2624 \mathrm{E}+02$ |
| MGWO4 | $4.0422 \mathrm{E}-01$ | $2.6992 \mathrm{E}+01$ | $1.4287 \mathrm{E}+01$ | $4.5942 \mathrm{E}+02$ | $5.0736 \mathrm{E}+02$ |
| MGWO5 | $1.5404 \mathrm{E}+00$ | $2.7267 \mathrm{E}+01$ | $1.1964 \mathrm{E}+01$ | $5.5681 \mathrm{E}+02$ | $3.9606 \mathrm{E}+02$ |
| MGWO6 | $1.2914 \mathrm{E}+00$ | $2.9103 \mathrm{E}+01$ | $1.5940 \mathrm{E}+01$ | $4.1485 \mathrm{E}+02$ | $5.5302 \mathrm{E}+02$ |
| MGWO7 | $2.8906 \mathrm{E}+00$ | $2.4485 \mathrm{E}+01$ | $1.2990 \mathrm{E}+01$ | $3.5609 \mathrm{E}+02$ | $5.0194 \mathrm{E}+02$ |
|  | F11 | F12 | F13 | F14 | F15 |
| MGWO | $2.1898 \mathrm{E}+01$ | $8.4563 \mathrm{E}+04$ | $2.3287 \mathrm{E}+04$ | $1.9965 \mathrm{E}+03$ | $1.1787 \mathrm{E}+04$ |
| MGWO2 | $4.0161 \mathrm{E}+01$ | $1.1255 \mathrm{E}+05$ | $2.3629 \mathrm{E}+04$ | $4.4003 \mathrm{E}+03$ | $7.3246 \mathrm{E}+03$ |
| MGWO3 | $3.7057 \mathrm{E}+01$ | $7.0153 \mathrm{E}+04$ | $2.3964 \mathrm{E}+04$ | $4.4514 \mathrm{E}+03$ | $1.3356 \mathrm{E}+04$ |
| MGWO4 | $3.0167 \mathrm{E}+01$ | $6.5588 \mathrm{E}+04$ | $2.4050 \mathrm{E}+04$ | $2.6136 \mathrm{E}+03$ | $1.3864 \mathrm{E}+04$ |
| MGWO5 | $3.0530 \mathrm{E}+01$ | $6.9350 \mathrm{E}+04$ | $2.1637 \mathrm{E}+04$ | $4.4544 \mathrm{E}+03$ | $9.5169 \mathrm{E}+03$ |
| MGWO6 | $2.4081 \mathrm{E}+01$ | $1.2883 \mathrm{E}+05$ | $2.3498 \mathrm{E}+04$ | $3.8510 \mathrm{E}+03$ | $1.0734 \mathrm{E}+04$ |
| MGWO7 | $2.1561 \mathrm{E}+01$ | $3.1761 \mathrm{E}+05$ | $2.0474 \mathrm{E}+04$ | $5.4585 \mathrm{E}+03$ | $9.3046 \mathrm{E}+03$ |
|  | F16 | F17 | F18 | F19 | F20 |
| MGWO | $2.1844 \mathrm{E}+02$ | $1.0037 \mathrm{E}+02$ | 7.5519E+04 | $1.6109 \mathrm{E}+04$ | $1.0906 \mathrm{E}+02$ |
| MGWO2 | $2.6681 \mathrm{E}+02$ | $1.2148 \mathrm{E}+02$ | $9.7769 \mathrm{E}+04$ | $1.6764 \mathrm{E}+04$ | $1.1415 \mathrm{E}+02$ |
| MGWO3 | $1.7529 \mathrm{E}+02$ | $1.0976 \mathrm{E}+02$ | $9.5808 \mathrm{E}+04$ | $1.8938 \mathrm{E}+04$ | $9.8350 \mathrm{E}+01$ |
| MGWO4 | $2.5958 \mathrm{E}+02$ | $1.5091 \mathrm{E}+02$ | $8.4834 \mathrm{E}+04$ | $1.6853 \mathrm{E}+04$ | $1.2438 \mathrm{E}+02$ |
| MGWO5 | $2.2915 \mathrm{E}+02$ | $1.2852 \mathrm{E}+02$ | 8.1772E+04 | $1.7855 \mathrm{E}+04$ | $1.1424 \mathrm{E}+02$ |
| MGWO6 | $2.4662 \mathrm{E}+02$ | $1.3050 \mathrm{E}+02$ | $1.1675 \mathrm{E}+05$ | $1.6013 \mathrm{E}+04$ | $1.1888 \mathrm{E}+02$ |
| MGWO7 | $2.7184 \mathrm{E}+02$ | $1.3669 \mathrm{E}+02$ | $9.5998 \mathrm{E}+04$ | $1.0724 \mathrm{E}+04$ | $1.0644 \mathrm{E}+02$ |
|  | F21 | F22 | F23 | F24 | F25 |
| MGWO | $1.3381 \mathrm{E}+01$ | $1.0834 \mathrm{E}+03$ | $2.2294 \mathrm{E}+01$ | $2.7106 \mathrm{E}+01$ | $1.4900 \mathrm{E}+00$ |
| MGWO2 | $1.5627 \mathrm{E}+01$ | $1.3781 \mathrm{E}+03$ | $2.3438 \mathrm{E}+01$ | $1.9541 \mathrm{E}+01$ | $1.1946 \mathrm{E}+01$ |
| MGWO3 | $1.2780 \mathrm{E}+01$ | $1.4263 \mathrm{E}+03$ | $2.2366 \mathrm{E}+01$ | $1.8538 \mathrm{E}+01$ | $5.4755 \mathrm{E}+00$ |
| MGWO4 | $1.0790 \mathrm{E}+01$ | $1.1329 \mathrm{E}+03$ | $1.9299 \mathrm{E}+01$ | $1.7746 \mathrm{E}+01$ | $1.2693 \mathrm{E}+00$ |
| MGWO5 | $1.6827 \mathrm{E}+01$ | $1.2759 \mathrm{E}+03$ | $2.2249 \mathrm{E}+01$ | $2.0316 \mathrm{E}+01$ | $1.6512 \mathrm{E}+00$ |
| MGWO6 | $1.3176 \mathrm{E}+01$ | $1.2202 \mathrm{E}+03$ | $2.6731 \mathrm{E}+01$ | $2.0735 \mathrm{E}+01$ | $1.2888 \mathrm{E}+00$ |
| MGWO7 | $1.2383 \mathrm{E}+01$ | $1.4685 \mathrm{E}+03$ | $2.3861 \mathrm{E}+01$ | $2.1943 \mathrm{E}+01$ | $1.2497 \mathrm{E}+00$ |
|  | F26 | F27 | F28 | F29 | F30 |
| MGWO | $2.9693 \mathrm{E}+02$ | $1.5957 \mathrm{E}+01$ | $5.2642 \mathrm{E}+01$ | $1.1683 \mathrm{E}+02$ | $2.8793 \mathrm{E}+03$ |
| MGWO2 | $3.4988 \mathrm{E}+02$ | $1.5294 \mathrm{E}+01$ | $6.0607 \mathrm{E}+01$ | $1.1176 \mathrm{E}+02$ | $2.8976 \mathrm{E}+03$ |
| MGWO3 | $2.7278 \mathrm{E}+02$ | $1.9715 \mathrm{E}+01$ | $5.5688 \mathrm{E}+01$ | $9.7085 \mathrm{E}+01$ | $2.1942 \mathrm{E}+03$ |
| MGWO4 | $2.4359 \mathrm{E}+02$ | $1.5284 \mathrm{E}+01$ | $6.0997 \mathrm{E}+01$ | $1.5083 \mathrm{E}+02$ | $2.8727 \mathrm{E}+03$ |
| MGWO5 | $3.5335 \mathrm{E}+02$ | $1.1486 \mathrm{E}+01$ | $5.2514 \mathrm{E}+01$ | $1.4553 \mathrm{E}+02$ | $2.5470 \mathrm{E}+03$ |


| MGWO6 | $2.7056 \mathrm{E}+02$ | $1.6602 \mathrm{E}+01$ | $4.9552 \mathrm{E}+01$ | $1.2110 \mathrm{E}+02$ | $2.7242 \mathrm{E}+03$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| MGWO7 | $3.5525 \mathrm{E}+02$ | $1.6122 \mathrm{E}+01$ | $5.4402 \mathrm{E}+01$ | $1.1526 \mathrm{E}+02$ | $2.8976 \mathrm{E}+03$ |



Fig. 1 The box plots of MGWO with different values of $\lambda$ and $\mu$ on 30 benchmark functions

### 3.2 The position update formula of leader salp in SSA

Salp is a kind of marine organism, and the swarming behavior called the salp chain's swarming behavior helps salps move and forage. SSA is a swarm intelligence optimization algorithm first proposed by Mirjalili et al. in 2007, inspired by the foraging salp chain pattern. According to the positions of individuals in the slap chain, slaps are divided into leaders and followers. Followers must update their positions under the guidance of a leader. In the MGWO algorithm proposed in this paper, the position update formula of leader salp in the original SSA will be used.

The position update formula is as follows:

$$
\begin{gather*}
\left(X_{i, j}^{\text {new }}\right)^{T}= \begin{cases}y_{j}+c_{1} \times\left(c_{2} \times\left(u b_{j}-l b_{j}\right)+l b_{j}\right), & c_{3}<0.5 \\
y_{j}-c_{1} \times\left(c_{2} \times\left(u b_{j}-l b_{j}\right)+l b_{j}\right), & c_{3} \geq 0.5\end{cases}  \tag{22}\\
c_{1}=2 e^{-\left(\frac{4 F E s}{\text { Max_FEs }}\right)^{2}} \tag{23}
\end{gather*}
$$

where $c_{2}$ and $c_{3}$ are random numbers between the interval $[0,1]$. Max_FEs is the maximum evaluations, and $F E S$ is the current number of evaluations. $y_{j}$ presents the $j$ th dimension value of the position that the current optimal individual locates. $l b_{j}$ and $u b_{j}$ represent the lower bound and the upper bound of the $j$ th dimension, respectively. $\left(X_{i, j}^{\text {new }}\right)^{T}$ is the transposed value of the new position that the $i$ th salp obtained on the $j$ th dimension.

Let $r=\left\|\mathrm{X}_{i}-\mathrm{X}_{\text {Alpha }}\right\|$ is the Cartesian distance of the $i$ th individual and the current optimal individual. At the second stage, when the $r$ is greater than 0.5 , the MGWO algorithm performs the above position update operation on the $i$ th grey wolf. When $r$ is less than 0.5 , it can be considered that the $i$-th individual is already very near the current optimal individual. To ensure the diversity of the population at the second stage, no movement operation will be performed on the current individual. The purpose of setting the distance threshold is to keep the distance between individuals and prevent the grey wolf population from entering the convergence ahead of time and falling into the local optima trap. Using this strategy at the second stage will enable the algorithm to achieve a faster convergence rate than the original GWO, and the algorithm will not quickly converge prematurely. Although after this stage, the algorithm can obtain a solution with much higher accuracy than the original GWO, there is still a risk of falling into the local optima trap to a great extent.

### 3.3 Position mutation by Cauchy distribution

The Cauchy mutation was embedded in optimization algorithms as an update strategy by many researchers. It has been proved to be an effective technique for improving optimization algorithms (Ali and Pant, 2011). By adjusting the Cauchy mutation parameters, an algorithm's exploration ability or the exploitation ability can be enhanced. When the step size of the Cauchy mutation is large, it can be regarded as a random walk method so that the algorithm is guided to explore the entire search domain. When the step size of the Cauchy mutation is small enough, the algorithm is guided to exploit the candidate solutions' neighborhood to obtain higher quality solutions. Wang et al. (Wang et al., 2020d) used Cauchy mutation as the adaptive learning strategy of agents and used a specific time to limit the adaptive learning. Then the better solutions generated by the Cauchy mutation replaced the original candidate solutions. Although Cauchy mutation is an effective strategy to improve the performance of the algorithm, too many times of Cauchy mutation in each iteration will increase the time complexity
of the algorithm.
The theoretical basis of Cauchy mutation is the Cauchy probability density function, which is as follows:

$$
\begin{equation*}
f(x)=\frac{1}{\pi} *\left[\frac{\gamma}{\left(x-x_{0}\right)^{2}+\gamma^{2}}\right] \tag{24}
\end{equation*}
$$

where $x_{0}$ is the location parameter defining the peak position of the distribution, and $\gamma$ is the scale parameter of half-width at half of the maximum value. Let $X$ obeys Cauchy distribution as $X \sim C\left(x_{0}, \gamma\right)$. The smaller $\gamma$ is, the more likely the value obtained by the Cauchy probability density function falls into the neighborhood of $x_{0}$ is. The Cauchy mutation used in the MGWO algorithm obeys $X \sim C(0,0.5)$. Controlled by the current optimal solution, a new position $Y$ is randomly generated according to the upper and lower bounds of the objective function. And then perform the following mutation strategy on each dimension of $Y$ :

$$
\begin{equation*}
Y^{j}=X_{A l p h a}^{j}+\text { cauchy } *\left(X_{r 1}^{j}-X_{r 2}^{j}\right) \tag{25}
\end{equation*}
$$

where cauchy is a random number generated by the Cauchy distribution, which obeys $X \sim C(0,0.5)$. $X_{A l p h a}^{j}$ is the $j$ th dimensional position of the optimal solution obtained so far. $X_{r 1}^{j}$ and $X_{r 2}^{j}$ are the $j$ th dimensional positions of two wolves randomly selected from the wolf population. Noted that these two wolves are not equal to the current optimal wolf. The addition of a multiplier $X_{r 1}^{j}-X_{r 2}^{j}$ is to increase the population's diversity and control the Cauchy mutation's scope within the search domain limit. When this term is small enough, the algorithm exploits the current optimal solution neighborhood, and when the term is large, the algorithm will explore the entire search domain. This term's value is random, but at the last stage of the entire search process, the population tends to converge and this value is not extremely large. Thus, the population's situation will not be excessively chaotic.

When the mutation strategy progressed to the $j$ th dimension if the fitness of $Y$ is worse than that of $X_{\text {Alpha }}$, continue to update $Y$ in the next dimension. Once the fitness of $Y$ is better than that of $X_{\text {Alpha }}$, let $X_{\text {new }}=Y$ and $X_{\text {Alpha }}=Y$, and then continue to update $Y$ in the next dimension. The mutation near the optimal solution can make the algorithm gain a more vital exploitation ability at the last stage and enhance the algorithm's ability to get rid of the local optimal trap.
$\gamma$ is a fixed parameter with a value of 0.5 , which is proved by the following comparative experimental results. In the comparative experiment, the population size is 30 , the dimension of the objective function is 30 , the maximum number of evaluations is 300000 , and the number of parallel random runs is 30 . Table 3 displays the test results obtained by algorithms with different values of $\gamma$ on 30 benchmark functions of IEEE CEC 2017. Avg is the average of the ranks obtained on 30 benchmark functions by algorithms with different values of $\gamma$ and Rank is the final rank that can visually observe the performance of the algorithms. According to the $A v g$ and Rank, setting the $\gamma$ parameter to 0.5 is the best choice.

Table 4 displays the standard deviations (STD) obtained by the MGWO with different values of $\gamma$ on 30 benchmark functions with 30 times of parallel random runs. The minimum one among the standard deviations obtained by MGWO with different parameter values is marked in bold on each benchmark function. MGWO, whose value of $\gamma$ is setting to 0.5 , has the best stability on unimodal functions, simple multimodal functions, and hybrid functions, but its stability on composition functions has declined. However, when the comparison algorithms are ranked using the average of the results obtained in 30 parallel random runs, the ranking of the MGWO with parameter $\gamma$ value of 0.5 is still
the first.
Figure 2 reveals the box plots of MGWO with different values of $\gamma$ on 30 benchmark functions with 30 times of parallel random runs. The tick labels of the x -axis respectively represent MGWO~ MGWOIV in Table 3. It can be seen that when the parameter $\gamma$ is set to 0.5 , on most benchmark functions, MGWO can get smaller min and median than other competitors. The number of outliers in the dataset obtained by MGWO with different parameter values is not much different. These show that MGWO can obtain more accurate optimization results than other competitors without taking stability as the cost. Box plots further prove that setting $\gamma$ to 0.5 is a correct choice.

Table 3. Comparative experimental results of MGWO with different values of $\gamma$

|  | MGWO | MGWOII | MGWOIII | MGWOIV |
| :--- | :--- | :--- | :--- | :--- |
| Value | 0.5 | 1.0 | 1.5 | 2.0 |
| Avg | 1.57 | 2.47 | 2.77 | 3.20 |
| Rank | 1 | 2 | 3 | 4 |

Table 4. The STD obtained by the MGWO with different values of $\gamma$

|  | F1 | F2 | F3 | F4 | F5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| MGWO | 3.5481E+04 | 1.1370E-03 | $2.0183 \mathrm{E}-01$ | $2.7817 \mathrm{E}+01$ | $1.3526 \mathrm{E}+01$ |
| MGWOII | $5.9830 \mathrm{E}+04$ | $2.7306 \mathrm{E}+00$ | $2.9523 \mathrm{E}-01$ | $2.3239 \mathrm{E}+01$ | $1.6987 \mathrm{E}+01$ |
| MGWOIII | $6.4173 \mathrm{E}+04$ | $3.3066 \mathrm{E}+00$ | 3.6419E-01 | $2.4874 \mathrm{E}+01$ | $1.8387 \mathrm{E}+01$ |
| MGWOIV | $6.0368 \mathrm{E}+04$ | $1.7255 \mathrm{E}-01$ | $3.9819 \mathrm{E}-01$ | $2.3469 \mathrm{E}+01$ | $1.6090 \mathrm{E}+01$ |
|  | F6 | F7 | F8 | F9 | F10 |
| MGWO | $5.5100 \mathrm{E}-01$ | $2.4199 \mathrm{E}+01$ | $1.2295 \mathrm{E}+01$ | $3.8305 \mathrm{E}+02$ | $5.0894 \mathrm{E}+02$ |
| MGWOII | $2.5260 \mathrm{E}+00$ | $1.8066 \mathrm{E}+01$ | $1.5135 \mathrm{E}+01$ | $4.7029 \mathrm{E}+02$ | $4.5979 \mathrm{E}+02$ |
| MGWOIII | $2.7302 \mathrm{E}+00$ | $2.7782 \mathrm{E}+01$ | $8.4836 \mathrm{E}+00$ | $5.6674 \mathrm{E}+02$ | $5.7411 \mathrm{E}+02$ |
| MGWOIV | $2.6953 \mathrm{E}+00$ | $2.3765 \mathrm{E}+01$ | $1.3889 \mathrm{E}+01$ | $6.2428 \mathrm{E}+02$ | $4.3243 \mathrm{E}+02$ |
|  | F11 | F12 | F13 | F14 | F15 |
| MGWO | $2.5535 \mathrm{E}+01$ | $5.0986 \mathrm{E}+04$ | $2.1944 \mathrm{E}+04$ | $7.2940 \mathrm{E}+03$ | $8.3263 \mathrm{E}+03$ |
| MGWOII | $3.5192 \mathrm{E}+01$ | $6.7870 \mathrm{E}+05$ | $2.3046 \mathrm{E}+04$ | $5.2692 \mathrm{E}+03$ | $9.9754 \mathrm{E}+03$ |
| MGWOIII | $3.8956 \mathrm{E}+01$ | $8.7334 \mathrm{E}+05$ | $2.6382 \mathrm{E}+04$ | $4.7801 \mathrm{E}+03$ | $1.5184 \mathrm{E}+04$ |
| MGWOIV | $3.2161 \mathrm{E}+01$ | $9.9835 \mathrm{E}+05$ | $3.0480 \mathrm{E}+04$ | $4.9225 \mathrm{E}+03$ | $1.2388 \mathrm{E}+04$ |
|  | F16 | F17 | F18 | F19 | F20 |
| MGWO | $2.1325 \mathrm{E}+02$ | $1.3668 \mathrm{E}+02$ | $6.8155 \mathrm{E}+04$ | $1.9973 \mathrm{E}+04$ | $1.3123 \mathrm{E}+02$ |
| MGWOII | $2.4677 \mathrm{E}+02$ | $1.3283 \mathrm{E}+02$ | $1.0930 \mathrm{E}+05$ | $1.9461 \mathrm{E}+04$ | $1.2524 \mathrm{E}+02$ |
| MGWOIII | $2.7728 \mathrm{E}+02$ | $1.1166 \mathrm{E}+02$ | $1.2037 \mathrm{E}+05$ | $1.1561 \mathrm{E}+04$ | $1.1517 \mathrm{E}+02$ |
| MGWOIV | $2.4208 \mathrm{E}+02$ | $1.3001 \mathrm{E}+02$ | $7.8510 \mathrm{E}+04$ | $1.5625 \mathrm{E}+04$ | $1.2475 \mathrm{E}+02$ |
|  | F21 | F22 | F23 | F24 | F25 |
| MGWO | $1.7558 \mathrm{E}+01$ | $1.4263 \mathrm{E}+03$ | $2.0614 \mathrm{E}+01$ | $2.3874 \mathrm{E}+01$ | $3.7100 \mathrm{E}+00$ |
| MGWOII | $1.1650 \mathrm{E}+01$ | $1.3241 \mathrm{E}+03$ | $2.0349 \mathrm{E}+01$ | $2.0826 \mathrm{E}+01$ | $3.5539 \mathrm{E}+00$ |
| MGWOIII | $1.0974 \mathrm{E}+01$ | $1.3135 \mathrm{E}+03$ | $1.7952 \mathrm{E}+01$ | $2.2727 \mathrm{E}+01$ | $1.8441 \mathrm{E}+01$ |
| MGWOIV | $1.2447 \mathrm{E}+01$ | $1.3115 \mathrm{E}+03$ | $2.3708 \mathrm{E}+01$ | $2.3856 \mathrm{E}+01$ | 7.5744E-01 |
|  | F26 | F27 | F28 | F29 | F30 |
| MGWO | $2.7377 \mathrm{E}+02$ | $1.9399 \mathrm{E}+01$ | $5.2041 \mathrm{E}+01$ | $1.3180 \mathrm{E}+02$ | $3.1842 \mathrm{E}+03$ |


| MGWOII | $2.6871 \mathrm{E}+02$ | $1.3567 \mathrm{E}+01$ | $\mathbf{5 . 1 1 4 3 E}+01$ | $1.5275 \mathrm{E}+02$ | $2.9212 \mathrm{E}+03$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| MGWOIII | $\mathbf{1 . 9 4 4 9 E}+\mathbf{0 2}$ | $1.2088 \mathrm{E}+01$ | $5.6786 \mathrm{E}+01$ | $\mathbf{1 . 1 7 8 5 E}+\mathbf{0 2}$ | $\mathbf{2 . 1 7 8 5 E}+\mathbf{0 3}$ |
| MGWOIV | $3.1305 \mathrm{E}+02$ | $\mathbf{9 . 6 0 2 7 E}+\mathbf{0 0}$ | $5.6405 \mathrm{E}+01$ | $1.4112 \mathrm{E}+02$ | $5.4840 \mathrm{E}+03$ |



Fig. 2 The box plots of MGWO with different values of $\gamma$ on 30 benchmark functions

### 3.4 The ensemble process of MGWO

In the proposed MGWO, the whole search process is divided into three stages, where the parameters' values of $\lambda$ and $\mu$ are 0.4 and 0.7 , respectively. The complete MGWO algorithm is obtained by performing different operations to update the agents' positions at different stages. First, the parameters and variables are initialized, and then the iterative process begins. At the first stage, the MGWO algorithm uses the original GWO algorithm's position update strategy. At the second stage, when the Cartesian distance between the individual wolf and the current optimal solution is greater than 0.5 , the MGWO algorithm will perform the position update operation described in Section 3.2 on the current
grey wolf. The mutation strategy described in Section 3.3 is performed for each dimension of the current individual wolf at the last stage. When the new position's fitness value obtained by Cauchy mutation is less than the fitness value of the current optimal solution, the new position is used to replace the current grey wolf's position. When the current evaluation times reach the preset maximum evaluation times, the program stops running and returns the current optimal solution as the final global optimal solution. Algorithm 2 shows the pseudo-code of the MGWO algorithm.

```
Algorithm 2 Pseudo code of the MGWO algorithm
    Objective function \(f(X), X=\left(x_{1}, \ldots, x_{d}\right)^{T}\)
    Parameters initialization: \(N\) is the population size, Max_FEs is maximum function evaluations. Set
    current evaluation number \(\mathrm{FEs}=0\).
    Initialize the grey wolf population \(X_{i}(i=1,2, \ldots, n)\)
    \(\varphi_{1}=\lambda * M a x_{-} F E s ; \varphi_{2}=\mu *\) Max_FEs
    while (FEs \(\leq\) Max_FEs)
    Calculate each wolf's fitness
    \(X_{\text {Alpha }}=\) the current best solution,
    \(X_{B e t a}=\) the current second-best solution,
    \(X_{\text {Delta }}=\) the current third-best solution.
    Update the number of FEs
    Update parameters: \(a\) by Eq. (5)
    for each individual wolf
        if \(\left(F E s<\varphi_{1}\right)\)
            Update the current wolf's position by Eq. (4) and (6) - (8)
        else if \(\left(F E s \geq \varphi_{1}\right.\) and \(\left.F E s<\varphi_{2}\right)\)
            Calculate the Cartesian distance \(r\) between the current wolf and \(X_{A l p h a}\)
            if \((r>0.5)\)
                    Update the current wolf's position by Eq. (22) - (23)
            end if
        else
            Generate a new agent \(Y\) by upper and lower bounds of objective function.
            for each dimension
                    Calculate the new position of \(Y\) by Eq. (25)
                    if \(\left(f(Y)<f\left(X_{\text {Alpha }}\right)\right)\)
                    Accept \(Y\) as the current grey wolf
                    Accept \(Y\) as \(X_{\text {Alpha }}\)
                    end if
                end for
        end if
    end for
    end while
    Postprocess results and visualization
```



Fig. 3 The flowchart of MGWO
Figure 3 shows the MGWO algorithm's main process. The time complexity of the MGWO algorithm is determined by the number of individuals $(N)$, the dimension of the objective function (dim), and the maximum number of evaluations (Max_FEs). The number of iterations ( $T$ ) is obtained by $($ Max_FEs $) / N$. The total time complexity is $O(M G W O)=O$ (initialization) $+T^{*} O$ (calculation of the fitness and selection of the top three agents) $+T^{*} O$ (update parameter $a$ ) $+T^{*} \lambda * O$ (perform the GWO algorithm's position update formula) $+T^{*} \lambda * O$ (calculation of the distance $r$ ) $+T^{*}(\mu-\lambda) * O$ (perform the position update formula of leader salp in the SSA) $+T^{*}(\mu-\lambda) * O$ (generate new agents) $+T^{*}(1-$ $\mu) * O$ (perform the Cauchy mutation and calculate the new fitness) $+T^{*}(1-\mu) * O$ (update the best solution and the current agent). After calculation, $O$ (MGWO) $=$ $O\left(N^{*} \operatorname{dim}\right)+O\left((N+1)^{*} \operatorname{dim}\right)+T^{*} O(1)+T^{*} \lambda * O\left(N^{*} \operatorname{dim}\right)+T^{*} \lambda * O(N)+T^{*}(\mu-\lambda) * O\left(N^{*} d i m\right)+T^{*}(\mu-$ $\lambda) * O\left(N^{*} \operatorname{dim}\right)+T^{*}(1-\mu) * O\left(N^{*} \operatorname{dim}\right)+T^{*}(1-\mu) * O\left(N^{*} \operatorname{dim}\right)=(2 T-T * \lambda+2) * O\left(N^{*} \operatorname{dim}\right)+T * \lambda * O(N)$.

## 4. Experimental results and discussions

To verify the MGWO algorithm's superiority in dealing with optimization problems, a series of comparative experiments are carried out on 30 benchmark functions of IEEE CEC2017 with other competitive optimization algorithms. Section 4.1 introduces the classifications and search domains of benchmark functions used in the experiments. In Section 4.2, the MGWO algorithm is compared with several traditional meta-heuristic optimization algorithms: whale optimization algorithm (WOA) (Mirjalili et al., 2019), moth-flame optimization (MFO) (Mirjalili et al., 2019), salp swarm algorithm (SSA) (Mirjalili et al., 2019), GWO, DE (Storn and Price, 1997), PSO, FA, and BA. and. In Section 4.3, the MGWO algorithm is compared with several improved GWO algorithms which are HGWO (Zhu et al., 2015), OBLGWO (Heidari et al., 2019b), IGWO (Cai et al., 2019), CAGWO (Lu et al., 2018), and other improved swarm intelligence optimization algorithms which are ALCPSO (Chen et al., 2013), IWOA (Tubishat et al., 2019), BWOA (Chen et al., 2019a), CLSCA (Huang et al., 2020), MSCA (Qu et al., 2018), CMFO (Li et al., 2019), and LGCMFO (Xu et al., 2019c). The feasibility and diversity analysis of the MGWO algorithm and the primary GWO algorithm is carried out in Section 4.4. The comparative experiments on the multi-threshold image segmentation of Leaf Spot Diseases on Maize are in Section 4.5. To ensure the experiments' fairness (Chen et al., 2019b; He et al., 2020; Sun et al., 2020; Wang et al., 2020e; Weng et al., 2021; Zhou et al., 2021), the environments of all experiments are kept in the same condition. All experiments were performed on a 2.10 GHz Intel Xeon Gold 5218R
processor and 64GB RAM computer, and the MATLAB 2018a was used to write the programs and perform the simulation experiments. Table 5 lists the parameters that need to be consistent in the simulation experiments. $N$ is the number of agents, $\operatorname{dim}$ is the objective function's dimension, Max_FEs represents the maximum number of evaluations, and Flod is the number of parallel random runs. Experiments on multi-threshold image segmentation are carried out in Section 4.5, where the number of agents is 20 .

Table 5. The relevant parameters involved in the experiments

| $N$ | dim | Max_FEs | Flod |
| :---: | :---: | :---: | :---: |
| 30 | 30 | dim*1000 $^{*}$ | 30 |

Other related parameters and the corresponding values of MGWO, the original GWO, and all other comparison optimization algorithms are shown in Table 6, which are derived from their respective papers.

Table 6. The parameters setting of MGWO and the original GWO

| Algorithm | Related parameters setting |
| :---: | :---: |
| MGWO | $\begin{gathered} \lambda=0.4, \mu=0.7 ; \gamma=0.5 ; \\ r_{1} \in[0,1] ; r_{2} \in[0,1] ; c_{2} \in[0,1] ; c_{3} \in[0,1] \end{gathered}$ |
| GWO | $r_{1} \in[0,1] ; r_{2} \in[0,1]$ |
| SSA | $c_{2} \in[0,1] ; c_{3} \in[0,1]$ |
| DE | $F \in[0.2,0.8] ; C R=0.2$ |
| PSO | $v_{\text {max }}=6 ; C_{1}=2 ; C_{2}=2 ; \omega=1 ; r_{1} \in[0,1] ; r_{2} \in[0,1]$ |
| WOA | $b=1 ; r_{1} \in[0,1] ; r_{2} \in[0,1] ; p \in[0,1] ; l \in[-1,1]$ |
| FA | $\beta_{0}=1 ; \gamma=1 ; \alpha \in[0,1]$ |
| BA | $\alpha=\gamma=0.9 ; f_{\text {min }}=0, f_{\max }=2 ; A_{0} \in[1,2] ; r_{0} \in[0,1]$ |
| MFO | $b=1 ; t \in[-2,1]$ |
| ALCPSO | $\begin{gathered} \omega=0.4 ; c_{1}=2 ; c_{2}=2 ; \text { lifespan }=60 ; T=2 ; \\ r_{1} \in[0,1] ; r_{2} \in[0,1] \end{gathered}$ |
| HGWO | $F \in[0.2,0.8] ; C R=0.2 ; r_{1} \in[0,1] ; r_{2} \in[0,1]$ |
| OBLGWO | $b=1 ; r_{1} \in[0,1] ; r_{2} \in[0,1] ; p \in[0,1] ; \beta \in[2,0]$ |
| IGWO | beta $_{\text {num }}=10 ;$ omega $_{\text {num }}=15 ; r_{1} \in[0,1] ; r_{2} \in[0,1]$ |
| CAGWO | ColumnNum $=5 ; r_{1} \in[0,1] ; r_{2} \in[0,1]$ |
| IWOA | $\begin{gathered} \hline b=1 ; r_{1} \in[0,1] ; r_{2} \in[0,1] ; p \in[0,1] ; l \in[-1,1] ; \\ F \in[0,1] ; C R=0.1 \end{gathered}$ |
| BWOA | $\begin{gathered} b=1 ; m=2500 ; \beta=1.5 ; r_{1} \in[0,1] ; r_{2} \in[0,1] ; \\ p \in[0,1] ; l \in[-1,1] ; x \in[0,1] \end{gathered}$ |
| CLSCA | $\begin{gathered} a=2 ; \beta=1.5 ; d=1 ; \\ r_{2} \in[0,2 \pi] ; r_{3} \in[0,2] ; r_{4} \in[0,1] ; x \in[0,1] \end{gathered}$ |
| MSCA | $\begin{gathered} a=2 ; \beta=1.5 ; \varepsilon=30 ; \lambda=0.01 ; \omega_{\min }=0.4 ; \omega_{\max }=0.9 ; \\ \sigma_{v}=1 ; r_{2} \in[0,2 \pi] ; r_{3} \in[0,2] ; r_{4} \in[0,1] ; \end{gathered}$ |
| CMFO | $b=1 ; c c_{0}($ Singer maps $)=0.7$ |
| LGCMFO | $b=1 ; t \in[-2,1] ; \beta=1.5 ; \mu=0 ; \sigma^{2}=1 ; g=1$ |

### 4.1Benchmark function validation

The related contents of the 30 benchmark functions derived from IEEE CEC2017 are shown in Table 7, where Range is the range of the search space on each dimension, and $F(\mathrm{~min})$ represents the optimal solution. These benchmark functions are all single objective boundary constraint functions. There are no other constraints except boundary constraints. F1~F3 are unimodal functions. F4~F10 are simple multimodal functions with many local optima. F11~F20 are hybrid functions. F21~F30 are composition functions. Therefore, these 30 benchmark functions can be used to test the optimization algorithms' performances more comprehensively. Thus, the experimental results can show which types of optimization problems the MGWO algorithm can solve better by the MGWO algorithm.

Table 7. Benchmark functions of IEEE CEC2017

| ID | Function | Range | F(min) |
| :---: | :---: | :---: | :---: |
| F1 | Shifted and Rotated Bent Cigar Function | [-100,100] | 100 |
| F2 | Shifted and Rotated Sum of Different Power Function | [-100,100] | 200 |
| F3 | Shifted and Rotated Zakharov Function | [-100,100] | 300 |
| F4 | Shifted and Rotated Rosenbrock's Function | [-100,100] | 400 |
| F5 | Shifted and Rotated Rastrigin's Function | [-100,100] | 500 |
| F6 | Shifted and Rotated Expanded Scaffer's F6 Function | [-100,100] | 600 |
| F7 | Shifted and Rotated Lunacek Bi_Rastrigin Function | [-100,100] | 700 |
| F8 | Shifted and Rotated Non-Continuous Rastrigin's Function | [-100,100] | 800 |
| F9 | Shifted and Rotated Levy Function | [-100,100] | 900 |
| F10 | Shifted and Rotated Schwefel's Function | [-100,100] | 1000 |
| F11 | Hybrid Function 1 ( $\mathrm{N}=3$ ) | [-100,100] | 1100 |
| F12 | Hybrid Function $2(N=3)$ | [-100,100] | 1200 |
| F13 | Hybrid Function 3 ( $\mathrm{N}=3$ ) | [-100,100] | 1300 |
| F14 | Hybrid Function 4 ( $N=4$ ) | [-100,100] | 1400 |
| F15 | Hybrid Function 5 ( $N=4$ ) | [-100,100] | 1500 |
| F16 | Hybrid Function 6 ( $\mathrm{N}=4$ ) | [-100,100] | 1600 |
| F17 | Hybrid Function 7 ( $\mathrm{N}=5$ ) | [-100,100] | 1700 |
| F18 | Hybrid Function $8(N=5)$ | [-100,100] | 1800 |
| F19 | Hybrid Function 9 ( $\mathrm{N}=5$ ) | [-100,100] | 1900 |
| F20 | Hybrid Function 10 ( $\mathrm{N}=6$ ) | [-100,100] | 2000 |
| F21 | Composition Function $1(N=3)$ | [-100,100] | 2100 |
| F22 | Composition Function $2(N=3)$ | [-100,100] | 2200 |
| F23 | Composition Function 3 ( $N=4$ ) | [-100,100] | 2300 |
| F24 | Composition Function 4 ( $N=4$ ) | [-100,100] | 2400 |
| F25 | Composition Function 5 ( $N=5$ ) | [-100,100] | 2500 |
| F26 | Composition Function 6 ( $N=5$ ) | [-100,100] | 2600 |
| F27 | Composition Function $7(N=6)$ | [-100,100] | 2700 |
| F28 | Composition Function $8(N=6)$ | [-100,100] | 2800 |
| F29 | Composition Function 9 ( $\mathrm{N}=3$ ) | [-100,100] | 2900 |
| F30 | Composition Function $10(N=3)$ | [-100,100] | 3000 |

### 4.2 Comparison with traditional MAs

This section compares the proposed MGWO algorithm with several common MAs: GWO, SSA, DE, PSO, WOA, FA, BA, and MFO on benchmark functions described above. Table 8 shows the experimental results of the MGWO algorithm and competitors on each benchmark function. Where $A v g$ and Std represent the average value and the standard deviation of the optimal values obtained by each algorithm running independently for 30 times on each benchmark function, respectively. Avg is used to measure the quality of the global optimal solution obtained, and Std is used to measure the algorithms' stability. The symbols " + ", " - " and " $=$ " indicate the number of the benchmark functions on which performance of the MGWO algorithm is superior or inferior to other algorithms, or there is no apparent difference between the two competitive algorithms. At the end of the table, the average rank ( $A v g$ ) of the results and the final rank (Rank) counted by the Friedman test (Derrac et al., 2011) are shown. Apparently, the Wilcoxon signed-rank test result indicates that MGWO ranks first among the nine optimization algorithms, and the $A v g$ is 1.53.

Because the optimization algorithms are to search the global minima of all benchmark functions, the smallest the value of $A v g$ is, the better the quality of algorithms obtained by algorithms. The smallest $S t d$ is, the more stable the algorithm is. Therefore, the smallest $A v g$ and the smallest $S t d$ are marked in bold. Among the 30 benchmark functions, the globally optimal solutions of 28 functions obtained by the MGWO algorithm were statistically superior to those obtained by the GWO algorithm. Moreover, there was no significant performance difference between the two algorithms on the remaining two benchmark functions. It is proved that the MGWO algorithm improves the performance of the original GWO algorithm because the former can obtain approximate values closer to the real global optimal values than the latter. Compared with the competitive algorithm DE, the MGWO algorithm also has apparent advantages on 19 benchmark functions. There was no significant performance difference between the two algorithms on the other five benchmark functions. Compared with the other six traditional MAs, the advantages of the MGWO algorithm are more prominent.

Table 8. Comparison of the MGWO algorithm with traditional MAs

|  | F1 |  | F2 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Avg | Std | Avg | Std |
| MGWO | $2.4194 \mathrm{E}+04$ | $4.0913 \mathrm{E}+04$ | $2.0000 \mathrm{E}+02$ | 1.1530E-03 |
| GWO | $2.0300 \mathrm{E}+09$ | $1.4800 \mathrm{E}+09$ | $1.1800 \mathrm{E}+31$ | $3.6100 \mathrm{E}+31$ |
| SSA | $6.8894 \mathrm{E}+03$ | $6.9353 \mathrm{E}+03$ | $2.0276 \mathrm{E}+02$ | $8.4467 \mathrm{E}+00$ |
| DE | $9.4041 \mathrm{E}+02$ | $1.4075 \mathrm{E}+03$ | $2.8700 \mathrm{E}+21$ | $8.5600 \mathrm{E}+21$ |
| PSO | $1.3300 \mathrm{E}+08$ | $1.6600 \mathrm{E}+07$ | $1.1300 \mathrm{E}+27$ | $4.3000 \mathrm{E}+27$ |
| WOA | $3.4311 \mathrm{E}+06$ | $3.0024 \mathrm{E}+06$ | $1.7400 \mathrm{E}+21$ | $5.3900 \mathrm{E}+21$ |
| FA | $1.3900 \mathrm{E}+10$ | $1.6500 \mathrm{E}+09$ | $1.9800 \mathrm{E}+34$ | $5.6400 \mathrm{E}+34$ |
| BA | $6.0789 \mathrm{E}+05$ | $3.8505 \mathrm{E}+05$ | $2.0000 \mathrm{E}+02$ | $7.8800 \mathrm{E}-05$ |
| MFO | $9.0100 \mathrm{E}+09$ | $7.0200 \mathrm{E}+09$ | $1.0500 \mathrm{E}+37$ | $4.9400 \mathrm{E}+37$ |
|  | F3 |  | F4 |  |
|  | Avg | Std | Avg | Std |


| MGWO | $3.0053 \mathrm{E}+02$ | $1.4260 \mathrm{E}-01$ | $4.3366 \mathrm{E}+02$ | $2.6162 \mathrm{E}+01$ |
| :---: | :---: | :---: | :---: | :---: |
| GWO | $3.3699 \mathrm{E}+04$ | $1.3719 \mathrm{E}+04$ | $5.8283 \mathrm{E}+02$ | $6.4499 \mathrm{E}+01$ |
| SSA | $3.0000 \mathrm{E}+02$ | $8.4100 \mathrm{E}-09$ | $4.9057 \mathrm{E}+02$ | $1.8798 \mathrm{E}+01$ |
| DE | $2.0027 \mathrm{E}+04$ | $4.2468 \mathrm{E}+03$ | $4.9265 \mathrm{E}+02$ | 1.1017E+01 |
| PSO | $6.4572 \mathrm{E}+02$ | $4.6359 \mathrm{E}+01$ | $5.1777 \mathrm{E}+02$ | $2.3996 \mathrm{E}+01$ |
| WOA | $1.6230 \mathrm{E}+05$ | $5.9307 \mathrm{E}+04$ | $5.2832 \mathrm{E}+02$ | $2.9742 \mathrm{E}+01$ |
| FA | $5.9473 \mathrm{E}+04$ | $8.6754 \mathrm{E}+03$ | $1.4014 \mathrm{E}+03$ | $1.3584 \mathrm{E}+02$ |
| BA | $3.0014 \mathrm{E}+02$ | $1.4270 \mathrm{E}-01$ | $4.7014 \mathrm{E}+02$ | $3.6213 \mathrm{E}+01$ |
| MFO | $9.7972 \mathrm{E}+04$ | $8.9262 \mathrm{E}+04$ | $1.2927 \mathrm{E}+03$ | $8.6214 \mathrm{E}+02$ |
|  | F5 |  | F6 |  |
|  | Avg | Std | Avg | Std |
| MGWO | $5.6328 \mathrm{E}+02$ | $1.6718 \mathrm{E}+01$ | $6.0040 \mathrm{E}+02$ | $7.0649 \mathrm{E}-01$ |
| GWO | $5.9779 \mathrm{E}+02$ | $3.1201 \mathrm{E}+01$ | $6.0728 \mathrm{E}+02$ | $3.7124 \mathrm{E}+00$ |
| SSA | $6.1587 \mathrm{E}+02$ | $2.9841 \mathrm{E}+01$ | $6.3061 \mathrm{E}+02$ | $9.4540 \mathrm{E}+00$ |
| DE | $6.0960 \mathrm{E}+02$ | $8.2401 \mathrm{E}+00$ | $6.0000 \mathrm{E}+02$ | $0.0000 \mathrm{E}+00$ |
| PSO | $7.4058 \mathrm{E}+02$ | $3.3489 \mathrm{E}+01$ | $6.4913 \mathrm{E}+02$ | $1.5729 \mathrm{E}+01$ |
| WOA | $7.7491 \mathrm{E}+02$ | $6.0319 \mathrm{E}+01$ | $6.7433 \mathrm{E}+02$ | $1.1000 \mathrm{E}+01$ |
| FA | $7.5696 \mathrm{E}+02$ | $1.0412 \mathrm{E}+01$ | $6.4391 \mathrm{E}+02$ | $2.7444 \mathrm{E}+00$ |
| BA | $8.3760 \mathrm{E}+02$ | $6.4574 \mathrm{E}+01$ | $6.7134 \mathrm{E}+02$ | $1.0097 \mathrm{E}+01$ |
| MFO | $7.0022 \mathrm{E}+02$ | $4.5105 \mathrm{E}+01$ | $6.3657 \mathrm{E}+02$ | $9.7714 \mathrm{E}+00$ |
|  | F7 |  | F8 |  |
|  | Avg | Std | Avg | Std |
| MGWO | $8.2146 \mathrm{E}+02$ | $2.3771 \mathrm{E}+01$ | $8.6696 \mathrm{E}+02$ | $1.7649 \mathrm{E}+01$ |
| GWO | $8.6084 \mathrm{E}+02$ | $3.7516 \mathrm{E}+01$ | $8.9272 \mathrm{E}+02$ | $2.9468 \mathrm{E}+01$ |
| SSA | $8.6522 \mathrm{E}+02$ | $3.2550 \mathrm{E}+01$ | $9.1031 \mathrm{E}+02$ | $3.2472 \mathrm{E}+01$ |
| DE | $8.4104 \mathrm{E}+02$ | $8.0786 \mathrm{E}+00$ | $9.0900 \mathrm{E}+02$ | $8.7635 \mathrm{E}+00$ |
| PSO | $9.1992 \mathrm{E}+02$ | $1.7930 \mathrm{E}+01$ | $9.9174 \mathrm{E}+02$ | $2.4140 \mathrm{E}+01$ |
| WOA | $1.2157 \mathrm{E}+03$ | $8.7575 \mathrm{E}+01$ | $1.0052 \mathrm{E}+03$ | $5.9909 \mathrm{E}+01$ |
| FA | $1.3747 \mathrm{E}+03$ | $3.9619 \mathrm{E}+01$ | $1.0491 \mathrm{E}+03$ | 1.1026E+01 |
| BA | $1.6328 \mathrm{E}+03$ | $1.9465 \mathrm{E}+02$ | $1.0621 \mathrm{E}+03$ | $8.0426 \mathrm{E}+01$ |
| MFO | $1.1089 \mathrm{E}+03$ | $2.4868 \mathrm{E}+02$ | $1.0080 \mathrm{E}+03$ | $4.5646 \mathrm{E}+01$ |
|  | F9 |  | F10 |  |
|  | Avg | Std | Avg | Std |
| MGWO | $1.3645 \mathrm{E}+03$ | $3.8822 \mathrm{E}+02$ | $3.3999 \mathrm{E}+03$ | $5.5125 \mathrm{E}+02$ |
| GWO | $1.7317 \mathrm{E}+03$ | $5.3961 \mathrm{E}+02$ | $3.8978 \mathrm{E}+03$ | $6.3232 \mathrm{E}+02$ |
| SSA | $3.0950 \mathrm{E}+03$ | $1.2880 \mathrm{E}+03$ | $4.9105 \mathrm{E}+03$ | $7.6037 \mathrm{E}+02$ |
| DE | $9.0000 \mathrm{E}+02$ | 9.6743E-14 | $5.9171 \mathrm{E}+03$ | $2.9090 \mathrm{E}+02$ |
| PSO | $5.2904 \mathrm{E}+03$ | $2.1348 \mathrm{E}+03$ | $6.2501 \mathrm{E}+03$ | $5.3422 \mathrm{E}+02$ |
| WOA | $8.0920 \mathrm{E}+03$ | $2.6791 \mathrm{E}+03$ | $6.1643 \mathrm{E}+03$ | $7.7617 \mathrm{E}+02$ |
| FA | $5.3628 \mathrm{E}+03$ | $5.2487 \mathrm{E}+02$ | $7.9610 \mathrm{E}+03$ | $2.3948 \mathrm{E}+02$ |
| BA | $1.3828 \mathrm{E}+04$ | $5.4927 \mathrm{E}+03$ | $5.6293 \mathrm{E}+03$ | $5.9239 \mathrm{E}+02$ |


| MFO | $6.2666 \mathrm{E}+03$ | $1.7145 \mathrm{E}+03$ | $5.3614 \mathrm{E}+03$ | $7.0395 \mathrm{E}+02$ |
| :---: | :---: | :---: | :---: | :---: |
|  | F11 |  | F12 |  |
|  | Avg | Std | Avg | Std |
| MGWO | $1.1757 \mathrm{E}+03$ | $1.9279 \mathrm{E}+01$ | $1.5297 \mathrm{E}+05$ | $1.4689 \mathrm{E}+05$ |
| GWO | $2.1107 \mathrm{E}+03$ | $9.7803 \mathrm{E}+02$ | $4.7268 \mathrm{E}+07$ | $7.2172 \mathrm{E}+07$ |
| SSA | $1.2566 \mathrm{E}+03$ | $4.7190 \mathrm{E}+01$ | $1.6137 \mathrm{E}+06$ | $1.2617 \mathrm{E}+06$ |
| DE | $1.1555 \mathrm{E}+03$ | $2.5041 \mathrm{E}+01$ | $1.6345 \mathrm{E}+06$ | $7.6583 \mathrm{E}+05$ |
| PSO | $1.2891 \mathrm{E}+03$ | $3.9330 \mathrm{E}+01$ | $2.6520 \mathrm{E}+07$ | $1.0586 \mathrm{E}+07$ |
| WOA | $1.5224 \mathrm{E}+03$ | $1.8900 \mathrm{E}+02$ | $4.0232 \mathrm{E}+07$ | $3.4064 \mathrm{E}+07$ |
| FA | $3.5287 \mathrm{E}+03$ | $4.4247 \mathrm{E}+02$ | $1.4975 \mathrm{E}+09$ | $2.7120 \mathrm{E}+08$ |
| BA | $1.3296 \mathrm{E}+03$ | $7.7239 \mathrm{E}+01$ | $2.3166 \mathrm{E}+06$ | $2.0014 \mathrm{E}+06$ |
| MFO | $5.9585 \mathrm{E}+03$ | $5.6447 \mathrm{E}+03$ | $3.6092 \mathrm{E}+08$ | $8.4887 \mathrm{E}+08$ |
|  | F13 |  | F14 |  |
|  | Avg | Std | Avg | Std |
| MGWO | $2.5774 \mathrm{E}+04$ | $2.0935 \mathrm{E}+04$ | $7.7290 \mathrm{E}+03$ | $5.9384 \mathrm{E}+03$ |
| GWO | $1.6035 \mathrm{E}+07$ | $6.5705 \mathrm{E}+07$ | $2.2769 \mathrm{E}+05$ | $3.2979 \mathrm{E}+05$ |
| SSA | $9.5942 \mathrm{E}+04$ | $5.8882 \mathrm{E}+04$ | $4.0867 \mathrm{E}+03$ | $2.1834 \mathrm{E}+03$ |
| DE | $3.1134 \mathrm{E}+04$ | $1.8650 \mathrm{E}+04$ | $3.8371 \mathrm{E}+04$ | $2.8748 \mathrm{E}+04$ |
| PSO | $6.9569 \mathrm{E}+06$ | $1.2946 \mathrm{E}+07$ | $1.2549 \mathrm{E}+04$ | $2.2571 \mathrm{E}+04$ |
| WOA | $1.7338 \mathrm{E}+05$ | $1.0463 \mathrm{E}+05$ | $7.9914 \mathrm{E}+05$ | $8.8314 \mathrm{E}+05$ |
| FA | $5.9296 \mathrm{E}+08$ | $1.8809 \mathrm{E}+08$ | $2.1299 \mathrm{E}+05$ | $7.9892 \mathrm{E}+04$ |
| BA | $2.8724 \mathrm{E}+05$ | $1.0480 \mathrm{E}+05$ | $7.4888 \mathrm{E}+03$ | $4.9374 \mathrm{E}+03$ |
| MFO | $2.0179 \mathrm{E}+08$ | $6.0685 \mathrm{E}+08$ | $3.2763 \mathrm{E}+05$ | $1.1869 \mathrm{E}+06$ |
|  | F15 |  | F16 |  |
|  | Avg | Std | Avg | Std |
| MGWO | $1.0049 \mathrm{E}+04$ | $1.3060 \mathrm{E}+04$ | $2.1576 \mathrm{E}+03$ | $2.4090 \mathrm{E}+02$ |
| GWO | $1.5224 \mathrm{E}+05$ | $4.4815 \mathrm{E}+05$ | $2.4001 \mathrm{E}+03$ | $2.4235 \mathrm{E}+02$ |
| SSA | $4.8333 \mathrm{E}+04$ | $2.7033 \mathrm{E}+04$ | $2.4271 \mathrm{E}+03$ | $2.7542 \mathrm{E}+02$ |
| DE | $7.1219 \mathrm{E}+03$ | $3.3429 \mathrm{E}+03$ | $2.0600 \mathrm{E}+03$ | $1.2773 \mathrm{E}+02$ |
| PSO | $4.1611 \mathrm{E}+05$ | $1.7336 \mathrm{E}+05$ | $2.8118 \mathrm{E}+03$ | $2.3697 \mathrm{E}+02$ |
| WOA | $7.9413 \mathrm{E}+04$ | $6.4775 \mathrm{E}+04$ | $3.4044 \mathrm{E}+03$ | $4.3608 \mathrm{E}+02$ |
| FA | $7.1584 \mathrm{E}+07$ | $2.0832 \mathrm{E}+07$ | $3.4268 \mathrm{E}+03$ | $1.2971 \mathrm{E}+02$ |
| BA | $1.2225 \mathrm{E}+05$ | $6.9405 \mathrm{E}+04$ | $3.4173 \mathrm{E}+03$ | $4.7420 \mathrm{E}+02$ |
| MFO | $4.1185 \mathrm{E}+04$ | $3.2561 \mathrm{E}+04$ | $3.1913 \mathrm{E}+03$ | $3.6608 \mathrm{E}+02$ |
|  | F17 |  | F18 |  |
|  | Avg | Std | Avg | Std |
| MGWO | $1.9162 \mathrm{E}+03$ | $1.0254 \mathrm{E}+02$ | $8.8036 \mathrm{E}+04$ | $6.2562 \mathrm{E}+04$ |
| GWO | $1.9788 \mathrm{E}+03$ | $1.4376 \mathrm{E}+02$ | $5.8249 \mathrm{E}+05$ | $6.9463 \mathrm{E}+05$ |
| SSA | $1.9916 \mathrm{E}+03$ | $1.3147 \mathrm{E}+02$ | $1.4183 \mathrm{E}+05$ | $1.1436 \mathrm{E}+05$ |
| DE | $1.8492 \mathrm{E}+03$ | 6.6971E+01 | $2.6542 \mathrm{E}+05$ | $1.0734 \mathrm{E}+05$ |


| PSO | $2.3952 \mathrm{E}+03$ | $2.0462 \mathrm{E}+02$ | $1.9238 \mathrm{E}+05$ | $1.2733 \mathrm{E}+05$ |
| :---: | :---: | :---: | :---: | :---: |
| WOA | $2.5010 \mathrm{E}+03$ | $2.7952 \mathrm{E}+02$ | $2.0784 \mathrm{E}+06$ | $2.6870 \mathrm{E}+06$ |
| FA | $2.5076 \mathrm{E}+03$ | $1.2326 \mathrm{E}+02$ | $3.5380 \mathrm{E}+06$ | $1.6507 \mathrm{E}+06$ |
| BA | $2.7688 \mathrm{E}+03$ | $3.0294 \mathrm{E}+02$ | $2.0863 \mathrm{E}+05$ | $1.4936 \mathrm{E}+05$ |
| MFO | $2.5576 \mathrm{E}+03$ | $2.3590 \mathrm{E}+02$ | $5.8556 \mathrm{E}+06$ | $1.7834 \mathrm{E}+07$ |
|  | F19 |  | F20 |  |
|  | Avg | Std | Avg | Std |
| MGWO | $1.7301 \mathrm{E}+04$ | $1.8314 \mathrm{E}+04$ | $2.2781 \mathrm{E}+03$ | $1.1064 \mathrm{E}+02$ |
| GWO | $6.4318 \mathrm{E}+05$ | $1.0971 \mathrm{E}+06$ | $2.3710 \mathrm{E}+03$ | $1.2576 \mathrm{E}+02$ |
| SSA | $3.2149 \mathrm{E}+05$ | $1.1641 \mathrm{E}+05$ | $2.4409 \mathrm{E}+03$ | $1.3256 \mathrm{E}+02$ |
| DE | $7.8069 \mathrm{E}+03$ | $4.6828 \mathrm{E}+03$ | $2.1314 \mathrm{E}+03$ | $6.6880 \mathrm{E}+01$ |
| PSO | $1.3068 \mathrm{E}+06$ | $5.8293 \mathrm{E}+05$ | $2.6304 \mathrm{E}+03$ | $1.7194 \mathrm{E}+02$ |
| WOA | $2.4513 \mathrm{E}+06$ | $2.0773 \mathrm{E}+06$ | $2.7314 \mathrm{E}+03$ | $1.9269 \mathrm{E}+02$ |
| FA | $9.5994 \mathrm{E}+07$ | $3.9093 \mathrm{E}+07$ | $2.5888 \mathrm{E}+03$ | $9.3228 \mathrm{E}+01$ |
| BA | $6.2920 \mathrm{E}+05$ | $2.1118 \mathrm{E}+05$ | $2.9895 \mathrm{E}+03$ | $2.1683 \mathrm{E}+02$ |
| MFO | $5.1073 \mathrm{E}+07$ | $2.4205 \mathrm{E}+08$ | $2.6575 \mathrm{E}+03$ | $2.2331 \mathrm{E}+02$ |
|  | F21 |  | F22 |  |
|  | Avg | Std | Avg | Std |
| MGWO | $2.3543 \mathrm{E}+03$ | $1.2723 \mathrm{E}+01$ | $3.7721 \mathrm{E}+03$ | $1.5577 \mathrm{E}+03$ |
| GWO | $2.3893 \mathrm{E}+03$ | $3.6967 \mathrm{E}+01$ | $4.4478 \mathrm{E}+03$ | $1.7001 \mathrm{E}+03$ |
| SSA | $2.4094 \mathrm{E}+03$ | $2.6606 \mathrm{E}+01$ | $4.6228 \mathrm{E}+03$ | $2.0188 \mathrm{E}+03$ |
| DE | $2.4087 \mathrm{E}+03$ | $9.2778 \mathrm{E}+00$ | $4.2827 \mathrm{E}+03$ | $1.9968 \mathrm{E}+03$ |
| PSO | $2.5404 \mathrm{E}+03$ | $4.0358 \mathrm{E}+01$ | $5.6485 \mathrm{E}+03$ | $2.7546 \mathrm{E}+03$ |
| WOA | $2.5794 \mathrm{E}+03$ | $6.9289 \mathrm{E}+01$ | $6.6739 \mathrm{E}+03$ | $2.0856 \mathrm{E}+03$ |
| FA | $2.5400 \mathrm{E}+03$ | $1.0115 \mathrm{E}+01$ | $3.8256 \mathrm{E}+03$ | $1.7341 \mathrm{E}+02$ |
| BA | $2.6188 \mathrm{E}+03$ | $8.7349 \mathrm{E}+01$ | $7.1658 \mathrm{E}+03$ | $1.1298 \mathrm{E}+03$ |
| MFO | $2.5051 \mathrm{E}+03$ | $3.9461 \mathrm{E}+01$ | $6.5707 \mathrm{E}+03$ | $9.4533 \mathrm{E}+02$ |
|  | F23 |  | F24 |  |
|  | Avg | Std | Avg | Std |
| MGWO | $2.7291 \mathrm{E}+03$ | $1.8759 \mathrm{E}+01$ | $2.9025 \mathrm{E}+03$ | $2.4828 \mathrm{E}+01$ |
| GWO | $2.7569 \mathrm{E}+03$ | $2.8567 \mathrm{E}+01$ | $2.9359 \mathrm{E}+03$ | $5.6068 \mathrm{E}+01$ |
| SSA | $2.7527 \mathrm{E}+03$ | $2.6210 \mathrm{E}+01$ | $2.9073 \mathrm{E}+03$ | $2.6872 \mathrm{E}+01$ |
| DE | $2.7569 \mathrm{E}+03$ | $9.0662 \mathrm{E}+00$ | $2.9585 \mathrm{E}+03$ | $1.1556 \mathrm{E}+01$ |
| PSO | $3.1149 \mathrm{E}+03$ | $1.4894 \mathrm{E}+02$ | $3.1836 \mathrm{E}+03$ | $9.3535 \mathrm{E}+01$ |
| WOA | $3.0393 \mathrm{E}+03$ | $1.1066 \mathrm{E}+02$ | $3.1751 \mathrm{E}+03$ | $9.9773 \mathrm{E}+01$ |
| FA | $2.9114 \mathrm{E}+03$ | $1.0293 \mathrm{E}+01$ | $3.0662 \mathrm{E}+03$ | $1.1569 \mathrm{E}+01$ |
| BA | $3.3386 \mathrm{E}+03$ | $1.5392 \mathrm{E}+02$ | $3.3761 \mathrm{E}+03$ | $1.2773 \mathrm{E}+02$ |
| MFO | $2.8313 \mathrm{E}+03$ | $3.9714 \mathrm{E}+01$ | $2.9800 \mathrm{E}+03$ | $4.2096 \mathrm{E}+01$ |
|  | F25 |  | F26 |  |
|  | Avg | Std | Avg | Std |
| MGWO | $2.8778 \mathrm{E}+03$ | $1.7874 \mathrm{E}+00$ | $3.8606 \mathrm{E}+03$ | $3.0151 \mathrm{E}+02$ |


| GWO | $2.9981 \mathrm{E}+03$ | $9.2791 \mathrm{E}+01$ | $4.5804 \mathrm{E}+03$ | $4.0019 \mathrm{E}+02$ |
| :---: | :---: | :---: | :---: | :---: |
| SSA | $2.8984 \mathrm{E}+03$ | $2.0175 \mathrm{E}+01$ | $4.3976 \mathrm{E}+03$ | $9.7237 \mathrm{E}+02$ |
| DE | $2.8874 \mathrm{E}+03$ | $3.4522 \mathrm{E}-01$ | $4.6410 \mathrm{E}+03$ | $1.3883 \mathrm{E}+02$ |
| PSO | $2.9042 \mathrm{E}+03$ | $1.7736 \mathrm{E}+01$ | $4.9634 \mathrm{E}+03$ | $1.9113 \mathrm{E}+03$ |
| WOA | $2.9521 \mathrm{E}+03$ | $3.0641 \mathrm{E}+01$ | $7.4442 \mathrm{E}+03$ | $1.4462 \mathrm{E}+03$ |
| FA | $3.5721 \mathrm{E}+03$ | $9.0579 \mathrm{E}+01$ | $6.5103 \mathrm{E}+03$ | $1.3797 \mathrm{E}+02$ |
| BA | $2.9168 \mathrm{E}+03$ | $2.4166 \mathrm{E}+01$ | $9.0025 \mathrm{E}+03$ | $1.4452 \mathrm{E}+03$ |
| MFO | $3.3783 \mathrm{E}+03$ | $5.6778 \mathrm{E}+02$ | $5.9280 \mathrm{E}+03$ | $4.6117 \mathrm{E}+02$ |
|  | F27 |  | F28 |  |
|  | Avg | Std | Avg | Std |
| MGWO | $3.1926 \mathrm{E}+03$ | $1.5907 \mathrm{E}+01$ | $3.1441 \mathrm{E}+03$ | 5.7130E+01 |
| GWO | $3.2511 \mathrm{E}+03$ | $2.7653 \mathrm{E}+01$ | $3.4509 \mathrm{E}+03$ | $1.5407 \mathrm{E}+02$ |
| SSA | $3.2348 \mathrm{E}+03$ | $1.4878 \mathrm{E}+01$ | $3.2035 \mathrm{E}+03$ | $3.3908 \mathrm{E}+01$ |
| DE | $3.2053 \mathrm{E}+03$ | $3.9009 \mathrm{E}+00$ | $3.1907 \mathrm{E}+03$ | $4.8217 \mathrm{E}+01$ |
| PSO | $3.3314 \mathrm{E}+03$ | $8.4404 \mathrm{E}+01$ | $3.2557 \mathrm{E}+03$ | $3.4200 \mathrm{E}+01$ |
| WOA | $3.3900 \mathrm{E}+03$ | $8.4375 \mathrm{E}+01$ | $3.3053 \mathrm{E}+03$ | $2.7038 \mathrm{E}+01$ |
| FA | $3.3352 \mathrm{E}+03$ | $1.8394 \mathrm{E}+01$ | $3.8925 \mathrm{E}+03$ | $1.0143 \mathrm{E}+02$ |
| BA | $3.4550 \mathrm{E}+03$ | $1.6919 \mathrm{E}+02$ | $3.1363 \mathrm{E}+03$ | $6.2698 \mathrm{E}+01$ |
| MFO | $3.2539 \mathrm{E}+03$ | $2.7842 \mathrm{E}+01$ | $4.3936 \mathrm{E}+03$ | $9.8487 \mathrm{E}+02$ |
|  | F29 |  | F30 |  |
|  | Avg | Std | Avg | Std |
| MGWO | $3.4336 \mathrm{E}+03$ | $1.1598 \mathrm{E}+02$ | $5.7324 \mathrm{E}+03$ | $2.7936 \mathrm{E}+03$ |
| GWO | $3.7762 \mathrm{E}+03$ | $1.8302 \mathrm{E}+02$ | $3.9170 \mathrm{E}+06$ | $2.5684 \mathrm{E}+06$ |
| SSA | $3.8809 \mathrm{E}+03$ | $1.9078 \mathrm{E}+02$ | $1.1721 \mathrm{E}+06$ | $7.7875 \mathrm{E}+05$ |
| DE | $3.5349 \mathrm{E}+03$ | $6.5258 \mathrm{E}+01$ | $1.3249 \mathrm{E}+04$ | $3.6055 \mathrm{E}+03$ |
| PSO | $4.3202 \mathrm{E}+03$ | $2.6293 \mathrm{E}+02$ | $3.2375 \mathrm{E}+06$ | $1.2255 \mathrm{E}+06$ |
| WOA | $4.8223 \mathrm{E}+03$ | $3.4477 \mathrm{E}+02$ | $1.4496 \mathrm{E}+07$ | $9.3319 \mathrm{E}+06$ |
| FA | $4.6609 \mathrm{E}+03$ | $1.2870 \mathrm{E}+02$ | $9.1080 \mathrm{E}+07$ | $3.1435 \mathrm{E}+07$ |
| BA | $4.9142 \mathrm{E}+03$ | $3.6160 \mathrm{E}+02$ | $1.1166 \mathrm{E}+06$ | 7.9138E+05 |
| MFO | $4.1512 \mathrm{E}+03$ | $2.9961 \mathrm{E}+02$ | $9.7656 \mathrm{E}+05$ | $2.2171 \mathrm{E}+06$ |


|  | Wilcoxon signed-rank test |  |  |
| :--- | :--- | :--- | :--- |
|  | $+/-/=$ | Avg | Rank |
| MGWO | $\sim$ | $\mathbf{1 . 5 3}$ | $\mathbf{1}$ |
| GWO | $28 / 0 / 2$ | 4.70 | 4 |
| SSA | $25 / 3 / 2$ | 3.20 | 3 |
| DE | $19 / 6 / 5$ | 2.67 | 2 |
| PSO | $29 / 0 / 1$ | 5.67 | 5 |
| WOA | $30 / 0 / 0$ | 6.93 | 8 |
| FA | $29 / 0 / 1$ | 7.43 | 9 |
| BA | $26 / 2 / 2$ | 6.23 | 6 |
| MFO | $30 / 0 / 0$ | 6.63 | 7 |

Table 9 shows the p-values calculated from the MGWO algorithm results and other comparison algorithms after running independently for 30 times on each benchmark function. There is a statistically significant difference between the MGWO algorithm's performance and the competitor if the corresponding p -value is less than 0.05 . The symbol " + " presents that the MGWO algorithm's performance is better than that of the competitor in statistics, while the sign "-" is the opposite. If there is no symbol, it means that no statistically significant difference between the two algorithms. Through the p-values and the symbols, it can be seen that the MGWO algorithm improves the original GWO algorithm on both unimodal and multimodal functions. The original SSA performed better when the objective function is unimodal but not as well as the MGWO algorithm when the objective function is multimodal. Compared with DE, the MGWO algorithm is superior to DE in optimizing composition functions. It improves the ability to deal with hybrid functions to a small extent. The MGWO algorithm's performance on unimodal functions and simple multimodal functions is similar to that of DE. Moreover, compared with the other MAs, the MGWO algorithm can improve the ability to search all kinds of objective functions. We can conclude that the MGWO algorithm has apparent competitiveness through these discussions compared with traditional MAs involved in this experiment.

Table 9. The p-values between the MGWO algorithm and competitors

| Function | GWO |  | SSA |  | DE |  | PSO |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| F1 | $1.7344 \mathrm{E}-06$ | $+$ | 4.9498E-02 | - | 1.1499E-04 | - | 1.7344E-06 | + |
| F2 | $1.7344 \mathrm{E}-06$ | + | $1.8519 \mathrm{E}-02$ | + | $1.7344 \mathrm{E}-06$ | + | $1.7344 \mathrm{E}-06$ | + |
| F3 | $1.7344 \mathrm{E}-06$ | $+$ | 1.7344E-06 | - | $1.7344 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | + |
| F4 | $1.7344 \mathrm{E}-06$ | $+$ | $2.3534 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | + | $1.7344 \mathrm{E}-06$ | + |
| F5 | $5.3070 \mathrm{E}-05$ | + | $2.6033 \mathrm{E}-06$ | + | 1.7344E-06 | + | 1.7344E-06 | + |
| F6 | $1.9209 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | - | $1.7344 \mathrm{E}-06$ | + |
| F7 | $9.7110 \mathrm{E}-05$ | + | $1.7988 \mathrm{E}-05$ | + | $5.7064 \mathrm{E}-04$ | + | $1.7344 \mathrm{E}-06$ | + |
| F8 | $5.2872 \mathrm{E}-04$ | $+$ | $1.0246 \mathrm{E}-05$ | $+$ | $2.6033 \mathrm{E}-06$ | + | $1.7344 \mathrm{E}-06$ | $+$ |
| F9 | $1.6566 \mathrm{E}-02$ | $+$ | $5.2165 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | - | $3.8822 \mathrm{E}-06$ | $+$ |
| F10 | $1.9646 \mathrm{E}-03$ | + | $2.6033 \mathrm{E}-06$ | + | $1.7344 \mathrm{E}-06$ | + | $1.7344 \mathrm{E}-06$ | + |
| F11 | $1.7344 \mathrm{E}-06$ | $+$ | $2.1266 \mathrm{E}-06$ | $+$ | $6.0350 \mathrm{E}-03$ | - | $1.7344 \mathrm{E}-06$ | + |
| F12 | $1.7344 \mathrm{E}-06$ | $+$ | $1.9209 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | + | $1.7344 \mathrm{E}-06$ | $+$ |
| F13 | 6.3391E-06 | $+$ | 1.1265E-05 | + | 4.1653E-01 |  | 1.7344E-06 | + |
| F14 | $5.2165 \mathrm{E}-06$ | $+$ | $6.4242 \mathrm{E}-03$ | - | $6.9838 \mathrm{E}-06$ | + | $2.2102 \mathrm{E}-01$ |  |
| F15 | $9.7110 \mathrm{E}-05$ | $+$ | $7.6909 \mathrm{E}-06$ | $+$ | 8.2901E-01 |  | 1.7344E-06 | + |
| F16 | 1.1138E-03 | + | 3.3173E-04 | + | $5.1931 \mathrm{E}-02$ |  | 1.7344E-06 | + |
| F17 | 1.3591E-01 |  | 2.4308E-02 | $+$ | $2.0671 \mathrm{E}-02$ | - | $1.7344 \mathrm{E}-06$ | + |
| F18 | $1.3601 \mathrm{E}-05$ | $+$ | $3.0010 \mathrm{E}-02$ | + | $3.5152 \mathrm{E}-06$ | + | 1.6046E-04 | $+$ |
| F19 | $3.5152 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | $+$ | 8.5896E-02 |  | 1.7344E-06 | $+$ |
| F20 | $3.1618 \mathrm{E}-03$ | $+$ | 8.9187E-05 | $+$ | 4.2857E-06 | - | $1.7344 \mathrm{E}-06$ | + |
| F21 | $6.9838 \mathrm{E}-06$ | + | $1.7344 \mathrm{E}-06$ | + | $1.7344 \mathrm{E}-06$ | + | $1.7344 \mathrm{E}-06$ | + |
| F22 | $9.7772 \mathrm{E}-02$ |  | $9.3676 \mathrm{E}-02$ |  | $2.3694 \mathrm{E}-01$ |  | $2.4147 \mathrm{E}-03$ | + |
| F23 | 1.2506E-04 | + | $9.6266 \mathrm{E}-04$ | $+$ | $1.9729 \mathrm{E}-05$ | + | 1.7344E-06 | + |
| F24 | $2.0671 \mathrm{E}-02$ | $+$ | $3.7094 \mathrm{E}-01$ |  | $1.9209 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | + |
| F25 | $1.7344 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | + | $1.7344 \mathrm{E}-06$ | + |
| F26 | $1.3601 \mathrm{E}-05$ | + | $1.1079 \mathrm{E}-02$ | + | $1.9209 \mathrm{E}-06$ | + | $1.7518 \mathrm{E}-02$ | + |


| F27 | $1.7344 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | $+$ | $5.7517 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | $+$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| F28 | 1.7344E-06 | $+$ | $8.9187 \mathrm{E}-05$ | $+$ | $2.5846 \mathrm{E}-03$ | $+$ | 5.7517E-06 | $+$ |
| F29 | $2.3534 \mathrm{E}-06$ | $+$ | $1.9209 \mathrm{E}-06$ | $+$ | $5.7064 \mathrm{E}-04$ | $+$ | $1.7344 \mathrm{E}-06$ | + |
| F30 | $1.7344 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | + | $1.9209 \mathrm{E}-06$ | + | $1.7344 \mathrm{E}-06$ | + |
| Function | WOA |  | FA |  | BA |  | MFO |  |
| F1 | $1.7344 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | $+$ | $1.9209 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | + |
| F2 | $1.7344 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | $+$ | $2.6033 \mathrm{E}-06$ | - | $1.7344 \mathrm{E}-06$ | $+$ |
| F3 | $1.7344 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | $+$ | 4.2857E-06 | - | $1.7344 \mathrm{E}-06$ | $+$ |
| F4 | $1.9209 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | $+$ | $1.4773 \mathrm{E}-04$ | $+$ | $1.7344 \mathrm{E}-06$ | + |
| F5 | $1.7344 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | + |
| F6 | $1.7344 \mathrm{E}-06$ | $+$ |
| F7 | $1.7344 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | + |
| F8 | $1.7344 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | + |
| F9 | $1.7344 \mathrm{E}-06$ | $+$ |
| F10 | $1.7344 \mathrm{E}-06$ | + | $1.7344 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | $+$ | $2.3534 \mathrm{E}-06$ | $+$ |
| F11 | $1.7344 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | + |
| F12 | $1.7344 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | $+$ | $1.9209 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | $+$ |
| F13 | $1.9209 \mathrm{E}-06$ | + | $1.7344 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | $+$ | $6.3391 \mathrm{E}-06$ | $+$ |
| F14 | $1.7344 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | + | 8.1302E-01 |  | 1.1265E-05 | $+$ |
| F15 | $2.8786 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | $+$ | $4.8603 \mathrm{E}-05$ | + |
| F16 | $1.7344 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | $+$ | $1.9209 \mathrm{E}-06$ | $+$ |
| F17 | $1.7344 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | + | $1.7344 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | + |
| F18 | $2.3534 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | $+$ | $9.7110 \mathrm{E}-05$ | + | $3.4053 \mathrm{E}-05$ | + |
| F19 | $1.7344 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | $+$ | $4.7292 \mathrm{E}-06$ | $+$ |
| F20 | $1.7344 \mathrm{E}-06$ | $+$ | $2.1266 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | + |
| F21 | $1.7344 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | + | $1.7344 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | $+$ |
| F22 | $4.7292 \mathrm{E}-06$ | $+$ | 8.4508E-01 |  | $1.7344 \mathrm{E}-06$ | + | 4.2857E-06 | $+$ |
| F23 | $1.7344 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | + | $1.7344 \mathrm{E}-06$ | + | $1.7344 \mathrm{E}-06$ | + |
| F24 | $1.7344 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | $+$ | $2.6033 \mathrm{E}-06$ | $+$ |
| F25 | 1.7344E-06 | $+$ | $1.7344 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | + |
| F26 | $2.3534 \mathrm{E}-06$ | + | $1.7344 \mathrm{E}-06$ | $+$ | $1.9209 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | $+$ |
| F27 | $1.7344 \mathrm{E}-06$ | + | $1.7344 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | + |
| F28 | $1.7344 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | $+$ | $7.0356 \mathrm{E}-01$ |  | $1.7344 \mathrm{E}-06$ | + |
| F29 | $1.7344 \mathrm{E}-06$ | + | $1.7344 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | $+$ |
| F30 | $1.7344 \mathrm{E}-06$ | + |

Figure 4 shows the convergence curves of all algorithms on several of the 30 benchmark functions. The convergence curves reflect the algorithms' convergence rate and the final solutions' quality. Considering the quality of the solutions as the first comparison factor, the higher the accuracy and precision of the solution obtained by an algorithm, the algorithm's search ability more robust. The algorithms' ability to jump out of the local optima trap is also very crucial. It reflects the algorithm's performance dealing with the multi-modal functions to a certain extent. The convergence rate reflects the approximate time needed by an algorithm to solve an optimization problem. When the solutions
obtained by the two algorithms are the same, the convergence rate is taken as the index to evaluate the algorithms. F5, F8, and F10 are simple multimodal functions in Figure 4. F12 and F18 are hybrid functions; F21, F26, and F30 are composition functions.

The characteristics of the search mechanism limit the MGWO algorithm. During the early stage of iteration, the convergence speed of the MGWO algorithm is relatively low because it pays more attention to explore the search space for improving its exploration ability. At the middle stage of iteration, its convergence speed is improved rapidly, and it approaches the global optimal solution quickly. At the later iteration stage, the MGWO algorithm's convergence curve reflects its ability to jump out of the local optima trap, especially on F30. The MGWO algorithm's search mechanism can make the population jump out of the local optima trap and gain higher-quality solutions. However, the population has already approached convergence. Table $\mathbf{6}$ and the categories of benchmark functions show that the MGWO algorithm has better performance on composition functions.


Fig. 4 Convergence curves of the MGWO algorithm and the traditional MAs (First row: F5, F8; second row: F10, F12; third row: F18, F21; fourth row: F26, F30)

### 4.3 Comparison with the variants of MAs

In this section, the comparative experiments were done with the MGWO algorithm with some advanced optimization algorithms variants of GWO and other MAs on 30 benchmark functions. The GWO algorithm's variants involved in the comparison are hybridizing GWO with differential evolution (HGWO) (Zhu et al., 2015), OBLGWO (Heidari et al., 2019b), IGWO (Cai et al., 2019), CAGWO (Lu et al., 2018). The variants of other MAs involved in the comparison are PSO with an aging leader and challengers (ALCPSO) (Chen et al., 2013), improved WOA (IWOA) (Tubishat et al., 2019), balanced WOA (BWOA) (Chen et al., 2019a), rationalized SCA with efficient searching patterns (CLSCA) (Huang et al., 2020), modified SCA (MSCA) (Qu et al., 2018), chaos-enhanced MFO (CMFO) (Li et al., 2019), enhanced MFO with mutation strategy LGCMFO (Xu et al., 2019c).

Table 10 shows the experimental results of the MGWO algorithm and other variants on each benchmark function. Moreover, Table 11 shows the p -values between the MGWO algorithm and different variants after each algorithm running independently 30 times on each benchmark function. The Wilcoxon signed-rank test result indicates that the MGWO algorithm ranks first among the 12 optimization algorithms' variants, and the $A v g$ is 1.60 . Compared with the other four GWO variants, the MGWO algorithm is statistically superior to its competitors on at least 28 benchmark functions. Compared with the ALCPSO, which is recognized as competitive, the MGWO also has apparent advantages on all kinds of benchmark functions, mainly composition functions. The MGWO outperformed the ALCPSO on 22 benchmark functions, and the two algorithms have the same performance on seven benchmark functions. The LGCMFO algorithm ranks second. The MGWO performed significantly better than LGCMFO on 24 benchmark functions but worse than LGCMFO on two benchmark functions. The p-values show that compared with all competitors, the MGWO has a significant performance improvement in dealing with simple multimodal functions and composition functions. The performance on several hybrid benchmark functions is similar to that of the opponents.

Table 10. Comparison of the MGWO algorithm with the variants of MAs

|  | F1 |  | F2 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Avg | Std | Avg | Std |
| MGWO | 1.4050E+04 | $2.2976 \mathrm{E}+04$ | $2.0000 \mathrm{E}+02$ | $1.1543 \mathrm{E}-03$ |
| ALCPSO | $7.0936 \mathrm{E}+03$ | 7.1292E+03 | $7.2946 \mathrm{E}+16$ | $2.4936 \mathrm{E}+17$ |
| HGWO | $7.9585 \mathrm{E}+09$ | $1.5217 \mathrm{E}+09$ | $1.4315 \mathrm{E}+34$ | $3.1627 \mathrm{E}+34$ |
| OBLGWO | $1.4648 \mathrm{E}+07$ | $8.1057 \mathrm{E}+06$ | $6.2075 \mathrm{E}+16$ | $2.0962 \mathrm{E}+17$ |
| IGWO | $1.4541 \mathrm{E}+06$ | $7.3598 \mathrm{E}+05$ | $1.0717 \mathrm{E}+14$ | $3.0569 \mathrm{E}+14$ |
| CAGWO | $3.5185 \mathrm{E}+08$ | $3.5594 \mathrm{E}+08$ | $2.6953 \mathrm{E}+27$ | $6.9478 \mathrm{E}+27$ |
| IWOA | $3.0900 \mathrm{E}+05$ | $6.7914 \mathrm{E}+05$ | $6.2720 \mathrm{E}+14$ | $2.5606 \mathrm{E}+15$ |
| BWOA | $1.6045 \mathrm{E}+08$ | $1.0209 \mathrm{E}+08$ | $1.4152 \mathrm{E}+27$ | $5.3294 \mathrm{E}+27$ |
| CLSCA | $2.2023 \mathrm{E}+10$ | $4.3419 \mathrm{E}+09$ | $6.5277 \mathrm{E}+35$ | $1.6545 \mathrm{E}+36$ |
| MSCA | $1.3591 \mathrm{E}+04$ | $1.6413 \mathrm{E}+04$ | $4.6733 \mathrm{E}+14$ | $2.4725 \mathrm{E}+15$ |
| CMFO | $4.1570 \mathrm{E}+08$ | $1.0034 \mathrm{E}+09$ | $5.8822 \mathrm{E}+39$ | $3.2218 \mathrm{E}+40$ |
| LGCMFO | $8.5699 \mathrm{E}+03$ | $7.4305 \mathrm{E}+03$ | $7.2203 \mathrm{E}+12$ | $2.6986 \mathrm{E}+13$ |
|  | F3 |  | F4 |  |


|  | Avg | Std | Avg | Std |
| :---: | :---: | :---: | :---: | :---: |
| MGWO | $3.0049 \mathrm{E}+02$ | $1.5186 \mathrm{E}-01$ | 4.3432E+02 | $2.3582 \mathrm{E}+01$ |
| ALCPSO | $2.6755 \mathrm{E}+04$ | $3.2945 \mathrm{E}+03$ | $5.0908 \mathrm{E}+02$ | $2.8806 \mathrm{E}+01$ |
| HGWO | $7.8242 \mathrm{E}+04$ | $5.1464 \mathrm{E}+03$ | $9.4165 \mathrm{E}+02$ | $1.2664 \mathrm{E}+02$ |
| OBLGWO | $1.9240 \mathrm{E}+04$ | $4.7991 \mathrm{E}+03$ | $5.1455 \mathrm{E}+02$ | $2.8498 \mathrm{E}+01$ |
| IGWO | $1.3624 \mathrm{E}+03$ | $4.7252 \mathrm{E}+02$ | $4.9634 \mathrm{E}+02$ | $2.0564 \mathrm{E}+01$ |
| CAGWO | $4.9025 \mathrm{E}+04$ | $8.0338 \mathrm{E}+03$ | $5.5426 \mathrm{E}+02$ | $2.4731 \mathrm{E}+01$ |
| IWOA | $1.2547 \mathrm{E}+04$ | $5.9647 \mathrm{E}+03$ | $5.1611 \mathrm{E}+02$ | $2.7530 \mathrm{E}+01$ |
| BWOA | $6.0157 \mathrm{E}+04$ | $1.1000 \mathrm{E}+04$ | $6.0321 \mathrm{E}+02$ | $4.0836 \mathrm{E}+01$ |
| CLSCA | $6.2558 \mathrm{E}+04$ | $6.6907 \mathrm{E}+03$ | $2.5451 \mathrm{E}+03$ | $1.1233 \mathrm{E}+03$ |
| MSCA | $8.3108 \mathrm{E}+04$ | $2.3434 \mathrm{E}+04$ | $4.7423 \mathrm{E}+02$ | $2.2461 \mathrm{E}+01$ |
| CMFO | $1.2036 \mathrm{E}+05$ | $4.0684 \mathrm{E}+04$ | $5.8472 \mathrm{E}+02$ | $9.9239 \mathrm{E}+01$ |
| LGCMFO | $6.1712 \mathrm{E}+03$ | $3.7471 \mathrm{E}+03$ | $4.8702 \mathrm{E}+02$ | $2.7433 \mathrm{E}+01$ |
|  | F5 |  | F6 |  |
|  | Avg | Std | Avg | Std |
| MGWO | $5.6488 \mathrm{E}+02$ | $1.8126 \mathrm{E}+01$ | $6.0045 \mathrm{E}+02$ | $4.2866 \mathrm{E}-01$ |
| ALCPSO | $5.9903 \mathrm{E}+02$ | $2.6331 \mathrm{E}+01$ | $6.0546 \mathrm{E}+02$ | $4.5451 \mathrm{E}+00$ |
| HGWO | $7.4589 \mathrm{E}+02$ | $1.3048 \mathrm{E}+01$ | $6.3831 \mathrm{E}+02$ | $3.3461 \mathrm{E}+00$ |
| OBLGWO | $6.6751 \mathrm{E}+02$ | $3.9444 \mathrm{E}+01$ | $6.1698 \mathrm{E}+02$ | $1.1454 \mathrm{E}+01$ |
| IGWO | $6.0628 \mathrm{E}+02$ | $1.9862 \mathrm{E}+01$ | $6.2387 \mathrm{E}+02$ | $7.0343 \mathrm{E}+00$ |
| CAGWO | $6.3962 \mathrm{E}+02$ | $4.8597 \mathrm{E}+01$ | $6.0364 \mathrm{E}+02$ | $1.3968 \mathrm{E}+00$ |
| IWOA | $6.8655 \mathrm{E}+02$ | $5.2659 \mathrm{E}+01$ | $6.1166 \mathrm{E}+02$ | $6.3170 \mathrm{E}+00$ |
| BWOA | $7.7013 \mathrm{E}+02$ | $2.9355 \mathrm{E}+01$ | $6.6531 \mathrm{E}+02$ | $5.5244 \mathrm{E}+00$ |
| CLSCA | $8.1612 \mathrm{E}+02$ | $2.6119 \mathrm{E}+01$ | $6.6136 \mathrm{E}+02$ | $6.6027 \mathrm{E}+00$ |
| MSCA | $6.9348 \mathrm{E}+02$ | $4.6186 \mathrm{E}+01$ | $6.0378 \mathrm{E}+02$ | $3.6598 \mathrm{E}+00$ |
| CMFO | $7.1564 \mathrm{E}+02$ | $5.0033 \mathrm{E}+01$ | $6.5152 \mathrm{E}+02$ | $9.0579 \mathrm{E}+00$ |
| LGCMFO | $6.3375 \mathrm{E}+02$ | $2.9547 \mathrm{E}+01$ | $6.1594 \mathrm{E}+02$ | $1.0240 \mathrm{E}+01$ |
|  | F7 |  | F8 |  |
|  | Avg | Std | Avg | Std |
| MGWO | $8.1964 \mathrm{E}+02$ | $2.1463 \mathrm{E}+01$ | $8.6614 \mathrm{E}+02$ | $1.3088 \mathrm{E}+01$ |
| ALCPSO | $8.6059 \mathrm{E}+02$ | $2.9611 \mathrm{E}+01$ | $9.0291 \mathrm{E}+02$ | $2.4571 \mathrm{E}+01$ |
| HGWO | $1.0461 \mathrm{E}+03$ | $2.7719 \mathrm{E}+01$ | $9.9899 \mathrm{E}+02$ | $1.4837 \mathrm{E}+01$ |
| OBLGWO | $9.3511 \mathrm{E}+02$ | $8.1332 \mathrm{E}+01$ | $9.4009 \mathrm{E}+02$ | $3.2511 \mathrm{E}+01$ |
| IGWO | $8.8518 \mathrm{E}+02$ | $3.1300 \mathrm{E}+01$ | $8.8815 \mathrm{E}+02$ | $1.9350 \mathrm{E}+01$ |
| CAGWO | $9.1185 \mathrm{E}+02$ | $1.6711 \mathrm{E}+01$ | $9.3715 \mathrm{E}+02$ | $4.5645 \mathrm{E}+01$ |
| IWOA | $9.6624 \mathrm{E}+02$ | $5.5150 \mathrm{E}+01$ | $9.5896 \mathrm{E}+02$ | $3.7162 \mathrm{E}+01$ |
| BWOA | $1.2586 \mathrm{E}+03$ | $7.0268 \mathrm{E}+01$ | $9.7923 \mathrm{E}+02$ | $3.3249 \mathrm{E}+01$ |
| CLSCA | $1.1735 \mathrm{E}+03$ | $5.9873 \mathrm{E}+01$ | $1.0667 \mathrm{E}+03$ | $1.7941 \mathrm{E}+01$ |
| MSCA | $9.7057 \mathrm{E}+02$ | $6.2550 \mathrm{E}+01$ | $9.9368 \mathrm{E}+02$ | $5.1084 \mathrm{E}+01$ |
| CMFO | $1.2098 \mathrm{E}+03$ | $1.1443 \mathrm{E}+02$ | $9.5712 \mathrm{E}+02$ | $3.1318 \mathrm{E}+01$ |


| LGCMFO | 8.8242E+02 | $4.3264 \mathrm{E}+01$ | $9.2407 \mathrm{E}+02$ | $2.6599 \mathrm{E}+01$ |
| :---: | :---: | :---: | :---: | :---: |
|  | F9 |  | F10 |  |
|  | Avg | Std | Avg | Std |
| MGWO | $1.4406 \mathrm{E}+03$ | $5.0611 \mathrm{E}+02$ | $3.5257 \mathrm{E}+03$ | $5.0154 \mathrm{E}+02$ |
| ALCPSO | $1.5740 \mathrm{E}+03$ | $5.9143 \mathrm{E}+02$ | $4.2544 \mathrm{E}+03$ | $7.1619 \mathrm{E}+02$ |
| HGWO | $3.4282 \mathrm{E}+03$ | $3.2788 \mathrm{E}+02$ | $6.7050 \mathrm{E}+03$ | $4.5684 \mathrm{E}+02$ |
| OBLGWO | $2.8625 \mathrm{E}+03$ | $2.2467 \mathrm{E}+03$ | $5.3452 \mathrm{E}+03$ | $1.0017 \mathrm{E}+03$ |
| IGWO | $2.8519 \mathrm{E}+03$ | $8.3380 \mathrm{E}+02$ | $4.5314 \mathrm{E}+03$ | $6.3886 \mathrm{E}+02$ |
| CAGWO | $1.1257 \mathrm{E}+03$ | $1.9327 \mathrm{E}+02$ | $7.1460 \mathrm{E}+03$ | $1.0715 \mathrm{E}+03$ |
| IWOA | $5.4348 \mathrm{E}+03$ | $1.9018 \mathrm{E}+03$ | $4.6604 \mathrm{E}+03$ | $7.0127 \mathrm{E}+02$ |
| BWOA | 6.1167E+03 | $5.9382 \mathrm{E}+02$ | $6.4963 \mathrm{E}+03$ | $8.4487 \mathrm{E}+02$ |
| CLSCA | $7.6037 \mathrm{E}+03$ | $1.3875 \mathrm{E}+03$ | $7.9983 \mathrm{E}+03$ | $6.1445 \mathrm{E}+02$ |
| MSCA | $6.1479 \mathrm{E}+03$ | $2.2109 \mathrm{E}+03$ | $3.9639 \mathrm{E}+03$ | $5.5266 \mathrm{E}+02$ |
| CMFO | $5.0452 \mathrm{E}+03$ | $1.5261 \mathrm{E}+03$ | $6.9012 \mathrm{E}+03$ | $1.3005 \mathrm{E}+03$ |
| LGCMFO | $3.2600 \mathrm{E}+03$ | $1.0655 \mathrm{E}+03$ | $4.8426 \mathrm{E}+03$ | $5.7143 \mathrm{E}+02$ |
|  | F11 |  | F12 |  |
|  | Avg | Std | Avg | Std |
| MGWO | $1.1893 \mathrm{E}+03$ | $2.4234 \mathrm{E}+01$ | $1.2718 \mathrm{E}+05$ | $8.0791 \mathrm{E}+04$ |
| ALCPSO | $1.2474 \mathrm{E}+03$ | $5.8175 \mathrm{E}+01$ | $3.5004 \mathrm{E}+05$ | $4.6489 \mathrm{E}+05$ |
| HGWO | $4.8861 \mathrm{E}+03$ | $1.0887 \mathrm{E}+03$ | $5.9765 \mathrm{E}+08$ | $1.8637 \mathrm{E}+08$ |
| ObLGWO | $1.2837 \mathrm{E}+03$ | $4.7342 \mathrm{E}+01$ | $1.5779 \mathrm{E}+07$ | $1.1595 \mathrm{E}+07$ |
| IGWO | $1.2597 \mathrm{E}+03$ | $3.6262 \mathrm{E}+01$ | $1.4658 \mathrm{E}+07$ | $9.0911 \mathrm{E}+06$ |
| CAGWO | $1.3557 \mathrm{E}+03$ | $4.0100 \mathrm{E}+01$ | $2.7840 \mathrm{E}+07$ | $2.0331 \mathrm{E}+07$ |
| IWOA | $1.2544 \mathrm{E}+03$ | $6.8608 \mathrm{E}+01$ | $2.9325 \mathrm{E}+06$ | $1.7660 \mathrm{E}+06$ |
| BWOA | $1.8495 \mathrm{E}+03$ | $4.3614 \mathrm{E}+02$ | $1.0509 \mathrm{E}+08$ | $6.9339 \mathrm{E}+07$ |
| CLSCA | $2.4276 \mathrm{E}+03$ | $2.9104 \mathrm{E}+02$ | $2.1374 \mathrm{E}+09$ | $5.6160 \mathrm{E}+08$ |
| MSCA | $2.0135 \mathrm{E}+03$ | $1.1340 \mathrm{E}+03$ | $2.8741 \mathrm{E}+06$ | $3.6406 \mathrm{E}+06$ |
| CMFO | $4.5724 \mathrm{E}+03$ | $3.6916 \mathrm{E}+03$ | $3.6265 \mathrm{E}+07$ | $9.9364 \mathrm{E}+07$ |
| LGCMFO | $1.2417 \mathrm{E}+03$ | $6.4637 \mathrm{E}+01$ | $1.1864 \mathrm{E}+06$ | $1.8594 \mathrm{E}+06$ |
|  | F13 |  | F14 |  |
|  | Avg | Std | Avg | Std |
| MGWO | $3.5339 \mathrm{E}+04$ | $2.3677 \mathrm{E}+04$ | $5.4269 \mathrm{E}+03$ | $3.2779 \mathrm{E}+03$ |
| ALCPSO | $1.5256 \mathrm{E}+04$ | $1.7528 \mathrm{E}+04$ | $2.5974 \mathrm{E}+04$ | $4.3411 \mathrm{E}+04$ |
| HGWO | $2.7412 \mathrm{E}+08$ | $1.6462 \mathrm{E}+08$ | $8.6841 \mathrm{E}+05$ | $5.6565 \mathrm{E}+05$ |
| OBLGWO | $2.4952 \mathrm{E}+05$ | $2.3767 \mathrm{E}+05$ | $5.9933 \mathrm{E}+04$ | $4.4767 \mathrm{E}+04$ |
| IGWO | $2.4495 \mathrm{E}+05$ | $3.9483 \mathrm{E}+05$ | $4.8559 \mathrm{E}+04$ | $4.2303 \mathrm{E}+04$ |
| CAGWO | $2.8355 \mathrm{E}+05$ | $3.0699 \mathrm{E}+05$ | $2.7379 \mathrm{E}+05$ | $3.0639 \mathrm{E}+05$ |
| IWOA | $1.8745 \mathrm{E}+04$ | $2.0424 \mathrm{E}+04$ | $6.5492 \mathrm{E}+04$ | $5.1542 \mathrm{E}+04$ |
| BWOA | $2.2862 \mathrm{E}+05$ | $1.2097 \mathrm{E}+05$ | $1.0336 \mathrm{E}+06$ | $9.8562 \mathrm{E}+05$ |
| CLSCA | $7.2955 \mathrm{E}+08$ | $5.1196 \mathrm{E}+08$ | $3.2676 \mathrm{E}+05$ | $2.8305 \mathrm{E}+05$ |


| MSCA | $3.3801 \mathrm{E}+04$ | $2.8086 \mathrm{E}+04$ | $4.3364 \mathrm{E}+05$ | 5.1742E+05 |
| :---: | :---: | :---: | :---: | :---: |
| CMFO | $8.6445 \mathrm{E}+04$ | $1.9114 \mathrm{E}+05$ | $4.6095 \mathrm{E}+05$ | $1.0080 \mathrm{E}+06$ |
| LGCMFO | $4.4711 \mathrm{E}+04$ | $2.6952 \mathrm{E}+04$ | $2.3839 \mathrm{E}+04$ | $3.3115 \mathrm{E}+04$ |
|  | F15 |  | F16 |  |
|  | Avg | Std | Avg | Std |
| MGWO | $1.1713 \mathrm{E}+04$ | $1.3921 \mathrm{E}+04$ | $2.1774 \mathrm{E}+03$ | $2.0105 \mathrm{E}+02$ |
| ALCPSO | $1.7264 \mathrm{E}+04$ | $1.4089 \mathrm{E}+04$ | $2.5258 \mathrm{E}+03$ | $2.7092 \mathrm{E}+02$ |
| HGWO | $9.3580 \mathrm{E}+06$ | $1.0867 \mathrm{E}+07$ | $3.3001 \mathrm{E}+03$ | $2.1682 \mathrm{E}+02$ |
| OBLGWO | $7.9777 \mathrm{E}+04$ | $5.7982 \mathrm{E}+04$ | $2.7728 \mathrm{E}+03$ | $3.3536 \mathrm{E}+02$ |
| IGWO | $5.1197 \mathrm{E}+04$ | $3.7037 \mathrm{E}+04$ | $2.4917 \mathrm{E}+03$ | $2.9689 \mathrm{E}+02$ |
| CAGWO | $5.7199 \mathrm{E}+04$ | $7.7361 \mathrm{E}+04$ | $2.7016 \mathrm{E}+03$ | $3.1789 \mathrm{E}+02$ |
| IWOA | $9.8257 \mathrm{E}+03$ | $7.9613 \mathrm{E}+03$ | $2.8184 \mathrm{E}+03$ | $3.3391 \mathrm{E}+02$ |
| BWOA | $1.2908 \mathrm{E}+05$ | $1.2245 \mathrm{E}+05$ | $3.7470 \mathrm{E}+03$ | 4.2899E+02 |
| CLSCA | $6.7657 \mathrm{E}+06$ | $6.7355 \mathrm{E}+06$ | $3.8399 \mathrm{E}+03$ | $2.3636 \mathrm{E}+02$ |
| MSCA | $1.6061 \mathrm{E}+04$ | $2.0472 \mathrm{E}+04$ | $3.0552 \mathrm{E}+03$ | $3.6552 \mathrm{E}+02$ |
| CMFO | $4.4139 \mathrm{E}+07$ | $2.4161 \mathrm{E}+08$ | $3.1017 \mathrm{E}+03$ | $4.5304 \mathrm{E}+02$ |
| LGCMFO | 6.4455E+03 | $5.5303 \mathrm{E}+03$ | $2.7501 \mathrm{E}+03$ | $3.4735 \mathrm{E}+02$ |
|  | F17 |  | F18 |  |
|  | Avg | Std | Avg | Std |
| MGWO | $1.8931 \mathrm{E}+03$ | $1.0452 \mathrm{E}+02$ | $9.9390 \mathrm{E}+04$ | 7.7089E+04 |
| ALCPSO | $2.1301 \mathrm{E}+03$ | $2.3042 \mathrm{E}+02$ | $1.8006 \mathrm{E}+05$ | 1.3047E+05 |
| HGWO | $2.3787 \mathrm{E}+03$ | $1.3955 \mathrm{E}+02$ | $2.6460 \mathrm{E}+06$ | $3.1660 \mathrm{E}+06$ |
| OBLGWO | $2.2590 \mathrm{E}+03$ | $1.8936 \mathrm{E}+02$ | $1.2184 \mathrm{E}+06$ | $1.0412 \mathrm{E}+06$ |
| IGWO | $1.9815 \mathrm{E}+03$ | $1.3798 \mathrm{E}+02$ | $4.2932 \mathrm{E}+05$ | $3.1651 \mathrm{E}+05$ |
| CAGWO | $1.9604 \mathrm{E}+03$ | $1.4650 \mathrm{E}+02$ | $5.5804 \mathrm{E}+05$ | $5.3571 \mathrm{E}+05$ |
| IWOA | $2.2660 \mathrm{E}+03$ | $2.2798 \mathrm{E}+02$ | $9.2240 \mathrm{E}+05$ | $9.1387 \mathrm{E}+05$ |
| BWOA | $2.7299 \mathrm{E}+03$ | $2.4421 \mathrm{E}+02$ | $4.3625 \mathrm{E}+06$ | $5.2945 \mathrm{E}+06$ |
| CLSCA | $2.4640 \mathrm{E}+03$ | $1.6131 \mathrm{E}+02$ | $3.0325 \mathrm{E}+06$ | $2.4007 \mathrm{E}+06$ |
| MSCA | $2.5432 \mathrm{E}+03$ | $2.7536 \mathrm{E}+02$ | $2.8432 \mathrm{E}+06$ | $3.3201 \mathrm{E}+06$ |
| CMFO | $2.5249 \mathrm{E}+03$ | $3.9961 \mathrm{E}+02$ | $6.2235 \mathrm{E}+06$ | $1.4031 \mathrm{E}+07$ |
| LGCMFO | $2.2197 \mathrm{E}+03$ | $2.6561 \mathrm{E}+02$ | $2.0324 \mathrm{E}+05$ | $1.3407 \mathrm{E}+05$ |
|  | F19 |  | F20 |  |
|  | Avg | Std | Avg | Std |
| MGWO | $1.6702 \mathrm{E}+04$ | $1.6775 \mathrm{E}+04$ | $2.2592 \mathrm{E}+03$ | $1.0727 \mathrm{E}+02$ |
| ALCPSO | $1.5645 \mathrm{E}+04$ | $1.6027 \mathrm{E}+04$ | $2.3175 \mathrm{E}+03$ | $1.2851 \mathrm{E}+02$ |
| HGWO | $1.4553 \mathrm{E}+07$ | $1.5319 \mathrm{E}+07$ | $2.6374 \mathrm{E}+03$ | $1.1468 \mathrm{E}+02$ |
| OBLGWO | $3.4984 \mathrm{E}+05$ | $3.2209 \mathrm{E}+05$ | $2.4324 \mathrm{E}+03$ | $1.4107 \mathrm{E}+02$ |
| IGWO | $2.9045 \mathrm{E}+05$ | $5.8218 \mathrm{E}+05$ | $2.3167 \mathrm{E}+03$ | $1.3464 \mathrm{E}+02$ |
| CAGWO | $1.4685 \mathrm{E}+05$ | $1.7075 \mathrm{E}+05$ | $2.3353 \mathrm{E}+03$ | $8.1805 \mathrm{E}+01$ |
| IWOA | $1.0797 \mathrm{E}+04$ | 8.6896E+03 | $2.5118 \mathrm{E}+03$ | $1.8265 \mathrm{E}+02$ |
| BWOA | $4.0761 \mathrm{E}+06$ | $3.5682 \mathrm{E}+06$ | $2.7344 \mathrm{E}+03$ | $1.6279 \mathrm{E}+02$ |


| CLSCA | $2.3349 \mathrm{E}+07$ | $1.8161 \mathrm{E}+07$ | $2.6683 \mathrm{E}+03$ | $1.3185 \mathrm{E}+02$ |
| :---: | :---: | :---: | :---: | :---: |
| MSCA | $2.0617 \mathrm{E}+04$ | $2.0268 \mathrm{E}+04$ | $2.5718 \mathrm{E}+03$ | $1.7657 \mathrm{E}+02$ |
| CMFO | $7.8288 \mathrm{E}+04$ | $2.0652 \mathrm{E}+05$ | $2.7262 \mathrm{E}+03$ | $2.9358 \mathrm{E}+02$ |
| LGCMFO | $6.0628 \mathrm{E}+03$ | $3.3902 \mathrm{E}+03$ | $2.4937 \mathrm{E}+03$ | $1.6503 \mathrm{E}+02$ |
|  | F21 |  | F22 |  |
|  | Avg | Std | Avg | Std |
| MGWO | $2.3504 \mathrm{E}+03$ | $1.1937 \mathrm{E}+01$ | $4.0551 \mathrm{E}+03$ | $1.4915 \mathrm{E}+03$ |
| ALCPSO | $2.4116 \mathrm{E}+03$ | $3.8045 \mathrm{E}+01$ | $4.8410 \mathrm{E}+03$ | $1.7718 \mathrm{E}+03$ |
| HGWO | $2.5115 \mathrm{E}+03$ | $1.2929 \mathrm{E}+01$ | $3.1643 \mathrm{E}+03$ | $1.3135 \mathrm{E}+02$ |
| OBLGWO | $2.4327 \mathrm{E}+03$ | $5.2495 \mathrm{E}+01$ | $3.1321 \mathrm{E}+03$ | $1.8736 \mathrm{E}+03$ |
| IGWO | $2.4029 \mathrm{E}+03$ | $1.7983 \mathrm{E}+01$ | $2.3107 \mathrm{E}+03$ | $1.7020 \mathrm{E}+00$ |
| CAGWO | $2.4175 \mathrm{E}+03$ | $4.1047 \mathrm{E}+01$ | $2.6352 \mathrm{E}+03$ | $1.2591 \mathrm{E}+03$ |
| IWOA | $2.4825 \mathrm{E}+03$ | $4.5535 \mathrm{E}+01$ | $5.2293 \mathrm{E}+03$ | $2.0572 \mathrm{E}+03$ |
| BWOA | $2.5621 \mathrm{E}+03$ | $4.3164 \mathrm{E}+01$ | $5.7938 \mathrm{E}+03$ | $2.5801 \mathrm{E}+03$ |
| CLSCA | $2.5833 \mathrm{E}+03$ | $2.7346 \mathrm{E}+01$ | $4.3657 \mathrm{E}+03$ | $4.0822 \mathrm{E}+02$ |
| MSCA | $2.4864 \mathrm{E}+03$ | $3.8220 \mathrm{E}+01$ | $5.6559 \mathrm{E}+03$ | $8.8108 \mathrm{E}+02$ |
| CMFO | $2.4882 \mathrm{E}+03$ | $4.2586 \mathrm{E}+01$ | $5.8148 \mathrm{E}+03$ | $2.9136 \mathrm{E}+03$ |
| LGCMFO | $2.4005 \mathrm{E}+03$ | $4.7885 \mathrm{E}+01$ | $2.3011 \mathrm{E}+03$ | $1.7728 \mathrm{E}+00$ |
|  | F23 |  | F24 |  |
|  | Avg | Std | Avg | Std |
| MGWO | $2.7285 \mathrm{E}+03$ | $2.5783 \mathrm{E}+01$ | $2.8958 \mathrm{E}+03$ | $2.2869 \mathrm{E}+01$ |
| ALCPSO | $2.7881 \mathrm{E}+03$ | $4.2754 \mathrm{E}+01$ | $2.9710 \mathrm{E}+03$ | $4.8167 \mathrm{E}+01$ |
| HGWO | $2.8991 \mathrm{E}+03$ | $1.4820 \mathrm{E}+01$ | $3.0658 \mathrm{E}+03$ | $2.9371 \mathrm{E}+01$ |
| OBLGWO | $2.8015 \mathrm{E}+03$ | $4.0654 \mathrm{E}+01$ | $2.9817 \mathrm{E}+03$ | $3.0920 \mathrm{E}+01$ |
| IGWO | $2.7806 \mathrm{E}+03$ | $2.4972 \mathrm{E}+01$ | $2.9526 \mathrm{E}+03$ | $3.7740 \mathrm{E}+01$ |
| CAGWO | $2.7838 \mathrm{E}+03$ | $5.0926 \mathrm{E}+01$ | $2.9303 \mathrm{E}+03$ | $5.2696 \mathrm{E}+01$ |
| IWOA | $2.8463 \mathrm{E}+03$ | $4.9548 \mathrm{E}+01$ | $3.0889 \mathrm{E}+03$ | $7.7158 \mathrm{E}+01$ |
| BWOA | $3.1053 \mathrm{E}+03$ | $1.0048 \mathrm{E}+02$ | $3.1862 \mathrm{E}+03$ | $1.0233 \mathrm{E}+02$ |
| CLSCA | $3.0067 \mathrm{E}+03$ | $3.4827 \mathrm{E}+01$ | $3.1699 \mathrm{E}+03$ | $4.5972 \mathrm{E}+01$ |
| MSCA | $2.8887 \mathrm{E}+03$ | $4.6610 \mathrm{E}+01$ | $3.1917 \mathrm{E}+03$ | $8.5529 \mathrm{E}+01$ |
| CMFO | $3.0165 \mathrm{E}+03$ | $1.0508 \mathrm{E}+02$ | $3.1667 \mathrm{E}+03$ | $1.1128 \mathrm{E}+02$ |
| LGCMFO | $2.7940 \mathrm{E}+03$ | $4.3017 \mathrm{E}+01$ | $2.9300 \mathrm{E}+03$ | $3.8594 \mathrm{E}+01$ |
|  | F25 |  | F26 |  |
|  | Avg | Std | Avg | Std |
| MGWO | $2.8779 \mathrm{E}+03$ | $1.9704 \mathrm{E}+00$ | $3.8979 \mathrm{E}+03$ | $2.7413 \mathrm{E}+02$ |
| ALCPSO | $2.8973 \mathrm{E}+03$ | $1.6852 \mathrm{E}+01$ | $4.8861 \mathrm{E}+03$ | $1.0857 \mathrm{E}+03$ |
| HGWO | $3.0817 \mathrm{E}+03$ | $2.3758 \mathrm{E}+01$ | $5.9288 \mathrm{E}+03$ | $3.9670 \mathrm{E}+02$ |
| OBLGWO | $2.9162 \mathrm{E}+03$ | $2.2391 \mathrm{E}+01$ | $5.1742 \mathrm{E}+03$ | 7.4255E+02 |
| IGWO | $2.9050 \mathrm{E}+03$ | $1.8829 \mathrm{E}+01$ | $4.7100 \mathrm{E}+03$ | $2.9439 \mathrm{E}+02$ |
| CAGWO | $2.9431 \mathrm{E}+03$ | $1.8081 \mathrm{E}+01$ | $4.5633 \mathrm{E}+03$ | $4.0856 \mathrm{E}+02$ |


| IWOA | $2.9056 \mathrm{E}+03$ | $2.0263 \mathrm{E}+01$ | $5.3853 \mathrm{E}+03$ | $1.0977 \mathrm{E}+03$ |
| :---: | :---: | :---: | :---: | :---: |
| BWOA | $3.0046 \mathrm{E}+03$ | $2.8486 \mathrm{E}+01$ | $7.4985 \mathrm{E}+03$ | $1.1824 \mathrm{E}+03$ |
| CLSCA | $3.3574 \mathrm{E}+03$ | $9.9582 \mathrm{E}+01$ | $7.0292 \mathrm{E}+03$ | $8.0248 \mathrm{E}+02$ |
| MSCA | $2.8873 \mathrm{E}+03$ | $1.4578 \mathrm{E}+01$ | $5.4885 \mathrm{E}+03$ | $8.4769 \mathrm{E}+02$ |
| CMFO | $2.9452 \mathrm{E}+03$ | $4.1905 \mathrm{E}+01$ | $6.3364 \mathrm{E}+03$ | $7.0571 \mathrm{E}+02$ |
| LGCMFO | $2.8915 \mathrm{E}+03$ | $1.4713 \mathrm{E}+01$ | $3.4952 \mathrm{E}+03$ | $1.1075 \mathrm{E}+03$ |
|  | F27 |  | F28 |  |
|  | Avg | Std | Avg | Std |
| MGWO | $3.1919 \mathrm{E}+03$ | $1.6594 \mathrm{E}+01$ | $3.1638 \mathrm{E}+03$ | $6.6188 \mathrm{E}+01$ |
| ALCPSO | $3.2592 \mathrm{E}+03$ | $3.1074 \mathrm{E}+01$ | $3.2405 \mathrm{E}+03$ | $3.8637 \mathrm{E}+01$ |
| HGWO | $3.3052 \mathrm{E}+03$ | $2.9603 \mathrm{E}+01$ | $3.6205 \mathrm{E}+03$ | $5.5572 \mathrm{E}+01$ |
| OBLGWO | $3.2374 \mathrm{E}+03$ | $1.7727 \mathrm{E}+01$ | $3.2760 \mathrm{E}+03$ | $2.8972 \mathrm{E}+01$ |
| IGWO | $3.2381 \mathrm{E}+03$ | $1.5113 \mathrm{E}+01$ | $3.2486 \mathrm{E}+03$ | $2.8290 \mathrm{E}+01$ |
| CAGWO | $3.2289 \mathrm{E}+03$ | $9.1656 \mathrm{E}+00$ | $3.3617 \mathrm{E}+03$ | $3.3913 \mathrm{E}+01$ |
| IWOA | $3.2365 \mathrm{E}+03$ | $1.7311 \mathrm{E}+01$ | $3.2307 \mathrm{E}+03$ | $2.4131 \mathrm{E}+01$ |
| BWOA | $3.3615 \mathrm{E}+03$ | $1.1199 \mathrm{E}+02$ | $3.3935 \mathrm{E}+03$ | $4.2449 \mathrm{E}+01$ |
| CLSCA | $3.4015 \mathrm{E}+03$ | $4.2509 \mathrm{E}+01$ | $4.3286 \mathrm{E}+03$ | $3.2869 \mathrm{E}+02$ |
| MSCA | $3.2000 \mathrm{E}+03$ | $3.2219 \mathrm{E}-04$ | $3.2972 \mathrm{E}+03$ | $1.5309 \mathrm{E}+01$ |
| CMFO | $3.3695 \mathrm{E}+03$ | $7.6497 \mathrm{E}+01$ | $3.3966 \mathrm{E}+03$ | $3.5692 \mathrm{E}+02$ |
| LGCMFO | $3.2866 \mathrm{E}+03$ | $3.5914 \mathrm{E}+01$ | $3.2195 \mathrm{E}+03$ | $2.4671 \mathrm{E}+01$ |
|  | F29 |  | F30 |  |
|  | Avg | Std | Avg | Std |
| MGWO | $3.4537 \mathrm{E}+03$ | $1.4139 \mathrm{E}+02$ | $4.8605 \mathrm{E}+03$ | $2.1452 \mathrm{E}+03$ |
| ALCPSO | $3.8651 \mathrm{E}+03$ | $2.9222 \mathrm{E}+02$ | $2.8298 \mathrm{E}+04$ | $6.0215 \mathrm{E}+04$ |
| HGWO | $4.4304 \mathrm{E}+03$ | $1.6410 \mathrm{E}+02$ | $7.7549 \mathrm{E}+07$ | $3.0728 \mathrm{E}+07$ |
| OBLGWO | $4.0381 \mathrm{E}+03$ | $2.7088 \mathrm{E}+02$ | $3.0724 \mathrm{E}+06$ | $1.7530 \mathrm{E}+06$ |
| IGWO | $3.7668 \mathrm{E}+03$ | $1.5474 \mathrm{E}+02$ | $4.1131 \mathrm{E}+06$ | $2.6105 \mathrm{E}+06$ |
| CAGWO | $3.7408 \mathrm{E}+03$ | $1.8937 \mathrm{E}+02$ | $7.4164 \mathrm{E}+06$ | $4.8334 \mathrm{E}+06$ |
| IWOA | $3.8438 \mathrm{E}+03$ | $2.2080 \mathrm{E}+02$ | $3.5003 \mathrm{E}+04$ | $3.7935 \mathrm{E}+04$ |
| BWOA | $4.9452 \mathrm{E}+03$ | $4.4656 \mathrm{E}+02$ | $2.2454 \mathrm{E}+07$ | $1.8926 \mathrm{E}+07$ |
| CLSCA | $4.8534 \mathrm{E}+03$ | $2.9549 \mathrm{E}+02$ | $1.0760 \mathrm{E}+08$ | $4.3832 \mathrm{E}+07$ |
| MSCA | $3.8529 \mathrm{E}+03$ | $2.4542 \mathrm{E}+02$ | $8.0708 \mathrm{E}+03$ | $7.1745 \mathrm{E}+03$ |
| CMFO | $4.5304 \mathrm{E}+03$ | $4.2528 \mathrm{E}+02$ | $1.6876 \mathrm{E}+06$ | $4.0201 \mathrm{E}+06$ |
| LGCMFO | $3.9585 \mathrm{E}+03$ | $2.1344 \mathrm{E}+02$ | $6.3356 \mathrm{E}+04$ | $1.7721 \mathrm{E}+05$ |

Wilcoxon signed-rank test

|  | $+/-/=$ | Avg | Rank |
| :--- | :--- | :--- | :--- |
| MGWO | $\sim$ | 1.60 | 1 |
| ALCPSO | $22 / 1 / 7$ | 3.83 | 3 |
| HGWO | $29 / 1 / 0$ | 9.67 | 9 |
| OBLGWO | $29 / 0 / 1$ | 6.33 | 7 |


| IGWO | $28 / 1 / 1$ | 4.33 | 4 |
| :--- | :--- | :--- | :--- |
| CAGWO | $28 / 2 / 0$ | 5.67 | 6 |
| IWOA | $26 / 1 / 3$ | 5.63 | 5 |
| BWOA | $30 / 0 / 0$ | 10.20 | 11 |
| CLSCA | $29 / 0 / 1$ | 10.90 | 12 |
| MSCA | $26 / 0 / 4$ | 6.53 | 8 |
| CMFO | $28 / 0 / 2$ | 9.70 | 10 |
| LGCMFO | $24 / 2 / 4$ | 3.60 | 2 |

Table 11. The p-values between the MGWO algorithm and the variants of MAs

| Function | ALCPSO |  | HGWO |  | OBLGWO |  | IGWO |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| F1 | $1.6503 \mathrm{E}-01$ |  | $1.7344 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | $+$ |
| F2 | $1.7344 \mathrm{E}-06$ | + |
| F3 | 1.7344E-06 | + | $1.7344 \mathrm{E}-06$ | + | 1.7344E-06 | + | $1.7344 \mathrm{E}-06$ | + |
| F4 | $1.7344 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | + | $3.8822 \mathrm{E}-06$ | $+$ |
| F5 | $2.8434 \mathrm{E}-05$ | + | $1.7344 \mathrm{E}-06$ | + | 1.7344E-06 | + | $5.2165 \mathrm{E}-06$ | + |
| F6 | $2.3534 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | + | $1.7344 \mathrm{E}-06$ | $+$ |
| F7 | $2.3704 \mathrm{E}-05$ | + | $1.7344 \mathrm{E}-06$ | $+$ | $2.6033 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | + |
| F8 | $5.7517 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | $+$ | $5.7924 \mathrm{E}-05$ | $+$ |
| F9 | 4.1653E-01 |  | $1.7344 \mathrm{E}-06$ | + | 6.6392E-04 | + | $6.3391 \mathrm{E}-06$ | $+$ |
| F10 | $1.0357 \mathrm{E}-03$ | + | $1.7344 \mathrm{E}-06$ | + | $2.1266 \mathrm{E}-06$ | $+$ | $8.4661 \mathrm{E}-06$ | + |
| F11 | $4.8603 \mathrm{E}-05$ | + | $1.7344 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | $+$ | 2.3534E-06 | + |
| F12 | $2.7116 \mathrm{E}-01$ |  | $1.7344 \mathrm{E}-06$ | + | 1.7344E-06 | + | 1.7344E-06 | + |
| F13 | $1.5927 \mathrm{E}-03$ | - | $1.7344 \mathrm{E}-06$ | + | $2.3534 \mathrm{E}-06$ | + | $3.5152 \mathrm{E}-06$ | + |
| F14 | $3.8811 \mathrm{E}-04$ | $+$ | $1.7344 \mathrm{E}-06$ | $+$ | $2.3534 \mathrm{E}-06$ | $+$ | $3.5152 \mathrm{E}-06$ | $+$ |
| F15 | 1.9152E-01 |  | $1.7344 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | $+$ | $6.3391 \mathrm{E}-06$ | $+$ |
| F16 | 1.7988E-05 | + | $1.7344 \mathrm{E}-06$ | + | $2.3534 \mathrm{E}-06$ | + | 5.7924E-05 | $+$ |
| F17 | $1.1499 \mathrm{E}-04$ | + | $1.7344 \mathrm{E}-06$ | + | $2.6033 \mathrm{E}-06$ | $+$ | $1.7518 \mathrm{E}-02$ | + |
| F18 | $4.0702 \mathrm{E}-02$ | + | $1.7344 \mathrm{E}-06$ | + | $1.7344 \mathrm{E}-06$ | + | $3.8822 \mathrm{E}-06$ | $+$ |
| F19 | $5.9994 \mathrm{E}-01$ |  | $1.7344 \mathrm{E}-06$ | + | $3.1817 \mathrm{E}-06$ | + | $1.9729 \mathrm{E}-05$ | + |
| F20 | $5.4463 \mathrm{E}-02$ |  | $1.7344 \mathrm{E}-06$ | + | 2.8308E-04 | + | 8.9718E-02 |  |
| F21 | $2.3534 \mathrm{E}-06$ | + | $1.7344 \mathrm{E}-06$ | + | $2.5967 \mathrm{E}-05$ | + | $1.7344 \mathrm{E}-06$ | + |
| F22 | $8.5896 \mathrm{E}-02$ |  | $3.8542 \mathrm{E}-03$ | - | $6.5641 \mathrm{E}-02$ |  | $6.1564 \mathrm{E}-04$ | - |
| F23 | $1.4936 \mathrm{E}-05$ | + | $1.7344 \mathrm{E}-06$ | + | 3.5152E-06 | + | 4.2857E-06 | $+$ |
| F24 | $1.7988 \mathrm{E}-05$ | $+$ | $1.7344 \mathrm{E}-06$ | + | $2.6033 \mathrm{E}-06$ | + | $1.9209 \mathrm{E}-06$ | $+$ |
| F25 | $1.7344 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | + | $1.7344 \mathrm{E}-06$ | + | $1.7344 \mathrm{E}-06$ | $+$ |
| F26 | 1.6046E-04 | + | $1.7344 \mathrm{E}-06$ | + | $1.2381 \mathrm{E}-05$ | + | 1.9209E-06 | $+$ |
| F27 | $1.7344 \mathrm{E}-06$ | $+$ |
| F28 | $1.4773 \mathrm{E}-04$ | $+$ | $1.7344 \mathrm{E}-06$ | + | $1.9209 \mathrm{E}-06$ | $+$ | 1.7988E-05 | $+$ |
| F29 | $2.8786 \mathrm{E}-06$ | + | $1.7344 \mathrm{E}-06$ | + | 1.7344E-06 | + | $5.2165 \mathrm{E}-06$ | $+$ |
| F30 | $1.9209 \mathrm{E}-06$ | + | $1.7344 \mathrm{E}-06$ | $+$ | 1.7344E-06 | $+$ | 1.7344E-06 | + |
| Function | CAGWO |  | IWOA |  | BWOA |  | CLSCA |  |


| F1 | $1.7344 \mathrm{E}-06$ | $+$ | $5.9836 \mathrm{E}-02$ |  | 1.7344E-06 | $+$ | 1.7344E-06 | $+$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| F2 | $1.7344 \mathrm{E}-06$ | + | 1.7344E-06 | $+$ | 1.7344E-06 | + | 1.7344E-06 | + |
| F3 | $1.7344 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | + | 1.7344E-06 | + | 1.7344E-06 | $+$ |
| F4 | $1.7344 \mathrm{E}-06$ | $+$ | $1.9209 \mathrm{E}-06$ | $+$ | 1.7344E-06 | + | 1.7344E-06 | $+$ |
| F5 | $8.4661 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | $+$ |
| F6 | $1.7344 \mathrm{E}-06$ | + | 1.7344E-06 | + | $1.7344 \mathrm{E}-06$ | + | $1.7344 \mathrm{E}-06$ | $+$ |
| F7 | 1.7344E-06 | + | 1.7344E-06 | + | 1.7344E-06 | + | 1.7344E-06 | $+$ |
| F8 | $6.3391 \mathrm{E}-06$ | + | 1.7344E-06 | $+$ | 1.7344E-06 | + | 1.7344E-06 | + |
| F9 | $6.8359 \mathrm{E}-03$ | - | 1.7344E-06 | + | $1.7344 \mathrm{E}-06$ | + | 1.7344E-06 | $+$ |
| F10 | 1.7344E-06 | + | $3.1123 \mathrm{E}-05$ | + | 1.7344E-06 | + | 1.7344E-06 | $+$ |
| F11 | $1.7344 \mathrm{E}-06$ | + | 1.7423E-04 | + | 1.7344E-06 | + | 1.7344E-06 | + |
| F12 | $1.7344 \mathrm{E}-06$ | $+$ |
| F13 | $1.7344 \mathrm{E}-06$ | $+$ | $9.8421 \mathrm{E}-03$ | - | 1.9209E-06 | + | 1.7344E-06 | $+$ |
| F14 | $1.7344 \mathrm{E}-06$ | $+$ | $3.8822 \mathrm{E}-06$ | + | $1.7344 \mathrm{E}-06$ | + | $1.7344 \mathrm{E}-06$ | $+$ |
| F15 | $2.4118 \mathrm{E}-04$ | $+$ | $7.9710 \mathrm{E}-01$ |  | $2.6033 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | $+$ |
| F16 | $4.2857 \mathrm{E}-06$ | $+$ | $2.8786 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | $+$ |
| F17 | $4.7162 \mathrm{E}-02$ | $+$ | $2.6033 \mathrm{E}-06$ | + | $1.7344 \mathrm{E}-06$ | + | 1.7344E-06 | + |
| F18 | $1.1265 \mathrm{E}-05$ | + | $2.8786 \mathrm{E}-06$ | + | $2.6033 \mathrm{E}-06$ | + | $1.7344 \mathrm{E}-06$ | $+$ |
| F19 | $2.3704 \mathrm{E}-05$ | $+$ | $4.5281 \mathrm{E}-01$ |  | $1.7344 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | + |
| F20 | $8.7297 \mathrm{E}-03$ | $+$ | $5.7924 \mathrm{E}-05$ | + | $1.7344 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | $+$ |
| F21 | $2.8786 \mathrm{E}-06$ | + | $1.7344 \mathrm{E}-06$ | + | $1.7344 \mathrm{E}-06$ | + | $1.7344 \mathrm{E}-06$ | + |
| F22 | $2.4147 \mathrm{E}-03$ | - | $2.5637 \mathrm{E}-02$ | $+$ | $1.0444 \mathrm{E}-02$ | $+$ | $3.7094 \mathrm{E}-01$ |  |
| F23 | $1.0570 \mathrm{E}-04$ | $+$ | $2.1266 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | + | $1.7344 \mathrm{E}-06$ | $+$ |
| F24 | $6.0350 \mathrm{E}-03$ | + | 1.7344E-06 | + | $1.7344 \mathrm{E}-06$ | + | 1.7344E-06 | + |
| F25 | $1.7344 \mathrm{E}-06$ | $+$ | 1.7344E-06 | + | $1.7344 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | $+$ |
| F26 | $5.2165 \mathrm{E}-06$ | $+$ | $1.2381 \mathrm{E}-05$ | $+$ | $1.7344 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | $+$ |
| F27 | 1.7344E-06 | $+$ | 1.7344E-06 | + | 1.7344E-06 | + | 1.7344E-06 | $+$ |
| F28 | 1.7344E-06 | $+$ | $1.6046 \mathrm{E}-04$ | $+$ | $1.7344 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | $+$ |
| F29 | $6.3391 \mathrm{E}-06$ | $+$ | $5.2165 \mathrm{E}-06$ | + | $1.7344 \mathrm{E}-06$ | + | $1.7344 \mathrm{E}-06$ | $+$ |
| F30 | 1.7344E-06 | + | 1.7344E-06 | + | 1.7344E-06 | + | 1.7344E-06 | + |
| Function | MSCA |  | CMFO |  | LGCMFO |  |  |  |
| F1 | $2.6230 \mathrm{E}-01$ |  | $1.7344 \mathrm{E}-06$ | + | $9.2626 \mathrm{E}-01$ |  |  |  |
| F2 | $1.9209 \mathrm{E}-06$ | + | $1.7344 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | $+$ |  |  |
| F3 | $1.7344 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | + |  |  |
| F4 | $2.1630 \mathrm{E}-05$ | $+$ | $1.7344 \mathrm{E}-06$ | $+$ | 4.7292E-06 | $+$ |  |  |
| F5 | $1.7344 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | + | $1.7344 \mathrm{E}-06$ | $+$ |  |  |
| F6 | $2.1630 \mathrm{E}-05$ | $+$ | $1.7344 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | + |  |  |
| F7 | $1.7344 \mathrm{E}-06$ | $+$ | $1.7344 \mathrm{E}-06$ | $+$ | $2.3534 \mathrm{E}-06$ | $+$ |  |  |
| F8 | 1.7344E-06 | $+$ | 1.7344E-06 | + | 1.7344E-06 | $+$ |  |  |
| F9 | 1.7344E-06 | + | 1.7344E-06 | + | $3.8822 \mathrm{E}-06$ | + |  |  |
| F10 | $4.6818 \mathrm{E}-03$ | $+$ | $1.7344 \mathrm{E}-06$ | $+$ | $2.8786 \mathrm{E}-06$ | $+$ |  |  |
| F11 | $1.7344 \mathrm{E}-06$ | + | $1.7344 \mathrm{E}-06$ | + | $4.8969 \mathrm{E}-04$ | $+$ |  |  |
| F12 | $1.9209 \mathrm{E}-06$ | + | $1.9209 \mathrm{E}-06$ | + | $4.7292 \mathrm{E}-06$ | + |  |  |


| F13 | $7.6552 \mathrm{E}-01$ |  | $9.2626 \mathrm{E}-01$ |  | $2.8948 \mathrm{E}-01$ |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| F14 | $1.7344 \mathrm{E}-06$ | + | $2.6033 \mathrm{E}-06$ | + | $1.2381 \mathrm{E}-05$ | + |
| F15 | $4.9080 \mathrm{E}-01$ |  | $4.1140 \mathrm{E}-03$ | + | $2.9894 \mathrm{E}-01$ |  |
| F16 | $1.7344 \mathrm{E}-06$ | + | $1.7344 \mathrm{E}-06$ | + | $1.9209 \mathrm{E}-06$ | + |
| F17 | $1.7344 \mathrm{E}-06$ | + | $1.7344 \mathrm{E}-06$ | + | $1.1265 \mathrm{E}-05$ | + |
| F18 | $1.9209 \mathrm{E}-06$ | + | $9.3157 \mathrm{E}-06$ | + | $6.6392 \mathrm{E}-04$ | + |
| F19 | $4.4052 \mathrm{E}-01$ |  | $1.0639 \mathrm{E}-01$ |  | $1.1079 \mathrm{E}-02$ | - |
| F20 | $2.8786 \mathrm{E}-06$ | + | $4.2857 \mathrm{E}-06$ | + | $6.8923 \mathrm{E}-05$ | + |
| F21 | $1.7344 \mathrm{E}-06$ | + | $1.7344 \mathrm{E}-06$ | + | $3.1123 \mathrm{E}-05$ | + |
| F22 | $2.0515 \mathrm{E}-04$ | + | $7.7309 \mathrm{E}-03$ | + | $2.1630 \mathrm{E}-05$ | - |
| F23 | $1.7344 \mathrm{E}-06$ | + | $1.7344 \mathrm{E}-06$ | + | $1.1265 \mathrm{E}-05$ | + |
| F24 | $1.7344 \mathrm{E}-06$ | + | $1.7344 \mathrm{E}-06$ | + | $9.6266 \mathrm{E}-04$ | + |
| F25 | $1.4773 \mathrm{E}-04$ | + | $1.7344 \mathrm{E}-06$ | + | $1.7344 \mathrm{E}-06$ | + |
| F26 | $3.1817 \mathrm{E}-06$ | + | $1.7344 \mathrm{E}-06$ | + | $7.8647 \mathrm{E}-02$ |  |
| F27 | $8.1878 \mathrm{E}-05$ | + | $1.7344 \mathrm{E}-06$ | + | $1.7344 \mathrm{E}-06$ | + |
| F28 | $2.3534 \mathrm{E}-06$ | + | $1.7344 \mathrm{E}-06$ | + | $7.1570 \mathrm{E}-04$ | + |
| F29 | $1.3601 \mathrm{E}-05$ | + | $1.9209 \mathrm{E}-06$ | + | $1.9209 \mathrm{E}-06$ | + |
| F30 | $2.3038 \mathrm{E}-02$ | + | $1.7344 \mathrm{E}-06$ | + | $3.1817 \mathrm{E}-06$ | + |

Figure 5 shows the convergence curves of all algorithms participating in the comparison on several benchmark functions. F3 is the unimodal function, F8 and F10 are simple multimodal functions, F12, F14, F16, and F18 are hybrid functions, F21, F23, and F30 are composition functions. Many improved algorithms enhance the search ability on complex objective functions and lead to unimodal performance not being as good as some original MAs. However, the MGWO algorithm does not have such trouble, and its implementation on unimodal functions is also considerable. The total number of evaluations controls the search mechanism of the MGWO, so it will not converge as fast as the ALCPSO during the early stage of the search process. Still, it can obtain higher quality solutions than the ALCPSO at the end of the search process. The two times change of the search mechanism can improve the algorithm's convergence speed and enhance the ability to jump out of the local optima traps. It can be proved that an optimization algorithm's performance can be improved by dividing the evaluation process into several stages, considering the emphasis of each step, and using the appropriate search mechanism. According to the different types of objective functions, other search mechanisms focus on various search focus, which can achieve different purposes, whether to get more accurate solutions or faster convergence speed. The above two experiments can prove the superiority of the MGWO algorithm.











> - MGWO $\cdots \cdots$ ALCPSO -- HGWO $-=$ OBLGWO - IGWO $\cdots \cdots$ CAGWO $-=-$ IWOA - - BWOA - CLSCA $\cdots \cdots$ MSCA $-=-$ CMFO $-=$ LGCMFO

Fig. 5 Convergence curves of the MGWO algorithm and the variants of MAs (First row: F3, F8; second row: F10, F12; third row: F14, F16; fourth row: F18, F21; fifth row: F23, F30)

### 4.4 Balance and diversity analysis

Its search mechanism determines the meta-heuristic optimization algorithms' performance. However, we cannot evaluate different search mechanisms quantitatively. Instead, we assess an optimization algorithm's performance by the quality of the solution obtained by the algorithm, the convergence rate, and the ability to escape from the local optima trap. Exploration refers to finding different kinds of solutions distributed in other areas of the entire search space. Exploitation emphasizes further exploring the promising areas in the search space and find a better solution with higher quality. An optimization algorithm's exploration and exploitation ability are closely related to its convergence rate. Improving the exploration ability can increase the possibility of finding the global optimum solution, but this behavior is at the cost of reducing the convergence speed.

Conversely, improving the exploitation ability can make the algorithm converge faster and enhance the probability of falling into the local optima trap. Therefore, exploration and exploitation are two mutually exclusive processes, and the quality of the balance between them affects the algorithm's performance. However, it is worth noting that even if two algorithms' ratios are the same, each algorithm's specific search mechanism's quality will significantly affect the performance. Moreover, it is difficult to obtain an appropriate exploration/exploitation ratio suitable for all existing optimization algorithms. Through a large number of experiments, Morales-Castaeda et al. (Morales-Castaeda et al., 2020) concluded that the algorithm's performance is the best when the balance response reaches a balance of $90 \%$ exploitation and $10 \%$ exploration under the condition of multimodal objective functions. The balance diagram's roughness means the unstable balance change in the evolution process caused by the small and sudden shift in diversity influenced by the search mechanism. These changes slightly improve the algorithm's exploration ability to escape from the local optima trap even at the exploitation stage. That is, the rough balance response shows better algorithm performance.

To further find why the MGWO algorithm's performance improved compared with the original GWO algorithm, the balance and diversity comparison experiments were carried out and analyzed. The two algorithms have been independently run on 30 benchmark functions of CEC2017 30 times, and the results are shown in Table 12. \%EPL is the average percentage of exploration, and \%EPT is the average percentage of exploration, which are used to indicate the time proportion of exploration and exploitation process. Average the exploration and exploration percentages of all benchmark functions, the MGWO obtained a balance of $90.5271 \%$ exploitation and $9.4729 \%$ exploration. The GWO received compensation of $88.4629 \%$ exploitation and $11.5371 \%$ exploration. The proportion of time consumed by the two algorithms on exploration and exploitation is not much different. The MGWO took a longer time than the GWO on the exploitation process slightly.

Table 12. Balance analysis of the MGWO algorithm and the GWO algorithm

| Algorithm | Function | \%EPL | \%EPT | Function | \%EPL | \%EPT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MGWO | F1 | 9.9461 | 90.0539 | F16 | 11.3009 | 88.6991 |
| GWO |  | 13.7245 | 86.2755 |  | 11.6514 | 88.3486 |
| MGWO | F2 | 7.5005 | 92.4995 | F17 | 8.1458 | 91.8542 |
| GWO |  | 10.1118 | 89.8882 |  | 9.8601 | 90.1399 |
| MGWO | F3 | 5.2141 | 94.7859 | F18 | 11.9452 | 88.0548 |
| GWO |  | 6.1694 | 93.8306 |  | 9.6552 | 90.3448 |


| $\begin{gathered} \text { MGWO } \\ \text { GWO } \end{gathered}$ | F4 | $\begin{aligned} & 10.8746 \\ & 14.3744 \end{aligned}$ | $\begin{aligned} & 89.1254 \\ & 85.6256 \end{aligned}$ | F19 | $\begin{gathered} 10.0295 \\ 9.4611 \end{gathered}$ | $\begin{aligned} & 89.9705 \\ & 90.5389 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MGWO GWO | F5 | $\begin{gathered} 9.2217 \\ 11.0272 \end{gathered}$ | $\begin{aligned} & 90.7783 \\ & 88.9728 \end{aligned}$ | F20 | 0.46862 $8.8270$ | $\begin{aligned} & 99.5314 \\ & 91.1730 \end{aligned}$ |
| MGWO <br> GWO | F6 | $10.2439$ $12.8432$ | 89.7561 <br> 87.1568 | F21 | $\begin{gathered} 9.4143 \\ 12.0452 \end{gathered}$ | $\begin{aligned} & 90.5857 \\ & 87.9548 \end{aligned}$ |
| MGWO GWO | F7 | $\begin{aligned} & 4.8249 \\ & 5.5620 \end{aligned}$ | $\begin{aligned} & 95.1751 \\ & 94.4380 \end{aligned}$ | F22 | $\begin{gathered} 9.4528 \\ 11.8357 \end{gathered}$ | $\begin{aligned} & 90.5472 \\ & 88.1643 \end{aligned}$ |
| MGWO GWO | F8 | $\begin{aligned} & 7.1809 \\ & 8.5830 \end{aligned}$ | $\begin{gathered} 92.8191 \\ 91.417 \end{gathered}$ | F23 | 13.5567 <br> 19.5372 | $\begin{aligned} & 86.4433 \\ & 80.4628 \end{aligned}$ |
| $\begin{gathered} \text { MGWO } \\ \text { GWO } \end{gathered}$ | F9 | $\begin{aligned} & 6.8411 \\ & 8.5855 \end{aligned}$ | $\begin{aligned} & 93.1589 \\ & 91.4145 \end{aligned}$ | F24 | $\begin{aligned} & 14.7119 \\ & 20.9825 \end{aligned}$ | $\begin{aligned} & 85.2881 \\ & 79.0175 \end{aligned}$ |
| MGWO <br> GWO | F10 | $\begin{gathered} 8.1675 \\ 11.7551 \end{gathered}$ | $\begin{aligned} & 91.8325 \\ & 88.2449 \end{aligned}$ | F25 | $\begin{aligned} & 6.6237 \\ & 8.3162 \end{aligned}$ | $\begin{aligned} & 93.3763 \\ & 91.6838 \end{aligned}$ |
| MGWO GWO | F11 | $\begin{aligned} & 5.3464 \\ & 6.9407 \end{aligned}$ | $\begin{aligned} & 94.6536 \\ & 93.0593 \end{aligned}$ | F26 | $\begin{gathered} 9.8592 \\ 12.9541 \end{gathered}$ | 90.1408 <br> 87.0459 |
| MGWO <br> GWO | F12 | $10.2979$ $12.0262$ | $\begin{aligned} & 89.7021 \\ & 87.9738 \end{aligned}$ | F27 | $\begin{aligned} & 17.9804 \\ & 19.9800 \end{aligned}$ | $\begin{aligned} & 82.0196 \\ & 80.0200 \end{aligned}$ |
| MGWO GWO | F13 | $\begin{aligned} & 11.3332 \\ & 11.9783 \end{aligned}$ | $\begin{aligned} & 88.6668 \\ & 88.0217 \end{aligned}$ | F28 | $8.9843$ $12.3044$ | $\begin{aligned} & 91.0157 \\ & 87.6956 \end{aligned}$ |
| MGWO GWO | F14 | 11.1794 <br> 9.5581 | $\begin{aligned} & 88.8206 \\ & 90.4419 \end{aligned}$ | F29 | 11.2618 <br> 13.3742 | $\begin{aligned} & 88.7382 \\ & 86.6258 \end{aligned}$ |
| MGWO <br> GWO | F15 | $\begin{aligned} & 9.3146 \\ & 9.7812 \end{aligned}$ | $\begin{aligned} & 90.6854 \\ & 90.2188 \end{aligned}$ | F30 | $\begin{aligned} & 12.9649 \\ & 12.3068 \end{aligned}$ | $\begin{aligned} & 87.0351 \\ & 87.6932 \end{aligned}$ |
| MGWO <br> GWO | avg | $\begin{gathered} 9.4729 \\ 11.5371 \end{gathered}$ | 90.5271 <br> 88.4629 |  |  |  |

The equilibrium evolution diagrams are shown in Figures 6 and 7. The graph of incrementaldecremental is a visual feature of the interactive effects of exploration and exploitation. The incremental-decremental graph will generate increment when the exploration effect is greater than or equal to the exploitation effect. Otherwise, it will create a decrement. Moreover, it will reach the vertex when the impacts of exploration and exploitation are the same. In the case of a negative value, it is assumed to be zero. F1 is a unimodal function, F6 is a simple multimodal function, F12 and F19 are hybrid functions, F24 and F26 are composition functions. Apparently, the two algorithms both have the right balance between exploration and exploitation. The exploitation percentage of the MGWO on each benchmark function is slightly higher than that of the GWO, and all of them are more than $80 \%$. At the first stage, the equilibrium response of the MGWO was the same as that of the GWO. The MGWO paid more attention to exploitation at the second stage, so the time proportion of exploitation increased rapidly. At this time, the convergence rate of the MGWO increased. Generally speaking, dividing the search process into several different stages will harm the convergence rate. Still, the convergence rate of the MGWO will increase due to the search mechanism adopted at the second stage. At the last stage, the equilibrium response of the MGWO became rough, especially on F12, F19, and F26. During the GWO's whole search process, the time proportion of exploitation has been rising, the time proportion of exploration has been declining, and the curve has become more and more smooth.

This shows that the MGWO has a more vital ability to jump out of the local optima trap and gain better quality solutions. In the equilibrium evolution diagram of F19, both algorithms' equilibrium responses are about $10 \%$ exploration and $90 \%$ exploitation. Still, the rough equilibrium diagram shows that the MGWO can better escape the local optima trap better than the GWO. On the benchmark function F24, the quality of the two algorithms' solutions is similar, but the MGWO can converge faster.

Figure 8 shows the evolution of diversity during the optimization procedure. The axis $x$ corresponds to the number of iterations, and the axis $y$ corresponds to the diversity measure. The search process began with high diversity, and the population's diversity gradually decreased with the increase of iterations. GWO gradually lost its population's diversity with the increase of iterations. The MGWO kept a low level on some functions after the rapid decline of the population's diversity at the second stage. On several functions, the population's diversity of the MGWO increased at the third stage and produced a different degree of oscillation. This also proves that the MGWO algorithm has a certain ability to jump out of the local optima trap. We can conclude that the MGWO algorithm has a better balance of exploration and exploitation than the GWO algorithm from the balance and diversity experiments.


Fig. 6 The balance analysis of MGWO and GWO on F1, F6, F12


Fig. 7 The balance analysis of MGWO and GWO on F19, F24, F26


Fig. 8 The diversity analysis of MGWO and GWO

### 4.5 Experiments on Multi-threshold image segmentation

In this section, MGWO will be used in the practical application of multi-threshold image segmentation. The objective function used is obtained by calculating Kapur's entropy in Section 2.2. The images used are Leaf Spot Diseases on Maize images. MGWO will be compared with nine swarm intelligence optimization algorithms on sixteen images to verify its effectiveness on multi-threshold image segmentation. The algorithms involved in the comparison are as follows: GWO, SSA, WOA,
cuckoo search (CS) (Yang and Deb, 2010), HHO, IGWO, comprehensive learning PSO (CLPSO) (Liang et al., 2006), CLSGMFO (Xu et al., 2019b), and LGCMFO. Finally, three evaluation indexes: peak signal to noise ratio (PSNR) (Huynh-Thu and Ghanbari, 2008), structural similarity index (SSIM) (Zhou et al., 2004), and feature similarity index (FSIM) (Zhang et al., 2011) are used to evaluate the segmented results and rank all the comparison algorithms.

### 4.5.1 Image and parameter setting

Leaf Spot Diseases on Maize images with the size of $400 \times 256$ used in the image segmentation experiment are derived from the standard publicly available dataset called the PlantVillage, and the total number of images is sixteen. Sixteen images can be divided into general and serious according to the severity of Leaf Spot Disease. According to different features, images can also be divided into different categories. There is Corn Rust interference on corn leaves in Images 2, 4, 5, 15, and 16, and multiple leaf spot on corn leaves in Images 4, 6, 8, 10, 12, and 13, and no background interference in Images 4 and 14.

(a)


Fig. 9 Original images and their 2D histograms
Figure 9 shows the eight images and their 2D histograms, respectively. The experiments are carried out under the condition of threshold level is $4,6,8,10$ respectively. All comparison algorithms run under the same conditions to ensure the experiments' fairness, where the population size is 20 , each algorithm runs 30 times independently.

### 4.5.2 Performance evaluation parameters

In this section, PSNR, SSIM, and FSIM are briefly introduced, used to evaluate multi-threshold image segmentation results.

PSNR is an index to measure image quality. When used to evaluate the effect of image segmentation, the larger the PSNR is, the better the image segmentation effect is. SSIM is used to measure the similarity between the original image and the segmented image. The closer the value is to 1 , the better the image segmentation effect is. When the two images are identical, the SSIM value is 1. FSIM uses feature similarity to evaluate image quality, including phase congruence (PC) and gradient magnitude (GM). The former is used to describe the local structure and extract stable features from the image, while the
latter is used to describe changes in the image. The value of FSIM is between 0 and 1 , and the closer it is to 1 , the better the image segmentation effect is.

### 4.5.3 Experimental results and analysis

The experimental results of multi-threshold image segmentation are showed through tables and pictures in this section. Comparative experiments were carried out by segmenting eight images under the condition of threshold levels of $4,6,8$, and 10 , to verify the effectiveness of MGWO on image segmentation at different threshold levels. There are ten swarm intelligence optimization algorithms involved in the comparison. PSNR, SSIM, and FSIM were used to evaluate the segmentation effect. In the discussion of experimental results, the Wilcoxon signed-rank tests on PSNR, SSIM, and FSIM are carried out, the mean and standard deviation of the evaluation indexes are calculated. All comparison algorithms are sorted under the condition of each segmentation threshold level

Tables A.1-A. 3 show the $A V G$ and STD of the PSNR, SSIM, and FSIM, respectively. Where the largest $A V G$ and the smallest $S T D$ are marked in bold. Table 13 shows the maxima of the objective function. Meanwhile, they are the maximum values of Kapur's entropy found by each algorithm at different threshold levels. At each threshold level, the largest of ten values obtained by comparison algorithms are marked in bold. Tables $\mathbf{1 4 - 1 6}$ show the results of the Wilcoxon signed-rank tests on PSNR, SSIM, and FSIM. Where " + " indicates the number of pictures on which the performance of MGWO is better than the comparison algorithm. In contrast, "-" denotes the opposite, and "=" indicates the number of pictures on which the performance of MGWO is almost similar to the comparison algorithm. Mean indicates the mean value of the sort on all pictures, and Rank indicates the final ranking level. One algorithm has different performances when they run on multi-threshold image segmentation at different thresholds.

Compared with nine other algorithms, MGWO has outstanding performance at four threshold levels, as shown in these tables. This advantage did not decrease with the increase of the threshold level. At each threshold level, the three indicators, PSNR, SSIM, and FSIM, obtained by the MGWO algorithm ranked first. When the threshold level is 4 , the three indicators obtained by CS ranked second. When the threshold level is 6 , the three indicators obtained by GWO ranked second. Although the original GWO and CS have competitiveness at a low threshold level, their advantages decrease rapidly with the increase of threshold level. Compared with SSA, MGWO has a substantial advantage at every threshold level. SSA is not suitable for multi-threshold image segmentation of Leaf Spot Diseases on Maize. Compared with the other competitive MAs, which are HHO and WOA, the performance of MGWO on at least seven images is far ahead when the threshold levels are 4 and 6 , and it also has competitiveness when the threshold levels are 8 and 10 . Compared with the excellent algorithm CLPSO, MGWO is more suitable for multi-threshold image segmentation at each threshold level with Kapur's entropy as the objective function. Compared to the improved GWO, which is called IGWO, the performance of MGWO on at least six images is far ahead.

Although the other improved algorithms, CLSGMFO and LGCMFO, have advantages at high threshold levels, their performance at low-threshold image segmentation is not outstanding. Around image segmentation with different thresholds, MGWO got the best ranking when the threshold level is six. These can prove the advantages of MGWO when applied to the multi-threshold image segmentation of Leaf Spot Diseases on Maize. Table A. 4 shows the thresholds found by each algorithm at the 4 -level threshold. Table A. 5 shows the average running time (AvgTime) of all
comparison algorithms on each picture at each threshold level after 30 parallel random runs. It can be seen that MGWO can obtain better effects of multi-threshold image segmentation, but the corresponding running time will increase slightly. This is consistent with the time complexity of MGWO analyzed above. Since the multi-stage strategy increases the proportion of the algorithm's exploration time, it increases the algorithm's ability to find approximate solutions closer to the true optimal solution and the ability to get rid of the local optima trap, which will inevitably slow down the algorithm's convergence speed.

Figure 10 shows the 6-level threshold segmentation results obtained by each algorithm on image 1. It can be seen from the segmentation results that when the threshold is six, the MGWO algorithm can better segment the disease spots on maize leaves than other comparative algorithms. These operations can lay a solid foundation for recognizing and classifying the disease spots. The plot style of Figures 9 and $\mathbf{1 0}$ refers to the paper of Zhao et al. (Zhao et al., 2021).

According to the above analysis of multi-threshold image segmentation results, MGWO has noticeable competitiveness over other comparative algorithms in segmentation experiments at four threshold levels of Leaf Spot Diseases on Maize. The proposed MGWO can also be applied to other complex problems, such as optimal control and design (Gong et al., 2019; Luo et al., 2020b; Mi et al., 2021; Zhao et al., 2020a), digital image colorimetry (Jing et al., 2021), neural network modeling (Fan et al., 2021; Zhou et al., 2021), prediction cases (Chen et al., 2021), and remote sensing (Wang et al., 2020b) The potential exploration and exploitation trends of the MGWO also needs more real-world problems to be considered for benchmark purposes. Such domains can be related to both image domain or feature spaces with continuous and binary spaces, for instance, optimal performance design (Meng et al., 2018), active surveillance (Pei et al., 2020), pedestrian dead reckoning (Qiu et al., 2018), evaluation of human lower limb motions (Qiu et al., 2016), image super-resolution (Zhu et al., 2021a; Zhu et al., 2021b), anomaly behavior detection (Guo et al., 2020), image robust representation learning (Hu et al., 2021a), and sentiment classification (Jiang et al., 2020b). Also, another discussion point on the proposed method is to investigate more deeply the root of the equations of MGWO because its source is still GWO, and it still can be seen as a variant of a velocity-free PSO.


Fig. 10 The segmented results of image 1 at 6-level threshold using all algorithms

Table 13. The fitness value results of each comparative algorithm

| Image | Level | MGWO | GWO | HHO | WOA | SSA | CS | IGWO | CLPSO | CLSGMFO | LGCMFO |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 4 | $3.87236 \mathrm{E}+01$ | $3.87236 \mathrm{E}+01$ | $3.86628 \mathrm{E}+01$ | $3.87202 \mathrm{E}+01$ | $3.87190 \mathrm{E}+01$ | $3.87162 \mathrm{E}+01$ | $3.87209 \mathrm{E}+01$ | $3.87236 \mathrm{E}+01$ | $3.87235 \mathrm{E}+01$ | $3.87236 \mathrm{E}+01$ |
|  | 6 | $4.92391 \mathrm{E}+01$ | $4.91693 \mathrm{E}+01$ | $4.87152 \mathrm{E}+01$ | $4.85520 \mathrm{E}+01$ | $4.87852 \mathrm{E}+01$ | $4.87897 \mathrm{E}+01$ | $4.90972 \mathrm{E}+01$ | $4.91009 \mathrm{E}+01$ | $4.91791 \mathrm{E}+01$ | $4.91125 \mathrm{E}+01$ |
|  | 8 | $5.83051 \mathrm{E}+01$ | $5.79948 \mathrm{E}+01$ | $5.82075 \mathrm{E}+01$ | $5.74794 \mathrm{E}+01$ | $5.76193 \mathrm{E}+01$ | $5.81497 \mathrm{E}+01$ | $5.80314 \mathrm{E}+01$ | $5.82683 \mathrm{E}+01$ | $5.81475 \mathrm{E}+01$ | $5.83611 \mathrm{E}+01$ |
|  | 10 | $6.67144 \mathrm{E}+01$ | $6.62477 \mathrm{E}+01$ | $6.58145 \mathrm{E}+01$ | $6.64673 \mathrm{E}+01$ | $6.55186 \mathrm{E}+01$ | $6.63559 \mathrm{E}+01$ | $6.60820 \mathrm{E}+01$ | $6.67924 \mathrm{E}+01$ | $6.65337 \mathrm{E}+01$ | $6.68829 \mathrm{E}+01$ |
| 2 | 4 | $3.83643 \mathrm{E}+01$ | $3.83643 \mathrm{E}+01$ | $3.76887 \mathrm{E}+01$ | $3.78365 \mathrm{E}+01$ | $3.80102 \mathrm{E}+01$ | $3.83216 \mathrm{E}+01$ | $3.83228 \mathrm{E}+01$ | $3.82439 \mathrm{E}+01$ | $3.81686 \mathrm{E}+01$ | $3.81320 \mathrm{E}+01$ |
|  | 6 | $4.91931 \mathrm{E}+01$ | $4.88145 \mathrm{E}+01$ | $4.87635 \mathrm{E}+01$ | $4.87958 \mathrm{E}+01$ | $4.87868 \mathrm{E}+01$ | $4.88145 \mathrm{E}+01$ | $4.87766 \mathrm{E}+01$ | $4.89523 \mathrm{E}+01$ | $4.87940 \mathrm{E}+01$ | $4.87805 \mathrm{E}+01$ |
|  | 8 | $5.87284 \mathrm{E}+01$ | $5.86972 \mathrm{E}+01$ | $5.82170 \mathrm{E}+01$ | $5.85353 \mathrm{E}+01$ | $5.81525 \mathrm{E}+01$ | $5.84841 \mathrm{E}+01$ | $5.84282 \mathrm{E}+01$ | $5.87002 \mathrm{E}+01$ | $5.86186 \mathrm{E}+01$ | $5.86183 \mathrm{E}+01$ |
|  | 10 | $6.75524 \mathrm{E}+01$ | $6.70426 \mathrm{E}+01$ | $6.65886 \mathrm{E}+01$ | $6.73350 \mathrm{E}+01$ | $6.70775 \mathrm{E}+01$ | $6.71772 \mathrm{E}+01$ | $6.70029 \mathrm{E}+01$ | $6.74889 \mathrm{E}+01$ | $6.74858 \mathrm{E}+01$ | -01 |
| 3 | 4 | $3.81117 \mathrm{E}+01$ | $3.81101 \mathrm{E}+01$ | $3.78047 \mathrm{E}+01$ | $3.79706 \mathrm{E}+01$ | $3.80245 \mathrm{E}+01$ | $3.81023 \mathrm{E}+01$ | $3.80994 \mathrm{E}+01$ | $3.81094 \mathrm{E}+01$ | $3.80372 \mathrm{E}+01$ | $3.80426 \mathrm{E}+01$ |
|  | 6 | $4.91241 \mathrm{E}+01$ | $4.91228 \mathrm{E}+01$ | $4.90126 \mathrm{E}+01$ | $4.90891 \mathrm{E}+01$ | $4.91029 \mathrm{E}+01$ | $4.91238 \mathrm{E}+01$ | $4.90919 \mathrm{E}+01$ | $4.91251 \mathrm{E}+01$ | $4.91217 \mathrm{E}+01$ | $4.91243 \mathrm{E}+01$ |
|  | 8 | $5.86171 \mathrm{E}+01$ | $5.86307 \mathrm{E}+01$ | $5.84205 \mathrm{E}+01$ | $5.84841 \mathrm{E}+01$ | $5.85263 \mathrm{E}+01$ | $5.86700 \mathrm{E}+01$ | $5.85634 \mathrm{E}+01$ | $5.87147 \mathrm{E}+01$ | $5.86761 \mathrm{E}+01$ | $5.87073 \mathrm{E}+01$ |
|  | 10 | $6.76433 \mathrm{E}+01$ | $6.74781 \mathrm{E}+01$ | $6.70014 \mathrm{E}+01$ | $6.71695 \mathrm{E}+01$ | $6.64575 \mathrm{E}+01$ | $6.72646 \mathrm{E}+01$ | $6.69258 \mathrm{E}+01$ | $6.74338 \mathrm{E}+01$ | $6.74501 \mathrm{E}+01$ | $6.73349 \mathrm{E}+01$ |
| 4 | 4 | $3.77794 \mathrm{E}+01$ | $3.77642 \mathrm{E}+01$ | $3.74015 \mathrm{E}+01$ | $3.75482 \mathrm{E}+01$ | $3.76268 \mathrm{E}+01$ | $3.76492 \mathrm{E}+01$ | $3.76559 \mathrm{E}+01$ | $3.76678 \mathrm{E}+01$ | $3.77794 \mathrm{E}+01$ | $3.76678 \mathrm{E}+01$ |
|  | 6 | $4.86005 \mathrm{E}+01$ | $4.85915 \mathrm{E}+01$ | $4.84293 \mathrm{E}+01$ | $4.84349 \mathrm{E}+01$ | $4.85223 \mathrm{E}+01$ | $4.85796 \mathrm{E}+01$ | $4.85261 \mathrm{E}+01$ | $4.85864 \mathrm{E}+01$ | $4.85940 \mathrm{E}+01$ | $4.85460 \mathrm{E}+01$ |
|  | 8 | $5.82836 \mathrm{E}+01$ | $5.79433 \mathrm{E}+01$ | $5.76649 \mathrm{E}+01$ | $5.80695 \mathrm{E}+01$ | $5.76362 \mathrm{E}+01$ | $5.81764 \mathrm{E}+01$ | $5.80471 \mathrm{E}+01$ | $5.82802 \mathrm{E}+01$ | $5.82256 \mathrm{E}+01$ | $5.82986 \mathrm{E}+01$ |
|  | 10 | $6.69785 \mathrm{E}+01$ | $6.67008 \mathrm{E}+01$ | $6.64174 \mathrm{E}+01$ | $6.64311 \mathrm{E}+01$ | $6.66338 \mathrm{E}+01$ | $6.68702 \mathrm{E}+01$ | $6.64105 \mathrm{E}+01$ | $6.69684 \mathrm{E}+01$ | $6.68248 \mathrm{E}+01$ | $6.68312 \mathrm{E}+01$ |
| 5 | 4 | $3.87176 \mathrm{E}+01$ | $3.87176 \mathrm{E}+01$ | $3.64547 \mathrm{E}+01$ | $3.83469 \mathrm{E}+01$ | $3.86811 \mathrm{E}+01$ | $3.86156 \mathrm{E}+01$ | $3.87131 \mathrm{E}+01$ | $3.82588 \mathrm{E}+01$ | $3.82002 \mathrm{E}+01$ | $3.87176 \mathrm{E}+01$ |
|  | 6 | $5.01104 \mathrm{E}+01$ | $4.80769 \mathrm{E}+01$ | $4.72590 \mathrm{E}+01$ | $4.79040 \mathrm{E}+01$ | $4.98301 \mathrm{E}+01$ | $4.96679 \mathrm{E}+01$ | $4.98715 \mathrm{E}+01$ | $4.95776 \mathrm{E}+01$ | $4.98197 \mathrm{E}+01$ | $4.74629 \mathrm{E}+01$ |
|  | 8 | $5.78868 \mathrm{E}+01$ | $5.80425 \mathrm{E}+01$ | $5.86305 \mathrm{E}+01$ | $5.75067 \mathrm{E}+01$ | $5.76847 \mathrm{E}+01$ | $5.87361 \mathrm{E}+01$ | $5.94031 \mathrm{E}+01$ | $5.88065 \mathrm{E}+01$ | $5.79084 \mathrm{E}+01$ | $5.79254 \mathrm{E}+01$ |
|  | 10 | $6.65272 \mathrm{E}+01$ | $6.62523 \mathrm{E}+01$ | $6.60540 \mathrm{E}+01$ | $6.84627 \mathrm{E}+01$ | $6.58633 \mathrm{E}+01$ | $6.72150 \mathrm{E}+01$ | $6.76775 \mathrm{E}+01$ | $6.80145 \mathrm{E}+01$ | $6.66480 \mathrm{E}+01$ | $6.65838 \mathrm{E}+01$ |
| 6 | 4 | $3.86862 \mathrm{E}+01$ | $3.86862 \mathrm{E}+01$ | $3.83839 \mathrm{E}+01$ | $3.84233 \mathrm{E}+01$ | $3.86662 \mathrm{E}+01$ | $3.86778 \mathrm{E}+01$ | $3.86464 \mathrm{E}+01$ | $3.86678 \mathrm{E}+01$ | $3.86678 \mathrm{E}+01$ | $3.86678 \mathrm{E}+01$ |
|  | 6 | $4.95379 \mathrm{E}+01$ | $4.95333 \mathrm{E}+01$ | $4.94970 \mathrm{E}+01$ | $4.93464 \mathrm{E}+01$ | $4.94014 \mathrm{E}+01$ | $4.94775 \mathrm{E}+01$ | $4.94853 \mathrm{E}+01$ | $4.95321 \mathrm{E}+01$ | $4.94863 \mathrm{E}+01$ | $4.95237 \mathrm{E}+01$ |
|  | 8 | $5.92285 \mathrm{E}+01$ | $5.92082 \mathrm{E}+01$ | $5.90918 \mathrm{E}+01$ | $5.91073 \mathrm{E}+01$ | $5.90128 \mathrm{E}+01$ | $5.91403 \mathrm{E}+01$ | $5.89391 \mathrm{E}+01$ | $5.91750 \mathrm{E}+01$ | $5.91893 \mathrm{E}+01$ | $5.91611 \mathrm{E}+01$ |


|  | 10 | $6.79754 \mathrm{E}+01$ | $6.77934 \mathrm{E}+01$ | $6.70965 \mathrm{E}+01$ | $6.77954 \mathrm{E}+01$ | $6.76587 \mathrm{E}+01$ | $6.77046 \mathrm{E}+01$ | $6.75139 \mathrm{E}+01$ | $6.79056 \mathrm{E}+01$ | $6.77986 \mathrm{E}+01$ | $6.79226 \mathrm{E}+01$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | 4 | $3.86223 \mathrm{E}+01$ | $3.86223 \mathrm{E}+01$ | $3.85947 \mathrm{E}+01$ | $3.82018 \mathrm{E}+01$ | $3.85747 \mathrm{E}+01$ | $3.86000 \mathrm{E}+01$ | $3.86068 \mathrm{E}+01$ | $3.85817 \mathrm{E}+01$ | $3.86222 \mathrm{E}+01$ | $3.78972 \mathrm{E}+01$ |
|  | 6 | $4.91918 \mathrm{E}+01$ | $4.90300 \mathrm{E}+01$ | $4.82483 \mathrm{E}+01$ | $4.83083 \mathrm{E}+01$ | $4.89328 \mathrm{E}+01$ | $4.91031 \mathrm{E}+01$ | $4.93880 \mathrm{E}+01$ | $4.90095 \mathrm{E}+01$ | $4.91617 \mathrm{E}+01$ | $4.94927 \mathrm{E}+01$ |
|  | 8 | $5.83897 \mathrm{E}+01$ | $5.86869 \mathrm{E}+01$ | $5.81200 \mathrm{E}+01$ | $5.80846 \mathrm{E}+01$ | $5.81231 \mathrm{E}+01$ | $5.83093 \mathrm{E}+01$ | $5.81525 \mathrm{E}+01$ | $5.84307 \mathrm{E}+01$ | $5.81912 \mathrm{E}+01$ | $5.82136 \mathrm{E}+01$ |
|  | 10 | $6.72101 \mathrm{E}+01$ | $6.66578 \mathrm{E}+01$ | $6.69333 \mathrm{E}+01$ | $6.66390 \mathrm{E}+01$ | $6.66193 \mathrm{E}+01$ | $6.70748 \mathrm{E}+01$ | $6.60809 \mathrm{E}+01$ | $6.71354 \mathrm{E}+01$ | $6.73203 \mathrm{E}+01$ | $6.68097 \mathrm{E}+01$ |
| 8 | 4 | $3.80724 \mathrm{E}+01$ | $3.80706 \mathrm{E}+01$ | $3.69146 \mathrm{E}+01$ | $3.75672 \mathrm{E}+01$ | $3.80246 \mathrm{E}+01$ | $3.79834 \mathrm{E}+01$ | $3.80572 \mathrm{E}+01$ | $3.80684 \mathrm{E}+01$ | $3.76467 \mathrm{E}+01$ | $3.78877 \mathrm{E}+01$ |
|  | 6 | $4.84338 \mathrm{E}+01$ | $4.84616 \mathrm{E}+01$ | $4.83788 \mathrm{E}+01$ | $4.85939 \mathrm{E}+01$ | $4.77207 \mathrm{E}+01$ | $4.84458 \mathrm{E}+01$ | $4.85856 \mathrm{E}+01$ | $4.82815 \mathrm{E}+01$ | $4.79643 \mathrm{E}+01$ | $4.80536 \mathrm{E}+01$ |
|  | 8 | $5.79134 \mathrm{E}+01$ | $5.81419 \mathrm{E}+01$ | $5.76264 \mathrm{E}+01$ | $5.78271 \mathrm{E}+01$ | $5.77951 \mathrm{E}+01$ | $5.81609 \mathrm{E}+01$ | $5.77329 \mathrm{E}+01$ | $5.79631 \mathrm{E}+01$ | $5.79245 \mathrm{E}+01$ | $5.78370 \mathrm{E}+01$ |
|  | 10 | $6.67107 \mathrm{E}+01$ | $6.64815 \mathrm{E}+01$ | $6.64165 \mathrm{E}+01$ | $6.67736 \mathrm{E}+01$ | $6.64028 \mathrm{E}+01$ | $6.67575 \mathrm{E}+01$ | $6.64408 \mathrm{E}+01$ | $6.67899 \mathrm{E}+01$ | $6.67263 \mathrm{E}+01$ | $6.67707 \mathrm{E}+01$ |
| 9 | 4 | $3.81114 \mathrm{E}+01$ | $3.81114 \mathrm{E}+01$ | $3.80914 \mathrm{E}+01$ | $3.80979 \mathrm{E}+01$ | $3.80393 \mathrm{E}+01$ | $3.80907 \mathrm{E}+01$ | $3.81071 \mathrm{E}+01$ | $3.81060 \mathrm{E}+01$ | $3.81044 \mathrm{E}+01$ | $3.81114 \mathrm{E}+01$ |
|  | 6 | $4.87744 \mathrm{E}+01$ | $4.87715 \mathrm{E}+01$ | $4.84106 \mathrm{E}+01$ | $4.86559 \mathrm{E}+01$ | $4.85865 \mathrm{E}+01$ | $4.86390 \mathrm{E}+01$ | $4.87339 \mathrm{E}+01$ | $4.87979 \mathrm{E}+01$ | $4.87368 \mathrm{E}+01$ | $4.87732 \mathrm{E}+01$ |
|  | 8 | $5.78833 \mathrm{E}+01$ | $5.78114 \mathrm{E}+01$ | $5.74416 \mathrm{E}+01$ | $5.76716 \mathrm{E}+01$ | $5.76622 \mathrm{E}+01$ | $5.77968 \mathrm{E}+01$ | $5.77487 \mathrm{E}+01$ | $5.81742 \mathrm{E}+01$ | $5.80447 \mathrm{E}+01$ | $5.78195 \mathrm{E}+01$ |
|  | 10 | $6.59979 \mathrm{E}+01$ | $6.57051 \mathrm{E}+01$ | $6.54943 \mathrm{E}+01$ | $6.56711 \mathrm{E}+01$ | $6.53996 \mathrm{E}+01$ | $6.59869 \mathrm{E}+01$ | $6.54091 \mathrm{E}+01$ | $6.62838 \mathrm{E}+01$ | $6.63169 \mathrm{E}+01$ | $6.65110 \mathrm{E}+01$ |
| 10 | 4 | $3.83150 \mathrm{E}+01$ | $3.83136 \mathrm{E}+01$ | $3.77201 \mathrm{E}+01$ | $3.82876 \mathrm{E}+01$ | $3.81559 \mathrm{E}+01$ | $3.82941 \mathrm{E}+01$ | $3.83072 \mathrm{E}+01$ | $3.82959 \mathrm{E}+01$ | $3.82959 \mathrm{E}+01$ | $3.82875 \mathrm{E}+01$ |
|  | 6 | $4.90623 \mathrm{E}+01$ | $4.90619 \mathrm{E}+01$ | $4.87813 \mathrm{E}+01$ | $4.88601 \mathrm{E}+01$ | $4.87972 \mathrm{E}+01$ | $4.89838 \mathrm{E}+01$ | $4.89987 \mathrm{E}+01$ | $4.90548 \mathrm{E}+01$ | $4.90535 \mathrm{E}+01$ | $4.90254 \mathrm{E}+01$ |
|  | 8 | $5.85589 \mathrm{E}+01$ | $5.86865 \mathrm{E}+01$ | $5.82441 \mathrm{E}+01$ | $5.82365 \mathrm{E}+01$ | $5.80789 \mathrm{E}+01$ | $5.84424 \mathrm{E}+01$ | $5.83173 \mathrm{E}+01$ | $5.87591 \mathrm{E}+01$ | $5.89757 \mathrm{E}+01$ | $5.83237 \mathrm{E}+01$ |
|  | 10 | $6.78978 \mathrm{E}+01$ | $6.71499 \mathrm{E}+01$ | $6.68694 \mathrm{E}+01$ | $6.77215 \mathrm{E}+01$ | $6.69408 \mathrm{E}+01$ | $6.75803 \mathrm{E}+01$ | $6.64702 \mathrm{E}+01$ | $6.70776 \mathrm{E}+01$ | $6.78365 \mathrm{E}+01$ | $6.80234 \mathrm{E}+01$ |
| 11 | 4 | $3.83227 \mathrm{E}+01$ | $3.83215 \mathrm{E}+01$ | $3.81482 \mathrm{E}+01$ | $3.83088 \mathrm{E}+01$ | $3.82902 \mathrm{E}+01$ | $3.83187 \mathrm{E}+0$ | $3.83203 \mathrm{E}+01$ | $3.83227 \mathrm{E}+01$ | $3.83227 \mathrm{E}+01$ | $3.83227 \mathrm{E}+01$ |
|  | 6 | $4.91058 \mathrm{E}+01$ | $4.90957 \mathrm{E}+01$ | $4.86644 \mathrm{E}+01$ | $4.90011 \mathrm{E}+01$ | $4.89908 \mathrm{E}+01$ | $4.90972 \mathrm{E}+01$ | $4.89970 \mathrm{E}+01$ | $4.91058 \mathrm{E}+01$ | $4.91052 \mathrm{E}+01$ | $4.91058 \mathrm{E}+01$ |
|  | 8 | $5.82029 \mathrm{E}+01$ | $5.81988 \mathrm{E}+01$ | $5.75641 \mathrm{E}+01$ | $5.79840 \mathrm{E}+01$ | $5.83843 \mathrm{E}+01$ | $5.83562 \mathrm{E}+01$ | $5.81642 \mathrm{E}+01$ | $5.85802 \mathrm{E}+01$ | $5.83642 \mathrm{E}+01$ | $5.84636 \mathrm{E}+01$ |
|  | 10 | $6.64080 \mathrm{E}+01$ | $6.64896 \mathrm{E}+01$ | $6.61945 \mathrm{E}+01$ | $6.64994 \mathrm{E}+01$ | $6.67249 \mathrm{E}+01$ | $6.66655 \mathrm{E}+01$ | $6.63975 \mathrm{E}+01$ | $6.70396 \mathrm{E}+01$ | $6.67167 \mathrm{E}+01$ | $6.67949 \mathrm{E}+01$ |
| 12 | 4 | $3.86035 \mathrm{E}+01$ | $3.86035 \mathrm{E}+01$ | $3.81119 \mathrm{E}+01$ | $3.85826 \mathrm{E}+01$ | $3.84922 \mathrm{E}+01$ | $3.85891 \mathrm{E}+01$ | $3.85930 \mathrm{E}+01$ | $3.85934 \mathrm{E}+01$ | $3.86028 \mathrm{E}+01$ | $3.85869 \mathrm{E}+01$ |
|  | 6 | $4.94920 \mathrm{E}+01$ | $4.94911 \mathrm{E}+01$ | $4.92989 \mathrm{E}+01$ | $4.88541 \mathrm{E}+01$ | $4.91089 \mathrm{E}+01$ | $4.90770 \mathrm{E}+01$ | $4.94809 \mathrm{E}+01$ | $4.93636 \mathrm{E}+01$ | $4.93953 \mathrm{E}+01$ | $4.91538 \mathrm{E}+01$ |
|  | 8 | $5.84978 \mathrm{E}+01$ | $5.91500 \mathrm{E}+01$ | $5.81536 \mathrm{E}+01$ | $5.81292 \mathrm{E}+01$ | $5.80099 \mathrm{E}+01$ | $5.84438 \mathrm{E}+01$ | $5.87501 \mathrm{E}+01$ | $5.86385 \mathrm{E}+01$ | $5.90108 \mathrm{E}+01$ | $5.92634 \mathrm{E}+01$ |
|  | 10 | $6.69279 \mathrm{E}+01$ | $6.68128 \mathrm{E}+01$ | $6.63388 \mathrm{E}+01$ | $6.65494 \mathrm{E}+01$ | $6.63047 \mathrm{E}+01$ | $6.67866 \mathrm{E}+01$ | $6.63544 \mathrm{E}+01$ | $6.70779 \mathrm{E}+01$ | $6.65787 \mathrm{E}+01$ | $6.71120 \mathrm{E}+01$ |


| 13 | 4 | $3.84181 \mathrm{E}+01$ | $3.84181 \mathrm{E}+01$ | $3.81687 \mathrm{E}+01$ | $3.83817 \mathrm{E}+01$ | $3.83411 \mathrm{E}+01$ | $3.84179 \mathrm{E}+01$ | $3.84094 \mathrm{E}+01$ | $3.84181 \mathrm{E}+01$ | $3.84179 \mathrm{E}+01$ | $3.84181 \mathrm{E}+01$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 6 | $4.89348 \mathrm{E}+01$ | $4.88653 \mathrm{E}+01$ | $4.88004 \mathrm{E}+01$ | $4.88172 \mathrm{E}+01$ | $4.88308 \mathrm{E}+01$ | $4.89367 \mathrm{E}+01$ | $4.88974 \mathrm{E}+01$ | $4.89827 \mathrm{E}+01$ | $4.89432 \mathrm{E}+01$ | $4.89370 \mathrm{E}+01$ |
|  | 8 | $5.86741 \mathrm{E}+01$ | $5.82909 \mathrm{E}+01$ | $5.79310 \mathrm{E}+01$ | $5.81847 \mathrm{E}+01$ | $5.81999 \mathrm{E}+01$ | $5.82863 \mathrm{E}+01$ | $5.80879 \mathrm{E}+01$ | $5.85518 \mathrm{E}+01$ | $5.84914 \mathrm{E}+01$ | $5.82779 \mathrm{E}+01$ |
|  | 10 | $6.68173 \mathrm{E}+01$ | $6.65666 \mathrm{E}+01$ | $6.59483 \mathrm{E}+01$ | $6.66975 \mathrm{E}+01$ | $6.64136 \mathrm{E}+01$ | $6.68488 \mathrm{E}+01$ | $6.63403 \mathrm{E}+01$ | $6.69890 \mathrm{E}+01$ | $6.68999 \mathrm{E}+01$ | $6.69123 \mathrm{E}+01$ |
| 14 | 4 | $3.81120 \mathrm{E}+01$ | $3.79835 \mathrm{E}+01$ | $3.79265 \mathrm{E}+01$ | $3.78512 \mathrm{E}+01$ | $3.79445 \mathrm{E}+01$ | $3.81542 \mathrm{E}+01$ | $3.81650 \mathrm{E}+01$ | $3.81531 \mathrm{E}+01$ | $3.80013 \mathrm{E}+01$ | $3.81751 \mathrm{E}+01$ |
|  | 6 | $4.88832 \mathrm{E}+01$ | $4.88454 \mathrm{E}+01$ | $4.82469 \mathrm{E}+01$ | $4.87376 \mathrm{E}+01$ | $4.86521 \mathrm{E}+01$ | $4.88443 \mathrm{E}+01$ | $4.88746 \mathrm{E}+01$ | $4.87559 \mathrm{E}+01$ | $4.88384 \mathrm{E}+01$ | $4.87311 \mathrm{E}+01$ |
|  | 8 | $5.86977 \mathrm{E}+01$ | $5.82983 \mathrm{E}+01$ | $5.81345 \mathrm{E}+01$ | $5.79704 \mathrm{E}+01$ | $5.81076 \mathrm{E}+01$ | $5.82672 \mathrm{E}+01$ | $5.82021 \mathrm{E}+01$ | $5.84907 \mathrm{E}+01$ | $5.85674 \mathrm{E}+01$ | $5.85123 \mathrm{E}+01$ |
|  | 10 | $6.71634 \mathrm{E}+01$ | $6.71117 \mathrm{E}+01$ | $6.64496 \mathrm{E}+01$ | $6.69977 \mathrm{E}+01$ | $6.65257 \mathrm{E}+01$ | $6.70051 \mathrm{E}+01$ | $6.64179 \mathrm{E}+01$ | $6.71138 \mathrm{E}+01$ | $6.68377 \mathrm{E}+01$ | $6.72633 \mathrm{E}+01$ |
| 15 | 4 | $3.79185 \mathrm{E}+01$ | $3.79245 \mathrm{E}+01$ | $3.74904 \mathrm{E}+01$ | $3.78939 \mathrm{E}+01$ | $3.74040 \mathrm{E}+01$ | $3.78741 \mathrm{E}+01$ | $3.79058 \mathrm{E}+01$ | $3.76793 \mathrm{E}+01$ | $3.75698 \mathrm{E}+01$ | $3.79185 \mathrm{E}+01$ |
|  | 6 | $4.82882 \mathrm{E}+01$ | $4.82700 \mathrm{E}+01$ | $4.79728 \mathrm{E}+01$ | $4.80404 \mathrm{E}+01$ | $4.83037 \mathrm{E}+01$ | $4.81384 \mathrm{E}+01$ | $4.83454 \mathrm{E}+01$ | $4.84851 \mathrm{E}+01$ | $4.84986 \mathrm{E}+01$ | $4.83211 \mathrm{E}+01$ |
|  | 8 | $5.81818 \mathrm{E}+01$ | $5.80355 \mathrm{E}+01$ | $5.79056 \mathrm{E}+01$ | $5.82496 \mathrm{E}+01$ | $5.79751 \mathrm{E}+01$ | $5.83904 \mathrm{E}+01$ | $5.79723 \mathrm{E}+01$ | $5.84027 \mathrm{E}+01$ | $5.83242 \mathrm{E}+01$ | $5.83835 \mathrm{E}+01$ |
|  | 10 | $6.71115 \mathrm{E}+01$ | $6.66467 \mathrm{E}+01$ | $6.65467 \mathrm{E}+01$ | $6.74789 \mathrm{E}+01$ | $6.69868 \mathrm{E}+01$ | $6.70648 \mathrm{E}+01$ | $6.64364 \mathrm{E}+01$ | $6.74295 \mathrm{E}+01$ | $6.70576 \mathrm{E}+01$ | $6.69616 \mathrm{E}+01$ |
| 16 | 4 | $3.79592 \mathrm{E}+01$ | $3.79474 \mathrm{E}+01$ | $3.78386 \mathrm{E}+01$ | $3.79581 \mathrm{E}+01$ | $3.79431 \mathrm{E}+01$ | $3.79532 \mathrm{E}+01$ | $3.79283 \mathrm{E}+01$ | $3.78659 \mathrm{E}+01$ | $3.78857 \mathrm{E}+01$ | $3.79592 \mathrm{E}+01$ |
|  | 6 | $4.87831 \mathrm{E}+01$ | $4.88296 \mathrm{E}+01$ | $4.78266 \mathrm{E}+01$ | $4.84949 \mathrm{E}+01$ | $4.85905 \mathrm{E}+01$ | $4.86942 \mathrm{E}+01$ | $4.86961 \mathrm{E}+01$ | $4.87631 \mathrm{E}+01$ | $4.85147 \mathrm{E}+01$ | $4.87320 \mathrm{E}+01$ |
|  | 8 | $5.87003 \mathrm{E}+01$ | $5.85368 \mathrm{E}+01$ | $5.78142 \mathrm{E}+01$ | $5.77165 \mathrm{E}+01$ | $5.80198 \mathrm{E}+01$ | $5.83612 \mathrm{E}+01$ | $5.82046 \mathrm{E}+01$ | $5.85903 \mathrm{E}+01$ | $5.81853 \mathrm{E}+01$ | $5.84665 \mathrm{E}+01$ |
|  | 10 | $6.71653 \mathrm{E}+01$ | $6.69418 \mathrm{E}+01$ | $6.69429 \mathrm{E}+01$ | $6.63894 \mathrm{E}+01$ | $6.63531 \mathrm{E}+01$ | $6.67650 \mathrm{E}+01$ | $6.64496 \mathrm{E}+01$ | $6.73162 \mathrm{E}+01$ | $6.70938 \mathrm{E}+01$ | $6.70661 \mathrm{E}+01$ |

Table 14. The PSNR comparison results at each threshold level

| Level |  | MGWO | GWO | HHO | WOA | SSA | CS | IGWO | CLPSO | CLSGMFO | LGCMFO |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | $+/-/=$ | $\sim$ | 4/0/12 | 12/0/4 | 11/0/5 | 10/0/6 | 2/1/13 | 7/0/9 | 9/2/5 | 9/2/5 | 8/2/6 |
|  | Mean | 3.13 | 3.81 | 8.88 | 8.38 | 7.94 | 3.63 | 4.69 | 4.56 | 5.25 | 4.75 |
|  | Rank | 1 | 3 | 10 | 9 | 8 | 2 | 5 | 4 | 7 | 6 |
| 6 | +/-/= | $\sim$ | 4/0/12 | 7/0/9 | 8/0/8 | 13/0/3 | 7/0/9 | 7/0/9 | 10/0/6 | 6/0/10 | 7/1/8 |
|  | Mean | 2.25 | 3.81 | 7.06 | 7.56 | 9.31 | 5.06 | 5.94 | 5.12 | 4.63 | 4.25 |
|  | Rank | 1 | 2 | 8 | 9 | 10 | 5 | 7 | 6 | 4 | 3 |


| 8 | $+/-/=$ | $\sim$ | 8/0/8 | 5/0/11 | 7/0/9 | 13/0/3 | 6/0/10 | 6/0/10 | 9/0/7 | 4/0/12 | 5/1/10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Mean | 2.44 | 6.19 | 5.94 | 5.63 | 9.69 | 6.13 | 6.81 | 4.94 | 3.88 | 3.38 |
|  | Rank | 1 | 8 | 6 | 5 | 10 | 7 | 9 | 4 | 3 | 2 |
| 10 | $+/-/=$ | $\sim$ | 11/0/5 | 2/0/14 | 2/3/11 | 14/0/2 | 4/0/12 | 7/0/9 | 3/0/13 | 3/0/13 | 2/0/14 |
|  | Mean | 2.75 | 6.81 | 6.50 | 4.19 | 9.69 | 5.31 | 7.31 | 3.94 | 4.50 | 4.00 |
|  | Rank | 1 | 8 | 7 | 4 | 10 | 6 | 9 | 2 | 5 | 3 |

Table 15. The SSIM comparison results at each threshold level

| Level |  | MGWO | GWO | HHO | WOA | SSA | CS | IGWO | CLPSO | CLSGMFO | LGCMFO |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | $+/-/=$ | $\sim$ | 5/0/11 | 12/0/4 | 12/0/4 | 13/0/3 | 3/1/12 | 6/1/9 | 11/0/5 | 10/0/6 | 9/1/6 |
|  | Mean | 2.25 | 3.75 | 9.00 | 9.00 | 7.94 | 3.19 | 4.13 | 5.00 | 5.50 | 5.25 |
|  | Rank | 1 | 3 | 9 | 9 | 8 | 2 | 4 | 5 | 7 | 6 |
| 6 | $+/-/=$ | $\sim$ | 4/0/12 | 9/0/7 | 11/0/5 | 12/0/4 | 8/0/8 | 8/0/8 | 9/0/7 | 9/1/6 | 8/1/7 |
|  | Mean | 2.25 | 3.88 | 7.00 | 7.69 | 9.13 | 5.06 | 5.50 | 5.19 | 4.69 | 4.63 |
|  | Rank | 1 | 2 | 8 | 9 | 10 | 5 | 7 | 6 | 4 | 3 |
| 8 | +/-//= | $\sim$ | 9/0/7 | 3/0/13 | 3/0/13 | 12/0/4 | 7/0/9 | 6/0/10 | 6/0/10 | 4/0/12 | 5/0/11 |
|  | Mean | 2.13 | 6.69 | 5.38 | 5.25 | 9.63 | 6.19 | 6.75 | 5.13 | 4.19 | 3.69 |
|  | Rank | 1 | 8 | 6 | 5 | 10 | 7 | 9 | 4 | 3 | 2 |
| 10 | $+/-/=$ | $\sim$ | 12/0/4 | 1/0/15 | 2/3/11 | 14/0/2 | 4/0/12 | 7/0/9 | 6/0/10 | 7/0/9 | 3/0/13 |
|  | Mean | 2.31 | 6.81 | 6.75 | 3.94 | 9.69 | 5.50 | 6.63 | 4.31 | 4.56 | 4.50 |
|  | Rank | 1 | 9 | 8 | 2 | 10 | 6 | 7 | 3 | 5 | 4 |

Table 16. The FSIM comparison results at each threshold level

| Level |  | MGWO | GWO | HHO | WOA | SSA | CS | IGWO | CLPSO | CLSGMFO | LGCMFO |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | +/-/= | $\sim$ | 6/0/10 | 12/0/4 | 13/0/3 | 10/0/6 | 2/3/11 | 6/1/9 | 9/2/5 | 8/2/6 | 7/2/7 |
|  | Mean | 2.94 | 4.44 | 8.94 | 8.81 | 7.94 | 3.63 | 4.44 | 4.56 | 4.69 | 4.63 |
|  | Rank | 1 | 3 | 10 | 9 | 8 | 2 | 3 | 5 | 7 | 6 |
| 6 | +/-/= | $\sim$ | 5/0/11 | 7/1/8 | 11/0/5 | 14/0/2 | 7/0/9 | 7/0/9 | 11/0/5 | 7/0/9 | 7/1/8 |
|  | Mean | 2.31 | 4.00 | 6.69 | 7.31 | 9.31 | 5.44 | 5.56 | 5.44 | 4.75 | 4.19 |
|  | Rank | 1 | 2 | 8 | 9 | 10 | 5 | 7 | 5 | 4 | 3 |
| 8 | +/-/= | $\sim$ | 9/0/7 | 6/0/10 | 4/0/12 | 12/0/4 | 6/0/10 | 8/0/8 | 7/1/8 | 6/0/10 | 4/2/10 |
|  | Mean | 2.38 | 6.25 | 6.44 | 5.44 | 9.56 | 5.81 | 7.19 | 4.81 | 3.75 | 3.38 |
|  | Rank | 1 | 7 | 8 | 5 | 10 | 6 | 9 | 4 | 3 | 2 |
| 10 | +/-/= | $\sim$ | 8/0/8 | 4/0/12 | 2/3/11 | 14/0/2 | 3/0/13 | 7/0/9 | 3/2/11 | 2/0/14 | 2/0/14 |
|  | Mean | 2.88 | 6.75 | 7.38 | 4.56 | 9.56 | 5.13 | 7.50 | 3.19 | 4.44 | 3.63 |
|  | Rank | 1 | 7 | 8 | 5 | 10 | 6 | 9 | 2 | 4 | 3 |

## 5. Conclusions and future works

In this paper, an improved GWO called MGWO was proposed based on multiple stages. The search phase is divided into three stages to reach a higher balance between exploration and exploitation than the original GWO. At the first stage, take full advantage of the primary GWO's strong exploration capability. At the second stage, the SSA algorithm is a part of the position update formula is used to increase the primary GWO. In the last step, the algorithm exploits promising areas by performing Cauchy mutation on each dimension of the current optimal solution.

Experiments with other swarm intelligence optimization algorithms on benchmark functions show that MGWO can obtain more accurate solutions than different algorithms and has an excellent ability to jump out of the local optima trap. The balance and diversity experiment proves that MGWO has a better balance of exploitation and exploration than the original GWO. Its rough curves also verify the ability to jump out of the local optima trap. Then, the MGWO was applied to the multi-threshold image segmentation of Leaf Spot Diseases on Maize. Comparing the results of three evaluation indexes proved that MGWO is superior to other comparative algorithms when applied to this application

Aiming at the shortcoming of the MGWO, which is the slight rising of the time complexity, further research is to find and develop strategies to relieve the time complexity without reducing the algorithm's performance. MGWO can be applied to image segmentation and disease identification of more different kinds of maize diseases to guide farmers to take corresponding disease control measures. Devote research results to agriculture and agricultural modernization. Furthermore, the performance of MGWO solving optimization problems in other fields also needs to be further verified.

## Acknowledgment

This research was supported by the National Natural Science Foundation of China (U19A2061, U1809209, 62076185), Science and Technology Development Project of Jilin Province (20190301024NY), Jilin Provincial Industrial Innovation Special Fund Project (2018C039-3), Taif University Researchers Supporting Project Number (TURSP-2020/114), Taif University, Taif, Saudi Arabia.

## Appendix A

Table A. 1 The AVG and STD comparison results of PSNR

| Image | Level | Item | MGWO | GWO | HHO | WOA | SSA | CS | IGWO | CLPSO | CLSGMFO | LGCMFO |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 4 | AVG | $2.04910 \mathrm{E}+01$ | $2.06574 \mathrm{E}+01$ | $1.90316 \mathrm{E}+01$ | $1.90630 \mathrm{E}+01$ | $2.02817 \mathrm{E}+01$ | $2.09634 \mathrm{E}+01$ | $2.06030 \mathrm{E}+01$ | $2.06956 \mathrm{E}+01$ | $2.03771 \mathrm{E}+01$ | $2.05653 \mathrm{E}+01$ |
|  |  | STD | $6.89233 \mathrm{E}-01$ | $7.60515 \mathrm{E}-01$ | $3.31344 \mathrm{E}+00$ | $3.97881 \mathrm{E}+00$ | $1.64771 \mathrm{E}+00$ | $5.58762 \mathrm{E}-01$ | $1.81802 \mathrm{E}+00$ | $7.18742 \mathrm{E}-01$ | $1.24961 \mathrm{E}+00$ | $1.28660 \mathrm{E}+00$ |
|  | 6 | AVG | $2.29509 \mathrm{E}+01$ | $2.23672 \mathrm{E}+01$ | $2.24207 \mathrm{E}+01$ | $2.19137 \mathrm{E}+01$ | $2.13100 \mathrm{E}+01$ | $2.22866 \mathrm{E}+01$ | $2.18777 \mathrm{E}+01$ | $2.20443 \mathrm{E}+01$ | $2.20662 \mathrm{E}+01$ | $2.22368 \mathrm{E}+01$ |
|  |  | STD | $1.16810 \mathrm{E}+00$ | $1.02823 \mathrm{E}+00$ | $2.72418 \mathrm{E}+00$ | $2.52018 \mathrm{E}+00$ | $1.81716 \mathrm{E}+00$ | $2.25377 \mathrm{E}+00$ | $2.27246 \mathrm{E}+00$ | $7.63041 \mathrm{E}-01$ | $1.15950 \mathrm{E}+00$ | $1.06676 \mathrm{E}+00$ |
|  | 8 | AVG | $2.37554 \mathrm{E}+01$ | $2.33624 \mathrm{E}+01$ | $2.29584 \mathrm{E}+01$ | $2.34027 \mathrm{E}+01$ | $2.27604 \mathrm{E}+01$ | $2.32676 \mathrm{E}+01$ | $2.27662 \mathrm{E}+01$ | $2.34337 \mathrm{E}+01$ | $2.38852 \mathrm{E}+01$ | $2.34926 \mathrm{E}+01$ |
|  |  | STD | $2.09917 \mathrm{E}+00$ | $1.61048 \mathrm{E}+00$ | $3.49044 \mathrm{E}+00$ | $2.29358 \mathrm{E}+00$ | $2.97931 \mathrm{E}+00$ | $2.14061 \mathrm{E}+00$ | $2.22529 \mathrm{E}+00$ | $1.49545 \mathrm{E}+00$ | $1.76889 \mathrm{E}+00$ | $2.18407 \mathrm{E}+00$ |
|  | 10 | AVG | $2.48198 \mathrm{E}+01$ | $2.48311 \mathrm{E}+01$ | $2.52238 \mathrm{E}+01$ | $2.42834 \mathrm{E}+01$ | $2.41808 \mathrm{E}+01$ | $2.51683 \mathrm{E}+01$ | $2.49624 \mathrm{E}+01$ | $2.54412 \mathrm{E}+01$ | $2.52590 \mathrm{E}+01$ | $2.51817 \mathrm{E}+01$ |
|  |  | STD | $1.24716 \mathrm{E}+00$ | $1.50883 \mathrm{E}+00$ | $3.31098 \mathrm{E}+00$ | $2.94233 \mathrm{E}+00$ | $2.13486 \mathrm{E}+00$ | $1.74716 \mathrm{E}+00$ | $2.46837 \mathrm{E}+00$ | $1.35960 \mathrm{E}+00$ | $1.79684 \mathrm{E}+00$ | $1.73702 \mathrm{E}+00$ |
| 2 | 4 | AVG | $1.94603 \mathrm{E}+01$ | $1.92775 \mathrm{E}+01$ | $1.70244 \mathrm{E}+01$ | $1.75290 \mathrm{E}+01$ | $1.86550 \mathrm{E}+01$ | $1.94403 \mathrm{E}+01$ | $1.91809 \mathrm{E}+01$ | $1.88077 \mathrm{E}+01$ | $1.86787 \mathrm{E}+01$ | $1.89977 \mathrm{E}+01$ |
|  |  | STD | $8.98355 \mathrm{E}-01$ | $1.51311 \mathrm{E}+00$ | $3.39711 \mathrm{E}+00$ | $2.26718 \mathrm{E}+00$ | $1.13832 \mathrm{E}+00$ | $1.44388 \mathrm{E}+00$ | $1.17502 \mathrm{E}+00$ | $7.87874 \mathrm{E}-01$ | $1.24745 \mathrm{E}+00$ | $6.62462 \mathrm{E}-01$ |
|  | 6 | AVG | $2.11042 \mathrm{E}+01$ | $2.11846 \mathrm{E}+01$ | $2.02639 \mathrm{E}+01$ | $2.05508 \mathrm{E}+01$ | $2.04864 \mathrm{E}+01$ | $2.13470 \mathrm{E}+01$ | $2.09025 \mathrm{E}+01$ | $2.13465 \mathrm{E}+01$ | $2.12571 \mathrm{E}+01$ | $2.09462 \mathrm{E}+01$ |
|  |  | STD | $8.27170 \mathrm{E}-01$ | 6.60747E-01 | $2.26247 \mathrm{E}+00$ | $1.74120 \mathrm{E}+00$ | $1.07377 \mathrm{E}+00$ | $9.41888 \mathrm{E}-01$ | $1.14773 \mathrm{E}+00$ | $8.37407 \mathrm{E}-01$ | $8.22692 \mathrm{E}-01$ | 9.49238E-01 |
|  | 8 | AVG | $2.25989 \mathrm{E}+01$ | $2.25227 \mathrm{E}+01$ | $2.28308 \mathrm{E}+01$ | $2.27120 \mathrm{E}+01$ | $2.21609 \mathrm{E}+01$ | $2.26895 \mathrm{E}+01$ | $2.24935 \mathrm{E}+01$ | $2.25153 \mathrm{E}+01$ | $2.28476 \mathrm{E}+01$ | $2.30452 \mathrm{E}+01$ |
|  |  | STD | $1.14427 \mathrm{E}+00$ | $5.71911 \mathrm{E}-01$ | $1.40643 \mathrm{E}+00$ | $1.52551 \mathrm{E}+00$ | $9.12631 \mathrm{E}-01$ | $8.77319 \mathrm{E}-01$ | $1.68072 \mathrm{E}+00$ | $7.46818 \mathrm{E}-01$ | $8.44563 \mathrm{E}-01$ | $7.47844 \mathrm{E}-01$ |
|  | 10 | AVG | $2.41250 \mathrm{E}+01$ | $2.38165 \mathrm{E}+01$ | $2.39757 \mathrm{E}+01$ | $2.49201 \mathrm{E}+01$ | $2.38401 \mathrm{E}+01$ | $2.43769 \mathrm{E}+01$ | $2.45966 \mathrm{E}+01$ | $2.46066 \mathrm{E}+01$ | $2.42795 \mathrm{E}+01$ | $2.44019 \mathrm{E}+01$ |
|  |  | STD | $1.03154 \mathrm{E}+00$ | $8.38249 \mathrm{E}-01$ | $2.48942 \mathrm{E}+00$ | $1.05966 \mathrm{E}+00$ | $1.10695 \mathrm{E}+00$ | $1.15151 \mathrm{E}+00$ | $1.40494 \mathrm{E}+00$ | $9.08237 \mathrm{E}-01$ | $1.11607 \mathrm{E}+00$ | $1.26219 \mathrm{E}+00$ |
| 3 | 4 | AVG | $1.97267 \mathrm{E}+01$ | $1.96023 \mathrm{E}+01$ | $1.75560 \mathrm{E}+01$ | $1.72109 \mathrm{E}+01$ | $1.79549 \mathrm{E}+01$ | $1.94764 \mathrm{E}+01$ | $1.88705 \mathrm{E}+01$ | $1.87893 \mathrm{E}+01$ | $1.83841 \mathrm{E}+01$ | $1.84057 \mathrm{E}+01$ |
|  |  | STD | $7.80986 \mathrm{E}-01$ | $9.56826 \mathrm{E}-01$ | $2.21790 \mathrm{E}+00$ | $2.00162 \mathrm{E}+00$ | $1.36081 \mathrm{E}+00$ | $1.05276 \mathrm{E}+00$ | $1.42963 \mathrm{E}+00$ | $1.06748 \mathrm{E}+00$ | $1.37368 \mathrm{E}+00$ | $1.23646 \mathrm{E}+00$ |
|  | 6 | AVG | $2.09863 \mathrm{E}+01$ | $2.06499 \mathrm{E}+01$ | $2.03115 \mathrm{E}+01$ | $2.07888 \mathrm{E}+01$ | $2.05671 \mathrm{E}+01$ | $2.07115 \mathrm{E}+01$ | $2.05907 \mathrm{E}+01$ | $2.10723 \mathrm{E}+01$ | $2.05259 \mathrm{E}+01$ | $2.07598 \mathrm{E}+01$ |
|  |  | STD | $9.96331 \mathrm{E}-01$ | $1.33744 \mathrm{E}+00$ | $1.67261 \mathrm{E}+00$ | $1.60487 \mathrm{E}+00$ | $1.00001 \mathrm{E}+00$ | $2.91393 \mathrm{E}-01$ | $1.12072 \mathrm{E}+00$ | $6.60804 \mathrm{E}-01$ | $1.07881 \mathrm{E}+00$ | $1.08090 \mathrm{E}+00$ |
|  | 8 | AVG | $2.26103 \mathrm{E}+01$ | $2.25684 \mathrm{E}+01$ | $2.27457 \mathrm{E}+01$ | $2.28262 \mathrm{E}+01$ | $2.20611 \mathrm{E}+01$ | $2.28636 \mathrm{E}+01$ | $2.26300 \mathrm{E}+01$ | $2.30665 \mathrm{E}+01$ | $2.28606 \mathrm{E}+01$ | $2.31286 \mathrm{E}+01$ |
|  |  | STD | $9.17250 \mathrm{E}-01$ | $6.18214 \mathrm{E}-01$ | $1.83950 \mathrm{E}+00$ | $1.54438 \mathrm{E}+00$ | $1.25180 \mathrm{E}+00$ | $7.57289 \mathrm{E}-01$ | $1.14504 \mathrm{E}+00$ | $6.70018 \mathrm{E}-01$ | $9.89327 \mathrm{E}-01$ | $1.30192 \mathrm{E}+00$ |


|  | 10 | AVG | 1 | $238648 \mathrm{E}+01$ | 2 | 2.4 | 2 | 2. | 2 | 2. | 2 | $2.44898 \mathrm{E}+01$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | STD | $8.84055 \mathrm{E}-01$ | $8.14498 \mathrm{E}-01$ | $2.63194 \mathrm{E}+00$ | $1.69632 \mathrm{E}+00$ | $1.14793 \mathrm{E}+00$ | $1.04229 \mathrm{E}+00$ | $1.62711 \mathrm{E}+00$ | 7.56687E-01 | $1.26549 \mathrm{E}+00$ | $1.20474 \mathrm{E}+00$ |
| 4 | 4 | AVG | $1.92769 \mathrm{E}+01$ | $1.92490 \mathrm{E}+01$ | $1.76923 \mathrm{E}+01$ | $1.71125 \mathrm{E}+01$ | $1.86104 \mathrm{E}+01$ | $1.89601 \mathrm{E}+01$ | $1.90449 \mathrm{E}+01$ | $1.86956 \mathrm{E}+01$ | $1.92099 \mathrm{E}+01$ | $1.86303 \mathrm{E}+01$ |
|  |  | STD | $9.92471 \mathrm{E}-01$ | $1.00793 \mathrm{E}+00$ | $2.18421 \mathrm{E}+00$ | $2.51581 \mathrm{E}+00$ | $1.13593 \mathrm{E}+00$ | $6.85544 \mathrm{E}-01$ | $1.15080 \mathrm{E}+00$ | $4.88085 \mathrm{E}-01$ | $8.05115 \mathrm{E}-01$ | $7.18522 \mathrm{E}-01$ |
|  | 6 | AVG | $2.16721 \mathrm{E}+01$ | $2.12672 \mathrm{E}+01$ | $2.07581 \mathrm{E}+01$ | $2.08159 \mathrm{E}+01$ | $2.06305 \mathrm{E}+01$ | $2.09690 \mathrm{E}+01$ | $2.13040 \mathrm{E}+01$ | $2.13068 \mathrm{E}+01$ | $2.10139 \mathrm{E}+01$ | $2.12638 \mathrm{E}+01$ |
|  |  | STD | $4.69193 \mathrm{E}-01$ | $4.13557 \mathrm{E}-01$ | $2.13570 \mathrm{E}+00$ | $9.07284 \mathrm{E}-01$ | $1.30500 \mathrm{E}+00$ | $1.06288 \mathrm{E}+00$ | $9.84023 \mathrm{E}-01$ | $2.96296 \mathrm{E}-01$ | $6.49847 \mathrm{E}-01$ | $6.74239 \mathrm{E}-01$ |
|  | 8 | AVG | $2.30976 \mathrm{E}+01$ | $2.24708 \mathrm{E}+01$ | $2.26824 \mathrm{E}+01$ | $2.24517 \mathrm{E}+01$ | $2.15759 \mathrm{E}+01$ | $2.22748 \mathrm{E}+01$ | $2.29327 \mathrm{E}+01$ | $2.26969 \mathrm{E}+01$ | $2.28023 \mathrm{E}+01$ | $2.29639 \mathrm{E}+01$ |
|  |  | STD | $7.50988 \mathrm{E}-01$ | $6.57900 \mathrm{E}-01$ | $1.62198 \mathrm{E}+00$ | $2.03259 \mathrm{E}+00$ | $1.26213 \mathrm{E}+00$ | $1.12426 \mathrm{E}+00$ | $1.54819 \mathrm{E}+00$ | $6.86973 \mathrm{E}-01$ | $7.51964 \mathrm{E}-01$ | $8.51373 \mathrm{E}-01$ |
|  | 10 | AVG | $2.49169 \mathrm{E}+01$ | $2.40774 \mathrm{E}+01$ | $2.46492 \mathrm{E}+01$ | $2.43403 \mathrm{E}+01$ | $2.36575 \mathrm{E}+01$ | $2.43914 \mathrm{E}+01$ | $2.41593 \mathrm{E}+01$ | $2.45870 \mathrm{E}+01$ | $2.45410 \mathrm{E}+01$ | $2.45684 \mathrm{E}+01$ |
|  |  | STD | $9.31506 \mathrm{E}-01$ | $8.18797 \mathrm{E}-01$ | $2.05436 \mathrm{E}+00$ | $1.36414 \mathrm{E}+00$ | $1.27736 \mathrm{E}+00$ | $1.10488 \mathrm{E}+00$ | $1.82330 \mathrm{E}+00$ | $6.76923 \mathrm{E}-01$ | $9.65002 \mathrm{E}-01$ | $9.10442 \mathrm{E}-01$ |
| 5 | 4 | AVG | $1.87793 \mathrm{E}+01$ | $1.84495 \mathrm{E}+01$ | $1.73065 \mathrm{E}+01$ | $1.73994 \mathrm{E}+01$ | $1.80933 \mathrm{E}+01$ | $1.90014 \mathrm{E}+01$ | $1.82835 \mathrm{E}+01$ | $1.73758 \mathrm{E}+01$ | $1.88627 \mathrm{E}+01$ | $1.86778 \mathrm{E}+01$ |
|  |  | STD | $1.63923 \mathrm{E}+00$ | $1.41450 \mathrm{E}+00$ | $2.89914 \mathrm{E}+00$ | $2.52844 \mathrm{E}+00$ | $2.35845 \mathrm{E}+00$ | $1.79316 \mathrm{E}+00$ | $1.81134 \mathrm{E}+00$ | $2.21382 \mathrm{E}+00$ | $1.66642 \mathrm{E}+00$ | $1.19851 \mathrm{E}+00$ |
|  | 6 | AVG | $2.07058 \mathrm{E}+01$ | $2.01074 \mathrm{E}+01$ | $2.03929 \mathrm{E}+01$ | $2.05709 \mathrm{E}+01$ | $1.89048 \mathrm{E}+01$ | $2.02936 \mathrm{E}+01$ | $2.06805 \mathrm{E}+01$ | $1.87781 \mathrm{E}+01$ | $2.12048 \mathrm{E}+01$ | $2.12831 \mathrm{E}+01$ |
|  |  | STD | $1.20869 \mathrm{E}+00$ | $1.81855 \mathrm{E}+00$ | $2.73965 \mathrm{E}+00$ | $1.89276 \mathrm{E}+00$ | $2.57759 \mathrm{E}+00$ | $1.89622 \mathrm{E}+00$ | $1.56206 \mathrm{E}+00$ | $2.36651 \mathrm{E}+00$ | $1.34850 \mathrm{E}+00$ | $2.02512 \mathrm{E}+00$ |
|  | 8 | AVG | $2.28943 \mathrm{E}+01$ | $2.23825 \mathrm{E}+01$ | $2.28419 \mathrm{E}+01$ | $2.31621 \mathrm{E}+01$ | $2.15600 \mathrm{E}+01$ | $2.25952 \mathrm{E}+01$ | $2.13221 \mathrm{E}+01$ | $2.19793 \mathrm{E}+01$ | $2.35526 \mathrm{E}+01$ | $2.37811 \mathrm{E}+01$ |
|  |  | STD | $1.63067 \mathrm{E}+00$ | $1.08501 \mathrm{E}+00$ | $2.23947 \mathrm{E}+00$ | $2.02862 \mathrm{E}+00$ | $1.92602 \mathrm{E}+00$ | $1.62574 \mathrm{E}+00$ | $2.09695 \mathrm{E}+00$ | $1.00220 \mathrm{E}+00$ | $1.15008 \mathrm{E}+00$ | $1.40349 \mathrm{E}+00$ |
|  | 10 | AVG | $2.45109 \mathrm{E}+01$ | $2.38207 \mathrm{E}+01$ | $2.44422 \mathrm{E}+01$ | $2.52398 \mathrm{E}+01$ | $2.27736 \mathrm{E}+01$ | $2.35684 \mathrm{E}+01$ | $2.34885 \mathrm{E}+01$ | $2.45042 \mathrm{E}+01$ | $2.45446 \mathrm{E}+01$ | $2.44112 \mathrm{E}+01$ |
|  |  | STD | $1.31198 \mathrm{E}+00$ | $1.26414 \mathrm{E}+00$ | $2.96561 \mathrm{E}+00$ | $1.69277 \mathrm{E}+00$ | $1.86870 \mathrm{E}+00$ | $2.39385 \mathrm{E}+00$ | $1.91294 \mathrm{E}+00$ | $1.02375 \mathrm{E}+00$ | $1.18027 \mathrm{E}+00$ | $1.21217 \mathrm{E}+00$ |
| 6 | 4 | AVG | $1.93423 \mathrm{E}+01$ | $1.82850 \mathrm{E}+01$ | $1.77527 \mathrm{E}+01$ | $1.82782 \mathrm{E}+01$ | $1.78340 \mathrm{E}+01$ | $1.93860 \mathrm{E}+01$ | $1.80138 \mathrm{E}+01$ | $1.88665 \mathrm{E}+01$ | $1.80365 \mathrm{E}+01$ | $1.80554 \mathrm{E}+01$ |
|  |  | STD | $1.66479 \mathrm{E}+00$ | $1.68764 \mathrm{E}+00$ | $2.51018 \mathrm{E}+00$ | $2.16296 \mathrm{E}+00$ | $1.71804 \mathrm{E}+00$ | $9.53974 \mathrm{E}-01$ | $1.99025 \mathrm{E}+00$ | $1.35731 \mathrm{E}+00$ | $1.87561 \mathrm{E}+00$ | $1.70994 \mathrm{E}+00$ |
|  | 6 | AVG | $2.04429 \mathrm{E}+01$ | $2.03770 \mathrm{E}+01$ | $2.09541 \mathrm{E}+01$ | $2.04477 \mathrm{E}+01$ | $2.00899 \mathrm{E}+01$ | $1.94956 \mathrm{E}+01$ | $2.07697 \mathrm{E}+01$ | $2.05986 \mathrm{E}+01$ | $2.07631 \mathrm{E}+01$ | $2.02958 \mathrm{E}+01$ |
|  |  | STD | $9.43350 \mathrm{E}-01$ | $8.88626 \mathrm{E}-01$ | $1.62899 \mathrm{E}+00$ | $1.42138 \mathrm{E}+00$ | $1.45359 \mathrm{E}+00$ | $1.07315 \mathrm{E}+00$ | $1.10303 \mathrm{E}+00$ | $1.00589 \mathrm{E}+00$ | $1.14467 \mathrm{E}+00$ | $1.09219 \mathrm{E}+00$ |
|  | 8 | AVG | $2.23978 \mathrm{E}+01$ | $2.19690 \mathrm{E}+01$ | $2.25851 \mathrm{E}+01$ | $2.21845 \mathrm{E}+01$ | $2.17748 \mathrm{E}+01$ | $2.23924 \mathrm{E}+01$ | $2.24360 \mathrm{E}+01$ | $2.26985 \mathrm{E}+01$ | $2.25564 \mathrm{E}+01$ | $2.21654 \mathrm{E}+01$ |
|  |  | STD | $8.59659 \mathrm{E}-01$ | $7.89122 \mathrm{E}-01$ | $1.53315 \mathrm{E}+00$ | $1.38181 \mathrm{E}+00$ | $1.22186 \mathrm{E}+00$ | $9.60963 \mathrm{E}-01$ | $1.16594 \mathrm{E}+00$ | $5.84969 \mathrm{E}-01$ | $8.71779 \mathrm{E}-01$ | $9.02706 \mathrm{E}-01$ |
|  | 10 | AVG | $2.41319 \mathrm{E}+01$ | $2.34870 \mathrm{E}+01$ | $2.37975 \mathrm{E}+01$ | $2.42642 \mathrm{E}+01$ | $2.31981 \mathrm{E}+01$ | $2.39592 \mathrm{E}+01$ | $2.36399 \mathrm{E}+01$ | $2.44178 \mathrm{E}+01$ | $2.39464 \mathrm{E}+01$ | $2.39707 \mathrm{E}+01$ |
|  |  | STD | $6.01485 \mathrm{E}-01$ | $7.53197 \mathrm{E}-01$ | $2.19991 \mathrm{E}+00$ | $1.26079 \mathrm{E}+00$ | $1.21474 \mathrm{E}+00$ | $9.90321 \mathrm{E}-01$ | $1.73257 \mathrm{E}+00$ | $6.92263 \mathrm{E}-01$ | $1.06411 \mathrm{E}+00$ | $9.74675 \mathrm{E}-01$ |


| 7 | 4 | AVG | $1.90140 \mathrm{E}+01$ | $1.89309 \mathrm{E}+01$ | $1.74042 \mathrm{E}+01$ | $1.74382 \mathrm{E}+01$ | $1.77531 \mathrm{E}+01$ | $1.86471 \mathrm{E}+01$ | $1.86728 \mathrm{E}+01$ | $1.88002 \mathrm{E}+01$ | $1.84127 \mathrm{E}+01$ | $1.87164 \mathrm{E}+01$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | STD | $9.42053 \mathrm{E}-01$ | $8.81485 \mathrm{E}-01$ | $2.36562 \mathrm{E}+00$ | $1.30762 \mathrm{E}+00$ | $1.18714 \mathrm{E}+00$ | $1.06438 \mathrm{E}+00$ | $1.43551 \mathrm{E}+00$ | $1.11892 \mathrm{E}+00$ | $1.07794 \mathrm{E}+00$ | $7.94537 \mathrm{E}-01$ |
|  | 6 | AVG | $2.08589 \mathrm{E}+01$ | $2.06358 \mathrm{E}+01$ | $2.05176 \mathrm{E}+01$ | $1.99434 \mathrm{E}+01$ | $1.93964 \mathrm{E}+01$ | $2.07488 \mathrm{E}+01$ | $1.98611 \mathrm{E}+01$ | $2.00703 \mathrm{E}+01$ | $2.02310 \mathrm{E}+01$ | $2.04012 \mathrm{E}+01$ |
|  |  | STD | $9.88988 \mathrm{E}-01$ | $1.59314 \mathrm{E}+00$ | $1.79210 \mathrm{E}+00$ | $2.01410 \mathrm{E}+00$ | $1.37431 \mathrm{E}+00$ | $1.50945 \mathrm{E}+00$ | $1.83321 \mathrm{E}+00$ | $1.27860 \mathrm{E}+00$ | $1.16527 \mathrm{E}+00$ | $1.63912 \mathrm{E}+00$ |
|  | 8 | AVG | $2.26612 \mathrm{E}+01$ | $2.18018 \mathrm{E}+01$ | $2.21488 \mathrm{E}+01$ | $2.27503 \mathrm{E}+01$ | $2.16380 \mathrm{E}+01$ | $2.24004 \mathrm{E}+01$ | $2.24304 \mathrm{E}+01$ | $2.22418 \mathrm{E}+01$ | $2.24563 \mathrm{E}+01$ | $2.25001 \mathrm{E}+01$ |
|  |  | STD | $1.43607 \mathrm{E}+00$ | $9.36478 \mathrm{E}-01$ | $2.27988 \mathrm{E}+00$ | $1.73957 \mathrm{E}+00$ | $1.60018 \mathrm{E}+00$ | $9.80848 \mathrm{E}-01$ | $1.62524 \mathrm{E}+00$ | $8.59418 \mathrm{E}-01$ | $1.10517 \mathrm{E}+00$ | $1.26112 \mathrm{E}+00$ |
|  | 10 | AVG | $2.45137 \mathrm{E}+01$ | $2.33402 \mathrm{E}+01$ | $2.37529 \mathrm{E}+01$ | $2.43578 \mathrm{E}+01$ | $2.28217 \mathrm{E}+01$ | $2.36434 \mathrm{E}+01$ | $2.35324 \mathrm{E}+01$ | $2.35522 \mathrm{E}+01$ | $2.36859 \mathrm{E}+01$ | $2.39146 \mathrm{E}+01$ |
|  |  | STD | $1.42102 \mathrm{E}+00$ | $1.42484 \mathrm{E}+00$ | $1.94326 \mathrm{E}+00$ | $1.67529 \mathrm{E}+00$ | $1.30030 \mathrm{E}+00$ | $1.29287 \mathrm{E}+00$ | $1.97020 \mathrm{E}+00$ | $8.15421 \mathrm{E}-01$ | $1.63621 \mathrm{E}+00$ | $7.98753 \mathrm{E}-01$ |
| 8 | 4 | AVG | $1.82235 \mathrm{E}+01$ | $1.78419 \mathrm{E}+01$ | $1.79818 \mathrm{E}+01$ | $1.80481 \mathrm{E}+01$ | $1.87741 \mathrm{E}+01$ | $1.89561 \mathrm{E}+01$ | $1.85867 \mathrm{E}+01$ | $1.90974 \mathrm{E}+01$ | $1.89659 \mathrm{E}+01$ | $1.97277 \mathrm{E}+01$ |
|  |  | STD | $1.45809 \mathrm{E}+00$ | $1.57917 \mathrm{E}+00$ | $2.39629 \mathrm{E}+00$ | $2.22192 \mathrm{E}+00$ | $1.69228 \mathrm{E}+00$ | $1.37124 \mathrm{E}+00$ | $2.07683 \mathrm{E}+00$ | $1.25964 \mathrm{E}+00$ | $1.78104 \mathrm{E}+00$ | $9.44299 \mathrm{E}-01$ |
|  | 6 | AVG | $2.18449 \mathrm{E}+01$ | $2.20175 \mathrm{E}+01$ | $2.07036 \mathrm{E}+01$ | $2.02721 \mathrm{E}+01$ | $1.99255 \mathrm{E}+01$ | $2.02341 \mathrm{E}+01$ | $2.00505 \mathrm{E}+01$ | $2.13321 \mathrm{E}+01$ | $2.10328 \mathrm{E}+01$ | $2.08241 \mathrm{E}+01$ |
|  |  | STD | $1.31321 \mathrm{E}+00$ | $1.13026 \mathrm{E}+00$ | $1.32642 \mathrm{E}+00$ | $1.90333 \mathrm{E}+00$ | $1.53136 \mathrm{E}+00$ | $1.97390 \mathrm{E}+00$ | $1.84965 \mathrm{E}+00$ | $1.14391 \mathrm{E}+00$ | $1.05661 \mathrm{E}+00$ | $1.16407 \mathrm{E}+00$ |
|  | 8 | AVG | $2.32767 \mathrm{E}+01$ | $2.24970 \mathrm{E}+01$ | $2.26560 \mathrm{E}+01$ | $2.22779 \mathrm{E}+01$ | $2.17450 \mathrm{E}+01$ | $2.22513 \mathrm{E}+01$ | $2.18777 \mathrm{E}+01$ | $2.25292 \mathrm{E}+01$ | $2.27381 \mathrm{E}+01$ | $2.26987 \mathrm{E}+01$ |
|  |  | STD | $1.14836 \mathrm{E}+00$ | $1.29795 \mathrm{E}+00$ | $1.54364 \mathrm{E}+00$ | $2.01124 \mathrm{E}+00$ | $1.45466 \mathrm{E}+00$ | $1.04886 \mathrm{E}+00$ | $1.16272 \mathrm{E}+00$ | $5.78891 \mathrm{E}-01$ | $1.16421 \mathrm{E}+00$ | $9.15403 \mathrm{E}-01$ |
|  | 10 | AVG | $2.42128 \mathrm{E}+01$ | $2.33626 \mathrm{E}+01$ | $2.39758 \mathrm{E}+01$ | $2.47111 \mathrm{E}+01$ | $2.31037 \mathrm{E}+01$ | $2.37011 \mathrm{E}+01$ | $2.32892 \mathrm{E}+01$ | $2.40416 \mathrm{E}+01$ | $2.42379 \mathrm{E}+01$ | $2.42783 \mathrm{E}+01$ |
|  |  | STD | $1.19745 \mathrm{E}+00$ | $9.45431 \mathrm{E}-01$ | $1.80191 \mathrm{E}+00$ | $9.46906 \mathrm{E}-01$ | $1.63707 \mathrm{E}+00$ | $1.01270 \mathrm{E}+00$ | $2.10322 \mathrm{E}+00$ | $7.18268 \mathrm{E}-01$ | $8.92147 \mathrm{E}-01$ | $9.09419 \mathrm{E}-01$ |
| 9 | 4 | AVG | $1.86040 \mathrm{E}+01$ | $1.86763 \mathrm{E}+01$ | $1.89703 \mathrm{E}+01$ | $1.87232 \mathrm{E}+01$ | $1.86326 \mathrm{E}+01$ | $1.84274 \mathrm{E}+01$ | $1.86461 \mathrm{E}+01$ | $1.90856 \mathrm{E}+01$ | $1.91966 \mathrm{E}+01$ | $1.93082 \mathrm{E}+01$ |
|  |  | STD | $8.92050 \mathrm{E}-01$ | $1.87054 \mathrm{E}-01$ | $1.31017 \mathrm{E}+00$ | $1.02244 \mathrm{E}+00$ | $1.21006 \mathrm{E}+00$ | $7.22932 \mathrm{E}-01$ | $8.90737 \mathrm{E}-01$ | $3.39063 \mathrm{E}-01$ | $5.55437 \mathrm{E}-01$ | $5.09076 \mathrm{E}-01$ |
|  | 6 | AVG | $2.17537 \mathrm{E}+01$ | $2.18681 \mathrm{E}+01$ | $1.99858 \mathrm{E}+01$ | $2.09579 \mathrm{E}+01$ | $2.02654 \mathrm{E}+01$ | $2.18965 \mathrm{E}+01$ | $2.11701 \mathrm{E}+01$ | $2.20380 \mathrm{E}+01$ | $2.15689 \mathrm{E}+01$ | $2.20408 \mathrm{E}+01$ |
|  |  | STD | $1.00473 \mathrm{E}+00$ | $9.97029 \mathrm{E}-01$ | $2.75699 \mathrm{E}+00$ | $1.74933 \mathrm{E}+00$ | $1.90623 \mathrm{E}+00$ | $7.22184 \mathrm{E}-01$ | $1.36524 \mathrm{E}+00$ | $4.50816 \mathrm{E}-01$ | $1.07125 \mathrm{E}+00$ | $6.37709 \mathrm{E}-01$ |
|  | 8 | AVG | $2.37026 \mathrm{E}+01$ | $2.34680 \mathrm{E}+01$ | $2.24725 \mathrm{E}+01$ | $2.28960 \mathrm{E}+01$ | $2.20151 \mathrm{E}+01$ | $2.29164 \mathrm{E}+01$ | $2.29480 \mathrm{E}+01$ | $2.36286 \mathrm{E}+01$ | $2.33081 \mathrm{E}+01$ | $2.33379 \mathrm{E}+01$ |
|  |  | STD | $8.42243 \mathrm{E}-01$ | $5.53913 \mathrm{E}-01$ | $1.67402 \mathrm{E}+00$ | $1.85059 \mathrm{E}+00$ | $1.36041 \mathrm{E}+00$ | $2.28182 \mathrm{E}+00$ | $1.47673 \mathrm{E}+00$ | $6.90129 \mathrm{E}-01$ | $1.05716 \mathrm{E}+00$ | $1.15465 \mathrm{E}+00$ |
|  | 10 | AVG | $2.46697 \mathrm{E}+01$ | $2.46695 \mathrm{E}+01$ | $2.38339 \mathrm{E}+01$ | $2.48183 \mathrm{E}+01$ | $2.32615 \mathrm{E}+01$ | $2.48710 \mathrm{E}+01$ | $2.44481 \mathrm{E}+01$ | $2.49633 \mathrm{E}+01$ | $2.44051 \mathrm{E}+01$ | $2.47587 \mathrm{E}+01$ |
|  |  | STD | $1.20773 \mathrm{E}+00$ | $6.62515 \mathrm{E}-01$ | $2.05530 \mathrm{E}+00$ | $1.48311 \mathrm{E}+00$ | $1.46908 \mathrm{E}+00$ | $9.29742 \mathrm{E}-01$ | $1.69354 \mathrm{E}+00$ | $1.29831 \mathrm{E}+00$ | $1.16640 \mathrm{E}+00$ | $9.68561 \mathrm{E}-01$ |
| 10 |  | AVG | $1.90136 \mathrm{E}+01$ | $1.86877 \mathrm{E}+01$ | $1.73493 \mathrm{E}+01$ | $1.80657 \mathrm{E}+01$ | $1.84503 \mathrm{E}+01$ | $1.87513 \mathrm{E}+01$ | $1.92804 \mathrm{E}+01$ | $1.81481 \mathrm{E}+01$ | $1.89463 \mathrm{E}+01$ | $1.89419 \mathrm{E}+01$ |
|  | 4 | STD | 7.19417E-01 | 6.08222E-01 | $2.47393 \mathrm{E}+00$ | $2.01195 \mathrm{E}+00$ | $1.99865 \mathrm{E}+00$ | $8.59559 \mathrm{E}-01$ | $1.10487 \mathrm{E}+00$ | $1.15229 \mathrm{E}+00$ | $1.17943 \mathrm{E}+00$ | $8.50391 \mathrm{E}-01$ |


|  | 6 | AVG | $2.21525 \mathrm{E}+01$ | $2.17753 \mathrm{E}+01$ | $2.04424 \mathrm{E}+01$ | $1.97836 \mathrm{E}+01$ | $2.08881 \mathrm{E}+01$ | $2.16228 \mathrm{E}+01$ | $2.06653 \mathrm{E}+01$ | $2.19201 \mathrm{E}+01$ | $2.12602 \mathrm{E}+01$ | $2.13529 \mathrm{E}+01$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | STD | $1.01045 \mathrm{E}+00$ | $8.65923 \mathrm{E}-01$ | $2.37088 \mathrm{E}+00$ | $2.42403 \mathrm{E}+00$ | $1.46662 \mathrm{E}+00$ | $1.41145 \mathrm{E}+00$ | $2.16651 \mathrm{E}+00$ | $9.02851 \mathrm{E}-01$ | $1.24883 \mathrm{E}+00$ | $1.43558 \mathrm{E}+00$ |
|  | 8 | AVG | $2.43008 \mathrm{E}+01$ | $2.38535 \mathrm{E}+01$ | $2.18137 \mathrm{E}+01$ | $2.19290 \mathrm{E}+01$ | $2.22116 \mathrm{E}+01$ | $2.24605 \mathrm{E}+01$ | $2.24561 \mathrm{E}+01$ | $2.35672 \mathrm{E}+01$ | $2.33779 \mathrm{E}+01$ | $2.35386 \mathrm{E}+01$ |
|  |  | STD | $6.76520 \mathrm{E}-01$ | $8.72756 \mathrm{E}-01$ | $3.37401 \mathrm{E}+00$ | $2.41538 \mathrm{E}+00$ | $1.54093 \mathrm{E}+00$ | $2.23869 \mathrm{E}+00$ | $2.05096 \mathrm{E}+00$ | $1.41794 \mathrm{E}+00$ | $1.28975 \mathrm{E}+00$ | $1.08897 \mathrm{E}+00$ |
|  | 10 | AVG | $2.59562 \mathrm{E}+01$ | $2.51819 \mathrm{E}+01$ | $2.34834 \mathrm{E}+01$ | $2.39772 \mathrm{E}+01$ | $2.35616 \mathrm{E}+01$ | $2.39837 \mathrm{E}+01$ | $2.36850 \mathrm{E}+01$ | $2.49768 \mathrm{E}+01$ | $2.47684 \mathrm{E}+01$ | $2.46782 \mathrm{E}+01$ |
|  |  | STD | $9.34442 \mathrm{E}-01$ | $1.17192 \mathrm{E}+00$ | $2.54479 \mathrm{E}+00$ | $2.11173 \mathrm{E}+00$ | $1.56527 \mathrm{E}+00$ | $2.00532 \mathrm{E}+00$ | $2.26157 \mathrm{E}+00$ | $1.10574 \mathrm{E}+00$ | $1.46809 \mathrm{E}+00$ | $1.36495 \mathrm{E}+00$ |
| 11 | 4 | AVG | $2.05605 \mathrm{E}+01$ | $2.04227 \mathrm{E}+01$ | $1.84114 \mathrm{E}+01$ | $1.83837 \mathrm{E}+01$ | $1.81423 \mathrm{E}+01$ | $2.01061 \mathrm{E}+01$ | $1.97906 \mathrm{E}+01$ | $1.99462 \mathrm{E}+01$ | $1.95387 \mathrm{E}+01$ | $1.96978 \mathrm{E}+01$ |
|  |  | STD | $1.54409 \mathrm{E}-01$ | $1.29267 \mathrm{E}-01$ | $1.87657 \mathrm{E}+00$ | $2.09246 \mathrm{E}+00$ | $1.88197 \mathrm{E}+00$ | $7.35080 \mathrm{E}-01$ | $1.11126 \mathrm{E}+00$ | $9.41050 \mathrm{E}-01$ | $1.17096 \mathrm{E}+00$ | $1.15270 \mathrm{E}+00$ |
|  | 6 | AVG | $2.22913 \mathrm{E}+01$ | $2.13504 \mathrm{E}+01$ | $2.09217 \mathrm{E}+01$ | $2.07241 \mathrm{E}+01$ | $2.08372 \mathrm{E}+01$ | $2.15549 \mathrm{E}+01$ | $2.17894 \mathrm{E}+01$ | $2.14145 \mathrm{E}+01$ | $2.14934 \mathrm{E}+01$ | $2.17422 \mathrm{E}+01$ |
|  |  | STD | $1.17424 \mathrm{E}+00$ | $9.97055 \mathrm{E}-01$ | $1.93504 \mathrm{E}+00$ | $1.47051 \mathrm{E}+00$ | $1.22830 \mathrm{E}+00$ | $4.80301 \mathrm{E}-01$ | $1.35642 \mathrm{E}+00$ | $2.24434 \mathrm{E}-01$ | $9.63250 \mathrm{E}-01$ | $1.09994 \mathrm{E}+00$ |
|  | 8 | AVG | $2.39459 \mathrm{E}+01$ | $2.36644 \mathrm{E}+01$ | $2.24398 \mathrm{E}+01$ | $2.36234 \mathrm{E}+01$ | $2.18219 \mathrm{E}+01$ | $2.35987 \mathrm{E}+01$ | $2.36298 \mathrm{E}+01$ | $2.33020 \mathrm{E}+01$ | $2.35191 \mathrm{E}+01$ | $2.34744 \mathrm{E}+01$ |
|  |  | STD | $7.33190 \mathrm{E}-01$ | $8.20044 \mathrm{E}-01$ | $2.32677 \mathrm{E}+00$ | $1.57583 \mathrm{E}+00$ | $1.59471 \mathrm{E}+00$ | $9.66175 \mathrm{E}-01$ | $1.24040 \mathrm{E}+00$ | $8.52974 \mathrm{E}-01$ | $1.20236 \mathrm{E}+00$ | $1.43052 \mathrm{E}+00$ |
|  | 10 | AVG | $2.53847 \mathrm{E}+01$ | $2.53754 \mathrm{E}+01$ | $2.49490 \mathrm{E}+01$ | $2.43663 \mathrm{E}+01$ | $2.41200 \mathrm{E}+01$ | $2.50255 \mathrm{E}+01$ | $2.52066 \mathrm{E}+01$ | $2.51490 \mathrm{E}+01$ | $2.49372 \mathrm{E}+01$ | $2.47787 \mathrm{E}+01$ |
|  |  | STD | $1.02036 \mathrm{E}+00$ | $8.04488 \mathrm{E}-01$ | $2.00771 \mathrm{E}+00$ | $1.62933 \mathrm{E}+00$ | $1.16279 \mathrm{E}+00$ | $1.04698 \mathrm{E}+00$ | $1.45586 \mathrm{E}+00$ | $7.60142 \mathrm{E}-01$ | $1.19249 \mathrm{E}+00$ | $1.57277 \mathrm{E}+00$ |
| 12 | 4 | AVG | $2.04026 \mathrm{E}+01$ | $2.01891 \mathrm{E}+01$ | $1.86627 \mathrm{E}+01$ | $1.84615 \mathrm{E}+01$ | $1.89768 \mathrm{E}+01$ | $2.04201 \mathrm{E}+01$ | $1.97248 \mathrm{E}+01$ | $1.98734 \mathrm{E}+01$ | $1.96362 \mathrm{E}+01$ | $1.94954 \mathrm{E}+01$ |
|  |  | STD | $5.82244 \mathrm{E}-01$ | $2.84988 \mathrm{E}-01$ | $2.46150 \mathrm{E}+00$ | $1.69845 \mathrm{E}+00$ | $2.08208 \mathrm{E}+00$ | $8.58364 \mathrm{E}-01$ | $7.01365 \mathrm{E}-01$ | $1.00707 \mathrm{E}+00$ | $1.05909 \mathrm{E}+00$ | $1.09447 \mathrm{E}+00$ |
|  | 6 | AVG | $2.20913 \mathrm{E}+01$ | $2.19652 \mathrm{E}+01$ | $2.18690 \mathrm{E}+01$ | $2.08854 \mathrm{E}+01$ | $2.07951 \mathrm{E}+01$ | $2.16975 \mathrm{E}+01$ | $2.15735 \mathrm{E}+01$ | $2.11363 \mathrm{E}+01$ | $2.16324 \mathrm{E}+01$ | $2.14247 \mathrm{E}+01$ |
|  |  | STD | $1.03086 \mathrm{E}+00$ | $7.30936 \mathrm{E}-01$ | $2.00861 \mathrm{E}+00$ | $2.46673 \mathrm{E}+00$ | $1.31734 \mathrm{E}+00$ | $1.19999 \mathrm{E}+00$ | $1.31577 \mathrm{E}+00$ | $9.39077 \mathrm{E}-01$ | $1.24381 \mathrm{E}+00$ | $8.13992 \mathrm{E}-01$ |
|  | 8 | AVG | $2.38868 \mathrm{E}+01$ | $2.32063 \mathrm{E}+01$ | $2.37282 \mathrm{E}+01$ | $2.39386 \mathrm{E}+01$ | $2.25868 \mathrm{E}+01$ | $2.37628 \mathrm{E}+01$ | $2.31097 \mathrm{E}+01$ | $2.33188 \mathrm{E}+01$ | $2.33383 \mathrm{E}+01$ | $2.34767 \mathrm{E}+01$ |
|  |  | STD | $1.02484 \mathrm{E}+00$ | $9.95443 \mathrm{E}-01$ | $2.10453 \mathrm{E}+00$ | $1.22257 \mathrm{E}+00$ | $1.31912 \mathrm{E}+00$ | $1.23734 \mathrm{E}+00$ | $1.71558 \mathrm{E}+00$ | $1.16546 \mathrm{E}+00$ | $1.09861 \mathrm{E}+00$ | $1.04011 \mathrm{E}+00$ |
|  | 10 | AVG | $2.50415 \mathrm{E}+01$ | $2.44198 \mathrm{E}+01$ | $2.43794 \mathrm{E}+01$ | $2.48515 \mathrm{E}+01$ | $2.42033 \mathrm{E}+01$ | $2.48945 \mathrm{E}+01$ | $2.49955 \mathrm{E}+01$ | $2.48310 \mathrm{E}+01$ | $2.52655 \mathrm{E}+01$ | $2.50359 \mathrm{E}+01$ |
|  |  | STD | $1.10534 \mathrm{E}+00$ | $6.32333 \mathrm{E}-01$ | $3.18066 \mathrm{E}+00$ | $1.99925 \mathrm{E}+00$ | $1.40095 \mathrm{E}+00$ | $1.35913 \mathrm{E}+00$ | $1.46844 \mathrm{E}+00$ | $9.88925 \mathrm{E}-01$ | $1.33984 \mathrm{E}+00$ | $1.24102 \mathrm{E}+00$ |
| 13 | 4 | AVG | $2.05905 \mathrm{E}+01$ | $2.06127 \mathrm{E}+01$ | $1.94887 \mathrm{E}+01$ | $1.95792 \mathrm{E}+01$ | $1.91010 \mathrm{E}+01$ | $2.07019 \mathrm{E}+01$ | $2.01980 \mathrm{E}+01$ | $2.05694 \mathrm{E}+01$ | $2.00783 \mathrm{E}+01$ | $2.02293 \mathrm{E}+01$ |
|  |  | STD | $4.20479 \mathrm{E}-01$ | $5.50142 \mathrm{E}-01$ | $1.23021 \mathrm{E}+00$ | $1.60297 \mathrm{E}+00$ | $1.48277 \mathrm{E}+00$ | $3.38930 \mathrm{E}-01$ | $7.08494 \mathrm{E}-01$ | $3.46208 \mathrm{E}-01$ | $3.80900 \mathrm{E}-01$ | $5.20066 \mathrm{E}-01$ |
|  | 6 | AVG | $2.23928 \mathrm{E}+01$ | $2.19102 \mathrm{E}+01$ | $2.15444 \mathrm{E}+01$ | $2.09499 \mathrm{E}+01$ | $2.07835 \mathrm{E}+01$ | $2.16152 \mathrm{E}+01$ | $2.16158 \mathrm{E}+01$ | $2.12582 \mathrm{E}+01$ | $2.18732 \mathrm{E}+01$ | $2.17286 \mathrm{E}+01$ |


|  |  | STD | $7.44006 \mathrm{E}-01$ | $1.34668 \mathrm{E}+00$ | $1.87048 \mathrm{E}+00$ | $1.99302 \mathrm{E}+00$ | $1.65989 \mathrm{E}+00$ | $6.72280 \mathrm{E}-01$ | $1.32893 \mathrm{E}+00$ | 4.77203E-01 | $1.10670 \mathrm{E}+00$ | $9.88198 \mathrm{E}-01$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 8 | AVG | $2.40181 \mathrm{E}+01$ | $2.32347 \mathrm{E}+01$ | $2.26921 \mathrm{E}+01$ | $2.28297 \mathrm{E}+01$ | $2.28347 \mathrm{E}+01$ | $2.38021 \mathrm{E}+01$ | $2.36041 \mathrm{E}+01$ | $2.39566 \mathrm{E}+01$ | $2.35833 \mathrm{E}+01$ | $2.42744 \mathrm{E}+01$ |
|  |  | STD | $8.52587 \mathrm{E}-01$ | $6.95639 \mathrm{E}-01$ | $2.22837 \mathrm{E}+00$ | $1.99286 \mathrm{E}+00$ | $1.07393 \mathrm{E}+00$ | $9.06253 \mathrm{E}-01$ | $1.62249 \mathrm{E}+00$ | $8.25172 \mathrm{E}-01$ | $9.34062 \mathrm{E}-01$ | $8.27527 \mathrm{E}-01$ |
|  | 10 | AVG | $2.54602 \mathrm{E}+01$ | $2.47466 \mathrm{E}+01$ | $2.39439 \mathrm{E}+01$ | $2.48591 \mathrm{E}+01$ | $2.39478 \mathrm{E}+01$ | $2.51623 \mathrm{E}+01$ | $2.47114 \mathrm{E}+01$ | $2.51415 \mathrm{E}+01$ | $2.56226 \mathrm{E}+01$ | $2.54440 \mathrm{E}+01$ |
|  |  | STD | $1.20019 \mathrm{E}+00$ | $1.03738 \mathrm{E}+00$ | $2.52854 \mathrm{E}+00$ | $2.04126 \mathrm{E}+00$ | $1.48485 \mathrm{E}+00$ | $1.09904 \mathrm{E}+00$ | $1.30301 \mathrm{E}+00$ | $8.33028 \mathrm{E}-01$ | $1.15711 \mathrm{E}+00$ | $9.94066 \mathrm{E}-01$ |
| 14 | 4 | AVG | $1.99356 \mathrm{E}+01$ | $2.01137 \mathrm{E}+01$ | $1.70635 \mathrm{E}+01$ | $1.76184 \mathrm{E}+01$ | $1.85163 \mathrm{E}+01$ | $1.94654 \mathrm{E}+01$ | $1.90062 \mathrm{E}+01$ | $1.82273 \mathrm{E}+01$ | $1.83651 \mathrm{E}+01$ | $1.91957 \mathrm{E}+01$ |
|  |  | STD | $1.10085 \mathrm{E}+00$ | $9.03634 \mathrm{E}-01$ | $2.10080 \mathrm{E}+00$ | $2.08914 \mathrm{E}+00$ | $1.99631 \mathrm{E}+00$ | $8.96698 \mathrm{E}-01$ | $1.85948 \mathrm{E}+00$ | $1.98258 \mathrm{E}+00$ | $1.94880 \mathrm{E}+00$ | $1.07292 \mathrm{E}+00$ |
|  | 6 | AVG | $2.16050 \mathrm{E}+01$ | $2.16694 \mathrm{E}+01$ | $1.95422 \mathrm{E}+01$ | $2.01492 \mathrm{E}+01$ | $1.98921 \mathrm{E}+01$ | $2.11676 \mathrm{E}+01$ | $2.08412 \mathrm{E}+01$ | $2.05169 \mathrm{E}+01$ | $2.08702 \mathrm{E}+01$ | $2.10429 \mathrm{E}+01$ |
|  |  | STD | $1.21129 \mathrm{E}+00$ | $8.14507 \mathrm{E}-01$ | $3.13933 \mathrm{E}+00$ | $1.87047 \mathrm{E}+00$ | $1.56307 \mathrm{E}+00$ | $1.23232 \mathrm{E}+00$ | $1.42454 \mathrm{E}+00$ | $1.39633 \mathrm{E}+00$ | $1.30465 \mathrm{E}+00$ | $1.28717 \mathrm{E}+00$ |
|  | 8 | AVG | $2.36593 \mathrm{E}+01$ | $2.33019 \mathrm{E}+01$ | $2.23683 \mathrm{E}+01$ | $2.22955 \mathrm{E}+01$ | $2.18636 \mathrm{E}+01$ | $2.25879 \mathrm{E}+01$ | $2.20040 \mathrm{E}+01$ | $2.30882 \mathrm{E}+01$ | $2.32587 \mathrm{E}+01$ | $2.29777 \mathrm{E}+01$ |
|  |  | STD | $1.00562 \mathrm{E}+00$ | $7.66351 \mathrm{E}-01$ | $2.63242 \mathrm{E}+00$ | $2.70018 \mathrm{E}+00$ | $1.47703 \mathrm{E}+00$ | $1.72940 \mathrm{E}+00$ | $1.89948 \mathrm{E}+00$ | $1.01221 \mathrm{E}+00$ | $1.00039 \mathrm{E}+00$ | $1.07409 \mathrm{E}+00$ |
|  | 10 | AVG | $2.47298 \mathrm{E}+01$ | $2.45522 \mathrm{E}+01$ | $2.40452 \mathrm{E}+01$ | $2.42802 \mathrm{E}+01$ | $2.34744 \mathrm{E}+01$ | $2.43673 \mathrm{E}+01$ | $2.34266 \mathrm{E}+01$ | $2.45759 \mathrm{E}+01$ | $2.41603 \mathrm{E}+01$ | $2.49561 \mathrm{E}+01$ |
|  |  | STD | $1.25807 \mathrm{E}+00$ | $1.09953 \mathrm{E}+00$ | $2.56644 \mathrm{E}+00$ | $1.48991 \mathrm{E}+00$ | $1.11040 \mathrm{E}+00$ | $1.65070 \mathrm{E}+00$ | $2.31907 \mathrm{E}+00$ | $1.23358 \mathrm{E}+00$ | $1.26330 \mathrm{E}+00$ | $8.93405 \mathrm{E}-01$ |
| 15 | 4 | AVG | $2.00834 \mathrm{E}+01$ | $1.89567 \mathrm{E}+01$ | $1.76378 \mathrm{E}+01$ | $1.77153 \mathrm{E}+01$ | $1.82965 \mathrm{E}+01$ | $1.99145 \mathrm{E}+01$ | $1.94721 \mathrm{E}+01$ | $1.95827 \mathrm{E}+01$ | $1.88222 \mathrm{E}+01$ | $1.94558 \mathrm{E}+01$ |
|  |  | STD | $1.58265 \mathrm{E}+00$ | $1.98162 \mathrm{E}+00$ | $2.08179 \mathrm{E}+00$ | $2.17786 \mathrm{E}+00$ | $1.28318 \mathrm{E}+00$ | $1.19086 \mathrm{E}+00$ | $1.70482 \mathrm{E}+00$ | $1.24094 \mathrm{E}+00$ | $1.50934 \mathrm{E}+00$ | $1.43964 \mathrm{E}+00$ |
|  | 6 | AVG | $2.17421 \mathrm{E}+01$ | $2.16564 \mathrm{E}+01$ | $1.97958 \mathrm{E}+01$ | $1.99495 \mathrm{E}+01$ | $1.97300 \mathrm{E}+01$ | $2.00867 \mathrm{E}+01$ | $2.01778 \mathrm{E}+01$ | $2.05065 \mathrm{E}+01$ | $2.11271 \mathrm{E}+01$ | $2.07640 \mathrm{E}+01$ |
|  |  | STD | $9.18070 \mathrm{E}-01$ | $1.05126 \mathrm{E}+00$ | $2.01126 \mathrm{E}+00$ | $1.88960 \mathrm{E}+00$ | $1.38539 \mathrm{E}+00$ | $1.16953 \mathrm{E}+00$ | $1.76564 \mathrm{E}+00$ | $1.28051 \mathrm{E}+00$ | $1.19280 \mathrm{E}+00$ | $1.11297 \mathrm{E}+00$ |
|  | 8 | AVG | $2.33273 \mathrm{E}+01$ | $2.21825 \mathrm{E}+01$ | $2.28139 \mathrm{E}+01$ | $2.22444 \mathrm{E}+01$ | $2.17268 \mathrm{E}+01$ | $2.19566 \mathrm{E}+01$ | $2.22910 \mathrm{E}+01$ | $2.22523 \mathrm{E}+01$ | $2.26004 \mathrm{E}+01$ | $2.27746 \mathrm{E}+01$ |
|  |  | STD | $8.49849 \mathrm{E}-01$ | $9.24668 \mathrm{E}-01$ | $1.74676 \mathrm{E}+00$ | $1.93088 \mathrm{E}+00$ | $9.41642 \mathrm{E}-01$ | $1.01572 \mathrm{E}+00$ | $1.33378 \mathrm{E}+00$ | $7.17689 \mathrm{E}-01$ | $1.10404 \mathrm{E}+00$ | $7.02510 \mathrm{E}-01$ |
|  | 10 | AVG | $2.44879 \mathrm{E}+01$ | $2.35050 \mathrm{E}+01$ | $2.40938 \mathrm{E}+01$ | $2.44988 \mathrm{E}+01$ | $2.34104 \mathrm{E}+01$ | $2.43705 \mathrm{E}+01$ | $2.32433 \mathrm{E}+01$ | $2.44144 \mathrm{E}+01$ | $2.39109 \mathrm{E}+01$ | $2.43114 \mathrm{E}+01$ |
|  |  | STD | $9.02426 \mathrm{E}-01$ | $6.64763 \mathrm{E}-01$ | $2.13997 \mathrm{E}+00$ | $1.59073 \mathrm{E}+00$ | $1.06766 \mathrm{E}+00$ | $7.83260 \mathrm{E}-01$ | $1.96375 \mathrm{E}+00$ | $7.36137 \mathrm{E}-01$ | $1.09793 \mathrm{E}+00$ | $9.09256 \mathrm{E}-01$ |
| 16 | 4 | AVG | $1.89424 \mathrm{E}+01$ | $1.90308 \mathrm{E}+01$ | $1.90246 \mathrm{E}+01$ | $1.90036 \mathrm{E}+01$ | $1.88030 \mathrm{E}+01$ | $1.84262 \mathrm{E}+01$ | $1.92486 \mathrm{E}+01$ | $1.90960 \mathrm{E}+01$ | $1.91327 \mathrm{E}+01$ | $1.90045 \mathrm{E}+01$ |
|  |  | STD | $4.90940 \mathrm{E}-01$ | $6.10721 \mathrm{E}-01$ | $5.75332 \mathrm{E}-01$ | 8.84106E-01 | $9.73061 \mathrm{E}-01$ | $4.61206 \mathrm{E}-01$ | $6.64245 \mathrm{E}-01$ | $4.12869 \mathrm{E}-01$ | $6.58914 \mathrm{E}-01$ | 4.61441E-01 |
|  | 6 | AVG | $2.16208 \mathrm{E}+01$ | $2.15429 \mathrm{E}+01$ | $2.12364 \mathrm{E}+01$ | $2.13741 \mathrm{E}+01$ | $2.08541 \mathrm{E}+01$ | $2.14114 \mathrm{E}+01$ | $2.14773 \mathrm{E}+01$ | $2.13651 \mathrm{E}+01$ | $2.16719 \mathrm{E}+01$ | $2.17164 \mathrm{E}+01$ |
|  |  | STD | $2.72783 \mathrm{E}-01$ | $3.66357 \mathrm{E}-01$ | $1.50817 \mathrm{E}+00$ | $5.84375 \mathrm{E}-01$ | $1.68763 \mathrm{E}+00$ | $3.23254 \mathrm{E}-01$ | $9.89728 \mathrm{E}-01$ | $4.57642 \mathrm{E}-01$ | $4.46951 \mathrm{E}-01$ | $3.86858 \mathrm{E}-01$ |


| 8 | AVG | $2.41679 \mathrm{E}+01$ | $2.33094 \mathrm{E}+01$ | $2.36459 \mathrm{E}+01$ | $2.35247 \mathrm{E}+01$ | $2.22772 \mathrm{E}+01$ | $2.32352 \mathrm{E}+01$ | $2.31445 \mathrm{E}+01$ | $2.34247 \mathrm{E}+01$ | $2.34373 \mathrm{E}+01$ | $2.36372 \mathrm{E}+01$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | STD | $6.17682 \mathrm{E}-01$ | $5.59371 \mathrm{E}-01$ | $1.33938 \mathrm{E}+00$ | $6.61492 \mathrm{E}-01$ | $1.23158 \mathrm{E}+00$ | $8.69088 \mathrm{E}-01$ | $1.50358 \mathrm{E}+00$ | $4.13581 \mathrm{E}-01$ | $7.50130 \mathrm{E}-01$ | $6.13357 \mathrm{E}-01$ |  |
| 10 | AVG | $2.56036 \mathrm{E}+01$ | $2.52178 \mathrm{E}+01$ | $2.54387 \mathrm{E}+01$ | $2.55171 \mathrm{E}+01$ | $2.41268 \mathrm{E}+01$ | $2.49223 \mathrm{E}+01$ | $2.46689 \mathrm{E}+01$ | $2.48661 \mathrm{E}+01$ | $2.49568 \mathrm{E}+01$ | $2.51075 \mathrm{E}+01$ |  |
|  |  | STD | $5.89463 \mathrm{E}-01$ | $6.10466 \mathrm{E}-01$ | $1.09800 \mathrm{E}+00$ | $6.85113 \mathrm{E}-01$ | $1.13460 \mathrm{E}+00$ | $7.04718 \mathrm{E}-01$ | $1.28946 \mathrm{E}+00$ | $5.41312 \mathrm{E}-01$ | $9.14676 \mathrm{E}-01$ | $8.53843 \mathrm{E}-01$ |

Table A. 2 The AVG and STD comparison results of SSIM

| Image | Level | Item | MGWO | GWO | HHO | WOA | SSA | CS | IGWO | CLPSO | CLSGMFO | LGCMFO |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 4 | AVG | 7.22754E-01 | $7.28014 \mathrm{E}-01$ | $6.40556 \mathrm{E}-01$ | $6.17548 \mathrm{E}-01$ | $6.96218 \mathrm{E}-01$ | $7.35822 \mathrm{E}-01$ | 7.12588E-01 | $7.17492 \mathrm{E}-01$ | $7.15356 \mathrm{E}-01$ | $7.03118 \mathrm{E}-01$ |
|  |  | STD | $2.00117 \mathrm{E}-02$ | $1.77381 \mathrm{E}-02$ | $1.10135 \mathrm{E}-01$ | $1.50752 \mathrm{E}-01$ | $4.26547 \mathrm{E}-02$ | $1.35366 \mathrm{E}-02$ | 7.23892E-02 | $2.07083 \mathrm{E}-02$ | $2.47955 \mathrm{E}-02$ | $6.19779 \mathrm{E}-02$ |
|  | 6 | AVG | $7.64751 \mathrm{E}-01$ | $7.40381 \mathrm{E}-01$ | $7.28916 \mathrm{E}-01$ | $7.24700 \mathrm{E}-01$ | $7.05628 \mathrm{E}-01$ | $7.32433 \mathrm{E}-01$ | $7.30187 \mathrm{E}-01$ | $7.28567 \mathrm{E}-01$ | $7.27508 \mathrm{E}-01$ | $7.33609 \mathrm{E}-01$ |
|  |  | STD | $2.82684 \mathrm{E}-02$ | $4.87181 \mathrm{E}-02$ | $8.12117 \mathrm{E}-02$ | $5.87714 \mathrm{E}-02$ | $5.32150 \mathrm{E}-02$ | $5.80110 \mathrm{E}-02$ | $5.87192 \mathrm{E}-02$ | $3.01523 \mathrm{E}-02$ | $3.09020 \mathrm{E}-02$ | $3.20283 \mathrm{E}-02$ |
|  | 8 | AVG | $7.75966 \mathrm{E}-01$ | $7.72667 \mathrm{E}-01$ | $7.56344 \mathrm{E}-01$ | $7.57131 \mathrm{E}-01$ | $7.39725 \mathrm{E}-01$ | $7.64108 \mathrm{E}-01$ | $7.52094 \mathrm{E}-01$ | $7.52890 \mathrm{E}-01$ | $7.72824 \mathrm{E}-01$ | $7.59532 \mathrm{E}-01$ |
|  |  | STD | $5.82989 \mathrm{E}-02$ | $3.22854 \mathrm{E}-02$ | $8.19300 \mathrm{E}-02$ | $6.35735 \mathrm{E}-02$ | $7.49839 \mathrm{E}-02$ | $4.77408 \mathrm{E}-02$ | $5.47286 \mathrm{E}-02$ | $4.95945 \mathrm{E}-02$ | $4.15091 \mathrm{E}-02$ | $5.30229 \mathrm{E}-02$ |
|  | 10 | AVG | 8.02380E-01 | $8.05032 \mathrm{E}-01$ | $8.00896 \mathrm{E}-01$ | $7.91781 \mathrm{E}-01$ | $7.79727 \mathrm{E}-01$ | $8.00491 \mathrm{E}-01$ | $8.07211 \mathrm{E}-01$ | $8.08592 \mathrm{E}-01$ | $8.07086 \mathrm{E}-01$ | $8.06306 \mathrm{E}-01$ |
|  |  | STD | $3.53157 \mathrm{E}-02$ | $3.32547 \mathrm{E}-02$ | $8.07677 \mathrm{E}-02$ | $7.73009 \mathrm{E}-02$ | $5.54490 \mathrm{E}-02$ | $4.71795 \mathrm{E}-02$ | $5.95148 \mathrm{E}-02$ | $3.29779 \mathrm{E}-02$ | $4.59894 \mathrm{E}-02$ | $4.49212 \mathrm{E}-02$ |
| 2 | 4 | AVG | $6.40146 \mathrm{E}-01$ | $6.38429 \mathrm{E}-01$ | $5.34571 \mathrm{E}-01$ | $5.62501 \mathrm{E}-01$ | $6.10680 \mathrm{E}-01$ | $6.42616 \mathrm{E}-01$ | $6.28346 \mathrm{E}-01$ | $6.17372 \mathrm{E}-01$ | $6.08956 \mathrm{E}-01$ | $6.19133 \mathrm{E}-01$ |
|  |  | STD | $3.23137 \mathrm{E}-02$ | $5.45801 \mathrm{E}-02$ | $1.62522 \mathrm{E}-01$ | $1.03069 \mathrm{E}-01$ | $3.62086 \mathrm{E}-02$ | $4.72738 \mathrm{E}-02$ | $4.02541 \mathrm{E}-02$ | $2.90380 \mathrm{E}-02$ | $3.66146 \mathrm{E}-02$ | $2.20045 \mathrm{E}-02$ |
|  | 6 | AVG | $6.87865 \mathrm{E}-01$ | $6.87334 \mathrm{E}-01$ | $6.62029 \mathrm{E}-01$ | $6.70557 \mathrm{E}-01$ | $6.71077 \mathrm{E}-01$ | $6.95418 \mathrm{E}-01$ | $6.82470 \mathrm{E}-01$ | $6.96576 \mathrm{E}-01$ | $6.92308 \mathrm{E}-01$ | $6.82052 \mathrm{E}-01$ |
|  |  | STD | $2.64422 \mathrm{E}-02$ | $2.04144 \mathrm{E}-02$ | $7.05022 \mathrm{E}-02$ | $5.94589 \mathrm{E}-02$ | $3.31387 \mathrm{E}-02$ | $2.91596 \mathrm{E}-02$ | 3.69783E-02 | $2.42721 \mathrm{E}-02$ | $2.61899 \mathrm{E}-02$ | $3.09649 \mathrm{E}-02$ |
|  | 8 | AVG | $7.36145 \mathrm{E}-01$ | $7.32836 \mathrm{E}-01$ | $7.45450 \mathrm{E}-01$ | $7.40019 \mathrm{E}-01$ | $7.25360 \mathrm{E}-01$ | $7.38238 \mathrm{E}-01$ | $7.35847 \mathrm{E}-01$ | $7.33668 \mathrm{E}-01$ | $7.41796 \mathrm{E}-01$ | $7.48468 \mathrm{E}-01$ |
|  |  | STD | $3.45416 \mathrm{E}-02$ | $1.85422 \mathrm{E}-02$ | $4.48182 \mathrm{E}-02$ | $3.99124 \mathrm{E}-02$ | $2.72051 \mathrm{E}-02$ | $2.54576 \mathrm{E}-02$ | $4.95541 \mathrm{E}-02$ | $2.08255 \mathrm{E}-02$ | $2.67688 \mathrm{E}-02$ | $2.23538 \mathrm{E}-02$ |
|  | 10 | AVG | $7.81355 \mathrm{E}-01$ | $7.72126 \mathrm{E}-01$ | $7.78424 \mathrm{E}-01$ | $8.04853 \mathrm{E}-01$ | $7.75647 \mathrm{E}-01$ | $7.89200 \mathrm{E}-01$ | $7.97269 \mathrm{E}-01$ | $7.96070 \mathrm{E}-01$ | $7.86422 \mathrm{E}-01$ | $7.88753 \mathrm{E}-01$ |
|  |  | STD | $3.06448 \mathrm{E}-02$ | $2.49351 \mathrm{E}-02$ | $7.04408 \mathrm{E}-02$ | $2.97708 \mathrm{E}-02$ | $3.27754 \mathrm{E}-02$ | $3.29669 \mathrm{E}-02$ | $3.83247 \mathrm{E}-02$ | $2.78470 \mathrm{E}-02$ | $3.34277 \mathrm{E}-02$ | $3.81494 \mathrm{E}-02$ |
| 3 | 4 | AVG | $6.67176 \mathrm{E}-01$ | $6.55704 \mathrm{E}-01$ | $5.77356 \mathrm{E}-01$ | $5.51178 \mathrm{E}-01$ | $5.94138 \mathrm{E}-01$ | $6.48472 \mathrm{E}-01$ | $6.31299 \mathrm{E}-01$ | $6.26859 \mathrm{E}-01$ | $6.02561 \mathrm{E}-01$ | $6.02621 \mathrm{E}-01$ |
|  |  | STD | $3.60479 \mathrm{E}-02$ | $4.12276 \mathrm{E}-02$ | $9.60869 \mathrm{E}-02$ | $7.98635 \mathrm{E}-02$ | $6.28209 \mathrm{E}-02$ | $4.84458 \mathrm{E}-02$ | $4.62027 \mathrm{E}-02$ | $4.62150 \mathrm{E}-02$ | $6.34923 \mathrm{E}-02$ | $5.69490 \mathrm{E}-02$ |
|  | 6 | AVG | $7.19256 \mathrm{E}-01$ | $7.03555 \mathrm{E}-01$ | $6.85482 \mathrm{E}-01$ | $7.06268 \mathrm{E}-01$ | $6.99727 \mathrm{E}-01$ | $7.11679 \mathrm{E}-01$ | 7.07589E-01 | 7.19424E-01 | $6.95700 \mathrm{E}-01$ | $7.05283 \mathrm{E}-01$ |


|  |  | STD | $2.83950 \mathrm{E}-02$ | $4.33779 \mathrm{E}-02$ | $5.52180 \mathrm{E}-02$ | 5.33175E-02 | $3.57227 \mathrm{E}-02$ | $1.75102 \mathrm{E}-02$ | $3.36725 \mathrm{E}-02$ | $1.55755 \mathrm{E}-02$ | 3.89476E-02 | $3.27967 \mathrm{E}-02$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 8 | AVG | $7.67927 \mathrm{E}-01$ | $7.61908 \mathrm{E}-01$ | $7.67057 \mathrm{E}-01$ | $7.65523 \mathrm{E}-01$ | $7.47750 \mathrm{E}-01$ | $7.67258 \mathrm{E}-01$ | $7.62650 \mathrm{E}-01$ | $7.76596 \mathrm{E}-01$ | $7.68152 \mathrm{E}-01$ | 7.77373E-01 |
|  |  | STD | $2.43892 \mathrm{E}-02$ | $1.90032 \mathrm{E}-02$ | $4.95343 \mathrm{E}-02$ | $4.48334 \mathrm{E}-02$ | $3.40316 \mathrm{E}-02$ | $2.55694 \mathrm{E}-02$ | $3.37123 \mathrm{E}-02$ | $1.90374 \mathrm{E}-02$ | $2.93627 \mathrm{E}-02$ | $3.64886 \mathrm{E}-02$ |
|  | 10 | AVG | $8.21774 \mathrm{E}-01$ | $8.01061 \mathrm{E}-01$ | $8.00220 \mathrm{E}-01$ | $8.10460 \mathrm{E}-01$ | $7.95993 \mathrm{E}-01$ | $8.10401 \mathrm{E}-01$ | $8.05904 \mathrm{E}-01$ | $8.06706 \mathrm{E}-01$ | $8.18015 \mathrm{E}-01$ | $8.14420 \mathrm{E}-01$ |
|  |  | STD | $2.28749 \mathrm{E}-02$ | $2.36904 \mathrm{E}-02$ | $6.98680 \mathrm{E}-02$ | $4.69643 \mathrm{E}-02$ | $3.01692 \mathrm{E}-02$ | $2.94000 \mathrm{E}-02$ | $3.90115 \mathrm{E}-02$ | $2.10515 \mathrm{E}-02$ | $2.83572 \mathrm{E}-02$ | $3.09748 \mathrm{E}-02$ |
| 4 | 4 | AVG | $6.08282 \mathrm{E}-01$ | $6.03907 \mathrm{E}-01$ | $5.51926 \mathrm{E}-01$ | $5.28840 \mathrm{E}-01$ | $5.85381 \mathrm{E}-01$ | $5.92847 \mathrm{E}-01$ | $6.00085 \mathrm{E}-01$ | $5.83301 \mathrm{E}-01$ | $6.04795 \mathrm{E}-01$ | $5.86647 \mathrm{E}-01$ |
|  |  | STD | $3.70852 \mathrm{E}-02$ | $3.48836 \mathrm{E}-02$ | $8.64859 \mathrm{E}-02$ | $1.04984 \mathrm{E}-01$ | $3.96486 \mathrm{E}-02$ | $2.49146 \mathrm{E}-02$ | $4.33512 \mathrm{E}-02$ | $1.68173 \mathrm{E}-02$ | $2.60968 \mathrm{E}-02$ | $2.39228 \mathrm{E}-02$ |
|  | 6 | AVG | 6.92162E-01 | $6.76985 \mathrm{E}-01$ | $6.64378 \mathrm{E}-01$ | $6.69895 \mathrm{E}-01$ | $6.58302 \mathrm{E}-01$ | $6.69264 \mathrm{E}-01$ | $6.84042 \mathrm{E}-01$ | $6.75590 \mathrm{E}-01$ | $6.73571 \mathrm{E}-01$ | $6.81048 \mathrm{E}-01$ |
|  |  | STD | $1.93076 \mathrm{E}-02$ | $1.23704 \mathrm{E}-02$ | $7.82549 \mathrm{E}-02$ | $2.99116 \mathrm{E}-02$ | $4.61863 \mathrm{E}-02$ | $3.56192 \mathrm{E}-02$ | $3.10041 \mathrm{E}-02$ | $1.10868 \mathrm{E}-02$ | $2.12335 \mathrm{E}-02$ | $2.16571 \mathrm{E}-02$ |
|  | 8 | AVG | $7.45522 \mathrm{E}-01$ | $7.25943 \mathrm{E}-01$ | $7.37432 \mathrm{E}-01$ | $7.28727 \mathrm{E}-01$ | $6.99388 \mathrm{E}-01$ | $7.20108 \mathrm{E}-01$ | $7.40825 \mathrm{E}-01$ | $7.35471 \mathrm{E}-01$ | $7.37022 \mathrm{E}-01$ | $7.42069 \mathrm{E}-01$ |
|  |  | STD | $2.37734 \mathrm{E}-02$ | $1.99648 \mathrm{E}-02$ | $5.54626 \mathrm{E}-02$ | $6.34890 \mathrm{E}-02$ | $3.98992 \mathrm{E}-02$ | $3.63236 \mathrm{E}-02$ | $4.96262 \mathrm{E}-02$ | $2.17083 \mathrm{E}-02$ | $2.39734 \mathrm{E}-02$ | $2.69762 \mathrm{E}-02$ |
|  | 10 | AVG | $8.05392 \mathrm{E}-01$ | $7.77813 \mathrm{E}-01$ | $7.96549 \mathrm{E}-01$ | $7.89239 \mathrm{E}-01$ | $7.68089 \mathrm{E}-01$ | $7.89128 \mathrm{E}-01$ | $7.79792 \mathrm{E}-01$ | $7.94338 \mathrm{E}-01$ | $7.92459 \mathrm{E}-01$ | $7.93543 \mathrm{E}-01$ |
|  |  | STD | $2.78393 \mathrm{E}-02$ | $2.49603 \mathrm{E}-02$ | $5.84194 \mathrm{E}-02$ | $3.98166 \mathrm{E}-02$ | $3.70055 \mathrm{E}-02$ | $3.38474 \mathrm{E}-02$ | $5.33341 \mathrm{E}-02$ | $2.00821 \mathrm{E}-02$ | $2.93366 \mathrm{E}-02$ | $2.71122 \mathrm{E}-02$ |
| 5 | 4 | AVG | $6.37374 \mathrm{E}-01$ | $6.35242 \mathrm{E}-01$ | $5.68551 \mathrm{E}-01$ | $5.84005 \mathrm{E}-01$ | $6.05787 \mathrm{E}-01$ | $6.52992 \mathrm{E}-01$ | $6.24336 \mathrm{E}-01$ | $5.88860 \mathrm{E}-01$ | $6.29413 \mathrm{E}-01$ | $6.24596 \mathrm{E}-01$ |
|  |  | STD | $5.03317 \mathrm{E}-02$ | $4.05658 \mathrm{E}-02$ | $1.09330 \mathrm{E}-01$ | $9.09226 \mathrm{E}-02$ | $8.99662 \mathrm{E}-02$ | 5.59655E-02 | $7.18523 \mathrm{E}-02$ | $7.28655 \mathrm{E}-02$ | $5.98243 \mathrm{E}-02$ | 4.11993E-02 |
|  | 6 | AVG | $6.91631 \mathrm{E}-01$ | $6.97790 \mathrm{E}-01$ | $7.00928 \mathrm{E}-01$ | $7.11004 \mathrm{E}-01$ | $6.55805 \mathrm{E}-01$ | $7.00925 \mathrm{E}-01$ | $7.06970 \mathrm{E}-01$ | $6.40517 \mathrm{E}-01$ | $7.31110 \mathrm{E}-01$ | $7.30672 \mathrm{E}-01$ |
|  |  | STD | $4.61619 \mathrm{E}-02$ | $5.90066 \mathrm{E}-02$ | $1.06747 \mathrm{E}-01$ | $6.76691 \mathrm{E}-02$ | $9.42106 \mathrm{E}-02$ | $6.28737 \mathrm{E}-02$ | $6.68605 \mathrm{E}-02$ | 8.88153E-02 | $5.09876 \mathrm{E}-02$ | $7.07153 \mathrm{E}-02$ |
|  | 8 | AVG | $7.80644 \mathrm{E}-01$ | $7.68091 \mathrm{E}-01$ | $7.85586 \mathrm{E}-01$ | $7.86568 \mathrm{E}-01$ | $7.42833 \mathrm{E}-01$ | $7.70518 \mathrm{E}-01$ | $7.37057 \mathrm{E}-01$ | $7.55152 \mathrm{E}-01$ | $7.89186 \mathrm{E}-01$ | $8.01753 \mathrm{E}-01$ |
|  |  | STD | $5.17062 \mathrm{E}-02$ | $3.05270 \mathrm{E}-02$ | $6.84649 \mathrm{E}-02$ | $6.78381 \mathrm{E}-02$ | $6.51008 \mathrm{E}-02$ | $5.14245 \mathrm{E}-02$ | $6.37462 \mathrm{E}-02$ | $3.77362 \mathrm{E}-02$ | $3.90996 \mathrm{E}-02$ | $3.87083 \mathrm{E}-02$ |
|  | 10 | AVG | $8.24726 \mathrm{E}-01$ | $8.03526 \mathrm{E}-01$ | $8.22459 \mathrm{E}-01$ | $8.45818 \mathrm{E}-01$ | $7.78774 \mathrm{E}-01$ | $7.96676 \mathrm{E}-01$ | $7.96425 \mathrm{E}-01$ | $8.18423 \mathrm{E}-01$ | $8.22660 \mathrm{E}-01$ | $8.18225 \mathrm{E}-01$ |
|  |  | STD | $3.65308 \mathrm{E}-02$ | $3.19692 \mathrm{E}-02$ | $6.96529 \mathrm{E}-02$ | $4.48310 \mathrm{E}-02$ | $5.93039 \mathrm{E}-02$ | $6.73914 \mathrm{E}-02$ | $6.14434 \mathrm{E}-02$ | $2.60647 \mathrm{E}-02$ | $3.17599 \mathrm{E}-02$ | $3.67699 \mathrm{E}-02$ |
| 6 | 4 | AVG | $6.66779 \mathrm{E}-01$ | $6.34622 \mathrm{E}-01$ | $5.88529 \mathrm{E}-01$ | $6.22268 \mathrm{E}-01$ | $6.11655 \mathrm{E}-01$ | $6.56505 \mathrm{E}-01$ | $6.27738 \mathrm{E}-01$ | $6.42071 \mathrm{E}-01$ | $6.30764 \mathrm{E}-01$ | $6.32747 \mathrm{E}-01$ |
|  |  | STD | $4.60927 \mathrm{E}-02$ | $2.99713 \mathrm{E}-02$ | $1.04875 \mathrm{E}-01$ | $7.98385 \mathrm{E}-02$ | $5.32780 \mathrm{E}-02$ | $2.83122 \mathrm{E}-02$ | $5.56329 \mathrm{E}-02$ | $3.30057 \mathrm{E}-02$ | $5.46578 \mathrm{E}-02$ | $4.29004 \mathrm{E}-02$ |
|  | 6 | AVG | $6.90864 \mathrm{E}-01$ | $6.90247 \mathrm{E}-01$ | $7.14761 \mathrm{E}-01$ | $7.01857 \mathrm{E}-01$ | $6.87465 \mathrm{E}-01$ | $6.72387 \mathrm{E}-01$ | $7.04167 \mathrm{E}-01$ | $6.92398 \mathrm{E}-01$ | $7.07811 \mathrm{E}-01$ | $6.88802 \mathrm{E}-01$ |
|  |  | STD | $3.92702 \mathrm{E}-02$ | $3.71381 \mathrm{E}-02$ | $5.80217 \mathrm{E}-02$ | $5.75749 \mathrm{E}-02$ | $5.38749 \mathrm{E}-02$ | $3.47668 \mathrm{E}-02$ | $4.12613 \mathrm{E}-02$ | $4.60753 \mathrm{E}-02$ | 4.20204E-02 | $4.32193 \mathrm{E}-02$ |
|  | 8 | AVG | $7.69449 \mathrm{E}-01$ | 7.55756E-01 | $7.71066 \mathrm{E}-01$ | 7.57490E-01 | 7.51552E-01 | 7.63568E-01 | $7.70791 \mathrm{E}-01$ | $7.74429 \mathrm{E}-01$ | $7.66327 \mathrm{E}-01$ | 7.60174E-01 |



|  |  | STD | $3.29043 \mathrm{E}-02$ | $2.04622 \mathrm{E}-02$ | $6.00298 \mathrm{E}-02$ | $3.58192 \mathrm{E}-02$ | $3.77154 \mathrm{E}-02$ | 2.83124E-02 | $3.71382 \mathrm{E}-02$ | $2.81750 \mathrm{E}-02$ | $3.32530 \mathrm{E}-02$ | $1.96506 \mathrm{E}-02$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | 4 | AVG | $6.38141 \mathrm{E}-01$ | $6.32099 \mathrm{E}-01$ | $5.38144 \mathrm{E}-01$ | $5.78312 \mathrm{E}-01$ | $5.89439 \mathrm{E}-01$ | $6.27014 \mathrm{E}-01$ | $6.43542 \mathrm{E}-01$ | $6.01586 \mathrm{E}-01$ | $6.15931 \mathrm{E}-01$ | $6.19049 \mathrm{E}-01$ |
|  |  | STD | $2.91013 \mathrm{E}-02$ | $3.16484 \mathrm{E}-02$ | $1.19717 \mathrm{E}-01$ | $9.99042 \mathrm{E}-02$ | $9.61930 \mathrm{E}-02$ | $3.71529 \mathrm{E}-02$ | $4.86106 \mathrm{E}-02$ | $4.92690 \mathrm{E}-02$ | $4.36167 \mathrm{E}-02$ | $3.21340 \mathrm{E}-02$ |
|  | 6 | AVG | $7.21206 \mathrm{E}-01$ | $7.15783 \mathrm{E}-01$ | $6.69739 \mathrm{E}-01$ | $6.46485 \mathrm{E}-01$ | $6.84089 \mathrm{E}-01$ | $7.02421 \mathrm{E}-01$ | $6.77817 \mathrm{E}-01$ | $7.12425 \mathrm{E}-01$ | $6.91133 \mathrm{E}-01$ | $6.98733 \mathrm{E}-01$ |
|  |  | STD | $3.67498 \mathrm{E}-02$ | $3.91473 \mathrm{E}-02$ | $9.28870 \mathrm{E}-02$ | $9.43250 \mathrm{E}-02$ | $4.81714 \mathrm{E}-02$ | $4.45532 \mathrm{E}-02$ | $8.11560 \mathrm{E}-02$ | $3.38260 \mathrm{E}-02$ | $4.97231 \mathrm{E}-02$ | $4.90314 \mathrm{E}-02$ |
|  | 8 | AVG | $7.85181 \mathrm{E}-01$ | $7.75564 \mathrm{E}-01$ | $7.03957 \mathrm{E}-01$ | $7.20482 \mathrm{E}-01$ | $7.31009 \mathrm{E}-01$ | $7.30856 \mathrm{E}-01$ | $7.35131 \mathrm{E}-01$ | $7.66972 \mathrm{E}-01$ | $7.58680 \mathrm{E}-01$ | $7.67516 \mathrm{E}-01$ |
|  |  | STD | $2.20537 \mathrm{E}-02$ | $2.84746 \mathrm{E}-02$ | $1.37960 \mathrm{E}-01$ | $7.27304 \mathrm{E}-02$ | $4.54455 \mathrm{E}-02$ | $7.41778 \mathrm{E}-02$ | $6.50623 \mathrm{E}-02$ | $4.67757 \mathrm{E}-02$ | $4.23838 \mathrm{E}-02$ | $3.52860 \mathrm{E}-02$ |
|  | 10 | AVG | $8.36592 \mathrm{E}-01$ | $8.13415 \mathrm{E}-01$ | $7.67339 \mathrm{E}-01$ | $7.79806 \mathrm{E}-01$ | $7.70782 \mathrm{E}-01$ | $7.77748 \mathrm{E}-01$ | $7.71533 \mathrm{E}-01$ | $8.08926 \mathrm{E}-01$ | $8.01434 \mathrm{E}-01$ | $7.98312 \mathrm{E}-01$ |
|  |  | STD | $2.48997 \mathrm{E}-02$ | $3.15664 \mathrm{E}-02$ | $7.63937 \mathrm{E}-02$ | $5.75172 \mathrm{E}-02$ | $4.39442 \mathrm{E}-02$ | $5.51747 \mathrm{E}-02$ | $6.34932 \mathrm{E}-02$ | $3.27555 \mathrm{E}-02$ | $4.14515 \mathrm{E}-02$ | $3.77020 \mathrm{E}-02$ |
| 11 | 4 | AVG | $7.04443 \mathrm{E}-01$ | $6.99285 \mathrm{E}-01$ | $6.35389 \mathrm{E}-01$ | $6.39059 \mathrm{E}-01$ | $6.32827 \mathrm{E}-01$ | $6.89597 \mathrm{E}-01$ | $6.84811 \mathrm{E}-01$ | $6.82469 \mathrm{E}-01$ | $6.72232 \mathrm{E}-01$ | $6.78077 \mathrm{E}-01$ |
|  |  | STD | $7.59153 \mathrm{E}-03$ | $5.28029 \mathrm{E}-03$ | $7.47175 \mathrm{E}-02$ | $6.91519 \mathrm{E}-02$ | $5.56527 \mathrm{E}-02$ | $2.76581 \mathrm{E}-02$ | $3.54250 \mathrm{E}-02$ | $2.93122 \mathrm{E}-02$ | $3.97208 \mathrm{E}-02$ | $3.89110 \mathrm{E}-02$ |
|  | 6 | AVG | $7.58073 \mathrm{E}-01$ | $7.26486 \mathrm{E}-01$ | $7.17412 \mathrm{E}-01$ | $7.15727 \mathrm{E}-01$ | $7.17456 \mathrm{E}-01$ | $7.33998 \mathrm{E}-01$ | $7.42847 \mathrm{E}-01$ | $7.25543 \mathrm{E}-01$ | $7.34672 \mathrm{E}-01$ | $7.37129 \mathrm{E}-01$ |
|  |  | STD | $3.55948 \mathrm{E}-02$ | $2.98082 \mathrm{E}-02$ | $5.82182 \mathrm{E}-02$ | $5.07112 \mathrm{E}-02$ | $3.83669 \mathrm{E}-02$ | $2.20750 \mathrm{E}-02$ | $4.10948 \mathrm{E}-02$ | $7.93752 \mathrm{E}-03$ | $2.87438 \mathrm{E}-02$ | $3.42031 \mathrm{E}-02$ |
|  | 8 | AVG | $8.03074 \mathrm{E}-01$ | $7.93498 \mathrm{E}-01$ | $7.65066 \mathrm{E}-01$ | $7.97404 \mathrm{E}-01$ | $7.49792 \mathrm{E}-01$ | $7.95613 \mathrm{E}-01$ | $7.94585 \mathrm{E}-01$ | $7.83890 \mathrm{E}-01$ | $7.90056 \mathrm{E}-01$ | $7.89259 \mathrm{E}-01$ |
|  |  | STD | $2.03000 \mathrm{E}-02$ | $2.33832 \mathrm{E}-02$ | $5.99980 \mathrm{E}-02$ | $4.10612 \mathrm{E}-02$ | $4.49835 \mathrm{E}-02$ | $2.78209 \mathrm{E}-02$ | $3.26452 \mathrm{E}-02$ | $2.48004 \mathrm{E}-02$ | $3.10657 \mathrm{E}-02$ | $3.70582 \mathrm{E}-02$ |
|  | 10 | AVG | $8.40367 \mathrm{E}-01$ | $8.36614 \mathrm{E}-01$ | $8.27490 \mathrm{E}-01$ | $8.13323 \mathrm{E}-01$ | $8.07879 \mathrm{E}-01$ | $8.29869 \mathrm{E}-01$ | $8.34723 \mathrm{E}-01$ | $8.29600 \mathrm{E}-01$ | $8.26428 \mathrm{E}-01$ | $8.20231 \mathrm{E}-01$ |
|  |  | STD | $1.92294 \mathrm{E}-02$ | $2.01650 \mathrm{E}-02$ | $4.85910 \mathrm{E}-02$ | $4.15171 \mathrm{E}-02$ | $3.37577 \mathrm{E}-02$ | $2.61614 \mathrm{E}-02$ | $3.42559 \mathrm{E}-02$ | $1.88043 \mathrm{E}-02$ | $2.93287 \mathrm{E}-02$ | $4.08943 \mathrm{E}-02$ |
| 12 | 4 | AVG | $7.15228 \mathrm{E}-01$ | $7.03300 \mathrm{E}-01$ | $6.13259 \mathrm{E}-01$ | $6.16366 \mathrm{E}-01$ | $6.31630 \mathrm{E}-01$ | $6.96545 \mathrm{E}-01$ | $6.72726 \mathrm{E}-01$ | $6.71443 \mathrm{E}-01$ | $6.50930 \mathrm{E}-01$ | $6.45395 \mathrm{E}-01$ |
|  |  | STD | $2.97725 \mathrm{E}-02$ | $2.94765 \mathrm{E}-02$ | $1.03546 \mathrm{E}-01$ | $7.03860 \mathrm{E}-02$ | $6.94180 \mathrm{E}-02$ | $4.19265 \mathrm{E}-02$ | $3.51826 \mathrm{E}-02$ | $4.80729 \mathrm{E}-02$ | $4.00301 \mathrm{E}-02$ | $4.94613 \mathrm{E}-02$ |
|  | 6 | AVG | $7.28103 \mathrm{E}-01$ | $7.21886 \mathrm{E}-01$ | $7.19246 \mathrm{E}-01$ | $6.86989 \mathrm{E}-01$ | $6.89170 \mathrm{E}-01$ | $7.22202 \mathrm{E}-01$ | $7.13727 \mathrm{E}-01$ | $7.12637 \mathrm{E}-01$ | $7.05399 \mathrm{E}-01$ | $7.02478 \mathrm{E}-01$ |
|  |  | STD | $3.05404 \mathrm{E}-02$ | $3.45806 \mathrm{E}-02$ | $6.02168 \mathrm{E}-02$ | $7.15151 \mathrm{E}-02$ | $4.23626 \mathrm{E}-02$ | $3.62459 \mathrm{E}-02$ | $3.87897 \mathrm{E}-02$ | $2.79316 \mathrm{E}-02$ | $3.79185 \mathrm{E}-02$ | $2.31124 \mathrm{E}-02$ |
|  | 8 | AVG | $7.72745 \mathrm{E}-01$ | $7.54479 \mathrm{E}-01$ | $7.66672 \mathrm{E}-01$ | $7.76032 \mathrm{E}-01$ | $7.37711 \mathrm{E}-01$ | $7.73262 \mathrm{E}-01$ | $7.58636 \mathrm{E}-01$ | $7.62871 \mathrm{E}-01$ | $7.50263 \mathrm{E}-01$ | $7.61050 \mathrm{E}-01$ |
|  |  | STD | $3.21585 \mathrm{E}-02$ | $3.13175 \mathrm{E}-02$ | $6.22360 \mathrm{E}-02$ | $3.39506 \mathrm{E}-02$ | $4.00679 \mathrm{E}-02$ | $3.80843 \mathrm{E}-02$ | $5.62114 \mathrm{E}-02$ | $3.68270 \mathrm{E}-02$ | $3.91978 \mathrm{E}-02$ | $2.75630 \mathrm{E}-02$ |
|  | 10 | AVG | $8.06329 \mathrm{E}-01$ | $7.83591 \mathrm{E}-01$ | $7.81885 \mathrm{E}-01$ | $8.04995 \mathrm{E}-01$ | $7.87160 \mathrm{E}-01$ | $8.04749 \mathrm{E}-01$ | $8.05788 \mathrm{E}-01$ | $7.96085 \mathrm{E}-01$ | $8.09756 \mathrm{E}-01$ | $8.00317 \mathrm{E}-01$ |
|  |  | STD | $2.56791 \mathrm{E}-02$ | $2.37339 \mathrm{E}-02$ | $9.35700 \mathrm{E}-02$ | $4.82748 \mathrm{E}-02$ | $3.77622 \mathrm{E}-02$ | $3.51438 \mathrm{E}-02$ | $3.80779 \mathrm{E}-02$ | $2.86746 \mathrm{E}-02$ | $3.39493 \mathrm{E}-02$ | $3.36288 \mathrm{E}-02$ |


| 13 | 4 | AVG | 7.24861E-01 | 7.21377E-01 | 7.21930E-01 | 7.05913E-01 | $6.92378 \mathrm{E}-01$ | $7.23866 \mathrm{E}-01$ | $7.23073 \mathrm{E}-01$ | 7.27830E-01 | $7.23881 \mathrm{E}-01$ | $7.22271 \mathrm{E}-01$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | STD | $1.12962 \mathrm{E}-02$ | $1.63298 \mathrm{E}-02$ | $4.78009 \mathrm{E}-02$ | $5.43388 \mathrm{E}-02$ | $5.12798 \mathrm{E}-02$ | $1.38117 \mathrm{E}-02$ | $3.02998 \mathrm{E}-02$ | $1.20174 \mathrm{E}-02$ | $1.83602 \mathrm{E}-02$ | $2.19227 \mathrm{E}-02$ |
|  | 6 | AVG | $7.71449 \mathrm{E}-01$ | $7.61443 \mathrm{E}-01$ | 7.71606E-01 | $7.46941 \mathrm{E}-01$ | $7.40483 \mathrm{E}-01$ | $7.56731 \mathrm{E}-01$ | $7.54788 \mathrm{E}-01$ | $7.49631 \mathrm{E}-01$ | $7.62429 \mathrm{E}-01$ | $7.53907 \mathrm{E}-01$ |
|  |  | STD | $2.85338 \mathrm{E}-02$ | $2.55317 \mathrm{E}-02$ | $3.95478 \mathrm{E}-02$ | $4.41567 \mathrm{E}-02$ | $3.84903 \mathrm{E}-02$ | $1.66466 \mathrm{E}-02$ | $4.81645 \mathrm{E}-02$ | $1.14999 \mathrm{E}-02$ | $2.40991 \mathrm{E}-02$ | $2.21607 \mathrm{E}-02$ |
|  | 8 | AVG | 8.12973E-01 | $7.93365 \mathrm{E}-01$ | $7.90802 \mathrm{E}-01$ | $7.81152 \mathrm{E}-01$ | $7.88946 \mathrm{E}-01$ | $8.01537 \mathrm{E}-01$ | $7.97072 \mathrm{E}-01$ | $8.05045 \mathrm{E}-01$ | $8.03696 \mathrm{E}-01$ | $8.12472 \mathrm{E}-01$ |
|  |  | STD | $2.14571 \mathrm{E}-02$ | $1.95382 \mathrm{E}-02$ | $6.88951 \mathrm{E}-02$ | $5.59517 \mathrm{E}-02$ | $2.58816 \mathrm{E}-02$ | $1.88765 \mathrm{E}-02$ | $4.04634 \mathrm{E}-02$ | $1.56985 \mathrm{E}-02$ | $2.26927 \mathrm{E}-02$ | $2.31707 \mathrm{E}-02$ |
|  | 10 | AVG | $8.38251 \mathrm{E}-01$ | $8.18180 \mathrm{E}-01$ | $8.09995 \mathrm{E}-01$ | $8.33165 \mathrm{E}-01$ | 8.12013E-01 | $8.40469 \mathrm{E}-01$ | $8.27016 \mathrm{E}-01$ | $8.28469 \mathrm{E}-01$ | $8.42293 \mathrm{E}-01$ | $8.39917 \mathrm{E}-01$ |
|  |  | STD | $2.12102 \mathrm{E}-02$ | $1.82449 \mathrm{E}-02$ | $6.71102 \mathrm{E}-02$ | $3.89279 \mathrm{E}-02$ | $3.16817 \mathrm{E}-02$ | $1.92664 \mathrm{E}-02$ | $3.08750 \mathrm{E}-02$ | $1.91249 \mathrm{E}-02$ | $2.70222 \mathrm{E}-02$ | $2.09127 \mathrm{E}-02$ |
| 14 | 4 | AVG | $6.34337 \mathrm{E}-01$ | $6.35238 \mathrm{E}-01$ | $5.37663 \mathrm{E}-01$ | $5.52340 \mathrm{E}-01$ | $5.88110 \mathrm{E}-01$ | $6.18435 \mathrm{E}-01$ | $5.96970 \mathrm{E}-01$ | $5.78549 \mathrm{E}-01$ | $5.84164 \mathrm{E}-01$ | $6.10836 \mathrm{E}-01$ |
|  |  | STD | 3.70154E-02 | $3.20264 \mathrm{E}-02$ | 8.23084E-02 | $7.84000 \mathrm{E}-02$ | $6.82925 \mathrm{E}-02$ | $2.34426 \mathrm{E}-02$ | $6.73427 \mathrm{E}-02$ | $7.26279 \mathrm{E}-02$ | $7.01611 \mathrm{E}-02$ | $3.31244 \mathrm{E}-02$ |
|  | 6 | AVG | $6.91891 \mathrm{E}-01$ | $6.90668 \mathrm{E}-01$ | $6.30986 \mathrm{E}-01$ | $6.52187 \mathrm{E}-01$ | $6.42136 \mathrm{E}-01$ | $6.83353 \mathrm{E}-01$ | $6.71082 \mathrm{E}-01$ | $6.65713 \mathrm{E}-01$ | $6.75632 \mathrm{E}-01$ | $6.80446 \mathrm{E}-01$ |
|  |  | STD | $4.04268 \mathrm{E}-02$ | $3.24465 \mathrm{E}-02$ | $1.14446 \mathrm{E}-01$ | $5.68409 \mathrm{E}-02$ | $4.95726 \mathrm{E}-02$ | $4.42016 \mathrm{E}-02$ | $4.40330 \mathrm{E}-02$ | $4.08792 \mathrm{E}-02$ | $3.78164 \mathrm{E}-02$ | $3.90842 \mathrm{E}-02$ |
|  | 8 | AVG | $7.61331 \mathrm{E}-01$ | $7.51062 \mathrm{E}-01$ | $7.29085 \mathrm{E}-01$ | $7.25391 \mathrm{E}-01$ | $7.06509 \mathrm{E}-01$ | $7.28817 \mathrm{E}-01$ | $7.15132 \mathrm{E}-01$ | $7.43164 \mathrm{E}-01$ | $7.47511 \mathrm{E}-01$ | $7.38564 \mathrm{E}-01$ |
|  |  | STD | $3.23629 \mathrm{E}-02$ | $2.29482 \mathrm{E}-02$ | 7.78695E-02 | 7.82835E-02 | $4.63803 \mathrm{E}-02$ | $5.45394 \mathrm{E}-02$ | $5.58496 \mathrm{E}-02$ | $3.60501 \mathrm{E}-02$ | $3.56254 \mathrm{E}-02$ | $3.40850 \mathrm{E}-02$ |
|  | 10 | AVG | $7.95998 \mathrm{E}-01$ | $7.88968 \mathrm{E}-01$ | $7.78313 \mathrm{E}-01$ | $7.85988 \mathrm{E}-01$ | $7.55440 \mathrm{E}-01$ | $7.83334 \mathrm{E}-01$ | $7.66629 \mathrm{E}-01$ | $7.91511 \mathrm{E}-01$ | $7.78507 \mathrm{E}-01$ | $8.01597 \mathrm{E}-01$ |
|  |  | STD | $3.92939 \mathrm{E}-02$ | $3.35832 \mathrm{E}-02$ | $7.77028 \mathrm{E}-02$ | $4.03150 \mathrm{E}-02$ | $3.81090 \mathrm{E}-02$ | $4.71503 \mathrm{E}-02$ | $5.50605 \mathrm{E}-02$ | $3.52921 \mathrm{E}-02$ | $3.61836 \mathrm{E}-02$ | $2.62529 \mathrm{E}-02$ |
| 15 | 4 | AVG | $6.36360 \mathrm{E}-01$ | $6.02544 \mathrm{E}-01$ | $5.34587 \mathrm{E}-01$ | $5.44697 \mathrm{E}-01$ | $5.65985 \mathrm{E}-01$ | $6.29996 \mathrm{E}-01$ | $6.07923 \mathrm{E}-01$ | $6.04568 \mathrm{E}-01$ | $5.74359 \mathrm{E}-01$ | $6.00080 \mathrm{E}-01$ |
|  |  | STD | $4.55349 \mathrm{E}-02$ | $5.32134 \mathrm{E}-02$ | 8.78915E-02 | $7.87191 \mathrm{E}-02$ | $3.70454 \mathrm{E}-02$ | $3.60118 \mathrm{E}-02$ | $5.34394 \mathrm{E}-02$ | $3.91106 \mathrm{E}-02$ | $5.52377 \mathrm{E}-02$ | $4.98540 \mathrm{E}-02$ |
|  | 6 | AVG | $6.86167 \mathrm{E}-01$ | $6.82304 \mathrm{E}-01$ | $6.26511 \mathrm{E}-01$ | $6.27464 \mathrm{E}-01$ | $6.17675 \mathrm{E}-01$ | $6.38190 \mathrm{E}-01$ | $6.38134 \mathrm{E}-01$ | $6.42205 \mathrm{E}-01$ | $6.59411 \mathrm{E}-01$ | $6.49526 \mathrm{E}-01$ |
|  |  | STD | $3.97653 \mathrm{E}-02$ | $3.89445 \mathrm{E}-02$ | $7.68222 \mathrm{E}-02$ | $6.19415 \mathrm{E}-02$ | $4.53047 \mathrm{E}-02$ | $3.93184 \mathrm{E}-02$ | $5.50710 \mathrm{E}-02$ | $5.10128 \mathrm{E}-02$ | $4.58495 \mathrm{E}-02$ | $4.15164 \mathrm{E}-02$ |
|  | 8 | AVG | $7.45139 \mathrm{E}-01$ | $7.04744 \mathrm{E}-01$ | $7.37601 \mathrm{E}-01$ | $7.17530 \mathrm{E}-01$ | $6.95770 \mathrm{E}-01$ | $7.06529 \mathrm{E}-01$ | $7.13119 \mathrm{E}-01$ | $7.16507 \mathrm{E}-01$ | $7.19807 \mathrm{E}-01$ | $7.29167 \mathrm{E}-01$ |
|  |  | STD | $2.91676 \mathrm{E}-02$ | $3.33557 \mathrm{E}-02$ | $5.52354 \mathrm{E}-02$ | $5.62263 \mathrm{E}-02$ | $2.80122 \mathrm{E}-02$ | $3.57220 \mathrm{E}-02$ | $4.92552 \mathrm{E}-02$ | $2.38836 \mathrm{E}-02$ | $3.82647 \mathrm{E}-02$ | $2.47833 \mathrm{E}-02$ |
|  | 10 | AVG | $7.87880 \mathrm{E}-01$ | $7.54362 \mathrm{E}-01$ | $7.73589 \mathrm{E}-01$ | $7.87759 \mathrm{E}-01$ | $7.49161 \mathrm{E}-01$ | $7.82915 \mathrm{E}-01$ | $7.49752 \mathrm{E}-01$ | $7.82977 \mathrm{E}-01$ | $7.63991 \mathrm{E}-01$ | $7.78722 \mathrm{E}-01$ |
|  |  | STD | $2.78134 \mathrm{E}-02$ | $2.49951 \mathrm{E}-02$ | $6.21233 \mathrm{E}-02$ | $4.38821 \mathrm{E}-02$ | $3.86839 \mathrm{E}-02$ | $2.21020 \mathrm{E}-02$ | $5.79820 \mathrm{E}-02$ | $2.23019 \mathrm{E}-02$ | $4.12357 \mathrm{E}-02$ | $2.85286 \mathrm{E}-02$ |
| 16 | 4 | AVG | $6.51953 \mathrm{E}-01$ | $6.56720 \mathrm{E}-01$ | $6.56195 \mathrm{E}-01$ | $6.55192 \mathrm{E}-01$ | $6.44224 \mathrm{E}-01$ | 6.29636E-01 | $6.65927 \mathrm{E}-01$ | 6.60283E-01 | $6.61437 \mathrm{E}-01$ | $6.55668 \mathrm{E}-01$ |


|  |  | STD | $2.34119 \mathrm{E}-02$ | $2.87226 \mathrm{E}-02$ | $2.61553 \mathrm{E}-02$ | $4.07179 \mathrm{E}-02$ | $4.53812 \mathrm{E}-02$ | $2.04302 \mathrm{E}-02$ | $2.85412 \mathrm{E}-02$ | $\mathbf{1 . 8 6 6 3 6 E}-02$ | $3.03406 \mathrm{E}-02$ | $2.23488 \mathrm{E}-02$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | AVG | $7.64759 \mathrm{E}-01$ | $7.62502 \mathrm{E}-01$ | $7.46144 \mathrm{E}-01$ | $7.54511 \mathrm{E}-01$ | $7.32394 \mathrm{E}-01$ | $7.54716 \mathrm{E}-01$ | $7.58573 \mathrm{E}-01$ | $7.55007 \mathrm{E}-01$ | $7.65337 \mathrm{E}-01$ | $7.67956 \mathrm{E}-01$ |  |
|  | STD | $\mathbf{1 . 0 2 2 6 4 E - 0 2}$ | $1.27613 \mathrm{E}-02$ | $6.12651 \mathrm{E}-02$ | $2.27908 \mathrm{E}-02$ | $6.98065 \mathrm{E}-02$ | $1.23753 \mathrm{E}-02$ | $3.64829 \mathrm{E}-02$ | $1.66384 \mathrm{E}-02$ | $1.80152 \mathrm{E}-02$ | $1.44411 \mathrm{E}-02$ |  |
| 8 | AVG | $\mathbf{8 . 4 5 6 9 3 E}-01$ | $8.21918 \mathrm{E}-01$ | $8.26956 \mathrm{E}-01$ | $8.25834 \mathrm{E}-01$ | $7.85810 \mathrm{E}-01$ | $8.16308 \mathrm{E}-01$ | $8.11935 \mathrm{E}-01$ | $8.22555 \mathrm{E}-01$ | $8.23686 \mathrm{E}-01$ | $8.29901 \mathrm{E}-01$ |  |
|  | STD | $1.53076 \mathrm{E}-02$ | $1.81733 \mathrm{E}-02$ | $4.44089 \mathrm{E}-02$ | $2.02838 \mathrm{E}-02$ | $4.10387 \mathrm{E}-02$ | $2.75759 \mathrm{E}-02$ | $5.02462 \mathrm{E}-02$ | $\mathbf{1 . 3 6 8 1 3 \mathrm { E } - 0 2}$ | $2.29453 \mathrm{E}-02$ | $1.88379 \mathrm{E}-02$ |  |
| 10 | AVG | $\mathbf{8 . 8 1 5 6 8 E}-01$ | $8.70692 \mathrm{E}-01$ | $8.72314 \mathrm{E}-01$ | $8.77246 \mathrm{E}-01$ | $8.41482 \mathrm{E}-01$ | $8.61638 \mathrm{E}-01$ | $8.52846 \mathrm{E}-01$ | $8.62041 \mathrm{E}-01$ | $8.63832 \mathrm{E}-01$ | $8.66716 \mathrm{E}-01$ |  |
|  | STD | $\mathbf{1 . 2 2 3 3 1 E - 0 2}$ | $1.52555 \mathrm{E}-02$ | $3.14448 \mathrm{E}-02$ | $1.71810 \mathrm{E}-02$ | $3.08755 \mathrm{E}-02$ | $1.67826 \mathrm{E}-02$ | $3.67540 \mathrm{E}-02$ | $1.22938 \mathrm{E}-02$ | $2.27592 \mathrm{E}-02$ | $2.27730 \mathrm{E}-02$ |  |

Table A. 3 The AVG and STD comparison results of FSIM

| Image | Level | Item | MGWO | GWO | HHO | WOA | SSA | CS | IGWO | CLPSO | CLSGMFO | LGCMFO |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 4 | AVG | $7.42262 \mathrm{E}-01$ | $7.44669 \mathrm{E}-01$ | $6.88959 \mathrm{E}-01$ | $6.87987 \mathrm{E}-01$ | $7.25708 \mathrm{E}-01$ | 7.55771E-01 | $7.39063 \mathrm{E}-01$ | $7.40487 \mathrm{E}-01$ | $7.44114 \mathrm{E}-01$ | $7.30716 \mathrm{E}-01$ |
|  |  | STD | $1.86652 \mathrm{E}-02$ | $1.75398 \mathrm{E}-02$ | $6.46795 \mathrm{E}-02$ | $7.68435 \mathrm{E}-02$ | $3.61907 \mathrm{E}-02$ | 1.13916E-02 | $4.85919 \mathrm{E}-02$ | $1.79488 \mathrm{E}-02$ | $1.76647 \mathrm{E}-02$ | $5.47709 \mathrm{E}-02$ |
|  | 6 | AVG | $7.86750 \mathrm{E}-01$ | $7.67404 \mathrm{E}-01$ | $7.74445 \mathrm{E}-01$ | $7.63601 \mathrm{E}-01$ | $7.47214 \mathrm{E}-01$ | $7.68575 \mathrm{E}-01$ | $7.63617 \mathrm{E}-01$ | $7.65959 \mathrm{E}-01$ | 7.67582E-01 | $7.70479 \mathrm{E}-01$ |
|  |  | STD | $2.20434 \mathrm{E}-02$ | $3.42375 \mathrm{E}-02$ | $5.47301 \mathrm{E}-02$ | $5.52734 \mathrm{E}-02$ | $4.20420 \mathrm{E}-02$ | $4.87932 \mathrm{E}-02$ | $4.38969 \mathrm{E}-02$ | 1.76477E-02 | $2.73635 \mathrm{E}-02$ | $2.41462 \mathrm{E}-02$ |
|  | 8 | AVG | $8.12236 \mathrm{E}-01$ | $8.08048 \mathrm{E}-01$ | $7.95505 \mathrm{E}-01$ | $8.06395 \mathrm{E}-01$ | $7.95849 \mathrm{E}-01$ | $8.11114 \mathrm{E}-01$ | $8.03443 \mathrm{E}-01$ | $8.00371 \mathrm{E}-01$ | 8.21432E-01 | $8.10446 \mathrm{E}-01$ |
|  |  | STD | $4.97104 \mathrm{E}-02$ | $2.82296 \mathrm{E}-02$ | $6.78987 \mathrm{E}-02$ | $4.84688 \mathrm{E}-02$ | $5.13149 \mathrm{E}-02$ | $4.25593 \mathrm{E}-02$ | $4.21554 \mathrm{E}-02$ | $4.10788 \mathrm{E}-02$ | $4.05079 \mathrm{E}-02$ | $4.90429 \mathrm{E}-02$ |
|  | 10 | AVG | $8.42171 \mathrm{E}-01$ | $8.40082 \mathrm{E}-01$ | $8.42344 \mathrm{E}-01$ | $8.41325 \mathrm{E}-01$ | $8.22229 \mathrm{E}-01$ | $8.46969 \mathrm{E}-01$ | $8.45545 \mathrm{E}-01$ | $8.58234 \mathrm{E}-01$ | $8.56445 \mathrm{E}-01$ | $8.53396 \mathrm{E}-01$ |
|  |  | STD | $3.10713 \mathrm{E}-02$ | $3.15410 \mathrm{E}-02$ | $7.06856 \mathrm{E}-02$ | $5.20549 \mathrm{E}-02$ | $4.62434 \mathrm{E}-02$ | $4.03225 \mathrm{E}-02$ | $4.70472 \mathrm{E}-02$ | $2.51753 \mathrm{E}-02$ | $3.66517 \mathrm{E}-02$ | $3.83602 \mathrm{E}-02$ |
| 2 | 4 | AVG | $7.05111 \mathrm{E}-01$ | $6.90556 \mathrm{E}-01$ | $6.44304 \mathrm{E}-01$ | $6.57965 \mathrm{E}-01$ | $6.78333 \mathrm{E}-01$ | $7.00415 \mathrm{E}-01$ | $6.95110 \mathrm{E}-01$ | $6.88894 \mathrm{E}-01$ | $6.87098 \mathrm{E}-01$ | $6.97664 \mathrm{E}-01$ |
|  |  | STD | $1.98951 \mathrm{E}-02$ | $2.94455 \mathrm{E}-02$ | $6.62242 \mathrm{E}-02$ | $4.60971 \mathrm{E}-02$ | $3.11401 \mathrm{E}-02$ | $2.70589 \mathrm{E}-02$ | $2.62069 \mathrm{E}-02$ | $1.36305 \mathrm{E}-02$ | $3.06113 \mathrm{E}-02$ | $1.81943 \mathrm{E}-02$ |
|  | 6 | AVG | $7.59323 \mathrm{E}-01$ | $7.64889 \mathrm{E}-01$ | $7.35297 \mathrm{E}-01$ | $7.52265 \mathrm{E}-01$ | $7.39242 \mathrm{E}-01$ | $7.71915 \mathrm{E}-01$ | $7.58797 \mathrm{E}-01$ | $7.71240 \mathrm{E}-01$ | $7.68073 \mathrm{E}-01$ | $7.56548 \mathrm{E}-01$ |
|  |  | STD | $2.98581 \mathrm{E}-02$ | $2.22162 \mathrm{E}-02$ | $6.19286 \mathrm{E}-02$ | $4.13135 \mathrm{E}-02$ | $3.04852 \mathrm{E}-02$ | $3.03712 \mathrm{E}-02$ | $3.50191 \mathrm{E}-02$ | $2.42376 \mathrm{E}-02$ | $2.73212 \mathrm{E}-02$ | $2.80485 \mathrm{E}-02$ |
|  | 8 | AVG | $8.05450 \mathrm{E}-01$ | $8.05376 \mathrm{E}-01$ | $8.13104 \mathrm{E}-01$ | $8.13646 \mathrm{E}-01$ | $7.93739 \mathrm{E}-01$ | $8.11910 \mathrm{E}-01$ | $8.02986 \mathrm{E}-01$ | $8.04538 \mathrm{E}-01$ | 8.15208E-01 | $8.21693 \mathrm{E}-01$ |
|  |  | STD | $3.33660 \mathrm{E}-02$ | $1.68921 \mathrm{E}-02$ | $4.01763 \mathrm{E}-02$ | $3.20471 \mathrm{E}-02$ | $2.75000 \mathrm{E}-02$ | $2.64875 \mathrm{E}-02$ | $4.69754 \mathrm{E}-02$ | $2.12874 \mathrm{E}-02$ | $2.36397 \mathrm{E}-02$ | $2.19119 \mathrm{E}-02$ |
|  | 10 | AVG | 8.49092E-01 | $8.41716 \mathrm{E}-01$ | $8.43815 \mathrm{E}-01$ | $8.72443 \mathrm{E}-01$ | $8.41327 \mathrm{E}-01$ | 8.57053E-01 | 8.59588E-01 | $8.64060 \mathrm{E}-01$ | 8.55533E-01 | $8.58161 \mathrm{E}-01$ |


|  |  | STD | $2.84320 \mathrm{E}-02$ | $2.30028 \mathrm{E}-02$ | $6.19284 \mathrm{E}-02$ | $2.42430 \mathrm{E}-02$ | $2.67317 \mathrm{E}-02$ | $2.96192 \mathrm{E}-02$ | 3.35346E-02 | $2.35321 \mathrm{E}-02$ | $2.86665 \mathrm{E}-02$ | $3.23150 \mathrm{E}-02$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 4 | AVG | $7.74458 \mathrm{E}-01$ | $7.60653 \mathrm{E}-01$ | $6.95796 \mathrm{E}-01$ | $6.80884 \mathrm{E}-01$ | $6.94481 \mathrm{E}-01$ | $7.48207 \mathrm{E}-01$ | $7.27345 \mathrm{E}-01$ | $7.15029 \mathrm{E}-01$ | $7.07165 \mathrm{E}-01$ | $7.04973 \mathrm{E}-01$ |
|  |  | STD | $3.88603 \mathrm{E}-02$ | 5.35517E-02 | $7.00641 \mathrm{E}-02$ | $6.29216 \mathrm{E}-02$ | $6.31104 \mathrm{E}-02$ | $6.04169 \mathrm{E}-02$ | $5.74923 \mathrm{E}-02$ | $6.10030 \mathrm{E}-02$ | $5.49356 \mathrm{E}-02$ | $5.32615 \mathrm{E}-02$ |
|  | 6 | AVG | $8.12414 \mathrm{E}-01$ | $8.01411 \mathrm{E}-01$ | $7.95453 \mathrm{E}-01$ | $8.08984 \mathrm{E}-01$ | $7.93382 \mathrm{E}-01$ | $8.03117 \mathrm{E}-01$ | $8.01212 \mathrm{E}-01$ | $8.10626 \mathrm{E}-01$ | $7.97811 \mathrm{E}-01$ | $8.04777 \mathrm{E}-01$ |
|  |  | STD | $2.64258 \mathrm{E}-02$ | $3.77928 \mathrm{E}-02$ | $4.11486 \mathrm{E}-02$ | $4.26402 \mathrm{E}-02$ | $3.03191 \mathrm{E}-02$ | 1.14096E-02 | $3.00940 \mathrm{E}-02$ | $1.79611 \mathrm{E}-02$ | $3.12507 \mathrm{E}-02$ | $2.98317 \mathrm{E}-02$ |
|  | 8 | AVG | $8.57862 \mathrm{E}-01$ | $8.54602 \mathrm{E}-01$ | $8.55094 \mathrm{E}-01$ | $8.60379 \mathrm{E}-01$ | $8.39010 \mathrm{E}-01$ | $8.62989 \mathrm{E}-01$ | 8.54932E-01 | $8.71517 \mathrm{E}-01$ | $8.64660 \mathrm{E}-01$ | $8.70983 \mathrm{E}-01$ |
|  |  | STD | $2.20024 \mathrm{E}-02$ | $1.71040 \mathrm{E}-02$ | $4.29246 \mathrm{E}-02$ | $3.48447 \mathrm{E}-02$ | $3.42730 \mathrm{E}-02$ | $2.00526 \mathrm{E}-02$ | $2.81408 \mathrm{E}-02$ | $1.55599 \mathrm{E}-02$ | $2.35212 \mathrm{E}-02$ | $2.97234 \mathrm{E}-02$ |
|  | 10 | AVG | $9.04011 \mathrm{E}-01$ | $8.88767 \mathrm{E}-01$ | $8.75999 \mathrm{E}-01$ | $8.94403 \mathrm{E}-01$ | $8.83973 \mathrm{E}-01$ | $8.95854 \mathrm{E}-01$ | $8.86877 \mathrm{E}-01$ | $8.95733 \mathrm{E}-01$ | $9.03216 \mathrm{E}-01$ | $9.00348 \mathrm{E}-01$ |
|  |  | STD | $1.77254 \mathrm{E}-02$ | $1.84497 \mathrm{E}-02$ | $5.08332 \mathrm{E}-02$ | $3.93316 \mathrm{E}-02$ | $2.67304 \mathrm{E}-02$ | $2.10909 \mathrm{E}-02$ | $3.27769 \mathrm{E}-02$ | $1.46842 \mathrm{E}-02$ | $2.24910 \mathrm{E}-02$ | $2.48808 \mathrm{E}-02$ |
| 4 | 4 | AVG | $6.90763 \mathrm{E}-01$ | $6.93962 \mathrm{E}-01$ | $6.50047 \mathrm{E}-01$ | $6.47175 \mathrm{E}-01$ | $6.76248 \mathrm{E}-01$ | $6.86965 \mathrm{E}-01$ | $6.96084 \mathrm{E}-01$ | $6.75185 \mathrm{E}-01$ | $6.94451 \mathrm{E}-01$ | $6.88739 \mathrm{E}-01$ |
|  |  | STD | $1.92545 \mathrm{E}-02$ | $2.16984 \mathrm{E}-02$ | $4.99518 \mathrm{E}-02$ | $5.34978 \mathrm{E}-02$ | $3.16525 \mathrm{E}-02$ | $2.02665 \mathrm{E}-02$ | $2.36341 \mathrm{E}-02$ | $1.37018 \mathrm{E}-02$ | $1.44336 \mathrm{E}-02$ | $1.57402 \mathrm{E}-02$ |
|  | 6 | AVG | $7.66151 \mathrm{E}-01$ | $7.53672 \mathrm{E}-01$ | $7.41386 \mathrm{E}-01$ | $7.47383 \mathrm{E}-01$ | $7.35433 \mathrm{E}-01$ | $7.47585 \mathrm{E}-01$ | $7.59796 \mathrm{E}-01$ | $7.52546 \mathrm{E}-01$ | $7.52016 \mathrm{E}-01$ | $7.59489 \mathrm{E}-01$ |
|  |  | STD | $1.39900 \mathrm{E}-02$ | $1.14732 \mathrm{E}-02$ | $4.54797 \mathrm{E}-02$ | $2.45453 \mathrm{E}-02$ | $3.84182 \mathrm{E}-02$ | $2.50865 \mathrm{E}-02$ | $2.48896 \mathrm{E}-02$ | $1.03798 \mathrm{E}-02$ | $1.78679 \mathrm{E}-02$ | $2.02345 \mathrm{E}-02$ |
|  | 8 | AVG | $8.09193 \mathrm{E}-01$ | $7.94734 \mathrm{E}-01$ | $7.93180 \mathrm{E}-01$ | $8.00862 \mathrm{E}-01$ | $7.63734 \mathrm{E}-01$ | $7.91142 \mathrm{E}-01$ | $8.03790 \mathrm{E}-01$ | $8.02091 \mathrm{E}-01$ | $8.03304 \mathrm{E}-01$ | $8.09042 \mathrm{E}-01$ |
|  |  | STD | $2.10183 \mathrm{E}-02$ | $1.83052 \mathrm{E}-02$ | $3.87424 \mathrm{E}-02$ | $3.73583 \mathrm{E}-02$ | $2.98438 \mathrm{E}-02$ | $2.53959 \mathrm{E}-02$ | $4.08494 \mathrm{E}-02$ | $1.92872 \mathrm{E}-02$ | $2.06432 \mathrm{E}-02$ | $2.40588 \mathrm{E}-02$ |
|  | 10 | AVG | $8.55586 \mathrm{E}-01$ | $8.35848 \mathrm{E}-01$ | $8.52356 \mathrm{E}-01$ | $8.47903 \mathrm{E}-01$ | $8.24817 \mathrm{E}-01$ | $8.49921 \mathrm{E}-01$ | $8.40126 \mathrm{E}-01$ | $8.52673 \mathrm{E}-01$ | $8.51502 \mathrm{E}-01$ | $8.51853 \mathrm{E}-01$ |
|  |  | STD | $2.05859 \mathrm{E}-02$ | $1.95029 \mathrm{E}-02$ | $4.02337 \mathrm{E}-02$ | $2.41174 \mathrm{E}-02$ | $2.81269 \mathrm{E}-02$ | $2.60101 \mathrm{E}-02$ | $3.51079 \mathrm{E}-02$ | $1.48027 \mathrm{E}-02$ | $2.46008 \mathrm{E}-02$ | $2.09207 \mathrm{E}-02$ |
| 5 | 4 | AVG | $7.33317 \mathrm{E}-01$ | $7.22874 \mathrm{E}-01$ | $6.83276 \mathrm{E}-01$ | $6.91249 \mathrm{E}-01$ | $7.15288 \mathrm{E}-01$ | $7.43070 \mathrm{E}-01$ | $7.18165 \mathrm{E}-01$ | $6.95745 \mathrm{E}-01$ | $7.32808 \mathrm{E}-01$ | $7.25490 \mathrm{E}-01$ |
|  |  | STD | $5.28859 \mathrm{E}-02$ | $4.57898 \mathrm{E}-02$ | $8.39906 \mathrm{E}-02$ | $6.69462 \mathrm{E}-02$ | $6.27805 \mathrm{E}-02$ | $5.41613 \mathrm{E}-02$ | 6.11746E-02 | $6.17690 \mathrm{E}-02$ | $5.22439 \mathrm{E}-02$ | $3.91841 \mathrm{E}-02$ |
|  | 6 | AVG | $7.88650 \mathrm{E}-01$ | $7.84489 \mathrm{E}-01$ | $7.90306 \mathrm{E}-01$ | $7.91429 \mathrm{E}-01$ | $7.47076 \mathrm{E}-01$ | $7.84052 \mathrm{E}-01$ | $7.90212 \mathrm{E}-01$ | $7.40261 \mathrm{E}-01$ | 8.08082E-01 | $8.13845 \mathrm{E}-01$ |
|  |  | STD | $3.92756 \mathrm{E}-02$ | $5.08392 \mathrm{E}-02$ | $7.28987 \mathrm{E}-02$ | $5.30187 \mathrm{E}-02$ | $6.98011 \mathrm{E}-02$ | $5.24575 \mathrm{E}-02$ | $5.25158 \mathrm{E}-02$ | $6.42047 \mathrm{E}-02$ | $4.11076 \mathrm{E}-02$ | $5.64539 \mathrm{E}-02$ |
|  | 8 | AVG | $8.55773 \mathrm{E}-01$ | $8.45612 \mathrm{E}-01$ | $8.53626 \mathrm{E}-01$ | $8.60562 \mathrm{E}-01$ | $8.21505 \mathrm{E}-01$ | $8.44765 \mathrm{E}-01$ | $8.17958 \mathrm{E}-01$ | $8.32462 \mathrm{E}-01$ | $8.68496 \mathrm{E}-01$ | $8.76754 \mathrm{E}-01$ |
|  |  | STD | $4.34516 \mathrm{E}-02$ | $2.67958 \mathrm{E}-02$ | $5.94451 \mathrm{E}-02$ | $5.11652 \mathrm{E}-02$ | $5.34587 \mathrm{E}-02$ | $4.21002 \mathrm{E}-02$ | $5.47307 \mathrm{E}-02$ | $2.95321 \mathrm{E}-02$ | $3.12571 \mathrm{E}-02$ | $3.19100 \mathrm{E}-02$ |
|  | 10 | AVG | $8.94774 \mathrm{E}-01$ | $8.79788 \mathrm{E}-01$ | $8.85665 \mathrm{E}-01$ | $9.04563 \mathrm{E}-01$ | $8.50109 \mathrm{E}-01$ | $8.67636 \mathrm{E}-01$ | $8.68319 \mathrm{E}-01$ | $8.93841 \mathrm{E}-01$ | $8.93891 \mathrm{E}-01$ | $8.92388 \mathrm{E}-01$ |
|  |  | STD | $2.93897 \mathrm{E}-02$ | $2.83277 \mathrm{E}-02$ | $5.94755 \mathrm{E}-02$ | $3.77586 \mathrm{E}-02$ | $4.99569 \mathrm{E}-02$ | $5.94286 \mathrm{E}-02$ | $4.43632 \mathrm{E}-02$ | $2.19590 \mathrm{E}-02$ | $2.64340 \mathrm{E}-02$ | $2.66145 \mathrm{E}-02$ |
| 6 | 4 | AVG | $7.27879 \mathrm{E}-01$ | $6.94065 \mathrm{E}-01$ | $6.74322 \mathrm{E}-01$ | $6.94154 \mathrm{E}-01$ | $6.79757 \mathrm{E}-01$ | $7.26647 \mathrm{E}-01$ | $6.88295 \mathrm{E}-01$ | $7.07533 \mathrm{E}-01$ | $6.90343 \mathrm{E}-01$ | $6.90226 \mathrm{E}-01$ |


|  |  | STD | 4.67994E-02 | $4.41469 \mathrm{E}-02$ | $6.10399 \mathrm{E}-02$ | $5.51931 \mathrm{E}-02$ | 4.43792E-02 | $2.61237 \mathrm{E}-02$ | $5.76140 \mathrm{E}-02$ | $3.36665 \mathrm{E}-02$ | $5.30029 \mathrm{E}-02$ | 4.91235E-02 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 6 | AVG | $7.56838 \mathrm{E}-01$ | $7.53431 \mathrm{E}-01$ | $7.83459 \mathrm{E}-01$ | $7.70584 \mathrm{E}-01$ | $7.60154 \mathrm{E}-01$ | $7.43491 \mathrm{E}-01$ | $7.67175 \mathrm{E}-01$ | $7.67087 \mathrm{E}-01$ | $7.74079 \mathrm{E}-01$ | $7.60221 \mathrm{E}-01$ |
|  |  | STD | $3.12951 \mathrm{E}-02$ | $2.85080 \mathrm{E}-02$ | $4.45144 \mathrm{E}-02$ | $4.55529 \mathrm{E}-02$ | $3.95020 \mathrm{E}-02$ | $2.82038 \mathrm{E}-02$ | $3.46831 \mathrm{E}-02$ | $3.25951 \mathrm{E}-02$ | $3.51969 \mathrm{E}-02$ | $3.10601 \mathrm{E}-02$ |
|  | 8 | AVG | $8.31062 \mathrm{E}-01$ | $8.13617 \mathrm{E}-01$ | $8.36309 \mathrm{E}-01$ | $8.24705 \mathrm{E}-01$ | $8.14962 \mathrm{E}-01$ | $8.28049 \mathrm{E}-01$ | $8.32517 \mathrm{E}-01$ | $8.39789 \mathrm{E}-01$ | $8.33058 \mathrm{E}-01$ | $8.23599 \mathrm{E}-01$ |
|  |  | STD | $2.34553 \mathrm{E}-02$ | $1.95159 \mathrm{E}-02$ | $4.65438 \mathrm{E}-02$ | $4.25260 \mathrm{E}-02$ | $3.70720 \mathrm{E}-02$ | $2.79190 \mathrm{E}-02$ | $2.56645 \mathrm{E}-02$ | $1.86664 \mathrm{E}-02$ | $2.46894 \mathrm{E}-02$ | $2.96627 \mathrm{E}-02$ |
|  | 10 | AVG | $8.77128 \mathrm{E}-01$ | $8.57186 \mathrm{E}-01$ | $8.60214 \mathrm{E}-01$ | $8.74697 \mathrm{E}-01$ | $8.51269 \mathrm{E}-01$ | $8.73396 \mathrm{E}-01$ | $8.64163 \mathrm{E}-01$ | $8.85284 \mathrm{E}-01$ | $8.73782 \mathrm{E}-01$ | $8.74057 \mathrm{E}-01$ |
|  |  | STD | $1.73666 \mathrm{E}-02$ | $1.58787 \mathrm{E}-02$ | $5.51721 \mathrm{E}-02$ | $2.85639 \mathrm{E}-02$ | $3.34040 \mathrm{E}-02$ | $2.74682 \mathrm{E}-02$ | $4.44869 \mathrm{E}-02$ | $1.42587 \mathrm{E}-02$ | $2.87122 \mathrm{E}-02$ | $2.61035 \mathrm{E}-02$ |
| 7 | 4 | AVG | $6.68663 \mathrm{E}-01$ | $6.56391 \mathrm{E}-01$ | $6.33430 \mathrm{E}-01$ | $6.30745 \mathrm{E}-01$ | $6.33433 \mathrm{E}-01$ | $6.58345 \mathrm{E}-01$ | $6.62612 \mathrm{E}-01$ | 6.73466E-01 | $6.59385 \mathrm{E}-01$ | $6.67427 \mathrm{E}-01$ |
|  |  | STD | $3.70091 \mathrm{E}-02$ | $3.48142 \mathrm{E}-02$ | $4.42390 \mathrm{E}-02$ | $3.63166 \mathrm{E}-02$ | $3.18523 \mathrm{E}-02$ | $2.39836 \mathrm{E}-02$ | $4.31242 \mathrm{E}-02$ | $3.38711 \mathrm{E}-02$ | $3.70041 \mathrm{E}-02$ | $3.12566 \mathrm{E}-02$ |
|  | 6 | AVG | $7.31540 \mathrm{E}-01$ | $7.27776 \mathrm{E}-01$ | $7.23686 \mathrm{E}-01$ | $7.15571 \mathrm{E}-01$ | $6.88164 \mathrm{E}-01$ | $7.17629 \mathrm{E}-01$ | $7.11749 \mathrm{E}-01$ | $7.04417 \mathrm{E}-01$ | $7.16366 \mathrm{E}-01$ | $7.19824 \mathrm{E}-01$ |
|  |  | STD | $3.39968 \mathrm{E}-02$ | $4.95942 \mathrm{E}-02$ | $5.16821 \mathrm{E}-02$ | $4.90962 \mathrm{E}-02$ | $3.76814 \mathrm{E}-02$ | $3.99546 \mathrm{E}-02$ | $5.06414 \mathrm{E}-02$ | $4.03340 \mathrm{E}-02$ | $3.37051 \mathrm{E}-02$ | $4.30497 \mathrm{E}-02$ |
|  | 8 | AVG | $7.83212 \mathrm{E}-01$ | $7.56703 \mathrm{E}-01$ | $7.68690 \mathrm{E}-01$ | $7.97389 \mathrm{E}-01$ | $7.59043 \mathrm{E}-01$ | $7.79973 \mathrm{E}-01$ | $7.79923 \mathrm{E}-01$ | $7.78475 \mathrm{E}-01$ | $7.88110 \mathrm{E}-01$ | $7.90848 \mathrm{E}-01$ |
|  |  | STD | $4.25417 \mathrm{E}-02$ | $2.97724 \mathrm{E}-02$ | $6.24773 \mathrm{E}-02$ | $4.59364 \mathrm{E}-02$ | $4.28191 \mathrm{E}-02$ | $3.15821 \mathrm{E}-02$ | $4.78002 \mathrm{E}-02$ | $2.72182 \mathrm{E}-02$ | $3.42261 \mathrm{E}-02$ | $3.49940 \mathrm{E}-02$ |
|  | 10 | AVG | $8.38298 \mathrm{E}-01$ | $8.09689 \mathrm{E}-01$ | $8.20551 \mathrm{E}-01$ | $8.43409 \mathrm{E}-01$ | $7.99982 \mathrm{E}-01$ | $8.22538 \mathrm{E}-01$ | $8.10181 \mathrm{E}-01$ | $8.22834 \mathrm{E}-01$ | $8.24241 \mathrm{E}-01$ | $8.32246 \mathrm{E}-01$ |
|  |  | STD | $3.65146 \mathrm{E}-02$ | $3.86762 \mathrm{E}-02$ | $4.90802 \mathrm{E}-02$ | $3.89862 \mathrm{E}-02$ | $3.09477 \mathrm{E}-02$ | $2.93555 \mathrm{E}-02$ | $4.99931 \mathrm{E}-02$ | $2.07402 \mathrm{E}-02$ | $3.86288 \mathrm{E}-02$ | $2.07102 \mathrm{E}-02$ |
| 8 | 4 | AVG | $6.50816 \mathrm{E}-01$ | $6.38466 \mathrm{E}-01$ | $6.56789 \mathrm{E}-01$ | $6.61362 \mathrm{E}-01$ | $6.73025 \mathrm{E}-01$ | $6.72910 \mathrm{E}-01$ | $6.67048 \mathrm{E}-01$ | $6.78231 \mathrm{E}-01$ | $6.81130 \mathrm{E}-01$ | $6.97210 \mathrm{E}-01$ |
|  |  | STD | $4.38705 \mathrm{E}-02$ | $4.08674 \mathrm{E}-02$ | $4.66461 \mathrm{E}-02$ | $4.37606 \mathrm{E}-02$ | $3.79156 \mathrm{E}-02$ | $3.28203 \mathrm{E}-02$ | $4.15800 \mathrm{E}-02$ | $2.84443 \mathrm{E}-02$ | $3.57504 \mathrm{E}-02$ | $2.26616 \mathrm{E}-02$ |
|  | 6 | AVG | $7.56792 \mathrm{E}-01$ | $7.59559 \mathrm{E}-01$ | $7.30153 \mathrm{E}-01$ | $7.23491 \mathrm{E}-01$ | $7.06194 \mathrm{E}-01$ | $7.18673 \mathrm{E}-01$ | $7.24364 \mathrm{E}-01$ | $7.45978 \mathrm{E}-01$ | $7.38345 \mathrm{E}-01$ | $7.32320 \mathrm{E}-01$ |
|  |  | STD | $3.70076 \mathrm{E}-02$ | $3.39074 \mathrm{E}-02$ | $3.81534 \mathrm{E}-02$ | $3.57594 \mathrm{E}-02$ | $4.35491 \mathrm{E}-02$ | $4.28611 \mathrm{E}-02$ | $3.98255 \mathrm{E}-02$ | $2.99695 \mathrm{E}-02$ | $2.97366 \mathrm{E}-02$ | $3.89707 \mathrm{E}-02$ |
|  | 8 | AVG | $7.98068 \mathrm{E}-01$ | $7.79406 \mathrm{E}-01$ | $7.91108 \mathrm{E}-01$ | $7.85331 \mathrm{E}-01$ | $7.58886 \mathrm{E}-01$ | $7.81328 \mathrm{E}-01$ | 7.69274E-01 | $7.83826 \mathrm{E}-01$ | $7.88242 \mathrm{E}-01$ | $7.90603 \mathrm{E}-01$ |
|  |  | STD | $3.00876 \mathrm{E}-02$ | $3.73142 \mathrm{E}-02$ | $3.42569 \mathrm{E}-02$ | $4.84792 \mathrm{E}-02$ | $3.82135 \mathrm{E}-02$ | $2.20064 \mathrm{E}-02$ | $2.88560 \mathrm{E}-02$ | $1.48058 \mathrm{E}-02$ | $3.52130 \mathrm{E}-02$ | $2.69022 \mathrm{E}-02$ |
|  | 10 | AVG | $8.21516 \mathrm{E}-01$ | $8.07742 \mathrm{E}-01$ | $8.22752 \mathrm{E}-01$ | $8.41110 \mathrm{E}-01$ | $7.96359 \mathrm{E}-01$ | $8.19305 \mathrm{E}-01$ | $8.07257 \mathrm{E}-01$ | $8.23595 \mathrm{E}-01$ | $8.29173 \mathrm{E}-01$ | $8.30696 \mathrm{E}-01$ |
|  |  | STD | $3.31640 \mathrm{E}-02$ | $2.63066 \mathrm{E}-02$ | $3.96516 \mathrm{E}-02$ | $2.94681 \mathrm{E}-02$ | $3.87886 \mathrm{E}-02$ | $2.45126 \mathrm{E}-02$ | $3.91885 \mathrm{E}-02$ | $1.98085 \mathrm{E}-02$ | $2.17715 \mathrm{E}-02$ | $2.67618 \mathrm{E}-02$ |
| 9 | 4 | AVG | $7.61948 \mathrm{E}-01$ | $7.53175 \mathrm{E}-01$ | $7.52435 \mathrm{E}-01$ | $7.30697 \mathrm{E}-01$ | $7.41684 \mathrm{E}-01$ | $7.51307 \mathrm{E}-01$ | $7.64556 \mathrm{E}-01$ | $7.35844 \mathrm{E}-01$ | $7.54731 \mathrm{E}-01$ | $7.64164 \mathrm{E}-01$ |
|  |  | STD | $1.78195 \mathrm{E}-02$ | $1.14657 \mathrm{E}-02$ | $5.66618 \mathrm{E}-02$ | $5.29522 \mathrm{E}-02$ | $5.22622 \mathrm{E}-02$ | $2.35027 \mathrm{E}-02$ | $2.86109 \mathrm{E}-02$ | $1.58349 \mathrm{E}-02$ | $3.27733 \mathrm{E}-02$ | $3.18385 \mathrm{E}-02$ |
|  | 6 | AVG | $8.43730 \mathrm{E}-01$ | 8.26638E-01 | $7.71568 \mathrm{E}-01$ | $8.03700 \mathrm{E}-01$ | $7.75938 \mathrm{E}-01$ | $8.27825 \mathrm{E}-01$ | $8.14455 \mathrm{E}-01$ | $8.35315 \mathrm{E}-01$ | $8.23724 \mathrm{E}-01$ | $8.34215 \mathrm{E}-01$ |



|  | 8 | AVG | $8.50054 \mathrm{E}-01$ | 8.29212E-01 | $8.37948 \mathrm{E}-01$ | $8.44771 \mathrm{E}-01$ | 8.09973E-01 | 8.41512E-01 | $8.25241 \mathrm{E}-01$ | $8.30980 \mathrm{E}-01$ | $8.27619 \mathrm{E}-01$ | $8.34657 \mathrm{E}-01$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | STD | $2.53911 \mathrm{E}-02$ | $2.80227 \mathrm{E}-02$ | $5.33200 \mathrm{E}-02$ | $3.00159 \mathrm{E}-02$ | $3.64784 \mathrm{E}-02$ | $3.65449 \mathrm{E}-02$ | $4.49090 \mathrm{E}-02$ | $3.28834 \mathrm{E}-02$ | $3.03321 \mathrm{E}-02$ | $2.60258 \mathrm{E}-02$ |
|  | 10 | AVG | $8.76886 \mathrm{E}-01$ | $8.60080 \mathrm{E}-01$ | $8.50389 \mathrm{E}-01$ | $8.67417 \mathrm{E}-01$ | $8.53421 \mathrm{E}-01$ | $8.76717 \mathrm{E}-01$ | 8.69656E-01 | $8.72006 \mathrm{E}-01$ | $8.80039 \mathrm{E}-01$ | $8.72968 \mathrm{E}-01$ |
|  |  | STD | $2.21727 \mathrm{E}-02$ | $2.16217 \mathrm{E}-02$ | $7.94792 \mathrm{E}-02$ | $4.17962 \mathrm{E}-02$ | $3.25363 \mathrm{E}-02$ | $2.61660 \mathrm{E}-02$ | $3.31208 \mathrm{E}-02$ | $2.01098 \mathrm{E}-02$ | $2.87511 \mathrm{E}-02$ | $2.85546 \mathrm{E}-02$ |
| 13 | 4 | AVG | $7.62535 \mathrm{E}-01$ | $7.59066 \mathrm{E}-01$ | $7.43284 \mathrm{E}-01$ | $7.40736 \mathrm{E}-01$ | $7.21019 \mathrm{E}-01$ | $7.63924 \mathrm{E}-01$ | $7.54061 \mathrm{E}-01$ | $7.60134 \mathrm{E}-01$ | $7.45329 \mathrm{E}-01$ | $7.48735 \mathrm{E}-01$ |
|  |  | STD | $1.85562 \mathrm{E}-02$ | $2.73603 \mathrm{E}-02$ | $3.80954 \mathrm{E}-02$ | $4.61834 \mathrm{E}-02$ | $4.26588 \mathrm{E}-02$ | $1.13370 \mathrm{E}-02$ | $2.81793 \mathrm{E}-02$ | $1.25754 \mathrm{E}-02$ | $1.68431 \mathrm{E}-02$ | $2.15607 \mathrm{E}-02$ |
|  | 6 | AVG | $8.19623 \mathrm{E}-01$ | $8.07293 \mathrm{E}-01$ | 8.04627E-01 | $7.91394 \mathrm{E}-01$ | $7.75397 \mathrm{E}-01$ | $7.97054 \mathrm{E}-01$ | $7.99533 \mathrm{E}-01$ | $7.85062 \mathrm{E}-01$ | $8.04361 \mathrm{E}-01$ | $7.98338 \mathrm{E}-01$ |
|  |  | STD | $2.44719 \mathrm{E}-02$ | $2.64231 \mathrm{E}-02$ | $4.58195 \mathrm{E}-02$ | $4.34391 \mathrm{E}-02$ | $4.52621 \mathrm{E}-02$ | $1.93550 \mathrm{E}-02$ | $4.08747 \mathrm{E}-02$ | $1.43264 \mathrm{E}-02$ | $2.82921 \mathrm{E}-02$ | $2.63893 \mathrm{E}-02$ |
|  | 8 | AVG | $8.63776 \mathrm{E}-01$ | $8.43475 \mathrm{E}-01$ | $8.32960 \mathrm{E}-01$ | $8.27570 \mathrm{E}-01$ | $8.34108 \mathrm{E}-01$ | $8.55084 \mathrm{E}-01$ | $8.46735 \mathrm{E}-01$ | $8.60818 \mathrm{E}-01$ | $8.54147 \mathrm{E}-01$ | $8.67426 \mathrm{E}-01$ |
|  |  | STD | $1.95635 \mathrm{E}-02$ | $1.64261 \mathrm{E}-02$ | $5.42454 \mathrm{E}-02$ | $5.89026 \mathrm{E}-02$ | $2.80823 \mathrm{E}-02$ | $2.02161 \mathrm{E}-02$ | $4.51556 \mathrm{E}-02$ | $1.75062 \mathrm{E}-02$ | $2.29389 \mathrm{E}-02$ | $2.06477 \mathrm{E}-02$ |
|  | 10 | AVG | $8.94145 \mathrm{E}-01$ | $8.79414 \mathrm{E}-01$ | $8.55489 \mathrm{E}-01$ | $8.81226 \mathrm{E}-01$ | 8.61522E-01 | $8.92378 \mathrm{E}-01$ | $8.74334 \mathrm{E}-01$ | $8.87932 \mathrm{E}-01$ | $8.98788 \mathrm{E}-01$ | $8.95076 \mathrm{E}-01$ |
|  |  | STD | $2.38238 \mathrm{E}-02$ | $2.09916 \mathrm{E}-02$ | $6.88507 \mathrm{E}-02$ | $4.23204 \mathrm{E}-02$ | $3.38737 \mathrm{E}-02$ | $1.96984 \mathrm{E}-02$ | $2.90661 \mathrm{E}-02$ | 1.53226E-02 | $2.40540 \mathrm{E}-02$ | $2.00209 \mathrm{E}-02$ |
| 14 | 4 | AVG | $7.06918 \mathrm{E}-01$ | $7.09833 \mathrm{E}-01$ | $6.47742 \mathrm{E}-01$ | $6.50700 \mathrm{E}-01$ | $6.77945 \mathrm{E}-01$ | $7.03898 \mathrm{E}-01$ | $6.86417 \mathrm{E}-01$ | $6.83741 \mathrm{E}-01$ | $6.85514 \mathrm{E}-01$ | $6.94071 \mathrm{E}-01$ |
|  |  | STD | $2.20435 \mathrm{E}-02$ | $1.61976 \mathrm{E}-02$ | $3.83074 \mathrm{E}-02$ | $4.62849 \mathrm{E}-02$ | $2.61333 \mathrm{E}-02$ | $1.77407 \mathrm{E}-02$ | $3.32482 \mathrm{E}-02$ | $3.22357 \mathrm{E}-02$ | $2.91149 \mathrm{E}-02$ | $2.63902 \mathrm{E}-02$ |
|  | 6 | AVG | $7.71045 \mathrm{E}-01$ | $7.72526 \mathrm{E}-01$ | $7.26644 \mathrm{E}-01$ | $7.39500 \mathrm{E}-01$ | 7.23682E-01 | $7.63222 \mathrm{E}-01$ | $7.56260 \mathrm{E}-01$ | $7.54316 \mathrm{E}-01$ | $7.56071 \mathrm{E}-01$ | $7.58952 \mathrm{E}-01$ |
|  |  | STD | $3.26710 \mathrm{E}-02$ | $1.91023 \mathrm{E}-02$ | $6.52241 \mathrm{E}-02$ | $3.61188 \mathrm{E}-02$ | $3.77530 \mathrm{E}-02$ | $3.52502 \mathrm{E}-02$ | $3.19723 \mathrm{E}-02$ | $2.93655 \mathrm{E}-02$ | $2.72228 \mathrm{E}-02$ | $3.04133 \mathrm{E}-02$ |
|  | 8 | AVG | $8.28214 \mathrm{E}-01$ | $8.24846 \mathrm{E}-01$ | $7.96339 \mathrm{E}-01$ | $8.02969 \mathrm{E}-01$ | $7.77958 \mathrm{E}-01$ | $8.06780 \mathrm{E}-01$ | $7.93140 \mathrm{E}-01$ | $8.19880 \mathrm{E}-01$ | 8.19842E-01 | $8.13225 \mathrm{E}-01$ |
|  |  | STD | $2.44999 \mathrm{E}-02$ | $1.87294 \mathrm{E}-02$ | $5.83320 \mathrm{E}-02$ | $5.34934 \mathrm{E}-02$ | $3.57573 \mathrm{E}-02$ | $3.97187 \mathrm{E}-02$ | $4.33413 \mathrm{E}-02$ | $2.72321 \mathrm{E}-02$ | $2.42835 \mathrm{E}-02$ | $2.62752 \mathrm{E}-02$ |
|  | 10 | AVG | $8.55081 \mathrm{E}-01$ | $8.53418 \mathrm{E}-01$ | $8.36027 \mathrm{E}-01$ | $8.49411 \mathrm{E}-01$ | 8.25584E-01 | $8.53694 \mathrm{E}-01$ | $8.32636 \mathrm{E}-01$ | $8.54237 \mathrm{E}-01$ | 8.46114E-01 | $8.65176 \mathrm{E}-01$ |
|  |  | STD | $3.37592 \mathrm{E}-02$ | $2.45591 \mathrm{E}-02$ | $6.10827 \mathrm{E}-02$ | $3.12214 \mathrm{E}-02$ | $2.89731 \mathrm{E}-02$ | $3.38634 \mathrm{E}-02$ | $3.75507 \mathrm{E}-02$ | $2.36192 \mathrm{E}-02$ | $3.27917 \mathrm{E}-02$ | $2.03536 \mathrm{E}-02$ |
| 15 | 4 | AVG | $7.13128 \mathrm{E}-01$ | $6.80917 \mathrm{E}-01$ | $6.51046 \mathrm{E}-01$ | $6.52800 \mathrm{E}-01$ | $6.63377 \mathrm{E}-01$ | $7.10917 \mathrm{E}-01$ | $6.88880 \mathrm{E}-01$ | $7.01688 \mathrm{E}-01$ | $6.78809 \mathrm{E}-01$ | $6.93839 \mathrm{E}-01$ |
|  |  | STD | $4.21273 \mathrm{E}-02$ | $5.50695 \mathrm{E}-02$ | $4.74420 \mathrm{E}-02$ | $5.05985 \mathrm{E}-02$ | $3.57673 \mathrm{E}-02$ | $4.08533 \mathrm{E}-02$ | $5.00496 \mathrm{E}-02$ | $4.16083 \mathrm{E}-02$ | $5.18749 \mathrm{E}-02$ | $5.39054 \mathrm{E}-02$ |
|  | 6 | AVG | $7.71650 \mathrm{E}-01$ | $7.73608 \mathrm{E}-01$ | $7.19292 \mathrm{E}-01$ | $7.26011 \mathrm{E}-01$ | $7.08564 \mathrm{E}-01$ | $7.25095 \mathrm{E}-01$ | $7.26451 \mathrm{E}-01$ | $7.26418 \mathrm{E}-01$ | $7.46853 \mathrm{E}-01$ | $7.40669 \mathrm{E}-01$ |
|  |  | STD | $3.48040 \mathrm{E}-02$ | $3.36605 \mathrm{E}-02$ | $5.29347 \mathrm{E}-02$ | $4.14945 \mathrm{E}-02$ | $3.92446 \mathrm{E}-02$ | $3.00735 \mathrm{E}-02$ | $4.43477 \mathrm{E}-02$ | $3.86426 \mathrm{E}-02$ | $3.84280 \mathrm{E}-02$ | $3.18813 \mathrm{E}-02$ |
|  | 8 | AVG | $8.09375 \mathrm{E}-01$ | $7.83389 \mathrm{E}-01$ | $8.02810 \mathrm{E}-01$ | $7.93675 \mathrm{E}-01$ | $7.71100 \mathrm{E}-01$ | 7.82352E-01 | $7.84592 \mathrm{E}-01$ | $7.89385 \mathrm{E}-01$ | $7.94292 \mathrm{E}-01$ | $8.02991 \mathrm{E}-01$ |


|  |  | STD | $2.56185 \mathrm{E}-02$ | $2.71677 \mathrm{E}-02$ | $2.99182 \mathrm{E}-02$ | $3.79148 \mathrm{E}-02$ | $2.75919 \mathrm{E}-02$ | $2.25201 \mathrm{E}-02$ | $3.00185 \mathrm{E}-02$ | $1.71159 \mathrm{E}-02$ | $3.03201 \mathrm{E}-02$ | $2.03186 \mathrm{E}-02$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 10 | AVG | 8.39592E-01 | $8.20649 \mathrm{E}-01$ | 8.39252E-01 | $8.48248 \mathrm{E}-01$ | 8.18922E-01 | $8.42150 \mathrm{E}-01$ | 8.16917E-01 | $8.48495 \mathrm{E}-01$ | $8.35676 \mathrm{E}-01$ | $8.46100 \mathrm{E}-01$ |
|  |  | STD | $2.34926 \mathrm{E}-02$ | $2.04047 \mathrm{E}-02$ | $5.03573 \mathrm{E}-02$ | $3.02018 \mathrm{E}-02$ | $3.08075 \mathrm{E}-02$ | $1.72584 \mathrm{E}-02$ | $4.08611 \mathrm{E}-02$ | $1.59715 \mathrm{E}-02$ | $2.90864 \mathrm{E}-02$ | $2.06943 \mathrm{E}-02$ |
| 16 | 4 | AVG | $7.66905 \mathrm{E}-01$ | $7.65892 \mathrm{E}-01$ | $7.62120 \mathrm{E}-01$ | $7.63795 \mathrm{E}-01$ | $7.62749 \mathrm{E}-01$ | $7.59181 \mathrm{E}-01$ | $7.72847 \mathrm{E}-01$ | $7.70303 \mathrm{E}-01$ | $7.70664 \mathrm{E}-01$ | $7.68496 \mathrm{E}-01$ |
|  |  | STD | $9.31640 \mathrm{E}-03$ | $1.37309 \mathrm{E}-02$ | $1.81846 \mathrm{E}-02$ | $2.05185 \mathrm{E}-02$ | $2.17582 \mathrm{E}-02$ | $1.05657 \mathrm{E}-02$ | $1.33500 \mathrm{E}-02$ | $8.07622 \mathrm{E}-03$ | $1.25384 \mathrm{E}-02$ | $9.86654 \mathrm{E}-03$ |
|  | 6 | AVG | $8.50321 \mathrm{E}-01$ | $8.49296 \mathrm{E}-01$ | $8.33078 \mathrm{E}-01$ | $8.39374 \mathrm{E}-01$ | $8.22497 \mathrm{E}-01$ | $8.44611 \mathrm{E}-01$ | $8.43410 \mathrm{E}-01$ | $8.42001 \mathrm{E}-01$ | $8.49757 \mathrm{E}-01$ | $8.51446 \mathrm{E}-01$ |
|  |  | STD | $7.53502 \mathrm{E}-03$ | $1.02172 \mathrm{E}-02$ | $3.95610 \mathrm{E}-02$ | $1.59781 \mathrm{E}-02$ | $4.88204 \mathrm{E}-02$ | $8.63441 \mathrm{E}-03$ | $2.45924 \mathrm{E}-02$ | $1.25898 \mathrm{E}-02$ | $1.15325 \mathrm{E}-02$ | $9.77473 \mathrm{E}-03$ |
|  | 8 | AVG | $9.09570 \mathrm{E}-01$ | $8.93533 \mathrm{E}-01$ | $8.92214 \mathrm{E}-01$ | $8.95645 \mathrm{E}-01$ | $8.61000 \mathrm{E}-01$ | $8.90131 \mathrm{E}-01$ | $8.83870 \mathrm{E}-01$ | $8.97422 \mathrm{E}-01$ | $8.96163 \mathrm{E}-01$ | $9.01152 \mathrm{E}-01$ |
|  |  | STD | $1.24658 \mathrm{E}-02$ | $1.23815 \mathrm{E}-02$ | $3.54269 \mathrm{E}-02$ | $1.37420 \mathrm{E}-02$ | $3.35154 \mathrm{E}-02$ | $1.88688 \mathrm{E}-02$ | $3.64086 \mathrm{E}-02$ | $7.63055 \mathrm{E}-03$ | $1.58713 \mathrm{E}-02$ | $1.30629 \mathrm{E}-02$ |
|  | 10 | AVG | $9.33066 \mathrm{E}-01$ | $9.29639 \mathrm{E}-01$ | $9.26695 \mathrm{E}-01$ | $9.30794 \mathrm{E}-01$ | $9.03364 \mathrm{E}-01$ | $9.22407 \mathrm{E}-01$ | $9.10491 \mathrm{E}-01$ | $9.24332 \mathrm{E}-01$ | $9.24326 \mathrm{E}-01$ | $9.26269 \mathrm{E}-01$ |
|  |  | STD | $1.11545 \mathrm{E}-02$ | $8.97652 \mathrm{E}-03$ | $2.26448 \mathrm{E}-02$ | $1.05612 \mathrm{E}-02$ | $2.55431 \mathrm{E}-02$ | $1.39922 \mathrm{E}-02$ | $2.77495 \mathrm{E}-02$ | 8.17151E-03 | $1.42180 \mathrm{E}-02$ | $1.51670 \mathrm{E}-02$ |

Table A. 4 Threshold values at 4-level threshold of sixteen images

| Image | MGWOO | GWO | HHO | WOA | SSA | IGWO | CS | CLPSO | CLSGMFO | LGCMFO |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 42 | 42 | 4048 | 45 | 44 | 45 | 44 | 42 | 43 | 42 |
|  | 76 | 76 | 7882 | 78 | 77 | 79 | 76 | 76 | 76 | 76 |
|  | 108 | 108 | 108120 | 108 | 108 | 108 | 108 | 108 | 108 | 108 |
|  | 158 | 158 | 157166 | 157 | 155 | 159 | 157 | 158 | 158 | 158 |
| 2 | 41 | 41 | 54 | 54 | 54 | 41 | 41 | 41 | 41 | 41 |
|  | 67 | 67 | 106 | 105 | 98 | 68 | 66 | 68 | 69 | 69 |
|  | 91 | 91 | 148 | 147 | 161 | 90 | 91 | 82 | 108 | 101 |
|  | 138 | 138 | 175 | 184 | 194 | 136 | 149 | 122 | 158 | 154 |
| 3 | 43 | 45 | 38 | 57 | 47 | 43 | 46 | 44 | 41 | 40 |
|  | 92 | 92 | 74 | 119 | 89 | 92 | 93 | 92 | 75 | 90 |
|  | 133 | 133 | 110 | 184 | 127 | 134 | 133 | 133 | 105 | 128 |
|  | 158 | 158 | 158 | 254 | 158 | 158 | 158 | 158 | 156 | 158 |


| 4 | 27 | 26 | 53 | 26 | 27 | 30 | 30 | 30 | 27 | 30 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 62 | 60 | 104 | 98 | 87 | 79 | 86 | 81 | 62 | 81 |
|  | 95 | 95 | 148 | 139 | 139 | 139 | 139 | 139 | 95 | 139 |
|  | 150 | 150 | 185 | 179 | 185 | 175 | 179 | 179 | 150 | 179 |
| 5 | 7 | 7 | 54 | 13 | 7 | 7 | 7 | 12 | 12 | 7 |
|  | 25 | 25 | 93 | 25 | 25 | 25 | 25 | 25 | 25 | 25 |
|  | 68 | 68 | 135 | 48 | 68 | 67 | 68 | 42 | 84 | 68 |
|  | 132 | 132 | 166 | 118 | 136 | 138 | 127 | 101 | 142 | 132 |
| 6 | 42 | 42 | 55 | 26 | 45 | 39 | 45 | 45 | 45 | 45 |
|  | 77 | 77 | 97 | 86 | 98 | 75 | 95 | 97 | 97 | 97 |
|  | 109 | 109 | 150 | 109 | 149 | 109 | 149 | 149 | 149 | 149 |
|  | 159 | 159 | 191 | 159 | 184 | 158 | 188 | 184 | 184 | 184 |
| 7 | 27 | 27 | 30 | 14 | 28 | 26 | 28 | 27 | 27 | 79 |
|  | 54 | 54 | 55 | 46 | 55 | 54 | 53 | 54 | 53 | 116 |
|  | 79 | 79 | 83 | 79 | 83 | 79 | 79 | 83 | 79 | 154 |
|  | 134 | 134 | 134 | 139 | 135 | 134 | 131 | 138 | 134 | 191 |
| 8 | 30 | 30 | 38 | 29 | 30 | 27 | 31 | 27 | 38 | 27 |
|  | 56 | 56 | 85 | 80 | 59 | 51 | 54 | 53 | 81 | 56 |
|  | 80 | 80 | 134 | 117 | 87 | 80 | 80 | 80 | 122 | 87 |
|  | 140 | 134 | 178 | 160 | 144 | 157 | 139 | 134 | 160 | 144 |
| 9 | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 18 |
|  | 64 | 64 | 59 | 58 | 58 | 60 | 64 | 63 | 66 | 64 |
|  | 111 | 111 | 108 | 109 | 103 | 105 | 109 | 110 | 113 | 111 |
|  | 155 | 155 | 155 | 155 | 151 | 153 | 155 | 154 | 155 | 155 |


| 10 | 25 | 25 | 42 | 23 | 85 | 73 | 26 | 73 | 73 | 26 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 48 | 48 | 75 | 50 | 122 | 115 | 49 | 117 | 117 | 52 |
|  | 77 | 77 | 104 | 77 | 146 | 155 | 77 | 155 | 155 | 77 |
|  | 138 | 135 | 147 | 136 | 176 | 190 | 140 | 189 | 190 | 138 |
| 11 | 36 | 36 | 36 | 36 | 34 | 35 | 36 | 36 | 36 | 36 |
|  | 81 | 83 | 78 | 78 | 79 | 81 | 80 | 81 | 81 | 81 |
|  | 126 | 128 | 116 | 128 | 129 | 126 | 126 | 126 | 126 | 126 |
|  | 162 | 162 | 157 | 162 | 162 | 162 | 162 | 162 | 162 | 162 |
| 12 | 45 | 45 | 28 | 48 | 35 | 42 | 45 | 44 | 45 | 39 |
|  | 73 | 73 | 43 | 72 | 63 | 73 | 74 | 72 | 73 | 71 |
|  | 100 | 100 | 88 | 100 | 98 | 100 | 100 | 100 | 100 | 100 |
|  | 153 | 153 | 141 | 153 | 146 | 154 | 152 | 154 | 153 | 153 |
| 13 | 43 | 43 | 49 | 48 | 43 | 44 | 43 | 43 | 44 | 43 |
|  | 90 | 90 | 101 | 96 | 90 | 90 | 86 | 90 | 90 | 90 |
|  | 133 | 133 | 148 | 133 | 136 | 133 | 133 | 133 | 133 | 133 |
|  | 164 | 164 | 187 | 164 | 175 | 164 | 164 | 164 | 164 | 164 |
| 14 | 47 | 48 | 48 | 77 | 44 | 48 | 49 | 50 | 50 | 49 |
|  | 79 | 92 | 83 | 127 | 86 | 82 | 86 | 89 | 104 | 87 |
|  | 109 | 136 | 135 | 159 | 131 | 124 | 126 | 127 | 160 | 126 |
|  | 159 | 177 | 179 | 191 | 173 | 170 | 175 | 171 | 186 | 170 |
| 15 | 18 | 18 | 38 | 18 | 60 | 18 | 18 | 29 | 45 | 18 |
|  | 42 | 40 | 82 | 48 | 104 | 41 | 44 | 52 | 94 | 42 |
|  | 66 | 61 | 113 | 73 | 137 | 66 | 66 | 72 | 137 | 66 |
|  | 130 | 124 | 144 | 133 | 165 | 121 | 123 | 135 | 169 | 130 |


| 16 | 62 | 64 | 59 | 62 | 54 | 60 | 56 | 60 | 62 | 62 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 115 | 112 | 121 | 113 | 109 | 111 | 112 | 112 | 115 | 115 |
|  | 156 | 156 | 156 | 156 | 156 | 156 | 156 | 155 | 156 | 156 |
|  | 175 | 175 | 175 | 175 | 175 | 175 | 175 | 182 | 182 | 175 |

Table A. 5 The AvgTime and TotalFEs comparison results of each comparative algorithm

| Image | Level | Indicator | MGWO | GWO | HHO | WOA | SSA | IGWO | CS | CLPSO | CLSGMFO | LGCMFO |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 4 | AvgTime | 154.9234 | 152.5871 | 179.1730 | 169.6470 | 144.9167 | 159.0589 | 161.6585 | 171.9037 | 156.5564 | 142.3748 |
|  |  | TotalFEs | 12960 | 19680 | 19887 | 6260 | 12660 | 19380 | 19950 | 16627 | 9400 | 10560 |
|  | 6 | AvgTime | 249.5636 | 247.0515 | 233.715 | 244.9851 | 250.7201 | 225.5887 | 226.9999 | 200.5202 | 137.7026 | 137.5816 |
|  |  | TotalFEs | 19440 | 19920 | 19992 | 12720 | 13040 | 19820 | 19980 | 19839 | 14100 | 15480 |
|  | 8 | AvgTime | 177.7133 | 176.5234 | 180.9007 | 183.9733 | 178.8880 | 183.1208 | 181.5039 | 163.6025 | 180.2242 | 223.5238 |
|  |  | TotalFEs | 14660 | 19920 | 20022 | 11300 | 13340 | 19300 | 20000 | 19962 | 12700 | 17400 |
|  | 10 | AvgTime | 218.6663 | 214.0107 | 207.3771 | 208.3218 | 202.2803 | 204.9758 | 203.7416 | 219.4611 | 224.3336 | 226.2565 |
|  |  | TotalFEs | 13140 | 19940 | 19962 | 10740 | 13080 | 17940 | 19980 | 19741 | 19884 | 18600 |
| 2 | 4 | AvgTime | 176.6371 | 153.6543 | 173.8880 | 173.2430 | 143.5651 | 158.2951 | 148.9436 | 165.8035 | 156.6713 | 143.3262 |
|  |  | TotalFEs | 12760 | 19700 | 19888 | 12560 | 12720 | 19660 | 19950 | 17012 | 10900 | 13800 |
|  | 6 | AvgTime | 239.9176 | 230.6307 | 236.3050 | 239.3803 | 223.5045 | 225.3387 | 232.0967 | 196.2542 | 137.1575 | 140.0934 |
|  |  | TotalFEs | 13040 | 19920 | 19999 | 10980 | 13020 | 19740 | 19950 | 18021 | 10300 | 16320 |
|  | 8 | AvgTime | 176.3844 | 177.6730 | 179.8153 | 178.3227 | 177.6527 | 180.9151 | 180.4788 | 163.6669 | 178.7708 | 220.4802 |
|  |  | TotalFEs | 13140 | 19980 | 19846 | 16200 | 13160 | 16500 | 19980 | 19716 | 12800 | 16080 |
|  | 10 | AvgTime | 216.5341 | 215.4503 | 216.6150 | 220.0406 | 204.5551 | 204.9974 | 201.7499 | 219.6817 | 225.0822 | 226.0562 |
|  |  | TotalFEs | 13160 | 19940 | 19998 | 16680 | 13240 | 19500 | 19980 | 19438 | 11500 | 18360 |
| 3 | 4 | AvgTime | 178.1587 | 156.2252 | 158.3856 | 173.6238 | 181.5445 | 160.4174 | 149.5992 | 168.0912 | 188.7533 | 143.9711 |
|  |  | TotalFEs | 12520 | 19620 | 19975 | 13880 | 12600 | 16180 | 19920 | 18204 | 6600 | 10800 |


|  | 6 | AvgTime | 240.3747 | 223.8496 | 231.1908 | 241.2584 | 218.1550 | 216.5620 | 230.5555 | 199.0585 | 135.7957 | 139.3120 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | TotalFEs | 12920 | 19900 | 20012 | 11760 | 12800 | 19220 | 19950 | 19136 | 13100 | 12600 |
|  | 8 | AvgTime | 176.3842 | 176.8738 | 180.1617 | 177.0697 | 177.6478 | 179.7240 | 180.5008 | 163.5053 | 178.4643 | 222.4727 |
|  |  | TotalFEs | 13120 | 19860 | 20014 | 17240 | 13240 | 19340 | 19980 | 19351 | 13100 | 15960 |
|  | 10 | AvgTime | 216.2810 | 214.5769 | 217.4525 | 215.6490 | 215.1732 | 210.2037 | 203.3118 | 219.4943 | 219.5571 | 230.8111 |
|  |  | TotalFEs | 20280 | 19940 | 19990 | 16340 | 13160 | 17740 | 19980 | 20017 | 14200 | 20000 |
| 4 | 4 | AvgTime | 179.9989 | 156.5390 | 158.7941 | 172.0772 | 179.8138 | 162.2833 | 148.0853 | 165.4535 | 181.1855 | 145.3084 |
|  |  | TotalFEs | 12780 | 19820 | 19810 | 10820 | 13140 | 18900 | 19950 | 18378 | 9000 | 12720 |
|  | 6 | AvgTime | 239.0669 | 223.2915 | 224.8014 | 238.5020 | 230.5270 | 205.7344 | 229.4984 | 198.2411 | 137.0133 | 139.6507 |
|  |  | TotalFEs | 17620 | 19940 | 19994 | 15480 | 13100 | 19820 | 19950 | 15654 | 10400 | 12720 |
|  | 8 | AvgTime | 175.4814 | 176.8166 | 179.6501 | 177.1561 | 177.6656 | 180.2641 | 181.8291 | 163.5110 | 176.1168 | 222.9050 |
|  |  | TotalFEs | 13060 | 19960 | 19972 | 11200 | 13120 | 19500 | 19980 | 19989 | 12200 | 18360 |
|  | 10 | AvgTime | 216.0722 | 214.5449 | 216.1943 | 214.1504 | 215.2816 | 217.7361 | 212.5516 | 219.8176 | 221.2635 | 232.2387 |
|  |  | TotalFEs | 18600 | 19960 | 19950 | 17220 | 13020 | 19860 | 19920 | 18645 | 15900 | 18000 |
| 5 | 4 | AvgTime | 176.2205 | 155.5472 | 159.8248 | 173.5351 | 179.9372 | 164.2350 | 154.1500 | 166.4346 | 184.3373 | 146.5202 |
|  |  | TotalFEs | 12880 | 19560 | 20015 | 7920 | 13100 | 19860 | 19980 | 14422 | 18100 | 17160 |
|  | 6 | AvgTime | 240.0563 | 224.4574 | 213.7847 | 239.4546 | 228.5214 | 192.6416 | 229.3125 | 176.3845 | 137.4936 | 141.2379 |
|  |  | TotalFEs | 13160 | 19860 | 19880 | 13680 | 13100 | 18300 | 19980 | 18912 | 13300 | 14760 |
|  | 8 | AvgTime | 174.9361 | 176.9041 | 179.5240 | 176.9589 | 177.5307 | 179.0783 | 182.4244 | 163.8352 | 175.2178 | 215.0024 |
|  |  | TotalFEs | 15340 | 19920 | 19793 | 17160 | 13140 | 19020 | 20000 | 19992 | 15700 | 18600 |
|  | 10 | AvgTime | 214.9538 | 212.7343 | 216.6245 | 214.3244 | 214.4553 | 218.0101 | 215.5063 | 219.2640 | 223.1245 | 232.8435 |
|  |  | TotalFEs | 13160 | 19940 | 19987 | 17480 | 13280 | 19060 | 20000 | 18718 | 18900 | 17640 |
| 6 | 4 | AvgTime | 176.7627 | 157.3665 | 158.1981 | 172.8129 | 177.7439 | 159.6954 | 154.5604 | 167.0300 | 182.7134 | 144.3313 |
|  |  | TotalFEs | 12860 | 19720 | 19991 | 10240 | 13000 | 18140 | 19950 | 18789 | 10400 | 12000 |
|  | 6 | AvgTime | 236.2198 | 220.2522 | 195.3929 | 231.9360 | 227.2157 | 193.6902 | 223.1746 | 161.0589 | 136.9819 | 139.8622 |


|  |  | TotalFEs | 13060 | 19860 | 19919 | 11880 | 12800 | 16140 | 19980 | 20006 | 10000 | 17040 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 8 | AvgTime | 175.0433 | 176.4726 | 179.2354 | 177.0614 | 177.4383 | 179.7565 | 181.0367 | 163.6538 | 172.9231 | 209.2556 |
|  |  | TotalFEs | 13120 | 19900 | 19925 | 18200 | 13280 | 19860 | 20000 | 17682 | 13600 | 14880 |
|  | 10 | AvgTime | 214.7096 | 212.0976 | 214.4754 | 213.2261 | 214.5111 | 215.6383 | 215.601 | 219.4242 | 219.6858 | 230.9419 |
|  |  | TotalFEs | 13160 | 19940 | 19956 | 17780 | 13140 | 19660 | 19980 | 15084 | 19883 | 18360 |
| 7 | 4 | AvgTime | 174.3329 | 153.1080 | 154.6144 | 176.1309 | 178.5566 | 156.8796 | 153.6356 | 166.2123 | 180.8378 | 134.0925 |
|  |  | TotalFEs | 12700 | 19640 | 19493 | 11020 | 12940 | 18980 | 19980 | 17870 | 14500 | 11640 |
|  | 6 | AvgTime | 224.2201 | 227.2998 | 198.2818 | 226.3366 | 225.0983 | 204.1113 | 218.8590 | 160.3601 | 137.5512 | 138.6859 |
|  |  | TotalFEs | 16320 | 19860 | 19908 | 13680 | 13020 | 19940 | 19980 | 19229 | 11700 | 15000 |
|  | 8 | AvgTime | 175.8818 | 176.3704 | 179.1662 | 177.1312 | 177.2817 | 177.8515 | 180.3625 | 161.9442 | 166.0704 | 203.0961 |
|  |  | TotalFEs | 13160 | 19880 | 19988 | 15700 | 13140 | 19140 | 19950 | 17724 | 11200 | 14520 |
|  | 10 | AvgTime | 214.0743 | 212.4712 | 213.2455 | 211.2664 | 212.0080 | 215.1807 | 216.9899 | 219.8064 | 216.8070 | 227.6848 |
|  |  | TotalFEs | 20280 | 19920 | 19710 | 13180 | 13320 | 19220 | 20000 | 18495 | 15900 | 18120 |
| 8 | 4 | AvgTime | 170.3637 | 148.9915 | 152.8988 | 170.2212 | 176.1424 | 157.6520 | 146.4353 | 170.5692 | 177.4988 | 130.9832 |
|  |  | TotalFEs | 12920 | 19640 | 19901 | 15960 | 12980 | 19060 | 19950 | 17681 | 10500 | 10800 |
|  | 6 | AvgTime | 229.5800 | 227.8293 | 247.4165 | 238.9169 | 225.2947 | 237.1388 | 212.6487 | 160.3864 | 136.7850 | 139.8429 |
|  |  | TotalFEs | 13140 | 19840 | 20027 | 12820 | 13140 | 19780 | 19980 | 18571 | 13300 | 12960 |
|  | 8 | AvgTime | 175.8220 | 176.6427 | 179.8250 | 176.8269 | 177.3237 | 176.6626 | 179.3767 | 158.2092 | 167.2338 | 213.1513 |
|  |  | TotalFEs | 13080 | 19920 | 19901 | 16620 | 13160 | 19940 | 20000 | 17747 | 13100 | 15120 |
|  | 10 | AvgTime | 208.7039 | 209.8565 | 213.6103 | 211.6021 | 211.6941 | 212.0131 | 216.8582 | 219.8396 | 216.9253 | 226.9047 |
|  |  | TotalFEs | 13060 | 19940 | 20031 | 19760 | 13100 | 19580 | 19980 | 19960 | 19992 | 18120 |
| 9 | 4 | AvgTime | 167.0479 | 157.8912 | 151.0749 | 170.4797 | 170.4506 | 157.4365 | 144.7754 | 171.5018 | 172.0351 | 129.9561 |
|  |  | TotalFEs | 12960 | 19820 | 19706 | 9280 | 12920 | 18940 | 19890 | 15682 | 14600 | 8520 |
|  | 6 | AvgTime | 252.2561 | 227.1694 | 242.0889 | 249.6409 | 225.2724 | 237.0806 | 212.2029 | 160.4441 | 134.6267 | 138.4968 |
|  |  | TotalFEs | 13000 | 19900 | 19973 | 9880 | 13140 | 19900 | 19980 | 19660 | 13700 | 16920 |


|  | 8 | AvgTime | 175.6797 | 176.1543 | 179.4174 | 176.0527 | 176.6556 | 175.6749 | 176.9268 | 158.1769 | 168.4783 | 203.8058 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | TotalFEs | 13120 | 19920 | 20024 | 17600 | 13080 | 19140 | 19980 | 19253 | 14700 | 14400 |
|  | 10 | AvgTime | 207.3806 | 205.5349 | 211.7615 | 209.8536 | 211.5845 | 211.3728 | 214.5124 | 219.5376 | 215.4135 | 227.7201 |
|  |  | TotalFEs | 20280 | 19920 | 19982 | 15920 | 13100 | 19340 | 19980 | 18708 | 13400 | 13440 |
| 10 | 4 | AvgTime | 167.4221 | 159.3054 | 163.6806 | 164.7463 | 169.0766 | 157.2806 | 142.3595 | 169.5340 | 171.1470 | 127.1964 |
|  |  | TotalFEs | 12840 | 19160 | 20026 | 4980 | 13000 | 19260 | 19980 | 14731 | 7600 | 10200 |
|  | 6 | AvgTime | 251.1264 | 227.9480 | 243.4955 | 251.0912 | 224.9903 | 238.1436 | 212.4692 | 160.9346 | 134.8469 | 138.8537 |
|  |  | TotalFEs | 13100 | 19840 | 19897 | 17260 | 13020 | 19380 | 19980 | 18002 | 12200 | 18120 |
|  | 8 | AvgTime | 175.4814 | 176.5760 | 178.1970 | 175.4429 | 175.3033 | 175.5000 | 176.5865 | 159.1139 | 170.0847 | 196.0826 |
|  |  | TotalFEs | 13160 | 19940 | 19923 | 12440 | 13280 | 18100 | 19950 | 19705 | 15500 | 17880 |
|  | 10 | AvgTime | 207.4385 | 205.9789 | 206.1219 | 204.2492 | 208.3405 | 211.5881 | 214.3177 | 219.5471 | 217.2459 | 228.5501 |
|  |  | TotalFEs | 13140 | 19940 | 19999 | 15640 | 13100 | 19300 | 20000 | 18271 | 19867 | 17640 |
| 11 | 4 | AvgTime | 168.1119 | 160.2424 | 174.5372 | 171.9716 | 171.7383 | 157.1731 | 155.7038 | 170.9709 | 171.8106 | 174.4041 |
|  |  | TotalFEs | 13060 | 19820 | 20003 | 9600 | 12960 | 19660 | 19950 | 16754 | 10300 | 12600 |
|  | 6 | AvgTime | 240.4507 | 226.0129 | 246.8113 | 231.9307 | 222.9562 | 237.1491 | 205.2302 | 161.0806 | 135.2503 | 138.8847 |
|  |  | TotalFEs | 13040 | 19900 | 19986 | 12320 | 13160 | 18980 | 19980 | 16163 | 10800 | 15000 |
|  | 8 | AvgTime | 175.9231 | 176.4430 | 177.1996 | 175.9029 | 175.1979 | 175.8765 | 178.4559 | 160.7333 | 179.2138 | 195.2281 |
|  |  | TotalFEs | 13120 | 19880 | 19925 | 10520 | 13020 | 19900 | 19980 | 18156 | 19881 | 16080 |
|  | 10 | AvgTime | 208.1931 | 205.4226 | 206.8706 | 204.5097 | 204.3255 | 209.5973 | 216.6925 | 219.4597 | 216.2265 | 224.8146 |
|  |  | TotalFEs | 13060 | 19940 | 19748 | 16380 | 13080 | 18660 | 19980 | 20001 | 13600 | 17640 |
| 12 | 4 | AvgTime | 164.2614 | 147.6439 | 172.8351 | 168.7421 | 169.2812 | 145.6492 | 157.9931 | 170.0627 | 171.9393 | 176.4814 |
|  |  | TotalFEs | 12820 | 19580 | 19923 | 15280 | 12960 | 19100 | 20000 | 18328 | 8900 | 11400 |
|  | 6 | AvgTime | 227.2133 | 215.6583 | 242.1441 | 229.1988 | 210.1417 | 234.7597 | 214.6293 | 160.8905 | 134.5221 | 138.9669 |
|  |  | TotalFEs | 13060 | 13060 | 13060 | 13060 | 13060 | 13060 | 13060 | 13060 | 13060 | 13060 |
|  | 8 | AvgTime | 176.1368 | 174.9037 | 178.5466 | 175.3170 | 175.2162 | 175.5468 | 176.7589 | 164.2134 | 180.2916 | 194.9073 |


|  |  | TotalFEs | 19080 | 19940 | 20007 | 13780 | 13180 | 18620 | 19980 | 18313 | 18900 | 20000 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 10 | AvgTime | 208.2893 | 205.1346 | 207.5288 | 204.2516 | 204.3991 | 207.5567 | 215.4420 | 219.8605 | 242.8631 | 223.6579 |
|  |  | TotalFEs | 13120 | 19940 | 19820 | 15060 | 13060 | 19940 | 19980 | 16122 | 12100 | 19560 |
| 13 | 4 | AvgTime | 165.3520 | 155.7053 | 173.3201 | 160.0643 | 170.1582 | 146.8116 | 158.4632 | 157.8666 | 171.4807 | 176.1746 |
|  |  | TotalFEs | 12840 | 19800 | 19691 | 8480 | 12960 | 19340 | 19980 | 18641 | 8200 | 12480 |
|  | 6 | AvgTime | 227.7321 | 210.6643 | 245.8686 | 228.5638 | 196.6379 | 238.2016 | 210.9724 | 161.3813 | 135.0011 | 139.2394 |
|  |  | TotalFEs | 13000 | 19860 | 19856 | 9100 | 13020 | 18740 | 19950 | 19857 | 11300 | 14880 |
|  | 8 | AvgTime | 174.7296 | 174.5593 | 179.5502 | 175.0944 | 175.5914 | 175.5430 | 176.9418 | 171.1644 | 181.0751 | 195.4191 |
|  |  | TotalFEs | 19760 | 19920 | 20007 | 13880 | 13000 | 19860 | 19980 | 19534 | 19883 | 20000 |
|  | 10 | AvgTime | 208.7484 | 205.8200 | 207.0673 | 204.8203 | 204.4478 | 205.2022 | 215.3778 | 219.2607 | 253.6221 | 224.1636 |
|  |  | TotalFEs | 13160 | 19960 | 19933 | 13060 | 13240 | 19860 | 19980 | 19552 | 15000 | 18000 |
| 14 | 4 | AvgTime | 168.8986 | 157.9086 | 174.5855 | 156.4941 | 168.5932 | 146.0208 | 160.5004 | 151.7966 | 172.0092 | 165.6785 |
|  |  | TotalFEs | 12840 | 19800 | 19878 | 9120 | 13060 | 19980 | 19920 | 18633 | 15100 | 14520 |
|  | 6 | AvgTime | 226.2278 | 201.8415 | 237.2138 | 227.3985 | 195.7837 | 233.8595 | 207.2786 | 162.0263 | 134.4707 | 138.5171 |
|  |  | TotalFEs | 13040 | 19920 | 20009 | 8700 | 12900 | 19540 | 19830 | 19189 | 14900 | 13920 |
|  | 8 | AvgTime | 174.3732 | 174.2643 | 177.5293 | 175.2632 | 175.4018 | 176.0676 | 175.4239 | 171.3215 | 180.6559 | 194.9979 |
|  |  | TotalFEs | 13120 | 19960 | 19963 | 6440 | 13060 | 17340 | 19980 | 19849 | 11500 | 13200 |
|  | 10 | AvgTime | 208.5563 | 205.4247 | 206.7395 | 204.7643 | 204.5186 | 204.6558 | 214.9021 | 214.7257 | 249.7561 | 219.0757 |
|  |  | TotalFEs | 13060 | 19960 | 20022 | 14560 | 13120 | 19820 | 19980 | 19118 | 20000 | 18720 |
| 15 | 4 | AvgTime | 165.6107 | 174.3738 | 172.3796 | 157.0834 | 169.2826 | 168.3957 | 158.7938 | 152.8883 | 165.9702 | 173.5058 |
|  |  | TotalFEs | 13020 | 19500 | 19989 | 4720 | 13240 | 19180 | 19950 | 18298 | 9300 | 19560 |
|  | 6 | AvgTime | 232.3251 | 215.7025 | 231.4406 | 227.9410 | 202.0509 | 226.2282 | 208.2418 | 161.7264 | 135.3839 | 139.4236 |
|  |  | TotalFEs | 19180 | 19920 | 19943 | 13120 | 13320 | 14060 | 19980 | 19476 | 9600 | 16800 |
|  | 8 | AvgTime | 174.6209 | 173.9734 | 177.5948 | 175.3777 | 175.7219 | 176.2887 | 175.6783 | 171.0196 | 181.0013 | 202.3942 |
|  |  | TotalFEs | 13140 | 19920 | 19995 | 14680 | 13020 | 19740 | 19980 | 19819 | 10500 | 18240 |



## References

A, A.A.H., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., Chen, H., 2019. Harris hawks optimization: Algorithm and applications. Future Generation Computer Systems 97, 849-872.
Ahmadianfar, I., Asghar Heidari, A., Gandomi, A.H., Chu, X., Chen, H., 2021. RUN Beyond the Metaphor: An Efficient Optimization Algorithm Based on Runge Kutta Method. Expert Systems with Applications, 115079.

Ahmed, A.E., Mohamed Abd, E., Diego, O., 2018. Image segmentation via multilevel thresholding using hybrid optimization algorithms. Journal of Electronic Imaging 27, 1-26.

Al-Betar, M.A., Awadallah, M.A., Krishan, M.M., 2020. A non-convex economic load dispatch problem with valve loading effect using a hybrid grey wolf optimizer. Neural Computing \& Applications 32, 1212712154.

Ali, M., Pant, M., 2011. Improving the performance of differential evolution algorithm using Cauchy mutation. Soft Computing 15, 991-1007.
Aljarah, I., Mafarja, M., Heidari, A.A., Faris, H., Mirjalili, S., 2019. Clustering analysis using a novel localityinformed grey wolf-inspired clustering approach. Knowledge and Information Systems.
Amirsadri, S., Mousavirad, S.J., Ebrahimpour-Komleh, H., 2018. A Levy flight-based grey wolf optimizer combined with back-propagation algorithm for neural network training. Neural Computing \& Applications 30, 3707-3720.
Ba, A.F., Huang, H., Wang, M., Ye, X., Gu, Z., Chen, H., Cai, X., 2020. Levy-based antlion-inspired optimizers with orthogonal learning scheme. Engineering with Computers, 1-22.
Bhandari, A.K., 2020. A novel beta differential evolution algorithm-based fast multilevel thresholding for color image segmentation. Neural Computing and Applications 32, 4583-4613.

Bhandari, A.K., Rahul, K., 2019. A novel local contrast fusion-based fuzzy model for color image multilevel thresholding using grasshopper optimization. Applied Soft Computing 81, 105515.
Boubechal, I., Seghir, R., Benzid, R., 2019. A Generalized and Parallelized SSIM-Based Multilevel Thresholding Algorithm. Applied Artificial Intelligence 33, 1266-1289.
Buades, A., Coll, B., Morel, J., 2005. A non-local algorithm for image denoising, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), pp. 60-65 vol. 62.
Cai, J., Huang, Z., Liao, L., Luo, J., Liu, W.-X., 2021. APPM: Adaptive Parallel Processing Mechanism for Service Function Chains. IEEE Transactions on Network and Service Management 18, 1540-1555

Cai, Z., Gu, J., Luo, J., Zhang, Q., Chen, H., Pan, Z., Li, Y., Li, C., 2019. Evolving an optimal kernel extreme learning machine by using an enhanced grey wolf optimization strategy. Expert Systems with Applications 138, 112814.
Chakraborty, R., Sushil, R., Garg, M.L., 2019. An Improved PSO-Based Multilevel Image Segmentation Technique Using Minimum Cross-Entropy Thresholding. Arabian Journal for Science and Engineering 44, 3005-3020.

Chantar, H., Mafarja, M., Alsawalqah, H., Heidari, A.A., Aljarah, I., Faris, H., 2020a. Feature selection using binary grey wolf optimizer with elite-based crossover for Arabic text classification. Neural Computing \& Applications 32, 12201-12220.
Chantar, H., Mafarja, M., Alsawalqah, H., Heidari, A.A., Aljarah, I., Faris, H., 2020b. Feature selection using binary grey wolf optimizer with elite-based crossover for Arabic text classification. Neural Computing and Applications 32, 12201-12220.
Chen, H., Xu, Y., Wang, M., Zhao, X., 2019a. A balanced whale optimization algorithm for constrained
engineering design problems. Applied Mathematical Modelling 71, 45-59.
Chen, M.-R., Zeng, G.-Q., Lu, K.-D., Weng, J., 2019b. A two-layer nonlinear combination method for shortterm wind speed prediction based on ELM, ENN, and LSTM. IEEE Internet of Things Journal 6, 69977010.

Chen, M., Zeng, G., Lu, K., Weng, J., 2019c. A Two-Layer Nonlinear Combination Method for Short-Term Wind Speed Prediction Based on ELM, ENN, and LSTM. IEEE Internet of Things Journal 6, 6997-7010.
Chen, S., Zhang, J., Meng, F., Wang, D., 2021. A Markov Chain Position Prediction Model Based on Multidimensional Correction. Complexity 2021.
Chen, W., Zhang, J., Lin, Y., Chen, N., Zhan, Z., Chung, H.S., Li, Y., Shi, Y., 2013. Particle Swarm Optimization With an Aging Leader and Challengers. IEEE Transactions on Evolutionary Computation 17, 241-258.
Chen, Z.-G., Zhan, Z.-H., Lin, Y., Gong, Y.-J., Gu, T.-L., Zhao, F., Yuan, H.-Q., Chen, X., Li, Q., Zhang, J., 2018. Multiobjective cloud workflow scheduling: A multiple populations ant colony system approach. IEEE transactions on cybernetics 49, 2912-2926.
Dappuri, B., Rao, M.P., Sikha, M.B., 2020. Non-blind RGB watermarking approach using SVD in translation invariant wavelet space with enhanced Grey-wolf optimizer. Multimedia Tools and Applications 79, 31103-31124.
Davahli, A., Shamsi, M., Abaei, G., 2020. Hybridizing genetic algorithm and grey wolf optimizer to advance an intelligent and lightweight intrusion detection system for loT wireless networks. Journal of Ambient Intelligence and Humanized Computing 11, 5581-5609.
Deng, W., Liu, H., Xu, J., Zhao, H., Song, Y., 2020a. An Improved Quantum-Inspired Differential Evolution Algorithm for Deep Belief Network. IEEE Transactions on Instrumentation and Measurement 69, 73197327.

Deng, W., Liu, H., Xu, J., Zhao, H., Song, Y.J.I.T.o.I., Measurement, 2020b. An improved quantum-inspired differential evolution algorithm for deep belief network. IEEE Transactions on Instrumentation \& Measurement, https://doi.org/10.1109/TIM.2020.2983233.

Deng, W., Xu, J., Song, Y., Zhao, H., 2020c. An effective improved co-evolution ant colony optimisation algorithm with multi-strategies and its application. International Journal of Bio-Inspired Computation 16, 158-170.

Deng, W., Xu, J., Zhao, H., Song, Y., 2020d. A Novel Gate Resource Allocation Method Using Improved PSO-Based QEA. IEEE Transactions on Intelligent Transportation Systems, http://doi.org/10.1109/TITS.2020.3025796

Deng, W., Xu, J., Zhao, H., Song, Y., 2020e. A Novel Gate Resource Allocation Method Using Improved PSO-Based QEA. IEEE Transactions on Intelligent Transportation Systems, 1-9.

Derrac, J., García, S., Molina, D., Herrera, F., 2011. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm and Evolutionary Computation 1, 3-18.

Dewangan, R.K., Shukla, A., Godfrey, W.W., 2019. Three dimensional path planning using Grey wolf optimizer for UAVs. Applied Intelligence 49, 2201-2217.
Dong, H., Dong, Z., 2020. Surrogate-assisted grey wolf optimization for high-dimensional, computationally expensive black-box problems. Swarm and Evolutionary Computation 57, 100713.
Dorigo, M., Blum, C., 2005. Ant colony optimization theory: A survey. Theoretical Computer Science 344, 243-278.

Fan, Q., Chen, Z., Li, Z., Xia, Z., Lin, Y., 2020. An efficient refracted salp swarm algorithm and its application in structural parameter identification. Engineering with Computers.

Fan, Q.F., Wang, T., Chen, Y., Zhang, Z.F., 2018. Design and Application of Interval Type-2 TSK Fuzzy Logic System Based on QPSO Algorithm. International Journal of Fuzzy Systems 20, 835-846.
Fan, Z., Ji, P.-p., Zhang, J., Segets, D., Chen, D.-R., Chen, S.-C., 2021. Wavelet neural network modeling for the retention efficiency of sub-15 nm nanoparticles in ultrafiltration under small particle to pore diameter ratio. Journal of Membrane Science, 119503.
Faris, H., Aljarah, I., Al-Betar, M.A., Mirjalili, S., 2018. Grey wolf optimizer: a review of recent variants and applications. Neural Computing \& Applications 30, 413-435.

Gong, C., Hu, Y., Gao, J., Wang, Y., Yan, L., 2019. An improved delay-suppressed sliding-mode observer for sensorless vector-controlled PMSM. IEEE Transactions on Industrial Electronics 67, 5913-5923.

Guo, K., Hu, B., Ma, J., Ren, S., Tao, Z., Zhang, J., 2020. Toward anomaly behavior detection as an edge network service using a dual-task interactive guided neural network. IEEE Internet of Things Journal, DOI: 10.1109/JIOT.2020.3015987.

Gupta, S., Deep, K., 2019. A novel Random Walk Grey Wolf Optimizer. Swarm and Evolutionary Computation 44, 101-112.

Gupta, S., Deep, K., 2020. A memory-based Grey Wolf Optimizer for global optimization tasks. Applied Soft Computing 93, 106367.
Gupta, S., Deep, K., Heidari, A.A., Moayedi, H., Chen, H., 2019. Harmonized salp chain-built optimization. Engineering with Computers, 1-31.
Habba, M., Ameur, M., Jabrane, Y., 2018. A novel Gini index based evaluation criterion for image segmentation. Optik 168, 446-457.

He, Y., Dai, L., Zhang, H., 2020. Multi-Branch Deep Residual Learning for Clustering and Beamforming in User-Centric Network. IEEE Communications Letters 24, 2221-2225.
Heidari, A.A., Abbaspour, R.A., Chen, H., 2019a. Efficient boosted grey wolf optimizers for global search and kernel extreme learning machine training. Applied Soft Computing 81, 105521.
Heidari, A.A., Abbaspour, R.A., Chen, H., 2019b. Efficient boosted grey wolf optimizers for global search and kernel extreme learning machine training. Applied Soft Computing 81, 105521-105521.
Hu, B., Guo, K., Wang, X., Zhang, J., Zhou, D., 2021a. RRL-GAT: Graph Attention Network-driven MultiLabel Image Robust Representation Learning. IEEE Internet of Things Journal, DOI: 10.1109/JIOT.2021.3089180.

Hu, J., Chen, H., Heidari, A.A., Wang, M., Zhang, X., Chen, Y., Pan, Z., 2021b. Orthogonal learning covariance matrix for defects of grey wolf optimizer: Insights, balance, diversity, and feature selection. Knowledge-Based Systems 213, 106684.
Hu, L., Li, H., Cai, Z., Lin, F., Hong, G., Chen, H., Lu, Z., 2017. A new machine-learning method to prognosticate paraquat poisoned patients by combining coagulation, liver, and kidney indices. Plos One 12, e0186427.
Huang, H., Feng, X., Heidari, A.A., Xu, Y., Wang, M., Liang, G., Chen, H., Cai, X., 2020. Rationalized Sine Cosine Optimization With Efficient Searching Patterns. IEEE Access 8, 61471-61490.
Huang, H., Zhou, S., Jiang, J., Chen, H., Li, Y., Li, C., 2019. A new fruit fly optimization algorithm enhanced support vector machine for diagnosis of breast cancer based on high-level features. BMC bioinformatics 20, 1-14.
Huynh-Thu, Q., Ghanbari, M., 2008. Scope of validity of PSNR in image/video quality assessment. Electronics Letters 44, 800-801.

Ibrahim, R.A., Abd Elaziz, M., Lu, S., 2018. Chaotic opposition-based grey-wolf optimization algorithm based on differential evolution and disruption operator for global optimization. Expert Systems with

Applications 108, 1-27.
Jiang, N., Chen, J., Zhou, R.-G., Wu, C., Chen, H., Zheng, J., Wan, T., 2020a. PAN: Pipeline assisted neural networks model for data-to-text generation in social internet of things. Information Sciences 530, 167179.

Jiang, N., Tian, F., Li, J., Yuan, X., Zheng, J., 2020b. MAN: mutual attention neural networks model for aspect-level sentiment classification in SIoT. IEEE Internet of Things Journal 7, 2901-2913.
Jiang, N., Xu, D., Zhou, J., Yan, H., Wan, T., Zheng, J., 2020c. Toward optimal participant decisions with voting-based incentive model for crowd sensing. Information Sciences 512, 1-17.
Jing, X., Wang, H., Huang, X., Chen, Z., Zhu, J., Wang, X., 2021. Digital image colorimetry detection of carbaryl in food samples based on liquid phase microextraction coupled with a microfluidic threadbased analytical device. Food Chemistry 337, 127971.
Kapur, J.N., Sahoo, P.K., Wong, A.K.C., 1985. A new method for gray-level picture thresholding using the entropy of the histogram. Computer Vision, Graphics, and Image Processing 29, 273-285.
Karaboga, D., Basturk, B., 2007. A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. Journal of Global Optimization 39, 459-471.
Kennedy, J., Eberhart, R., 1995. Particle swarm optimization, Proceedings of ICNN'95 - International Conference on Neural Networks, pp. 1942-1948 vol.1944.

Khairuzzaman, A.K.M., Chaudhury, S., 2019. Masi entropy based multilevel thresholding for image segmentation. Multimedia Tools and Applications 78, 33573-33591.
Li, B.-H., Liu, Y., Zhang, A.-M., Wang, W.-H., Wan, S., 2020a. A Survey on Blocking Technology of Entity Resolution. Journal of Computer Science and Technology 35, 769-793.
Li, C., Hou, L., Sharma, B.Y., Li, H., Chen, C., Li, Y., Zhao, X., Huang, H., Cai, Z., Chen, H., 2018. Developing a new intelligent system for the diagnosis of tuberculous pleural effusion. Computer methods and programs in biomedicine 153, 211-225.
Li, H., Liu, J., Chen, L., Bai, J., 2019. Chaos-enhanced moth-flame optimization algorithm for global optimization. Journal of Systems Engineering and Electronics 30, 1144-1159.
Li, Q., Chen, H., Huang, H., Zhao, X., Cai, Z., Tong, C., Liu, W., Tian, X., 2017a. An enhanced grey wolf optimization based feature selection wrapped kernel extreme learning machine for medical diagnosis. Computational and mathematical methods in medicine 2017.
Li, Q., Chen, H., Huang, H., Zhao, X., Cai, Z., Tong, C., Liu, W., Tian, X., 2017b. An Enhanced Grey Wolf Optimization Based Feature Selection Wrapped Kernel Extreme Learning Machine for Medical Diagnosis. Computational and Mathematical Methods in Medicine 2017, 9512741.
Li, S., Chen, H., Wang, M., Heidari, A.A., Mirjalili, S., 2020b. Slime mould algorithm: A new method for stochastic optimization. Future Generation Computer Systems 111 300-323.
Liang, D., Zhan, Z.-H., Zhang, Y., Zhang, J., 2019. An efficient ant colony system approach for new energy vehicle dispatch problem. IEEE Transactions on Intelligent Transportation Systems 21, 4784-4797.

Liang, J.J., Qin, A.K., Suganthan, P.N., Baskar, S., 2006. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Transactions on Evolutionary Computation 10, 281-295.

Liang, X., Cai, Z., Wang, M., Zhao, X., Chen, H., Li, C., 2020. Chaotic oppositional sine-cosine method for solving global optimization problems. Engineering with Computers, 1-17.
Lipare, A., Edla, D.R., Kuppili, V., 2019. Energy efficient load balancing approach for avoiding energy hole problem in WSN using Grey Wolf Optimizer with novel fitness function. Applied Soft Computing 84, 105706.

Liu, J., Yang, Z., Li, D., 2020. A multiple search strategies based grey wolf optimizer for solving multiobjective optimization problems. Expert Systems with Applications 145, 113134.
Liu, T., Hu, L., Ma, C., Wang, Z.-Y., Chen, H.-L., 2015. A fast approach for detection of erythematosquamous diseases based on extreme learning machine with maximum relevance minimum redundancy feature selection. International Journal of Systems Science 46, 919-931.
Liu, X.-F., Zhan, Z.-H., Zhang, J., 2021. Resource-Aware Distributed Differential Evolution for Training Expensive Neural-Network-Based Controller in Power Electronic Circuit. IEEE Transactions on Neural Networks and Learning Systems, DOI: 10.1109/TNNLS.2021.3075205.
Long, W., Cai, S., Jiao, J., Tang, M., 2020a. An efficient and robust grey wolf optimizer algorithm for largescale numerical optimization. Soft Computing 24, 997-1026.
Long, W., Cai, S., Jiao, J., Xu, M., Wu, T., 2020b. A new hybrid algorithm based on grey wolf optimizer and cuckoo search for parameter extraction of solar photovoltaic models. Energy Conversion and Management 203, 112243.
Lu, C., Gao, L., Li, X., Hu, C., Yan, X., Gong, W., 2020. Chaotic-based grey wolf optimizer for numerical and engineering optimization problems. Memetic Computing 12, 371-398.

Lu, C., Gao, L., Pan, Q., Li, X., Zheng, J., 2019. A multi-objective cellular grey wolf optimizer for hybrid flowshop scheduling problem considering noise pollution. Applied Soft Computing 75, 728-749.

Lu, C., Gao, L., Yi, J., 2018. Grey Wolf Optimizer with Cellular Topological Structure. Expert Systems with Applications 107, 89-114.
Luo, J., Chen, H., zhang, Q., Xu, Y., Huang, H., Zhao, X., 2018. An improved grasshopper optimization algorithm with application to financial stress prediction. Applied Mathematical Modelling 64, 654-668. Luo, J., Li, J., Jiao, L., Cai, J., 2020a. On the Effective Parallelization and Near-Optimal Deployment of Service Function Chains. IEEE Transactions on Parallel and Distributed Systems 32, 1238-1255.

Luo, J., Li, M., Liu, X., Tian, W., Zhong, S., Shi, K., 2020b. Stabilization analysis for fuzzy systems with a switched sampled-data control. Journal of the Franklin Institute 357, 39-58.

Luo, K., Zhao, Q., 2019. A binary grey wolf optimizer for the multidimensional knapsack problem. Applied Soft Computing 83, 105645
Ma, X., Mei, X., Wu, W., Wu, X., Zeng, B., 2019. A novel fractional time delayed grey model with Grey Wolf Optimizer and its applications in forecasting the natural gas and coal consumption in Chongqing China. Energy 178, 487-507.

Meng, F., Pang, A., Dong, X., Han, C., Sha, X., 2018. H $\infty$ optimal performance design of an unstable plant under bode integral constraint. Complexity 2018
Mi, C., Huang, Y., Fu, C., Zhang, Z., Postolache, O., 2021. Vision-Based Measurement: Actualities and Developing Trends in Automated Container Terminals. IEEE Instrumentation \& Measurement Magazine 24, 65-76.
Miao, Z., Yuan, X., Zhou, F., Qiu, X., Song, Y., Chen, K., 2020. Grey wolf optimizer with an enhanced hierarchy and its application to the wireless sensor network coverage optimization problem. Applied Soft Computing 96, 106602.
Mirjalili, S., Aljarah, I., Mafarja, M., Heidari, A.A., Faris, H., 2020. Grey Wolf Optimizer: Theory, Literature Review, and Application in Computational Fluid Dynamics Problems, in: Mirjalili, S., Song Dong, J., Lewis, A. (Eds.), Nature-Inspired Optimizers: Theories, Literature Reviews and Applications. Springer International Publishing, Cham, pp. 87-105.
Mirjalili, S., Dong, J.S., Lewis, A., 2019. Nature-inspired optimizers: theories, literature reviews and applications. Springer.

Mirjalili, S., Mirjalili, S.M., Lewis, A., 2014. Grey wolf optimizer. Advances in engineering software 69, 46-61.

Mittal, H., Saraswat, M., 2018. An optimum multi-level image thresholding segmentation using nonlocal means 2D histogram and exponential Kbest gravitational search algorithm. Engineering Applications of Artificial Intelligence 71, 226-235.
Morales-Castaeda, B., Zaldívar, D., Cuevas, E., Fausto, F., Rodríguez, A., 2020. A better balance in metaheuristic algorithms: Does it exist? Swarm Evolutionary Computation 54, 100671.
Naidu, M.S.R., Rajesh Kumar, P., Chiranjeevi, K., 2018. Shannon and Fuzzy entropy based evolutionary image thresholding for image segmentation. Alexandria Engineering Journal 57, 1643-1655.

Niu, P., Niu, S., Chang, L., 2019a. The defect of the Grey Wolf optimization algorithm and its verification method. Knowledge-Based Systems 171, 37-43.
Niu, P., Niu, S., Liu, N., Chang, L., 2019b. The defect of the Grey Wolf optimization algorithm and its verification method. Knowledge-Based Systems 171, 37-43.
Oliva, D., Nag, S., Elaziz, M.A., Sarkar, U., Hinojosa, S., 2019. Multilevel thresholding by fuzzy type II sets using evolutionary algorithms. Swarm and Evolutionary Computation 51, 100591.
Pang, J., Zhou, H., Tsai, Y.-C., Chou, F.-D., 2018. A scatter simulated annealing algorithm for the biobjective scheduling problem for the wet station of semiconductor manufacturing. Computers \& Industrial Engineering 123, 54-66.
Pare, S., Bhandari, A.K., Kumar, A., Singh, G.K., 2018. A new technique for multilevel color image thresholding based on modified fuzzy entropy and Levy flight firefly algorithm. Computers \& Electrical Engineering 70, 476-495.
Pathak, Y., Arya, K.V., Tiwari, S., 2019. Feature selection for image steganalysis using levy flight-based grey wolf optimization. Multimedia Tools and Applications 78, 1473-1494.
Pei, H., Yang, B., Liu, J., Chang, K., 2020. Active Surveillance via Group Sparse Bayesian Learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, DOI: 10.1109/TPAMI.2020.3023092.
Qiu, S., Wang, Z., Zhao, H., Hu, H., 2016. Using distributed wearable sensors to measure and evaluate human lower limb motions. IEEE Transactions on Instrumentation and Measurement 65, 939-950.
Qiu, S., Wang, Z., Zhao, H., Qin, K., Li, Z., Hu, H., 2018. Inertial/magnetic sensors based pedestrian dead reckoning by means of multi-sensor fusion. Information Fusion 39, 108-119.
Qu, C., Gai, W., Zhang, J., Zhong, M., 2020. A novel hybrid grey wolf optimizer algorithm for unmanned aerial vehicle (UAV) path planning. Knowledge-Based Systems 194, 105530.
Qu, C., Zeng, Z., Dai, J., Yi, Z., He, W., 2018. A Modified Sine-Cosine Algorithm Based on Neighborhood Search and Greedy Levy Mutation. Computational Intelligence and Neuroscience 2018, 4231647.
Rahkar Farshi, T., Demirci, R., Feizi-Derakhshi, M.-R., 2018. Image Clustering with Optimization Algorithms and Color Space. Entropy 20.
Rajput, S.S., Bohat, V.K., Arya, K.V., 2019. Grey wolf optimization algorithm for facial image superresolution. Applied Intelligence 49, 1324-1338.
Saxena, A., Kumar, R., Das, S., 2019. beta-Chaotic map enabled Grey Wolf Optimizer. Applied Soft Computing 75, 84-105.
Saxena, A., Soni, B.P., Kumar, R., Gupta, V., 2018. Intelligent Grey Wolf Optimizer - Development and application for strategic bidding in uniform price spot energy market. Applied Soft Computing 69, 1-13. Shen, L., Chen, H., Yu, Z., Kang, W., Zhang, B., Li, H., Yang, B., Liu, D., 2016. Evolving support vector machines using fruit fly optimization for medical data classification. Knowledge-Based Systems 96, 6175.

Storn, R., Price, K., 1997. Differential Evolution - A Simple and Efficient Heuristic for global Optimization over Continuous Spaces. Journal of Global Optimization 11, 341-359.
Sun, G., Cong, Y., Wang, Q., Zhong, B., Fu, Y., 2020. Representative task self-selection for flexible clustered lifelong learning. IEEE Transactions on Neural Networks and Learning Systems.

Sundaramurthy, S., Jayavel, P., 2020. A hybrid Grey Wolf Optimization and Particle Swarm Optimization with C4.5 approach for prediction of Rheumatoid Arthritis. Applied Soft Computing 94, 106500.

Tang, H., Xu, Y., Lin, A., Heidari, A.A., Wang, M., Chen, H., Luo, Y., Li, C., 2020a. Predicting Green Consumption Behaviors of Students Using Efficient Firefly Grey Wolf-Assisted K-Nearest Neighbor Classifiers. IEEE Access 8, 35546-35562.

Tang, H., Xu, Y., Lin, A., Heidari, A.A., Wang, M., Chen, H., Luo, Y., Li, C.J.I.A., 2020b. Predicting Green Consumption Behaviors of Students Using Efficient Firefly Grey Wolf-Assisted K-Nearest Neighbor Classifiers. 8, 35546-35562.

Teng, Z.-j., Lv, J.-I., Guo, L.-w., 2019. An improved hybrid grey wolf optimization algorithm. Soft Computing 23, 6617-6631.
Tubishat, M., Abushariah, M.A.M., Idris, N., Aljarah, I., 2019. Improved whale optimization algorithm for feature selection in Arabic sentiment analysis. Applied Intelligence 49, 1688-1707.
Upadhyay, P., Chhabra, J.K., 2020. Kapur's entropy based optimal multilevel image segmentation using Crow Search Algorithm. Applied Soft Computing 97, 105522.
Villalón, C.L.C., Stützle, T., Dorigo, M., 2020. Grey Wolf, Firefly and Bat Algorithms: Three Widespread Algorithms that Do Not Contain Any Novelty, International Conference on Swarm Intelligence. Springer, pp. 121-133.
W, D., JJ, X., YJ, S., HM, Z., 2020. An Effective Improved Co-evolution Ant Colony Optimization Algorithm with Multi-Strategies and Its Application. International Journal of Bio-Inspired Computation, 16(13): 158-170.
Wang, B., Zhang, B., Liu, X., Zou, F., 2020a. Novel infrared image enhancement optimization algorithm combined with DFOCS. Optik 224, 165476.
Wang, M., Chen, H., 2020. Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis. Applied Soft Computing 88, 105946.
Wang, M., Chen, H., Li, H., Cai, Z., Zhao, X., Tong, C., Li, J., Xu, X., 2017a. Grey wolf optimization evolving kernel extreme learning machine: Application to bankruptcy prediction. Engineering Applications of Artificial Intelligence 63, 54-68.
Wang, M., Chen, H., Yang, B., Zhao, X., Hu, L., Cai, Z., Huang, H., Tong, C., 2017b. Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses. Neurocomputing 267, 69-84.
Wang, P., Wang, L., Leung, H., Zhang, G., 2020b. Super-Resolution Mapping Based on Spatial-Spectral Correlation for Spectral Imagery. IEEE Transactions on Geoscience and Remote Sensing 59, 2256-2268. Wang, T., Liu, W., Zhao, J., Guo, X., Terzija, V., 2020c. A rough set-based bio-inspired fault diagnosis method for electrical substations. International Journal of Electrical Power \& Energy Systems 119, 105961.

Wang, W.-c., Xu, L., Chau, K.-w., Xu, D.-m., 2020d. Yin-Yang firefly algorithm based on dimensionally Cauchy mutation. Expert Systems with Applications 150, 113216.
Wang, X.-F., Gao, P., Liu, Y.-F., Li, H.-F., Lu, F., 2020e. Predicting Thermophilic Proteins by Machine Learning. Current Bioinformatics 15, 493-502.
Wang, X., Zhao, H., Han, T., Zhou, H., Li, C., 2019a. A grey wolf optimizer using Gaussian estimation of
distribution and its application in the multi-UAV multi-target urban tracking problem. Applied Soft Computing 78, 240-260.
Wang, Y., Zhang, G., Zhang, X., 2019b. Multilevel Image Thresholding Using Tsallis Entropy and Cooperative Pigeon-inspired Optimization Bionic Algorithm. Journal of Bionic Engineering 16, 954-964. Wang, Z.-J., Zhan, Z.-H., Yu, W.-J., Lin, Y., Zhang, J., Gu, T.-L., Zhang, J., 2019c. Dynamic group learning distributed particle swarm optimization for large-scale optimization and its application in cloud workflow scheduling. IEEE transactions on cybernetics 50, 2715-2729.
Wei, Y., Ni, N., Liu, D., Chen, H., Wang, M., Li, Q., Cui, X., Ye, H., 2017. An Improved Grey Wolf Optimization Strategy Enhanced SVM and Its Application in Predicting the Second Major. Mathematical Problems in Engineering 2017, 9316713.
Weng, L., He, Y., Peng, J., Zheng, J., Li, X., 2021. Deep cascading network architecture for robust automatic modulation classification. Neurocomputing 455, 308-324.
Xu, L., Jia, H., Lang, C., Peng, X., Sun, K., 2019a. A Novel Method for Multilevel Color Image Segmentation Based on Dragonfly Algorithm and Differential Evolution. IEEE Access 7, 19502-19538.
Xu, Y., Chen, H., Heidari, A.A., Luo, J., Zhang, Q., Zhao, X., Li, C., 2019b. An Efficient Chaotic Mutative Moth-flame-inspired Optimizer for Global Optimization Tasks. Expert Systems with Applications 129, 135-155.

Xu, Y., Chen, H., Luo, J., Zhang, Q., Jiao, S., Zhang, X., 2019c. Enhanced Moth-flame optimizer with mutation strategy for global optimization. Information Sciences 492, 181-203.
Yang, X.-S., 2010. Firefly algorithm, stochastic test functions and design optimization. International Journal of Bio-Inspired Computation 2(2), 78-84.
Yang, X.S., Deb, S., 2010. Engineering Optimisation by Cuckoo Search. International Journal of Mathematical Modelling \& Numerical Optimisation 1, 330-343.

Yang, Y., Chen, H., Heidari, A.A., Gandomi, A.H., 2021a. Hunger games search: Visions, conception, implementation, deep analysis, perspectives, and towards performance shifts. Expert Systems with Applications 177, 114864.
Yang, Y., Chen, H., Heidari, A.A., Gandomi, A.H., 2021b. Hunger Games Search: Visions, Conception, Implementation, Deep Analysis, Perspectives, and Towards Performance Shifts. Expert Systems with Applications, 114864.
Yu, C., Chen, M., Cheng, K., Zhao, X., Ma, C., Kuang, F., Chen, H., 2021. SGOA: annealing-behaved grasshopper optimizer for global tasks. Engineering with Computers, 10.1007/s00366-00020-0123400361.

Yu, H., Zhao, N., Wang, P., Chen, H., Li, C., 2020. Chaos-enhanced synchronized bat optimizer. Applied Mathematical Modelling 77, 1201-1215.

Zeng, G.-Q., Chen, J., Dai, Y.-X., Li, L.-M., Zheng, C.-W., Chen, M.-R.J.N., 2015. Design of fractional order PID controller for automatic regulator voltage system based on multi-objective extremal optimization. Neurocomputing 160, 173-184.
Zeng, G.-Q., Lu, K.-D., Dai, Y.-X., Zhang, Z.-J., Chen, M.-R., Zheng, C.-W., Wu, D., Peng, W.-W.J.N., 2014. Binary-coded extremal optimization for the design of PID controllers. Neurocomputing 138, 180-188.
Zeng, G.-q., Lu, Y.-z., Mao, W.-J., 2011a. Modified extremal optimization for the hard maximum satisfiability problem. Journal of Zhejiang University SCIENCE C 12, 589-596.
Zeng, G.-q., Lu, Y.-z., Mao, W.-J.J.J.o.Z.U.S.C., 2011b. Modified extremal optimization for the hard maximum satisfiability problem. Journal of Zhejiang University SCIENCE C 12, 589-596.
Zeng, G.-Q., Xie, X.-Q., Chen, M.-R., Weng, J., 2019. Adaptive population extremal optimization-based

PID neural network for multivariable nonlinear control systems. Swarm and Evolutionary Computation 44, 320-334.
Zeng, G., Lu, Y., Dai, Y., Wu, Z., Mao, W., Zhang, Z., Zheng, C.J.I.J.I.C.I.C., 2012. Backbone guided extremal optimization for the hard maximum satisfiability problem. International Journal of Innovative Computing Information and Control 8, 8355-8366.
Zhan, Z.-H., Liu, X.-F., Zhang, H., Yu, Z., Weng, J., Li, Y., Gu, T., Zhang, J., 2016. Cloudde: A heterogeneous differential evolution algorithm and its distributed cloud version. IEEE Transactions on Parallel and Distributed Systems 28, 704-716.
Zhang, H., Cai, Z., Ye, X., Wang, M., Kuang, F., Chen, H., Li, C., Li, Y., 2020a. A multi-strategy enhanced salp swarm algorithm for global optimization. Engineering with Computers, 1-27.
Zhang, L., Zhang, L., Mou, X., Zhang, D., 2011. FSIM: A Feature Similarity Index for Image Quality Assessment. IEEE Transactions on Image Processing 20, 2378-2386.

Zhang, X., Kang, Q., Cheng, J., Wang, X., 2018. A novel hybrid algorithm based on Biogeography-Based Optimization and Grey Wolf Optimizer. Applied Soft Computing 67, 197-214.
Zhang, X., Xu, Y., Yu, C., Heidari, A.A., Li, S., Chen, H., Li, C., 2020b. Gaussian mutational chaotic fruit flybuilt optimization and feature selection. Expert Systems with Applications 141, 112976.
Zhang, Y., Liu, R., Heidari, A.A., Wang, X., Chen, Y., Wang, M., Chen, H., 2020c. Towards augmented kernel extreme learning models for bankruptcy prediction: Algorithmic behavior and comprehensive analysis. Neurocomputing, https://doi.org/10.1016/j.neucom.2020.1010.1038.
Zhang, Y., Liu, R., Wang, X., Chen, H., Li, C., 2020d. Boosted binary Harris hawks optimizer and feature selection. Engineering with Computers, 1-30.
Zhao, C., Zhong, S., Zhang, X., Zhong, Q., Shi, K., 2020a. Novel results on nonfragile sampled - data exponential synchronization for delayed complex dynamical networks. International Journal of Robust and Nonlinear Control 30, 4022-4042.
Zhao, D., Liu, L., Yu, F., Asghar Heidari, A., Wang, M., Oliva, D., Muhammad, K., Chen, H., 2020b. Ant Colony Optimization with Horizontal and Vertical Crossover Search: Fundamental Visions for Multithreshold Image Segmentation. Expert Systems with Applications, 114122 (https://doi.org/114110.111016/j.eswa.112020.114122).

Zhao, D., Liu, L., Yu, F., Heidari, A.A., Wang, M., Liang, G., Muhammad, K., Chen, H., 2020c. Chaotic random spare ant colony optimization for multi-threshold image segmentation of 2D Kapur entropy. Knowledge-Based Systems, 106510 (https://doi.org/106510.101016/j.knosys.102020.106510).

Zhao, D., Liu, L., Yu, F., Heidari, A.A., Wang, M., Oliva, D., Muhammad, K., Chen, H., 2021. Ant colony optimization with horizontal and vertical crossover search: Fundamental visions for multi-threshold image segmentation. Expert Systems with Applications 167, 114122.
Zhao, H., Liu, H., Xu, J., Deng, W., 2020d. Performance Prediction Using High-Order Differential Mathematical Morphology Gradient Spectrum Entropy and Extreme Learning Machine. IEEE Transactions on Instrumentation and Measurement 69, 4165-4172.
Zhao, H., Liu, H., Xu, J., Deng, W.J.I.T.o.i., measurement, 2019a. Performance prediction using high-order differential mathematical morphology gradient spectrum entropy and extreme learning machine. IEEE Transactions on Instrumentation \& Measurement, https://doi.org/10.1109/TIM.2019.2948414.
Zhao, X., Li, D., Yang, B., Chen, H., Yang, X., Yu, C., Liu, S., 2015. A two-stage feature selection method with its application. Computers \& Electrical Engineering 47, 114-125.

Zhao, X., Li, D., Yang, B., Ma, C., Zhu, Y., Chen, H., 2014. Feature selection based on improved ant colony optimization for online detection of foreign fiber in cotton. Applied Soft Computing 24, 585-596.

Zhao, X., Zhang, X., Cai, Z., Tian, X., Wang, X., Huang, Y., Chen, H., Hu, L., 2019b. Chaos enhanced grey wolf optimization wrapped ELM for diagnosis of paraquat-poisoned patients. Computational Biology and Chemistry 78, 481-490.
Zhong, Z., Xiao, G., Wang, S., Wei, L., Zhang, X., 2022. PESA-Net: Permutation-Equivariant Split Attention Network for correspondence learning. Information Fusion 77, 81-89.
Zhou, H., Pang, J., Chen, P.-K., Chou, F.-D., 2018. A modified particle swarm optimization algorithm for a batch-processing machine scheduling problem with arbitrary release times and non-identical job sizes. Computers \& Industrial Engineering 123, 67-81.
Zhou, S.-Z., Zhan, Z.-H., Chen, Z.-G., Kwong, S., Zhang, J., 2020. A multi-objective ant colony system algorithm for airline crew rostering problem with fairness and satisfaction. IEEE Transactions on Intelligent Transportation Systems, DOI: 10.1109/TITS.2020.2994779.
Zhou, W., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P., 2004. Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing 13, 600-612.
Zhou, W., Guo, Q., Lei, J., Yu, L., Hwang, J.-N., 2021. IRFR-Net: Interactive Recursive Feature-reshaping Network for Detecting Salient Objects in RGB-D Images. IEEE Transactions on Neural Networks and Learning Systems.
Zhu, A., Xu, C., Li, Z., Wu, J., Liu, Z., 2015. Hybridizing grey wolf optimization with differential evolution for global optimization and test scheduling for 3D stacked SoC. Journal of Systems Engineering and Electronics 26, 317-328.
Zhu, X., Guo, K., Fang, H., Chen, L., Ren, S., Hu, B., 2021a. Cross View Capture for Stereo Image SuperResolution. IEEE Transactions on Multimedia, DOI: 10.1109/TMM.2021.3092571.
Zhu, X., Guo, K., Ren, S., Hu, B., Hu, M., Fang, H., 2021b. Lightweight Image Super-Resolution with Expectation-Maximization Attention Mechanism. IEEE Transactions on Circuits and Systems for Video Technology, DOI: 10.1109/TCSVT.2021.3078436.


[^0]:    Some of the authors of this publication are also working on these related projects:

[^1]:    ${ }^{1}$ https://aliasgharheidari.com/RUN.html
    ${ }^{2}$ https://aliasgharheidari.com/HHO.html
    ${ }^{3}$ https://aliasgharheidari.com/SMA.html
    ${ }^{4}$ https://aliasgharheidari.com/HGS.html

