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Abstract: Medical image segmentation, a complex and fundamental step in medical image processing, 

can help doctors make more precise decisions on patient diagnosis. Although multi-threshold image 

segmentation is the most exceptionally fundamental image segmentation technology, it requires 

complex computing and tends to yield unsatisfactory segmentation results, leading to its limited 

applications. To solve this problem, in this study, an ensemble multi strategy-driven shuffled frog leaping 

algorithm with horizontal and vertical crossover search (HVSFLA) is designed for multi-threshold 

image segmentation. Specifically, a horizontal crossover search enables different frogs to exchange 

information and guarantee the compelling exploration of  each frog. Meanwhile, a vertical crossover 

search can make frogs in stagnation continue to search actively. Therefore, a better balance between 

diversification and intensification can be ensured. To evaluate its performance, HVSFLA was compared 

with a range of  state-of-the-art algorithms using CEC 2017 benchmark functions. Furthermore, the 

performance of  HVSFLA was also proved on several Berkeley segmentation datasets 500 (BSDS500). 

Finally, the proposed algorithm was applied to breast invasive ductal carcinoma cases based on multi-
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threshold segmentation technique using a non-local means 2D histogram integrated with Kapur's 

entropy. The experimental results demonstrate that the proposed HVSFLA outperforms a broad array 

of  similar competitors, and thus it has a great potential to be used for medical image segmentation. 

 

Keywords: Medical image segmentation; Multi-threshold image segmentation; Shuffled frog leaping 

algorithm; Horizontal and vertical crossover search; Kapur’s entropy; 

 

1 Introduction 

The processing of  medical images plays a significant role in practical patient diagnosis and 

treatment. The most critical stage in this process is the segmentation of  medical images, which provides 

valuable diagnostic assistance to doctors. Image segmentation is performed to divides the image into 

various disconnected areas based on its characteristics, such as spatial texture or geometric form, in 

order that continuity or similarities are shown in the same area, but unmistakable contrasts are between 

different areas. Image segmentation is not only the primary concern in medical image processing but 

also one of  the classic cases in the area of  computer vision. In most cases, it is difficult for the 

techniques to separate the image in compliance with human comprehension.  

With the steady growth of  computer computing resources, image segmentation has drawn more 

and more interest from researchers in recent years, (L. Liu, et al., 2021). The image segmentation 

technology is widely used in numerous sectors, including aerospace technology, product defects 

detection, biomedicine, smart transport, arms management, and safety monitoring. Threshold-based 

segmentation, in particular, has gained growing interest among many technologies for image 

segmentation. Therefore, various methods for multi-threshold segmentation of  medical images, 

especially the approaches that use metaheuristics, have gained further interest. Currently, these 

metaheuristics has found its application in many fields including feature selection (Y. Zhang, Liu, Wang, 

Chen, & Li, 2020), wind speed prediction (M. Chen, Zeng, Lu, & Weng, 2019), engineering design 

problems (H. Zhang, et al., 2020), medical data classification (X. Zhao, et al., 2019), bankruptcy 

prediction (Yu, et al., 2021), parameter optimization (M. Wang & Chen, 2020), PID optimization control 

(Zeng, Xie, Chen, & Weng, 2019), gate resource allocation (W, JJ, YJ, & HM, 2020), fault diagnosis of  

rolling bearings (H. Zhao, Liu, Xu, Deng, & measurement, 2019), detection of  foreign fiber in cotton 

(X. Zhao, et al., 2015), traveling salesman problem (Lai & Zhou, 2020), performance optimization (Ying, 

Ying, & Ban, 2018), neural network training (Zhile Yang, Li, Guo, Ma, & Zheng, 2018), design of  power 

electronic circuit (X.-F. Liu, Zhan, & Zhang, 2021), energy vehicle dispatch (D. Liang, Zhan, Zhang, & 

Zhang, 2019), large-scale supply chain network design (Xin Zhang, et al., 2019) and prediction problems 

in educational field (Jixia Tu, Lin, Chen, Li, & Li, 2019).  

A multi-level threshold image segmentation method using the moth-swarm algorithm was 

developed by Zhou et al. (Y. Zhou, Yang, Ling, & Zhang, 2018). To find the near-optimal MCET 



thresholds, particle swarm optimization was designed by Yin (P. Y. Yin, 2007). A non-revisiting 

quantum-behaved particle swarm optimization algorithm for image segmentation was proposed by 

Yang et al. (Z. Yang & Wu, 2019). Tsai et al. (Tsai, Liu, & Chen, 2012) presented a histogram-based 

multi-threshold color threshold research algorithm. Wang et al. (Y. Wang, Zhang, & Zhang, 2019) 

proposed a multi-level cooperative heuristic pigeon threshold optimizer based on the threshold of  

complex distance. Tang et al. (Tang, Yuan, Sun, Yang, & Gao, 2011) developed an enhanced multi-level 

minimum cross-entropy threshold (MCET) genetic algorithm to collect tighter thresholds. Feng et al. 

(Y. Feng, Zhao, Li, Zhang, & Li, 2017) proposed a new 3D Otsu and multi-level picture representation 

algorithm for medical image segmentation, with desirable characteristics that include stable 

segmentation performance and excellent noise robustness. To find an optimal threshold of  multifaceted 

image segmentation, Fan et al. (C. Fan, Ouyang, Zhang, & Xiao, 2014) suggested a principle of  

molecular dynamics optimizer technology (MKTOA). Tang et al. (Tang, Xiao, Wu, Yang, & Luo, 2017) 

designed multi-level bacterial foraging optimization to improve global search capacity and speed up the 

convergence of  the bacterial foraging algorithm, using the particle swarm algorithm (PSO) in every 

chemical reaction phase after that.  

Qin et al. (J. Qin, Wang, & Qin, 2019) proposed the multi-level threshold method based on 

subspace elimination optimization. Peng et al. (Peng, Wang, Pérez-Jiménez, & Shi, 2013) suggested a 

new approach to multi-level thresholds using the tissue P method by. Pare et al. (Pare, Kumar, Bajaj, & 

Singh, 2016) presented a novel search algorithm for multi-level thresholds color segmentation cases 

using an improved cuckoo algorithm with various parametric processing techniques. Manikandan et al. 

(Manikandan, Ramar, Iruthayarajan, & Srinivasagan, 2014) used a real coded genetic algorithm with a 

synthetic binary crossover applied to segment medical brain pictures with multi-level thresholds. Zhao 

et al. (D. Zhao, Liu, Yu, Heidari, Wang, Liang, et al., 2021) presented chaotic, random spare ant colony 

optimization for multi-threshold image segmentation. Kotte et al. (Kotte, Pullakura, & Injeti, 2018) also 

suggested a multi-level threshold wind-driven adaptive algorithm for brain images segmentation. While 

a variety of  algorithms have been introduced to deal with multi-threshold image segmentation, there is 

still no satisfactory consistency between the solution and the ability to jump out of  local optima. 

Moreover, no algorithm is all-powerful and can fix any problem as says in a no free lunch principle 

(Wolpert & Macready, 1997). It should be noted that it is appropriate to use a multi-dimensional 

threshold segmentation approach or pick several thresholds at the same time to achieve efficient 

segmentation of  the target image if  the target image is to be segmented more precisely and finely. 

However, the time complexity of  the threshold segmentation algorithm grows exponentially as the 

image information dimension or collection threshold increases. Increased time complexity means higher 

criteria for convergence, accuracy and ability to jump out of  local optima. Therefore, in this study, we 

design a new and efficient image segmentation methodology based on the shuffled frog leaping 

algorithm (Muzaffar M. Eusuff, 2003) (SFLA). The proposed methodology was finally applied to 

microscopy segmentation for breast cancer. The SFLA (Muzaffar M. Eusuff, 2003), first proposed by 

Muzaffar et al. in 2003, has been used in a wide variety of  realistic scenarios and achieved relatively 

unexpected success (Karpagam, Geetha, & Rajan, 2020; Y. Liu, et al., 2021). To the best of  our 



knowledge, few studies have used this methodology to solve this image segmentation problem. 

In this study, to further boost the potential of  the original SFLA for multi-threshold medical image 

segmentation of  breast invasive ductal carcinoma, a typical common breast cancer, two horizontal and 

vertical crossover search mechanisms abstracted from the crisscross optimizer (CSO) (Meng, Chen, Yin, 

& Chen, 2014) are integrated into the original SFLA, called an ensemble multi-strategy-driven SFLA 

(HVSFLA). In this method, a horizontal crossover search is executed between two different frogs in 

each frog memeplex. It enables different frogs to exchange information, which can guarantee the 

effective exploration of  each frog and speed up convergence rate. Meanwhile, vertical crossover search 

can make frogs in stagnation to continue to search actively. Eventually, a better balance between 

diversification and intensification can be ensured. To evaluate the performance of the HVSFLA, the 

HVSFLA was compared with a multitude of state-of-the-art algorithms on CEC 2017 benchmark 

functions. In addition, on several Berkeley segmentation datasets 500 (BSDS500), the performance of 

the HVSFLA was proven. Finally, the proposed algorithm was applied to microscopy segmentation for 

breast invasive ductal carcinoma cases, using a non-local 2D histogram combined with the Kapur's 

entropy method of multi-threshold image segmentation. Furthermore, the low and high threshold levels 

were both used to thoroughly investigate the performance of  the presented algorithm. In addition, to 

determine the effects of image segmentation, the Peak Signal to Noise Ratio (PSNR) (Huynh-Thu & 

Ghanbari, 2008), Structural Similarity Index (SSIM) (Wang Zhou, Bovik, Sheikh, & Simoncelli, 2004), 

and Feature Similarity Index (FSIM) (31) were used, and the mean value, variance and the Wilcoxon 

signed-rank test (L. Zhang, Zhang, Mou, & Zhang, 2011) were applied to assess the results of the 

assessment.  

The main contributions of  this paper are given as follows: 

(1) The multi-strategy SFLA (HVSFLA) ensemble is presented for the implementation of  multi-

threshold image segmentation. This research is the first attempt to develop an improved SFLA 

approach based on horizontal and vertical crossover search mechanisms abstracted from the cruise 

optimizer. 

(2) The effects of  the original SFLA are strengthened in HVSFLA by utilizing unique horizontal and 

vertical crossover search behaviors, achieving a better balance between intensification and 

diversification. 

(3) The proposed HVSFLA was compared with a range of  state-of-the-art algorithms on CEC 2017 

benchmark functions, Berkeley 500 (BSDS500), and the case of  breast invasive ductal carcinoma. 

The results demonstrate that the proposed HVSFLA has technical and statistical advantages in 

multi-threshold image segmentation. 

The rest of  the paper is structured as follows: the detailed background is given in Section 2. Section 

3 describes the proposed algorithm. The experiment results on CEC 2017 benchmark functions and 

Berkeley datasets 500 (BSDS500) at low and high threshold levels are presented in Section 4. The 

application of  the proposed method to breast invasive ductal carcinoma image segmentation is 

described in Section 5. Section 6 gives a further discussion on the results shown in Section 4. Finally, 

the conclusion and future work is summarized in Section 7. 



 

2 Background 

2.1 Multilevel thresholding image segmentation 

In many image processing problems, segmentation of  images is a crucial step that divides an image 

into many disjoint regions based on its characteristics, displaying continuity or similarities within the 

same area, but unmistakable contrasts between different areas. Multilevel threshold image segmentation 

(MTIS) searches for multiple image segmented thresholds for multiple regions. Owing to its 

characteristics of  quick implementation, limited measuring volume, and a relatively high level of  

efficiency, MTIS has evolved into the most widely used processing technology in image segmentation. 

The histogram-based segmentation approach is prevalent among different MTIS approaches. It can be 

divided into a single-dimensional histogram system or a two-dimensional histogram solution, with no 

spatial image position information used for the single-dimensional histogram method. If  the target 

region covers a small area of  the image, the false segmentation effect is so severe that the segmentation 

product is susceptible to nuisance. A two-dimensional histographic fragmentation approach suggested 

by Abutaleb (Abutaleb, 1989) combines local average pixels with the original Gray-Level histogram. 

However, since MTIS uses the two-dimensional histogram, the statistical complexity would be 

enormous if  the systematic approach is explicitly used to find the optimum threshold (69, 70).  

Many researchers used swarm intelligence algorithms to help find the optimum threshold and 

achieved considerable efficiency to prevent this phenomenon. However, Abutaleb's method of  

producing a two-dimensional histogram does not take certain image specifics into account, such as 

certain points and edges. Thus, a procedure integrating a 2D histogram with the entropy of  Kapur to 

MTIS is employed in this article. In Figure 1, the comprehensive image segmentation process example 

is based on this approach by selecting photo 35070 from the Berkeley segmentation dataset 500 

(BSDS500). Kapur’s method is also an unsupervised automatic thresholding technique, which selects 

the optimum thresholds using the entropy of  segmented classes (Kapur, Sahoo, Wong, & processing, 

1985). [𝑡ℎ1, 𝑡ℎ2, 𝑡ℎ3, … , 𝑡ℎ𝑛] means the thresholds combination which divides the image into various 

class. The detailed function of  Kapur’s method can be expressed as: 

H(𝑡ℎ1, 𝑡ℎ2, 𝑡ℎ3, … , 𝑡ℎ𝑛) = 𝐻0 + 𝐻1 + 𝐻2 + ⋯ + 𝐻𝑛 

𝐻0 = − ∑
𝑝𝑗

𝑤0

𝑡ℎ1−1
𝑗=0 𝑙𝑛
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where 𝐻0, 𝐻1, … , 𝐻𝑛 means the entropies of  distinct classes, and 𝑤0, 𝑤1, … , 𝑤𝑛 are the probability 

of  each class. More information can be found in (Kapur, et al., 1985). 



 

 

Figure 1. MTIS flowchart with the entropy of  Kapur 

2.2 Non-local means 2D histogram 

Buade et al. (Buades, Coll, & Morel, 2005) developed a non-local medium filtering approach that 

efficiently eliminates noise by searching for related parts of  the pixel or image blocks in the search box 

and then measuring similar regions' average values. In image H, the non-local average of  image H can 

be determined by Eq. (2) - Eq. (5) in the case of  𝐻(𝑠) and 𝐻(𝑡) gray scale values that correspond 

to the pixels s and t. 

𝑂(𝑠) =
∑ 𝐻(𝑡)𝜔(𝑠,𝑡)𝑠∈𝐻

∑ 𝜔(𝑠,𝑡)𝑠∈𝐻
         (2) 

𝜔(𝑠, 𝑡) = 𝑒𝑥𝑝−
|𝜇(𝑠)−𝜇(𝑡)|2

𝜎2          (3) 

       𝜇(𝑠) =
1

𝑚×𝑚
∑ 𝐻(𝑖)𝑖∈𝐿(𝑠)          (4) 

       𝜇(𝑡) =
1

𝑚×𝑚
∑ 𝐻(𝑖)𝑖∈𝐿(𝑡)          (5) 

where 

     𝑂(𝑠) is the non-local average filter value of  pixel s, 

     𝜔(𝑠, 𝑡) is the weight of  the pixel 𝑠 and the pixel 𝑡, 

     𝜎 is the standard deviation, 

     𝜇(𝑠) and 𝜇(𝑡) are the local mean, 

     𝐿(𝑠) is the 𝑚 × 𝑚 image block centered on 𝑠, 

     𝐿(𝑡) is the 𝑚 × 𝑚 image block centered on 𝑡, 

The non-local mean is generated by representations from two complex histograms that are non-local, 

mean, and graying. When an initial grayscale image  𝐻(𝑥, 𝑦) is of  [0, 𝐿 − 1] the magnitude and 

𝑀 × 𝑁  size, it is also [0, 𝐿 − 1] magnitude, and of  𝑀 × 𝑁  image size, to be contained in the 

resultant non-local mean image 𝑔(𝑥, 𝑦). Furthermore, a plane corresponding to points s (𝑖, 𝑗) will 



form 𝐻(𝑥, 𝑦) and 𝑔(𝑥, 𝑦), where i denotes pixels in 𝐻(𝑥, 𝑦) as grayscale and j denotes the pixels 

in 𝑔(𝑥, 𝑦), as grayscale value, it is also possible to acquire the number of  ℎ(𝑖, 𝑗) pixels appearing in 

the grayscale value vector (s, t). The respective 2D histogram can then be constructed after normalizing 

the ℎ(𝑖, 𝑗)  with equation 6, where 𝑖, 𝑗 = 0,1, ⋯ , 𝐿 − 1  and ∑ ∑ 𝑝𝑖𝑗 = 1𝑗𝑖 , ℎ(𝑖, 𝑗)  denotes the 

number of  times the point (𝑖, 𝑗) appears on the grayscale value vector (s, t) and 𝑀 × 𝑁 is the image 

size.  The significance of  equation 6 is to normalize the number of  pixel points with the same 

combination of  gray values. In the constructed two-dimensional histogram, the x-axis represents the 

gray value 𝑖 of  a pixel in the grayscale image, the y-axis represents the gray value 𝑗 of  the same pixel 

in the non-local mean image, and the z-axis represents the value after normalizing the number of  pixel 

points with the combination of  gray values as (𝑖, 𝑗) using Eq. (6). The 3D views of  2D histograms 

generated by non-local mean filtering and color pictures 37073 and 38092 selected from BSDS500 are 

shown in Figure 2. 

𝑃𝑖𝑗 =
ℎ(𝑖,𝑗)

𝑀×𝑁
         (6) 

37073: Color image 37073: 2D histogram 38092: Color image 38092: 2D histogram

 

Figure 2. Color images and 3D views of  2D histograms for 12003 and 38082 in BSDS500 

2.3 Kapur’s entropy for 2D histograms 

The associated flat histogram is shown in Figure 3, after the definition of  the two-dimensional, 

non-local medium histogram in section 2.2, where {𝑝1, 𝑝2 … , 𝐿 − 1} is the value of  the grayscale of  

the gray image, and {𝑞1, 𝑞2 … , 𝐿 − 1} means the non-local medium image grayscale value. As the main 

diagonal of  a 2D histogram, most image information is contained and is therefore measured easily; 

Kapur’s entropy can only be calculated on the main diagonal for n subregions; the entropy can thus be 

described as equation 7 for the Kapur image. 

 

𝜑(𝑝, 𝑞) = − ∑ ∑
𝑢𝑖𝑗

𝑢1

𝑞1
𝑗=0

𝑝1
𝑖=0 ln

𝑣𝑖𝑗

𝑣1
− ∑ ∑

𝑢𝑖𝑗

𝑢2

𝑞2
𝑗=𝑡1+1

𝑝2
𝑖=𝑡1+1 ln

𝑣𝑖𝑗

𝑣2
−     

… ∑ ∑
𝑢𝑖𝑗

𝑢𝐿−1

𝑞𝐿−1
𝑗=𝑡𝐿−2+1

𝑝𝐿−1
𝑖=𝑠𝐿−2+1 ln

𝑣𝑖𝑗

𝑣𝐿−1
        (7) 

where 𝑢1 = ∑ ∑ 𝑢𝑖𝑗
𝑞1
𝑗=0

𝑝1
𝑖=0 , 𝑣2 = ∑ ∑ 𝑣𝑖𝑗

𝑞2
𝑗=𝑞1+1

𝑝2
𝑖=𝑞1+1 , 𝑣𝐿−1 = ∑ ∑ 𝑣𝑖𝑗

𝑞𝐿−1
𝑗=𝑞𝐿−2+1

𝑝𝐿−1
𝑖=𝑝𝐿−2+1 . 
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Figure 3. 2D histogram two-dimensional view 

where {𝑞1, 𝑞2 … , 𝐿 − 1} and {𝑝1, 𝑝2 … , 𝐿 − 1} shows the gray image scale values and the non-local mean 

image, respectively. Thus, the threshold set {𝑞1, 𝑞, … , 𝑞𝑛−1}, maximizing 𝜑(𝑝, 𝑞), shall be used as an 

optimum threshold by using Kapur’s entropy as an objective, and its value means the fitness as follow: 

𝑓𝐾(𝑝, 𝑞) = 𝑎𝑟𝑔𝑚𝑎𝑥{𝜑(𝑝, 𝑞)}      (8) 

3 Proposed HVSFLA 

3.1 Shuffled Frog Leaping Algorithm (SFLA) 

Complex problems such as performance evaluation metrics (Zhiang Wu, Li, Cao, & Ge, 2020), optimal 

performance design (Kordestani, Zhang, Masri, & Shadabfar, 2021), image retrieval (Zenggang, et al., 2019), 

control cases (Sheng, et al., 2020), and prediction cases (W. Zhou, Lv, Lei, & Yu, 2021) often cannot be solved 

using exact methods and thus we need to find some approximate solutions instead of  exact results. 

Evolutionary optimization algorithms have strong search ability and optimization performance for complex 

problems and can solve many real-life optimization problems (F. Yin, et al., 2021). Many new optimization 

algorithms have been proposed, including slime mould algorithm (SMA) (Li, Chen, Wang, Heidari, & Mirjalili, 

2020), Harris hawks optimization (HHO) (Heidari, et al., 2019), Runge Kutta optimizer (RUN) (Ahmadianfar, 

Asghar Heidari, Gandomi, Chu, & Chen, 2021), hunger games search (HGS) (Y. Yang, Chen, Heidari, & 

Gandomi, 2021), and colony predation algorithm (CPA) (Jiaze Tu, Chen, Wang, & Gandomi, 2021).  

Inspired by the real frog behavior, Eusuf  et al. (Eusuff  & Lansey, 2003) proposed an algorithm called 

SFLA in 2003. SFLA has shown effectiveness in tackling real-life applications (Y. Fan, et al., 2021; M. Wang, 

et al., 2021). The original SFLA has four steps: population initialization, sorting and dividing frogs into 

memeplexes, exploitation, and knowledge sharing, and shuffling. Initially, in the feature space, a frog solution 

is randomized and divided into many small groups called memeplexes, depending on the pending goal 

function regarding fitness values. There are frogs in every memeplex from various backgrounds, and the 

frogs are manipulated to change the worst position of  the frog. In addition, information abstracted from 



frogs can be shared in each memeplex for shuffling among other memeplexes. The detailed procedure is the 

following: the frog population is created randomly with equation 9: 

𝑋𝑖𝑗 = 𝑙𝑏𝑖 + 𝑟𝑎𝑛𝑑 (0,1) ∗ (𝑢𝑏𝑖 − 𝑙𝑏𝑖)                      (9) 

where i means the ith frog and the j represents the jth dimension, and rand (0, 1) means the distributed random 

number in the range of  [0, 1]. The fitness of  each frog is determined and sorted in descending order, and 

then the frog population is divided into many memeplexes. The frog is viewed in every memeplex as part of  

the first memeplex with the highest health benefit. The next one is then going to switch to the second 

memeplex. In the local search process, the most valuable individuals are frogs with the global best 𝑋𝑔𝑙𝑜𝑏𝑎𝑙 , 

best 𝑋𝑏𝑒𝑠𝑡  and worst X worst fitness values in any memeplex. The 𝑋𝑤𝑜𝑟𝑠𝑡  is modified using equation 10: 

𝑋∗ = 𝑋𝑤𝑜𝑟𝑠𝑡 + 𝑀𝑜𝑣𝑡 − 𝑀𝑜𝑣𝑚𝑎𝑥                        (10) 

where t means generation, 𝑀𝑜𝑣𝑡  is the movement of  a frog which is calculated by 𝑀𝑜𝑣𝑡 = 𝑟𝑎𝑛𝑑 (0, 1) ∗

(𝑋𝑏𝑒𝑠𝑡 − 𝑋𝑤𝑜𝑟𝑠𝑡), and 𝑀𝑜𝑣𝑚𝑎𝑥 means the maximum satisfactory frog drive in the feasible area, if  the worst 

frog position shows consistent growth, the position will be updated; if  no changes occur , then equation 9 

will be replicated. A frog position will be randomized to replace the worst frog with equation 10. Finally, 

between two memeplexes, information transfer is carried out, the frogs are sorted and shuffled again to 

execute the evolution process. The more detailed descriptions can be seen in (Eusuff  & Lansey, 2003) 

3.2 Horizontal crossover and vertical crossover search 

Horizontal crossover search is one of  the core steps of  the crisscross optimizer (Meng, et al., 

2014), and it is motivated by the theory of  the Confucius medium and the genetic algorithm. It can 

significantly enhance the searching capability of  optimizers (Y. Liu, et al., 2020). A horizontal crossover 

search is conducted between two different frogs in each memeplex, allowing different frogs to share 

knowledge and learn from one another and increase frogs' ability to explore and speed up the 

algorithm's convergence. A hypothesis is given that the horizontal crossover search is conducted on 

the 𝑛𝑡ℎ position vectors of  the parent ants 𝑥𝑖 and 𝑥𝑗 and the calculation can be given as equation 

11 and 12. 

𝑆𝑖
𝑛 = 𝜀1 × 𝑥𝑖𝑛 + (1 − 𝜀1) × 𝑥𝑗𝑛 + 𝑐1 × (𝑥𝑖𝑛 − 𝑥𝑗𝑛)    (11) 

𝑆𝑗
𝑛 = 𝜀2 × 𝑥𝑗𝑛 + (1 − 𝜀2) × 𝑥𝑖𝑛 + 𝑐2 × (𝑥𝑗𝑛 − 𝑥𝑖𝑛)    (12) 

Si
n and Sj

nare the nth position vector ancestors generated by frogs xi and xj, respectively, using the 

horizontal crossover search, where ε1 and ε2  are the random number ranged (0,1) with a uniform 

distribution, c1 and c2 are the random number between (-1,1) with a uniform distribution, xin is ith 

frog's nth dimension, and xjn is the jth frog’s nth dimension.  

The vertical crossover search is also one of  the core steps of  the crisscross optimizer, which may be 

performed between each memeplex's two separate vectors of  positions. It can allow some locally 

optimal position vectors to continue searching to unchanged as far as possible the usual searching 

position vectors. Consequently, frogs are always trapped in the local optimum at the later search point 

due to the stagnation of  such position vectors. However, vertical crossover search will enable these 

position vectors to learn from each other and develop their ability to jump out of  local optima effectively. 



The vertical crossover search is performed by the vectors mth and nth of  the frogs that can be 

accomplished by equation 13. 

𝑆𝑖
𝑚 = 𝜀 × 𝑥𝑖𝑚 + (1 − 𝜀) × 𝑥𝑖𝑛      (13) 

where 𝜀 is a random number between reflect (0,1), and 𝑆𝑖
𝑚 is the 𝑚𝑡ℎ a created offspring position 

vector by vertical crossover search of  the vector in 𝑚𝑡ℎ position and the nth position vector of  𝑖 

frog. 

3.3 The proposed HVSFLA 

To improve performance, the HVSFLA is developed by introducing the horizontal crossover and 

vertical crossover search mechanisms into the original SFLA algorithm. In the HVSFLA, the algorithm 

can be broken down into two sections; the first part of  the algorithm is the initial steps of  SFLA, and 

the second part is the introduction of  the horizontal and vertical crossover search mechanisms. The 

detailed description of  the proposed HVSFLA can be seen in Table 1, where T means Maximum 

iterations, N means the population size, m is the number of  memeplexes, and n means the number of  

individuals in each memeplex. 

Table 1 The pseudocode of  the HVSFLA 

The pseudocode of the HVSFLA 

Generate initial population size N, calculate the fitness, and maximum iterations T; 

Divide the population of the frogs into m memeplexes in which every memeplex contains 

n; agents N=m*n; 

t=1 

while t≤T 

Obtain the global best frog position in the population: 𝑋𝑔𝑙𝑜𝑏𝑎𝑙; 

Obtain the worst and best frog position in each memeplex:𝑋𝑤𝑜𝑟𝑠𝑡   𝑎𝑛𝑑 𝑋𝑏𝑒𝑠𝑡; 

for i=1: m 

for j=1:n 

Generate a new frog position using equation 13: 𝑋𝑗
∗; 

if f(𝑋𝑗
∗)<f(𝑋𝑤𝑜𝑟𝑠𝑡

𝑖 ) 

    𝑋𝑤𝑜𝑟𝑠𝑡
𝑖 = 𝑋𝑗

∗; 

endif 

endfor 

for k=1:n 

Generate a new frog position using equation 11-13: 𝑋𝑘
∗; 

if f(𝑋𝑘
∗)<f(𝑋𝑤𝑜𝑟𝑠𝑡

𝑖 ) 

    𝑋𝑤𝑜𝑟𝑠𝑡
𝑖 = 𝑋𝑘

∗; 

endif 

endfor 

 𝑋𝑏𝑒𝑠𝑡
𝑖 = 𝑋𝑔𝑙𝑜𝑏𝑎𝑙; 

     endfor 



t=t+1; 

endwhile 

Return 𝑋𝑔𝑙𝑜𝑏𝑎𝑙(Individuals with the best fitness) 

4 Numerical results 

In this part, several experiments were conducted to evaluate the performance of  the proposed 

HVSFLA. Specifically, the HVSFLA was compared with several competitive evolutionary algorithms 

using IEEE CEC 2017 benchmark functions. In addition, the impact of  the introduced horizontal 

crossover search and vertical crossover search was also investigated. Notably, the balance and diversity 

analysis of  the proposed HVSFLA and the original SFLA was also carried out strictly. Moreover, the 

capability of  HVSFLA for multi-threshold image segmentation was validated using several Berkeley 

segmentation datasets 500 (BSDS500), at both the low threshold levels (2, 3, 4, and 5) and the high 

threshold levels (10, 15, 20, and 25). All experiments were performed on a 2.60GHz Intel® Core 7th 

generation processor and 16GB RAM computer, and coding was executed by using Matlab 2018b.  

4.1 Benchmark function validation 

Thirty IEEE CEC 2017 benchmark functions were used, as shown in Table 2. For each case, the 

search region of  each dimension was in the range of  [-100, 100]. These functions can be divided into 

four types: unimodal functions (F1, F2, and F3), multimodal functions (F4 to F10), hybrid functions 

(F11 to F20), and composition functions (F21 to F30). More details of  all test functions can be found 

in this related article (N. H. Awad, 2016).  

In addition, a range of  recent algorithms were used for comparison, including grey wolf  optimizer 

(GWO) (Mirjalili, Mirjalili, & Lewis, 2014), Differential Evolution (DE) (R. Storn & K. Price, 1997), 

whale optimization algorithm (WOA) (Mirjalili & Lewis, 2016), self-adaptive DE (SaDE) (A. K. Qin, 

Huang, & Suganthan, 2009), the ensemble of  mutation strategies and control parameters values for DE 

(EPSDE) (Mallipeddi, Suganthan, Pan, & Tasgetiren, 2011), comprehensive learning particle swarm 

optimizer (CLPSO) (J. J. Liang, Qin, Suganthan, & Baskar, 2006), and PSO with an aging leader and 

challengers (ALCPSO) (W. Chen, et al., 2013). All the algorithms in this experiment were all executed 

on the same experimental conditions to guarantee the availability and fairness of  the experiment as per 

artificial intelligence rules (S. Feng, Zuo, Zhang, Yin, & Chen, 2021). For this experiment, the 

population size was set as 40 and the maximum number of  evaluations MaxFE was set as 4.5*105 and 

all the algorithms were independently tested thirty times on thirty benchmark functions to reduce the 

effect of  random conditions. The details of  parameter settings of  all competitive algorithms are listed 

in Table 3. 

 

Table 2 IEEE CEC 2017 benchmark functions 



ID Name of  the function Class Search Range Optimum 

F1 Shifted and Rotated Bent Cigar Function Unimodal [-100, 100] 100 

F2 Shifted and Rotated Sum of  Different Power Function Unimodal [-100, 100] 200 

F3 Shifted and Rotated Zakharov Function Unimodal [-100, 100] 300 

F4 Shifted and Rotated Rosenbrock’s Function Multimodal [-100, 100] 400 

F5 Shifted and Rotated Rastrigin’s Function Multimodal [-100, 100] 500 

F6 Shifted and Rotated Expanded Scaffer’s F6 Function Multimodal [-100, 100] 600 

F7 Shifted and Rotated Lunacek Bi-Rastrigin Function Multimodal [-100, 100] 700 

F8 Shifted and Rotated Non-Continuous Rastrigin’s Function Multimodal [-100, 100] 800 

F9 Shifted and Rotated Lévy Function Multimodal [-100, 100] 900 

F10 Shifted and Rotated Schwefel’s Function Multimodal [-100, 100] 1000 

F11 Hybrid Function 1 (N=3) Hybrid [-100, 100] 1100 

F12 Hybrid Function 2 (N=3) Hybrid [-100, 100] 1200 

F13 Hybrid Function 3 (N=3) Hybrid [-100, 100] 1300 

F14 Hybrid Function 4 (N=4) Hybrid [-100, 100] 1400 

F15 Hybrid Function 5 (N=4) Hybrid [-100, 100] 1500 

F16 Hybrid Function 6 (N=4) Hybrid [-100, 100] 1600 

F17 Hybrid Function 6 (N=5) Hybrid [-100, 100] 1700 

F18 Hybrid Function 6 (N=5) Hybrid [-100, 100] 1800 

F19 Hybrid Function 6 (N=5) Hybrid [-100, 100] 1900 

F20 Hybrid Function 6 (N=6) Hybrid [-100, 100] 2000 

F21 Composition Function 1 (N=3) Composition [-100, 100] 2100 

F22 Composition Function 2 (N=3) Composition [-100, 100] 2200 

F23 Composition Function 3 (N=4) Composition [-100, 100] 2300 

F24 Composition Function 4 (N=4) Composition [-100, 100] 2400 

F25 Composition Function 5 (N=5) Composition [-100, 100] 2500 

F26 Composition Function 6 (N=5) Composition [-100, 100] 2600 

F27 Composition Function 7 (N=6) Composition [-100, 100] 2700 

F28 Composition Function 8 (N=6) Composition [-100, 100] 2800 

F29 Composition Function 9 (N=3) Composition [-100, 100] 2900 

F30 Composition Function 10 (N=3) Composition [-100, 100] 3000 

 

Table 3 Parameter settings of  the algorithms compared 

Algorithm Parameters 

GWO a=[2, 0] 

WOA a1=[2, 0]; a2=[-2, -1]; b=1 

DE Fmin=0.2; Fmax=0.8; CR=0.1 

SaDE F1=0.9, Cr1=0.1; F2=0.9, Cr2=0.9; F3=0.5, Cr3=0.3 



F4=0.5, Cr4=0.3; F5=0.5, Cr5=0.3 

EPSDE F[0.4, 0.9]; CR[0.1, 0.9] 

CLPSO w[0.2, 0.9]; c=1.496 

ALCPSO c1=c2=2.0; w=0.4; 0=60; T=2; pro=1/D; Vmax=0.5*search range 

HVSFLA m=5; n=10; α=3; β=5; σ=2 

4.2 The impact of  horizontal and vertical crossover search 

In order to further measure the effectiveness of  the diversity control in the HVSFLA and find out 

the best strategy, the component effect experiments were also carried out on CEC 2017 benchmark 

functions, where the population size was set as 40, the dimension of  optimization cases was set as 30, 

the maximum number of  evaluations MaxFE was set as 300000, and each competitive algorithm was 

executed 30 times independently. In the proposed algorithm, HVSFLA means both horizontal and 

vertical crossover search operators are introduced into the original SFLA, HSFLA denotes only the 

horizontal crossover search operator is introduced, and VSFLA indicates only the vertical crossover 

search operator is introduced. The average ranking of  all these algorithms on these CEC 2017 

benchmark functions is shown in Table 4. It can be seen that the HVSFLA can achieve the lowest 

ranking value of  1.46 and thus is ranked first, which implies the combination of  both horizontal and 

vertical crossover search operators is superior to single operator (horizontal or vertical crossover). 

Therefore, the HVSFLA was used as the experimental algorithm. 

Table 4 Average ranking of  various mechanism combinations of  SFLA 

Algorithm HVSFLA HSFLA VSFLA SFLA 

Average ranking 1.48 1.88 2.15 3.548 

4.3 The balance and diversity analysis 

To investigate the diversity and the balance between the diversification and intensification 

capabilities of  the ensemble multi strategy-driven HVSFLA and the original SFLA, the balance and the 

diversity tests were executed on CEC 2017 test functions. In this part, the population size was set as 40, 

and the number of  the maximum iteration was set as 1000. The balance analysis compared between 

HVSFLA and the original SFLA is shown in Figure 4, and the diversity analysis convergence graphs are 

shown in Figure 5. 

Regarding the curve lines in Figure 4, the abscissa is the iterations, and the ordinate is the 

percentage. The blue line and red line indicate the ratio of  exploitation (intensification) and the 

proportion of  the exploration (diversification) respectively. Moreover, another metric is an incremental-

decremental value that means the intensification and diversification of  the algorithm fulfills a state of  

balance when the value of  the exploration and exploitation of  the corresponding algorithm is break 

even. Subsequently, the exploration curve will descend to zero, and the exploitation curve will reach 

100%. A reasonable explanation for this phenomenon is that most swarm-based algorithms basically 



execute the diversification mechanism in the early steps of  the algorithm, and at the end of  the 

algorithm, it performs the intensification mechanism to enhance convergence accuracy. It can be 

observed from Figure 4 that the percentage of  the exploitation of  HVSFLA is better than that of  the 

conventional SFLA on F1 and F3, which indicates the intensification ability of  HVSFLA is 

strengthened, compared to the original SFLA. Moreover, the percentage of  the exploration of  

HVSFLA is higher than that of  the original SFLA on F11 and F20, indicating that the diversification 

ability of  the HVSFLA is also enhanced. Therefore, it can be concluded that the diversification and 

intensification capabilities of  HVSFLA are both improved relative to the basic SFLA due to the 

introduction of  the horizontal and vertical crossover search operators. 

Regarding Figure 5, the ordinate indicates the average distance between each frog in the algorithm, 

the abscissa means the iteration number, the red line is the average distance of  the HVSFLA, and the 

blue curve means the average distance of  the original SFLA, which reflects the individual distribution 

and the diversity of  the population. It can be seen from this figure that the average distance between 

the frogs is bigger because frog positions were generated randomly in the initialization phase. The curve 

is descending as the iterations increase and stabilizes in the end. On these selected functions, the trend 

of  the proposed HVSFLA appears to stabilize much earlier than the original SFLA, indicating that the 

introduced two search operators enhance the diversification and intensification capabilities of  HVSFLA. 

It should be noted that the curves of  HVSFLA can still perform modifications slightly when it has 

arrived at a stable state because the vertical crossover search operator can improve the diversification 

of  HVSFLA. Therefore, the diversification and intensification capabilities of  the proposed HVSFLA 

are significantly improved. 

 



 

Figure 4. The balance analysis plots of  F1, F3, F11, F20 



 

Figure 5. The diversity analysis plots of  F1, F3, F7, F11, F17, F20, F22, F28 



4.4 The results on the benchmark functions 

In this subsection, to evaluate its performance, the proposed HVSFLA was compared with several 

competitive evolutionary algorithms using 30 IEEE CEC 2017 benchmark functions. The metrics mean 

value (mean) and standard deviation value (std) were both used in this test, and each algorithm was 

executed 30 times independently for each test function. The statistical results of  algorithms are 

presented in Table 5. In Table 5, the last row indicates that comparison results between HVSFLA and 

other competitors, and the best mean and std value are marked in bold, where “ + ”, “ − ”, and “ = ” 

means that the result is significantly better, significantly worse, and statistically similar to that obtained 

by HVSFLA, respectively. 

It can be seen from Table 5 that the proposed HVSFLA significantly outperforms the original 

SFLA and other competitors on most of  the test problems, and it also obtains the theoretical optimal 

values on F1, F2, F3, F6, and F9. besides the CLPSO, EPSDE, SaDE, and DE all acquire the theoretical 

optimal solution on F6 case. The detailed analysis can be summarized as follows: the proposed 

HVSFLA outperforms the original SFLA, ALCPSO, and WOA on all thirty functions; HVSFLA 

performs better than CLPSO on twenty-five functions and is worse than CLPSO on one function, it 

shows a tie on the other four test functions. HVSFLA shows better performance than EPSDE on 

twenty-three functions; it performs similarly to EPSDE on two functions and is worse than EPSDE on 

five test functions; HVSFLA does better on twenty-two functions than SaDE, is inferior to SaDE on 

six test functions and performs similarly on two functions; HVSFLA is superior to GWO on twenty-

nine functions and performs worse only on one function; HVSFLA also has better performance than 

DE on twenty-nine functions, it shows a tie with DE on only one function. Notably, on a few test 

functions such as F8, the standard deviation of  HVSFLA is worse than that of  some other algorithms. 

One of  the potential reasons may be that the introduction of  multi-strategies results in impaired stability, 

indicating that there is still room for improvement in the stability of  the HVSFLA. 

It should be noted that these deficiencies are very small and maybe negligible in practical problems; 

after all, the total average search capability of  the HVSFLA is still very meaningful in practical problems. 

In addition, the convergence curves of  HVSFLA versus other competitive algorithms on several 

functions are shown in Figure 6. As far as each function is concerned, the HVSFLA shows an 

outstanding search capability. As shown on the vertical axis of  the F12, it shows rapid convergence in 

the initial stage of  optimization until the final convergence. As can be observed from Figure 6, the 

proposed HVSFLA also shows the best convergence capability among all these algorithms. Based on 

the above analysis, it can be concluded that HVSFLA is significantly superior in performance to the 

original SFLA and other peers due to the introduced horizontal and vertical crossover search operators. 

Horizontal crossover search enables different frogs to exchange information, which can guarantee the 

effective exploration of  each frog and speed up the convergence rate. Meanwhile, vertical crossover 

search can make frogs in stagnation continue to search actively. With the introduction of  these two 

operators, a better balance between diversification and intensification can be ensured, rendering it a 



potential technology for image segmentation tasks. 



Table 5 Statistical results evaluated by different algorithms for IEEE CEC 2017 

Function HVSFLA SFLA CLPSO ALCPSO EPSDE SaDE GWO WOA DE 

F1 
mean 1.0000E+02 4.3166E+09 1.3215E+02 5.0153E+03 1.0002E+02 2.6325E+03 2.0326E+09 2.1685E+06 9.7865E+02 

std 1.1568E-02 2.0368E+09 3.1982E+01 6.5298E+03 9.2856E-11 2.4126E+03 1.7563E+09 1.4852E+06 9.5963E+02 

F2 
mean 2.0000E+02 1.1658E+34 4.4850E+15 5.2637E+16 5.1258E+15 2.0261E+10 3.3251E+30 1.2638E+20 1.8924E+22 

std 5.0324E-06 4.2638E+34 1.8563E+16 2.1569E+17 2.0621E+16 7.4126E+10 1.8026E+31 5.4026E+20 4.1257E+22 

F3 
mean 3.0000E+02 6.5368E+04 1.4128E+04 2.9320E+04 1.7029E+04 3.0105E+02 3.3620E+04 1.6659E+05 3.3015E+04 

std 1.4732E-08 8.50231E+03 3.38264E+03 4.3920E+03 7.7541E+04 2.5369E-01 1.1258E+04 7.9239E+04 5.4128E+03 

F4 
mean 4.1879E+02 1.1853E+03 4.7213E+02 5.0359E+02 4.0456E+02 4.3526E+02 5.8462E+02 5.4521E+02 4.9126E+02 

std 2.7230E+01 3.3856E+02 1.7302E+01 2.1325E+01 3.2438E+00 3.7208E+01 8.0125E+01 3.4503E+01 8.2432E+00 

F5 
mean 5.3524E+02 7.45632E+02 5.4805E+02 5.9236E+02 5.3986E+02 5.4326E+02 6.0753E+02 8.0523E+02 6.1056E+02 

std 7.1035E+00 5.10235E+01 6.5326E+00 3.2015E+01 7.2354E+00 1.0853E+01 3.1936E+01 7.8290E+01 8.2906E+00 

F6 
mean 6.0000E+02 6.5823E+02 6.0000E+02 6.0523E+02 6.0000E+02 6.0000E+02 6.0785E+02 6.7203E+02 6.0000E+02 

std 5.4032E-13 1.4502E+01 8.2032E-12 2.9852E+00 0.0000E+00 1.5639E-05 3.3652E+00 1.1209E+01 2.1025E-14 

F7 
mean 7.7523E+02 1.0325E+03 7.8639E+02 8.4402E+02 7.7315E+02 7.6725E+02 8.6653E+02 1.2365E+03 8.4520E+02 

std 1.1685E+01 9.1289E+01 8.3421E+00 3.5421E+01 8.2985E+00 9.6235E+00 3.7854E+01 8.4756E+01 9.4218E+00 

F8 
mean 8.4125E+02 1.0236E+03 8.6025E+02 9.0302E+02 8.4596E+02 8.4213E+02 8.7632E+02 1.0063E+03 9.1216E+02 

std 1.0128E+01 3.5436E+01 6.6785E+00 3.9852E+01 1.1632E+01 9.7806E+00 1.6852E+01 4.9852E+01 9.5821E+00 

F9 
mean 9.0000E+02 5.4123E+03 9.2001E+02 1.6832E+03 9.0043E+02 9.0504E+02 1.6325E+03 7.7852E+03 9.0025E+02 

std 3.6533E-14 1.8632E+03 1.4215E+01 7.0752E+02 8.7126E-01 7.7578E+00 5.0412E+02 3.0125E+03 3.7585E-13 

F10 
mean 3.7325E+03 6.1958E+03 3.5561E+03 4.2148E+03 4.6458E+03 3.6325E+03 3.9289E+03 5.9885E+03 5.9958E+03 

std 5.0452E+02 6.2352E+02 3.0622E+02 6.8700E+02 4.2651E+02 7.6148E+02 6.0802E+02 7.7854E+02 2.5245E+02 



F11 
mean 1.1124E+03 2.3889E+03 1.16356E+03 1.2887E+03 1.1325E+03 1.1789E+03 1.6544E+03 1.5102E+03 1.1626E+03 

std 2.5603E+01 5.57851E+02 1.9548E+01 6.0456E+01 1.5254E+01 3.2231E+01 6.2912E+02 1.1601E+02 2.0432E+01 

F12 
mean 1.7582E+04 3.0325E+08 4.5954E+05 3.1269E+05 5.4702E+04 1.8321E+04 3.2520E+07 4.2241E+07 2.1985E+06 

std 8.5241E+03 2.7328E+08 2.3652E+05 5.2215E+05 7.1752E+04 9.8635E+03 4.0452E+07 2.8962E+07 1.1321E+06 

F13 
mean 1.9126E+03 1.1285E+05 1.7542E+03 2.8051E+04 7.1952E+03 9.9201E+03 3.3687E+06 1.6125E+05 5.4852E+04 

std 1.6128E+03 6.2312E+04 3.3852E+02 2.3102E+04 1.3256E+04 5.1623E+03 1.3742E+07 1.1482E+05 2.7201E+04 

F14 
mean 1.4885E+03 5.4132E+05 3.1132E+04 2.4543E+04 1.5041E+03 1.4865E+03 2.1285E+05 9.3653E+05 5.7632E+04 

std 4.7242E+01 6.0976E+05 2.5670E+04 4.2870E+04 9.9529E+01 5.7324E+01 3.6570E+05 9.7476E+05 3.1215E+04 

F15 
mean 1.5412E+03 2.8369E+04 1.6541E+03 1.5536E+04 1.6332E+03 1.9855E+03 1.4215E+06 7.6885E+04 1.0985E+04 

std 2.9012E+01 1.8524E+04 7.9852E+01 1.5591E+04 1.3051E+02 5.5232E+02 6.1721E+06 5.5609E+04 5.0425E+03 

F16 
mean 1.9000E+03 3.2332E+03 2.1005E+03 2.5421E+03 2.1863E+03 2.0401E+03 2.3902E+03 3.5169E+03 2.0963E+03 

std 2.1256E+02 3.7365E+02 1.3668E+02 3.0482E+02 1.8662E+02 1.6302E+02 2.3080E+02 4.2632E+02 1.4836E+02 

F17 
mean 1.7950E+03 2.4926E+03 1.8088E+03 2.1626E+03 1.8921E+03 1.7352E+03 1.9952E+03 2.5362E+03 1.8436E+03 

std 6.5541E+01 2.5826E+02 4.5650E+01 2.0582E+02 7.3336E+01 4.7882E+01 1.4149E+02 2.6854E+02 3.6741E+01 

F18 
mean 5.9014E+03 4.1562E+06 1.4878E+05 2.6523E+05 5.9029E+03 1.2632E+04 1.0325E+06 2.1256E+06 3.3123E+05 

std 2.3254E+03 4.6623E+06 9.6654E+04 2.9201E+05 6.3852E+03 8.4521E+03 1.6632E+06 2.2362E+06 1.6963E+05 

F19 
mean 1.9432E+03 9.3517E+06 1.9700E+03 1.2920E+04 1.9455E+03 2.2758E+03 1.8856E+06 2.1328E+06 9.8752E+03 

std 1.2560E+02 7.4200E+06 6.2198E+01 1.3780E+04 3.7223E+01 1.4050E+03 5.6856E+06 1.9169E+06 6.3852E+03 

F20 
mean 2.1035E+03 2.6652E+03 2.1852E+03 2.3588E+03 2.1251E+03 2.0766E+03 2.3655E+03 2.7159E+03 2.1145E+03 

std 6.6421E+01 2.1685E+02 7.3235E+01 1.8741E+02 7.2582E+01 6.3526E+01 1.1565E+02 2.0248E+02 5.4542E+01 

F21 
mean 2.3425E+03 2.4836E+03 2.3312E+03 2.4044E+03 2.3421E+03 2.3402E+03 2.3742E+03 2.5782E+03 2.4225E+03 

std 8.1632E+00 4.4785E+01 5.1598E+01 3.0160E+01 6.7185E+00 8.5620E+00 1.8354E+01 5.3905E+01 9.3365E+00 



F22 
mean 2.3000E+03 3.4692E+03 2.3329E+03 4.0930E+03 5.6092E+03 2.3125E+03 4.3332E+03 7.3885E+03 3.3712E+03 

std 1.1063E-12 1.2970E+03 1.6221E+01 1.8106E+03 1.4532E+03 1.0621E+00 1.4249E+03 1.2632E+03 1.4632E+03 

F23 
mean 2.6885E+03 2.8985E+03 2.7052E+03 2.7952E+03 2.6963E+03 2.6908E+03 2.7582E+03 3.0594E+03 2.7654E+03 

std 1.1142E+01 6.1305E+01 7.6085E+00 3.7352E+01 8.8669E+00 1.0685E+01 3.0820E+01 1.0592E+02 8.0236E+00 

F24 
mean 2.8625E+03 2.9956E+03 2.8885E+03 2.9952E+03 2.8658E+03 2.8586E+03 2.9275E+03 3.1725E+03 2.9752E+03 

std 1.4623E+01 3.0468E+01 1.1790E+02 6.3805E+01 7.1936E+00 1.6854E+01 4.5362E+01 7.7690E+01 9.5470E+00 

F25 
mean 2.8958E+03 3.2452E+03 2.8952E+03 2.8920E+03 2.8782E+03 2.8909E+03 2.9790E+03 2.9462E+03 2.8882E+03 

std 1.1985E+00 7.9236E+01 6.6025E-01 1.5742E+01 6.4426E+00 9.4852E+00 3.2368E+01 2.6985E+01 3.8852E-01 

F26 
mean 3.8523E+03 6.1582E+03 3.5521E+03 4.8885E+03 3.8220E+03 3.7526E+03 4.6240E+03 7.5522E+03 4.7235E+03 

std 1.7521E+02 1.1075E+03 5.0632E+02 4.1852E+02 1.8386E+02 6.1852E+02 3.7256E+02 9.6929E+02 9.2806E+01 

F27 
mean 3.1852E+03 3.3523E+03 3.2235E+03 3.2563E+03 3.2023E+03 3.2321E+03 3.2420E+03 3.3690E+03 3.2025E+03 

std 6.7230E+00 6.0121E+01 3.3425E+00 2.7562E+01 1.2425E-04 1.1620E+01 2.3946E+01 7.3956E+01 2.8126E+00 

F28 
mean 3.1276E+03 3.7923E+03 3.2362E+03 3.2362E+03 3.3021E+03 3.1280E+03 3.3852E+03 3.3362E+03 3.2023E+03 

std 4.7652E+01 1.9384E+02 1.0788E+01 3.7921E+01 1.1652E-04 5.2250E+01 5.4752E+01 1.9805E+01 3.8120E+01 

F29 
mean 3.3825E+03 4.7520E+03 3.4726E+03 3.7632E+03 3.3852E+03 3.3420E+03 3.7099E+03 4.7021E+03 3.5602E+03 

std 5.8200E+01 4.6425E+02 7.2825E+01 1.6452E+02 1.0660E+02 3.3352E+01 1.7108E+02 4.0542E+02 7.2321E+01 

F30 
mean 5.9623E+03 3.5852E+07 9.0988E+03 1.5463E+04 3.2251E+03 6.4926E+03 6.2325E+06 1.0521E+07 1.4895E+04 

std 7.7912E+02 3.4220E+07 1.6345E+03 6.3355E+03 5.6321E+01 1.2030E+03 5.9885E+06 8.3256E+06 4.1852E+03 

+/=/- NA 30/0/0 25/1/4 30/0/0 23/2/5 22/2/6 29/0/1 30/0/0 29/1/0 
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Figure 6. The convergence curves of  selected functions 



4.5 Experiments on MTIS 

In this subsection, the capability of  the proposed HVSFLA in multi-threshold image segmentation 

was investigated thoroughly. To measure its performance, HVSFLA was compared with eight other 

algorithms, including extended ant colony optimization (ACOR) (Socha & Dorigo, 2008), WOA 

(Mirjalili & Lewis, 2016), DE (R. Storn & K. J. J. o. G. O. Price, 1997), bat-inspired algorithm (BA) (X.-

S. Yang, 2010), PSO (Kennedy & Eberhart, 1995), a hybrid particle swarm optimization algorithm 

(CGPSO) (Jia, Zheng, Qu, & Khan, 2011), enhanced grey wolf  optimization strategy (IGWO) (Cai, et 

al., 2019), and enhanced Moth-flame optimizer with mutation strategy (LGCMFO) (Xu, et al., 2019). 

Furthermore, both the low threshold levels (2, 3, 4, and 5) and high threshold levels (from 10 to 25) 

with five tolerances of  the arithmetic were used to evaluate the performance of  the proposed algorithm. 

In addition, according to work in (D. Zhao, Liu, Yu, Heidari, Wang, Oliva, et al., 2021), three other 

metrics, i.e., PSNR, SSIM, and FSIM, were also used to measure the results of  image segmentation . 

4.5.1 Experiment design and arrangement 

In this subsection, images 12003, 38082, 19021, 65010, 35010, and 113016 abstracted from 

Berkeley segmentation dataset 500 were used for MTIS, and all these images are the most commonly 

used images to evaluate segmentation algorithms. Notably, the potential structure of  these images is 

referenced with the images of  breast invasive ductal carcinoma that will be explored in this study—

figure 7 shows these original images and non-local means 2D histograms. For a fair comparison, the 

HVSFLA and other competitive algorithms were all executed under the same situation. The size of  the 

population was set as 40, the number of  iterations was set as 100, image size was 481×321, and all 

algorithms were carried out 30 times individually. In addition, the performance was evaluated at various 

threshold levels of  each algorithm, including the low threshold levels of  2, 3, 4, 5, and the high threshold 

levels from 10 to 25 with five tolerances of  the arithmetic. 

 
Figure 7. Samples of  the segmented images. 

 

4.5.2 Performance evaluation parameters 

In this study, three metrics, i.e., PSNR, SSIM, and FSIM, were used to evaluate image segmentation 

results. Since these three metrics are effective in evaluating the performance of  segmentation algorithms 

in the field of  image segmentation, we used them as per work (D. Zhao, Liu, Yu, Heidari, Wang, Oliva, 



et al., 2021). The greater the PSNR value, the better performance of  the segmentation algorithm, and 

the PSNR equation is defined (12). SSIM can calculate the resemblance between two images and 

describes it as equation 18; the higher its value, the greater the threshold segmentation effect is; the 

equations of  PSNR and SSIM are as follows: 

 

𝑃𝑆𝑁𝑅 = 20 ∙ log10 (
255

𝑅𝑀𝑆𝐸
)       (14) 

𝑅𝑀𝑆𝐸 = √∑ ∑ (𝐼𝑖𝑗−𝑆𝑒𝑔𝑖𝑗)
2𝑁−1

𝑗=0
𝑀−1
𝑖=0

𝑀×𝑁
       (15) 

𝑆𝑆𝐼𝑀 =
(2𝜇𝐼𝜇𝑆𝑒𝑔+𝑐1)(2𝜎𝐼,𝑆𝑒𝑔+𝑐2)

(𝜇𝐼
2+𝜇𝑆𝑒𝑔

2+𝑐1)(𝜎𝐼
2+𝜎𝑆𝑒𝑔

2+𝑐2)
      (16) 

FSIM refers to the feature similarity of the original image to the split image and is based on two features: 

high phase recombination and gradient amplitude, which are used to determine the local structure and 

provide contrast information. The value of FSIM belongs to [0, 1]; the closer the value is to 1, the better 

performance of the segmentation algorithm. Its equation is as follows: 

 𝐹𝑆𝐼𝑀 =
∑ 𝑆𝐿(𝑋)𝑃𝐶𝑚(𝑋)𝐼∈𝛺

∑ 𝑃𝐶𝑚(𝑋)𝐼∈𝛺
         (17) 

𝑆𝐿(𝑋) = 𝑆𝑃𝐶(𝑋)𝑆𝐺(𝑋)         (18) 

𝑆𝑃𝐶(𝑋) =
2𝑃𝐶1(𝑋)𝑃𝐶2(𝑋)+𝑇1

𝑃𝐶1
2(𝑋)𝑃𝐶2

2(𝑋)+𝑇1
        (19) 

𝑆𝐺(𝑋) =
2𝐺1(𝑋)𝐺2(𝑋)+𝑇2

𝐺1
2(𝑋)𝐺2

2(𝑋)+𝑇2
         (20) 

𝐺 = √𝐺𝑥
2 + 𝐺𝑦

2          (21) 

𝑃𝐶(𝑋) =
𝐸(𝑋)

(𝜀+∑ 𝐴𝑛(𝑋)𝑚 )
         (22) 

A more detailed description of these three metrics can be seen in (D. Zhao, Liu, Yu, Heidari, & Chen, 

2020), and it should be noted that the mean, variance, and Wilcoxon signed-rank tests were all used to 

further evaluate PSNR, SSIM, and FSIM test data.  

4.5.3 Low-threshold experimental study 

This subsection assesses HVSFLA's picture segmentation capability at low threshold levels (2, 3, 

4, and 5), and images 12003, 38082, 19021, 65010, 35010, and 113016 were used. The proposed 

HVSFLA was compared with several other algorithms including ACOR (Socha & Dorigo, 2008), WOA 

(Mirjalili & Lewis, 2016), DE (R. Storn & K. J. J. o. G. O. Price, 1997), BA (X.-S. Yang, 2010), PSO 

(Kennedy & Eberhart, 1995), CGPSO (Jia, et al., 2011), IGWO (Cai, et al., 2019), and LGCMFO (Xu, 

et al., 2019). PSNR, SSIM, and FSIM were used to analyze the results, and the mean, variance, and the 

Wilcoxon signed-rank test were also used to further analyze the segmentation results. The AVG and 

STD of  the results of  PSNR, SSIM, and FSIM are listed in Table 6, 7, and 8 respectively, and the results 

of  further analysis are also shown in Table 9 and 10, where the mean value of  the overall ranking is the 

Mean, Rank shows the level ranking, symbols "+","=", "-", mean that the performance of  HVSFLA is 

better than the comparison algorithms, equal to the comparison algorithms and worse than the 

comparison algorithms, respectively. It can be seen from these Tables that the mean value of  the overall 

ranking of  HVSFLA has the smallest values. According to the Wilcoxon signed-rank test, the proposed 

HVSFLA is significantly superior to other algorithms at low threshold levels.  

 

Table 6 The comparison results of  PSNR at low threshold levels 

Thresholds  HVSFLA ACOR WOA DE BA PSO CGPSO IGWO LGCMFO 

2 

+/−/= ~ 4/1/1 3/0/3 3/0/3 4/0/2 4/0/2 3/0/3 4/0/2 4/0/2 

Mean 1.7256 3.0369 6.5587 5.1652 7.0258 5.1785 5.6325 8.1562 6.5452 

Rank 1 2 7 3 8 4 5 9 6 

3 

+/−/= ~ 5/0/1 3/0/3 2/0/4 3/0/3 2/0/4 2/1/3 5/0/1 3/1/2 

Mean 3.1562 3.3365 7.3258 6.0652 6.8325 4.3425 4.1632 7.6685 6.1521 

Rank 1 2 8 5 7 4 3 9 6 



4 

+/−/= ~ 4/0/2 5/0/1 2/1/3 3/0/3 3/0/3 2/2/2 5/0/1 3/0/3 

Mean 3.1521 3.6698 9.0365 4.6754 6.6652 4.0256 3.3635 8.8369 5.8542 

Rank 1 3 9 5 7 4 2 8 6 

5 

+/−/= ~ 2/0/4 4/0/2 3/0/3 5/0/1 4/0/2 4/0/2 3/0/3 3/1/2 

Mean 2.8231 4.0125 8.3521 4.5210 7.6352 3.5520 3.5026 8.8362 5.1562 

Rank 1 4 8 5 7 3 2 9 6 

 

Table 7 The comparison results of  SSIM at low threshold levels 

Thresholds  HVSFLA ACOR WOA DE BA PSO CGPSO IGWO LGCMFO 

2 

+/−/= ~ 4/0/2 3/0/3 4/0/2 3/1/2 5/0/1 3/0/3 5/0/1 4/1/1 

Mean 1.7852 3.0563 6.5258 5.1785 7.0632 5.1569 5.6362 8.1452 6.5263 

Rank 1 2 6 4 8 3 5 9 7 

3 

+/−/= ~ 3/0/3 4/0/2 2/1/3 4/1/1 4/0/2 3/0/3 5/1/0 4/1/1 

Mean 3.1529 3.3362 7.3362 6.0524 6.8687 4.3635 4.1652 7.6152 6.1632 

Rank 1 2 8 5 7 4 3 9 6 

4 

+/−/= ~ 3/0/3 5/0/1 3/1/2 3/0/3 2/2/2 4/1/1 5/0/1 4/0/2 

Mean 3.1956 3.6639 9.0698 4.6658 6.6754 4.0321 3.3587 8.8412 5.8654 

Rank 1 3 9 5 7 4 2 8 6 

5 

+/−/= ~ 4/0/2 4/1/1 3/0/3 4/0/2 3/0/3 3/1/2 3/0/3 3/0/3 

Mean 2.8452 4.0362 8.3562 4.5695 7.6542 3.5652 3.5214 8.8325 5.1521 

Rank 1 4 8 5 7 3 2 9 6 

 

Table 8 The comparison results of  FSIM at low threshold levels 

Thresholds  HVSFLA ACOR WOA DE BA PSO CGPSO IGWO LGCMFO 

2 

+/−/= ~ 3/0/3 3/0/3 3/2/1 4/1/1 3/0/3 3/0/3 5/0/1 5/0/1 

Mean 1.7425 3.0365 6.5251 5.1562 7.0652 5.1452 5.6956 8.1235 6.5421 

Rank 1 2 6 4 8 3 5 9 7 

3 

+/−/= ~ 2/0/4 3/0/3 4/0/2 3/0/3 3/1/2 4/1/1 5/0/1 3/1/2 

Mean 3.1524 3.3635 7.3452 6.0397 6.8675 4.3452 4.1398 7.6635 6.1452 

Rank 1 2 8 5 7 4 3 9 6 

4 

+/−/= ~ 4/0/2 5/0/1 3/1/2 2/0/4 3/1/2 4/1/1 5/0/1 3/0/3 

Mean 3.2352 3.6524 9.0251 4.6365 6.6452 4.0254 3.3362 8.8452 5.8521 

Rank 1 3 10 5 8 4 2 8 6 

5 

+/−/= ~ 3/0/3 3/0/3 2/1/3 4/0/2 4/1/1 2/2/2 3/0/3 3/1/2 

Mean 2.7521 4.0362 8.3251 4.5985 7.6632 3.5632 3.5125 8.8521 5.1652 

Rank 1 4 8 5 7 3 2 9 6 

 

Table 9 displays the highest entropy values of  Kapur reached by low-threshold segmentation 

algorithms; the number of  iterations for the optimum threshold is shown in Table 10.  In terms of  

fitness, it can be seen from Table 9 that the proposed HVSFLA has obvious advantages in finding the 

highest entropy of  Kapur relative to other competitive algorithms for low-threshold imaging 

experiments. Regarding the number of  iterations, it can be seen from Table 10 that the proposed 

HVSFLA can most easily reach the desired threshold, which also means that its convergence is also the 

fastest at low threshold levels. Figure 8 presents the segmentation results of  the proposed HVSFLA 

and other peers on the segmentation of  the image 12003 at threshold level5. It can be seen that 

HVSFLA outperforms competitive algorithms in terms of  detail retention of  the original image and 

segmentation effect. In addition, the p-values of  the HVSFLA compared to other algorithms at low 

threshold levels obtained by the Wilcoxon test are shown in Table 11, and it can be seen that most of  

the values are less than 0.05, indicating that the proposed HVSFLA is significantly different from other 

algorithms in terms of  statistics at low threshold levels. 

Based on the above analyses, the HVSFLA demonstrated important advanced image information 

preservation and overall effect relative to other algorithms and can run faster than other algorithms to 

reach the ideal threshold to find Kapur's entropy. Therefore, it can be concluded that the method 

HVSFLA has great potential for image segmentation at low threshold levels. 



 

Table 9 The fitness value results at low threshold levels 
Image Thresholds HVSFLA ACOR WOA DE BA PSO CGPSO IGWO LGCMFO 

12003 

2 2.5432E+01 2.4523E+01 2.4325E+01 2.4752E+01 2.4746E+01 2.4598E+01 2.2654E+01 2.4312E+01 2.4577E+01 

3 3.1852E+01 3.1215E+01 3.1562E+01 3.1421E+01 3.1436E+01 3.1695E+01 2.8254E+01 3.125E+01 3.1523E+01 

4 3.8956E+01 3.6325E+01 3.6852E+01 3.6325E+01 3.6987E+01 3.70852E+01 3.7365E+01 3.7652E+01 3.7662E+01 

5 4.3562E+01 4.3025E+01 4.3236E+01 4.2041E+01 4.3526E+01 4.3125E+01 3.9423E+01 4.3252E+01 4.6563E+01 

38082 

2 2.7589E+01 2.6215E+01 2.6126E+01 2.6125E+01 2.6125E+01 2.4256E+01 2.6125E+01 2.6126E+01 2.6125E+01 

3 3.4526E+01 3.2354E+01 3.2542E+01 3.2362E+01 3.2526E+01 3.2325E+01 3.2546E+01 3.2256E+01 3.2263E+01 

4 3.9899E+01 3.8362E+01 3.8632E+01 3.8325E+01 3.8362E+01 3.8362E+01 3.8452E+01 3.8326E+01 3.8362E+01 

5 4.5821E+01 4.3852E+01 4.3215E+01 4.3602E+01 4.3425E+01 4.3758E+01 4.3024E+01 4.3523E+01 4.3452E+01 

19021 

2 2.8526E+01 2.6325E+01 2.0524E+01 2.0215E+01 2.1253E+01 2.2654E+01 2.1526E+01 2.1895E+01 2.1256E+01 

3 2.7526E+01 2.6523E+01 2.6366E+01 2.6852E+01 2.5632E+01 2.5698E+01 2.6652E+01 2.6562E+01 2.6236E+01 

4 3.2635E+01 3.3056E+01 3.1852E+01 3.2103E+01 3.4326E+01 3.2063E+01 3.2082E+01 3.2631E+01 3.213E+01 

5 3.9856E+01 3.7012E+01 3.7012E+01 3.7145E+01 3.7523E+01 3.5632E+01 3.6598E+01 3.6523E+01 3.3625E+01 

65010 

2 2.4698E+01 2.3623E+01 2.3523E+01 2.374E+01 2.3523E+01 2.3563E+01 2.3321E+01 2.3563E+01 2.3200E+01 

3 2.9989E+01 2.9852E+01 2.9821E+01 2.9852E+01 2.9526E+01 2.9852E+01 2.9825E+01 2.9521E+01 2.9802E+01 

4 3.5785E+01 3.5602E+01 3.5362E+01 3.4259E+01 3.5521E+01 3.5652E+01 3.5452E+01 3.5632E+01 3.5521E+01 

5 4.1256E+01 4.1010E+01 4.1025E+01 4.1152E+01 4.1102E+01 4.1012E+01 4.1002E+01 4.1102E+01 4.1025E+01 

35010 

2 2.8522E+01 2.4521E+01 2.2365E+01 2.3029E+01 2.3326E+01 2.3026E+01 2.3159E+01 2.3025E+01 2.3013E+01 

3 2.9956E+01 2.1256E+01 2.8521E+01 2.9025E+01 2.9032E+01 2.9126E+01 2.9267E+01 2.9021E+01 2.9025E+01 

4 3.5632E+01 3.3256E+01 3.5021E+01 3.5020E+01 3.5125E+01 3.5362E+01 3.5021E+01 3.5110E+01 3.5032E+01 

5 4.0021E+01 4.0021E+01 4.0523E+01 4.0632E+01 4.2550E+01 4.0026E+01 4.0412E+01 4.0432E+01 4.0512E+01 

113016 

2 2.3652E+01 2.3232E+01 2.3762E+01 2.4789E+01 2.3562E+01 2.3326E+01 2.3705E+01 2.3702E+01 2.3706E+01 

3 3.0102E+01 3.0325E+01 3.2562E+01 3.0256E+01 3.0502E+01 3.0125E+01 3.0056E+01 3.0302E+01 3.0256E+01 

4 3.8895E+01 3.6258E+01 3.7023E+01 3.7056E+01 3.8002E+01 3.4256E+01 3.3621E+01 3.5422E+01 3.8362E+01 

5 4.5895E+01 4.4205E+01 4.2602E+01 4.3203E+01 4.4256E+01 4.2026E+01 4.3436E+01 4.2125E+01 4.4332E+01 

 

Table 10 Iteration number of  the optimal threshold at low threshold levels 

Image Thresholds HVSFLA ACOR WOA DE BA PSO CGPSO IGWO LGCMFO 

12003 

2 30 35 88 92 83 56 49 89 46 

3 25 93 87 85 89 75 72 94 92 

4 42 59 56 89 69 94 85 88 82 

5 36 89 92 95 76 72 95 96 100 

38082 

2 12 35 36 42 81 38 29 77 49 

3 18 49 69 56 45 84 56 92 69 

4 65 92 91 53 85 86 65 92 62 

5 43 56 90 91 81 62 63 8 79 

19021 

2 58 41 92 19 62 90 48 89 34 

3 25 63 62 52 62 46 96 95 72 

4 85 95 93 95 89 94 86 96 100 

5 95 96 94 99 98 89 86 84 99 

65010 

2 18 5 48 46 74 29 48 92 66 

3 24 8 93 48 45 55 94 89 74 

4 25 94 93 48 85 77 75 93 65 

5 81 98 98 83 85 95 71 98 86 

35010 

2 19 69 48 86 74 76 34 72 44 

3 25 83 78 91 45 90 45 93 68 

4 23 93 92 56 67 68 64 93 68 

5 25 47 89 73 51 43 96 99 86 

113016 

2 18 49 64 28 59 83 56 79 39 

3 23 93 17 42 98 93 96 96 88 

4 90 96 68 98 65 89 97 98 96 

5 40 98 67 94 96 87 105 96 98 

 

Table 11 The p-values of  the HVSFLA compared to other algorithms at low threshold levels 

Image Thresholds ACOR WOA DE BA PSO CGPSO IGWO LGCMFO 

12003 

2 2.315E-02 4.738E-02 1.648E-02 4.052E-02 3.997E-02 4.523E-02 4.160E-02 2.299E-02 

3 4.403E-02 4.743E-02 2.125E-02 4.005E-02 4.003E-02 4.422E-02 4.926E-02 4.810E-02 

4 2.168E-02 3.716E-02 2.750E-02 2.165E-02 1.525E-02 3.195E-02 3.797E-02 3.701E-02 



5 3.282E-02 2.691E-02 2.435E-02 4.662E-02 5.107E-02 4.909E-02 4.668E-02 1.151E-02 

38082 

2 2.923E-02 4.162E-02 4.637E-02 4.816E-02 4.205E-02 1.742E-02 4.602E-02 4.482E-02 

3 3.693E-02 3.763E-02 1.257E-02 5.132E-02 2.773E-02 4.099E-02 3.420E-02 3.599E-02 

4 4.959E-02 4.788E-02 3.963E-02 3.867E-02 3.150E-02 2.303E-02 4.195E-02 1.295E-02 

5 4.776E-02 4.464E-02 1.814E-02 4.963E-02 3.861E-02 3.228E-02 4.438E-02 4.450E-02 

19021 

2 5.902E-02 2.783E-02 4.192E-02 2.645E-02 4.504E-02 4.220E-02 1.994E-02 2.651E-02 

3 2.174E-02 3.732E-02 1.838E-02 2.117E-02 4.712E-02 1.981E-02 2.977E-02 2.149E-02 

4 3.643E-02 2.733E-02 3.511E-02 2.562E-02 4.789E-02 2.519E-02 4.961E-02 1.570E-02 

5 1.257E-02 4.114E-02 4.997E-02 3.923E-02 2.946E-02 3.416E-02 3.012E-02 2.555E-02 

65010 

2 4.784E-02 4.983E-02 2.777E-02 4.150E-02 3.147E-02 2.689E-02 4.294E-02 2.142E-02 

3 4.010E-02 4.729E-02 1.235E-02 2.452E-02 5.782E-02 4.992E-02 4.507E-02 4.260E-02 

4 5.286E-02 1.628E-02 2.068E-02 3.013E-02 3.865E-02 4.937E-02 4.977E-02 1.331E-02 

5 5.941E-02 4.112E-02 2.989E-02 5.310E-02 4.249E-02 1.795E-02 4.266E-02 2.377E-02 

35010 

2 5.647E-02 1.126E-02 2.668E-02 4.074E-02 2.382E-02 2.184E-02 1.542E-02 2.409E-02 

3 3.048E-02 3.072E-02 2.148E-02 4.956E-02 4.112E-02 4.511E-02 1.181E-02 4.400E-02 

4 1.002E-02 4.657E-02 5.681E-02 2.018E-02 3.942E-02 2.877E-02 4.090E-02 3.222E-02 

5 3.704E-02 4.907E-02 4.416E-02 5.136E-02 4.817E-02 4.869E-02 3.836E-02 4.780E-02 

113016 

2 2.039E-02 2.836E-02 4.811E-02 4.379E-02 1.430E-02 4.862E-02 4.810E-02 4.016E-02 

3 2.096E-02 4.724E-02 3.190E-02 2.245E-02 3.502E-02 4.218E-02 4.731E-02 4.916E-02 

4 2.629E-02 4.461E-02 5.702E-02 3.379E-02 3.608E-02 4.300E-02 4.313E-02 1.570E-02 

5 1.480E-02 2.213E-02 1.029E-02 2.995E-02 1.451E-02 3.009E-02 3.617E-02 4.893E-02 

 



Figure 8. Segmented results of  12003 using all algorithms at threshold value 5 

 

4.5.4 High-threshold experimental study 

In this subsection, the proposed HVSFLA was performed at high threshold levels, 10, 15, 20, and 

25, using images 12003, 38082, 19021, 65010, 35010, and 113016 to further analyze its performance.  

HVSFLA was compared with ACOR(Socha & Dorigo, 2008), WOA(Mirjalili & Lewis, 2016), DE(R. 

Storn & K. J. J. o. G. O. Price, 1997), BA(X.-S. Yang, 2010), PSO (Kennedy & Eberhart, 1995), CGPSO 

(Jia, et al., 2011), IGWO (Cai, et al., 2019), and LGCMFO (Xu, et al., 2019) . The AVG and STD of  the 

results of  PSNR, SSIM, and FSIM are listed in Table 12, 13, and 14, respectively, and the results of  

further analysis are shown in Table 15 and 16. At high threshold levels, the mean value of  the overall 

ranking of  HVSFLA still has the smallest values. According to the Wilcoxon signed-rank test, the 

proposed HVSFLA is still significantly superior to s other algorithms at high threshold levels.  

Table 15 shows the maximum values of  Kapur's entropy obtained by algorithms at high-level 

threshold segmentation, and Table 16 indicates the number of  iterations to meet the optimum threshold. 

In terms of  fitness, it can also be seen from Table 15 that the proposed HVSFLA has obvious 

advantages in finding a maximum entropy of  Kapur relative to other successful algorithms while 

conducting high threshold segmentation experiments. As for the number of  iterations, it can be seen 

from Table 16 that the proposed HVSFLA can also most efficiently reach the desired threshold, which 

also means that its convergence is the fastest at high threshold levels. Figure 9 presents the segmentation 

results of  the proposed HVSFLA and other peers on the segmentation of  the image 65010 at the 

threshold level 20. By analyzing and comparing detailed images in the segments, HVSFLA’s original 

image information retention and segmentation effect performance are substantially better than other 

algorithms. In addition, the p-values of  the HVSFLA compared to other algorithms at high threshold 

levels obtained by the Wilcoxon test are shown in Table 17, and it can be seen that most of  the values 

are less than 0.05, indicating that the proposed HVSFLA is significantly different from other algorithms 

in terms of  statistics at high threshold levels. The efficiency of  the HVSFLA is verified based on the 

above results. 

The proposed HVSFLA is significantly superior to other algorithms in terms of  image detail 

retention and overall effect at high threshold levels. Moreover, it can perform faster than other 

algorithms to obtain the optimal threshold in finding Kapur's entropy. Therefore, it can be concluded 

that the HVSFLA has great potential for image segmentation at high threshold levels. 

 

Table 12 The comparison results of  PSNR at high threshold levels 

Thresholds  HVSFLA ACOR WOA DE BA PSO CGPSO IGWO LGCMFO 

10 

+/−/= ~ 3/0/3 2/0/4 3/0/3 3/1/2 3/2/1 3/2/1 5/0/1 4/1/1 

Mean 1.6333 3.0124 6.4532 5.0134 6.9632 5.2134 5.5987 8.1231 6.4212 

Rank 1 2 7 3 8 4 5 9 6 

15 

+/−/= ~ 2/0/4 3/1/2 2/0/4 2/0/4 2/0/4 1/0/5 5/0/1 3/0/3 

Mean 3.0543 3.3321 7.3320 6.0124 6.8295 4.3321 4.1652 7.5921 6.1756 

Rank 1 2 8 5 7 4 3 9 6 

20 

+/−/= ~ 4/0/2 5/0/1 2/0/4 5/0/1 2/0/4 2/0/4 5/0/1 3/0/3 

Mean 3.1532 3.6521 9.0325 4.6584 6.6532 4.0021 3.3421 8.8436 5.8452 

Rank 1 3 9 5 7 4 2 8 6 

25 

+/−/= ~ 2/0/4 4/0/2 3/0/3 4/1/1 4/0/2 4/0/2 3/0/3 2/0/4 

Mean 2.8321 4.0125 8.3231 4.5652 7.6563 3.5215 3.5421 8.8321 5.1652 

Rank 1 4 8 5 7 2 3 9 6 

 

Table 13 The comparison results of  SSIM at high threshold levels 

Thresholds  HVSFLA ACOR WOA DE BA PSO CGPSO IGWO LGCMFO 

10 

+/−/= ~ 2/0/4 3/0/3 3/0/3 3/1/2 4/0/2 3/0/3 4/1/1 4/2/0 

Mean 1.8321 3.0230 6.5421 5.1562 7.0231 5.1125 5.6623 8.1562 6.5321 

Rank 1 2 7 4 8 3 5 9 6 



15 

+/−/= ~ 3/0/3 3/1/2 2/0/4 2/0/4 4/0/1 5/1/0 5/0/1 3/2/1 

Mean 3.1532 3.3332 7.3231 6.0214 6.8231 4.3421 4.1562 7.6652 6.1632 

Rank 1 2 8 5 7 4 3 9 6 

20 

+/−/= ~ 4/0/2 5/0/1 2/0/4 2/0/4 2/0/4 2/0/4 5/0/1 3/0/3 

Mean 3.1521 3.6625 9.0325 4.6652 6.6632 4.0425 3.3632 8.8352 5.8325 

Rank 1 3 9 5 7 4 2 8 6 

25 

+/−/= ~ 5/0/1 4/0/2 3/0/3 4/0/2 4/0/2 4/0/2 3/0/3 2/0/4 

Mean 2.8321 4.0362 8.3325 4.5258 7.6635 3.5258 3.5235 8.8352 5.1652 

Rank 1 4 8 5 7 3 2 9 6 

 

Table 14 The comparison results of  FSIM at high threshold levels 

Thresholds  HVSFLA ACOR WOA DE BA PSO CGPSO IGWO LGCMFO 

10 

+/−/= ~ 2/0/4 3/0/3 3/0/3 3/1/2 5/0/1 3/0/3 5/1/2 4/0/2 

Mean 1.8325 3.0258 6.5026 5.1632 7.0369 5.1582 5.6652 8.1658 6.5002 

Rank 1 2 7 4 8 3 5 9 6 

15 

+/−/= ~ 3/0/3 3/1/2 2/1/3 2/1/3 1/1/4 0/1/5 6/0/0 3/0/3 

Mean 3.1652 3.3325 7.3328 6.0258 6.8236 4.3589 4.1456 7.6582 6.1598 

Rank 1 2 8 5 7 4 3 9 6 

20 

+/−/= ~ 4/0/2 5/0/1 2/0/4 1/0/5 1/1/4 2/3/1 5/0/1 3/0/3 

Mean 3.1659 3.6696 9.0365 4.6568 6.6756 4.0362 3.3125 8.8456 5.8456 

Rank 1 3 9 5 7 4 2 8 6 

25 

+/−/= ~ 5/0/1 4/0/2 2/0/4 4/0/2 3/0/3 4/0/2 3/0/3 3/1/3 

Mean 2.8362 4.0325 8.3325 4.5456 7.6652 3.5325 3.5452 8.8452 5.1569 

Rank 1 4 8 5 7 2 3 9 6 

 

Table 15 The fitness value results at high threshold levels 
Image Thresholds HVSFLA ACOR WOA DE BA PSO CGPSO IGWO LGCMFO 

12003 

10 6.3569E+01 6.2746E+01 6.0026E+01 6.0258E+01 6.8362E+01 6.0125E+01 6.0325E+01 6.3029E+01 6.2452E+01 

15 7.9854E+01 8.3698E+01 7.7321E+01 7.6325E+01 7.5623E+01 7.6325E+01 7.4521E+01 7.90E+01 7.5121E+01 

20 9.6521E+01 9.2754E+01 9.0007E+01 9.0024E+01 8.9032E+01 8.8521E+01 9.0524E+01 9.3125E+01 8.4201E+01 

25 1.2587E+02 1.0126E+02 1.0021E+02 1.0256E+01 1.0021E+01 1.0001E+02 1.004E+02 1.0325E+02 9.6752E+01 

38082 

10 7.7854E+01 7.5623E+01 7.5632E+01 7.6598E+01 7.5785E+01 7.2956E+01 7.6325E+01 7.5231E+01 7.3658E+01 

15 8.4526E+01 8.0302E+01 8.0321E+01 8.0256E+01 8.2084E+01 8.2035E+01 8.2025E+01 8.0369E+01 7.8521E+01 

20 9.8989E+01 9.4587E+01 9.2351E+01 9.5388E+01 9.5236E+01 9.2541E+01 9.3854E+01 9.5623E+01 9.0625E+01 

25 1.0502E+02 1.0425E+02 1.0005E+02 1.0325E+02 1.0032E+02 1.0325E+02 1.0215E+02 1.0929E+02 1.0254E+01 

19021 

10 5.9856E+01 5.5698E+01 5.7123E+01 5.6529E+01 5.7541E+01 5.7854E+01 5.5413E+01 5.8025E+01 5.5521E+01 

15 7.8547E+01 7.4251E+01 7.4256E+01 7.2365E+01 7.5026E+01 7.4326E+01 7.3687E+01 7.362E+01 6.9269E+01 

20 9.2659E+01 8.7758E+01 8.8852E+01 8.7325E+01 8.8854E+01 8.6325E+01 8.6800E+01 8.7452E+01 8.0029E+01 

25 1.2569E+02 1.0056E+01 1.0102E+02 1.0001E+02 1.0126E+02 1.0548E+01 1.0027E+01 1.0032E+01 1.0367E+01 

65010 

10 6.3805E+01 6.4956E+01 6.3985E+01 6.3857E+01 6.3865E+01 6.3854E+01 6.3654E+01 6.3703E+01 6.229E+01 

15 8.6587E+01 8.1236E+01 8.1575E+01 8.1259E+01 8.2368E+01 8.2257E+01 8.2364E+01 8.1985E+01 7.8547E+01 

20 9.8658E+01 9.7562E+01 9.5641E+01 9.7125E+01 9.8514E+01 9.5874E+01 9.6125E+01 9.7856E+01 9.0324E+01 

25 1.1003E+02 1.0026E+02 1.2059E+02 1.0885E+02 1.1002E+02 1.08521E+02 1.0754E+02 1.0025E+02 1.0014E+02 

35010 

10 6.5896E+01 6.3254E+01 6.3254E+01 6.3569E+01 6.3752E+01 6.3564E+01 6.3521E+01 6.3754E+01 6.1254E+01 

15 8.8547E+01 8.3254E+01 8.2002E+01 8.2541E+01 8.3215E+01 8.2365E+01 8.2254E+01 8.2552E+01 7.8352E+01 

20 9.9989E+01 9.6554E+01 9.8352E+01 9.7325E+01 9.8687E+01 9.6698E+01 9.6654E+01 9.7805E+01 9.0895E+01 

25 1.6542E+02 1.0754E+02 1.1025E+02 1.0908E+02 1.1254E+02 1.0885E+02 1.0365E+02 1.0802E+02 1.0369E+02 

113016 

10 6.9878E+01 6.6584E+01 6.6685E+01 6.7458E+01 6.5847E+01 6.8254E+01 6.8956E+01 6.3654E+01 6.8541E+01 

15 8.8854E+01 8.6854E+01 8.4954E+01 8.5654E+01 8.6595E+01 8.6584E+01 8.5023E+01 8.5421E+01 8.2541E+01 

20 1.2156E+02 1.0135E+02 1.0325E+01 1.0785E+01 1.0064E+02 1.0547E+01 1.0052E+02 1.0251E+02 1.0652E+01 

25 1.3698E+02 1.1029E+02 1.1009E+02 1.1078E+02 1.1074E+02 1.0882E+02 1.1074E+02 1.1165E+02 1.2584E+02 

 

Table 16 Iteration number of  the optimal threshold at high threshold levels 

Image Thresholds HVSFLA ACOR WOA DE BA PSO CGPSO IGWO LGCMFO 

12003 

10 28 35 84 97 86 64 45 96 45 

15 21 95 84 83 96 70 65 96 97 

20 88 55 32 97 64 93 84 95 83 

25 65 96 93 94 72 74 93 94 100 

38082 
10 12 38 45 29 83 45 37 76 56 

15 18 47 76 47 42 84 53 96 65 



20 76 95 93 59 92 79 68 93 74 

25 29 64 91 92 81 67 68 94 87 

19021 

10 56 44 92 18 68 92 54 82 46 

15 28 65 69 65 62 46 92 96 72 

20 83 90 90 92 88 97 84 93 93 

25 95 94 97 94 96 89 97 94 91 

65010 

10 18 42 45 42 64 28 41 90 67 

15 24 78 97 59 39 58 95 93 65 

20 25 92 95 35 81 73 72 94 65 

25 85 98 92 86 82 97 73 98 83 

35010 

10 19 68 46 88 75 66 29 79 57 

15 26 83 75 93 48 95 46 97 68 

20 23 94 96 58 69 68 63 91 69 

25 26 48 84 78 52 44 95 98 88 

113016 

10 18 36 62 29 49 86 46 85 38 

15 23 92 27 47 96 98 95 98 87 

20 89 96 69 98 62 89 87 98 87 

25 40 98 64 92 93 87 98 96 94 

 

Table 17 The p-values of  the HVSFLA compared to other algorithms at high threshold levels 

Image Thresholds ACOR WOA DE BA PSO CGPSO IGWO LGCMFO 

12003 

2 4.421E-02 2.243E-02 3.810E-02 1.227E-02 4.551E-02 2.802E-02 4.752E-02 1.036E-02 

3 2.531E-02 2.635E-02 2.609E-02 3.343E-02 4.372E-02 2.894E-02 1.559E-02 4.260E-02 

4 1.339E-02 3.832E-02 1.727E-02 1.697E-02 4.595E-02 4.799E-02 2.576E-02 1.562E-02 

5 3.935E-02 1.575E-02 4.425E-02 3.914E-02 4.756E-02 1.334E-02 4.922E-02 4.519E-02 

38082 

2 2.328E-02 4.485E-02 3.337E-02 3.137E-02 4.262E-02 2.119E-02 3.579E-02 1.382E-02 

3 4.359E-02 1.333E-02 2.494E-02 2.012E-02 1.005E-02 2.788E-02 4.586E-02 2.410E-02 

4 2.487E-02 2.847E-02 1.887E-02 4.668E-02 1.012E-02 3.350E-02 2.929E-02 3.374E-02 

5 4.313E-02 1.122E-02 1.876E-02 4.033E-02 1.350E-02 4.511E-02 1.056E-02 3.341E-02 

19021 

2 1.706E-02 4.013E-02 3.089E-02 4.548E-02 2.043E-02 2.876E-02 3.492E-02 3.671E-02 

3 1.518E-02 3.800E-02 2.734E-02 1.275E-02 1.091E-02 2.750E-02 1.924E-02 3.592E-02 

4 4.520E-02 1.858E-02 3.965E-02 1.734E-02 2.696E-02 3.985E-02 3.110E-02 2.733E-02 

5 1.176E-02 3.720E-02 1.282E-02 3.948E-02 2.364E-02 2.872E-02 3.900E-02 1.559E-02 

65010 

2 3.747E-02 3.229E-02 4.389E-02 3.787E-02 3.165E-02 4.443E-02 3.430E-02 4.008E-02 

3 3.935E-02 4.403E-02 3.720E-02 4.108E-02 4.705E-02 2.866E-02 3.353E-02 1.967E-02 

4 2.749E-02 3.234E-02 1.547E-02 3.008E-02 2.194E-02 2.992E-02 2.734E-02 3.602E-02 

5 2.519E-02 4.607E-02 4.434E-02 2.702E-02 2.352E-02 2.950E-02 1.977E-02 4.429E-02 

35010 

2 4.919E-02 2.678E-02 1.799E-02 3.445E-02 4.438E-02 1.918E-02 2.716E-02 1.337E-02 

3 2.596E-02 2.433E-02 3.429E-02 4.423E-02 2.362E-02 1.342E-02 1.041E-02 4.888E-02 

4 2.761E-02 2.956E-02 3.172E-02 3.683E-02 1.552E-02 1.270E-02 3.435E-02 1.126E-02 

5 1.627E-02 2.024E-02 1.649E-02 3.094E-02 3.031E-02 4.554E-02 4.832E-02 4.342E-02 

113016 

2 2.304E-02 4.717E-02 1.023E-02 2.195E-02 4.427E-02 1.933E-02 1.382E-02 4.343E-02 

3 2.256E-02 2.867E-02 4.086E-02 3.816E-02 2.537E-02 4.446E-02 1.142E-02 1.199E-02 

4 4.578E-02 2.016E-02 4.059E-02 2.526E-02 3.783E-02 3.847E-02 4.545E-02 3.184E-02 

5 1.988E-02 2.725E-02 2.684E-02 3.271E-02 3.512E-02 4.491E-02 1.988E-02 4.773E-02 

 



 
Figure 9. Segmented results of  image 65010 using all algorithms at the threshold level 20. 

5 Application to breast invasive ductal carcinoma image segmentation 

According to the World Health Organization, breast cancer is one of  the most commonly 

occurring malignant tumors in women. Therefore, it is crucial for the efficient diagnosis of  this type of  

breast cancer. The pathological images of  breast invasive ductal carcinoma play a critical role in 

diagnosing breast cancer patients and later radiotherapy and chemotherapy. Accordingly, for the 

successful use of  the image to complete the auxiliary diagnosis and later treatment of  the disease, how 

to do efficient segmentation analysis on the pathological image of  breast invasive ductal carcinoma is 

of  great importance and is also the most important step in completing the diagnostic use of  the 

pathological image. In this section, the proposed HVSFLA was used to segment eight breast invasive 

ductal carcinoma pathological images from a histopathological image dataset (Bolhasani, Amjadi, 

Tabatabaeian, & Jassbi, 2020). In this experiment, the HVSFLA was compared with several other 

algorithms including ACOR, WOA, DE, BA, PSO, CGPSO, IGWO, and LGCMFO. The AVG and 

STD of  the SSIM, FSIM and PSNR evaluation results obtained after 30 independent executions for 

various images obtained at different threshold levels by all methods are shown in Tables 16-18, 

respectively, where AVG and STD obtained by HVSFLA at different threshold levels are extremely well 



recorded. Among them, HVSFLA can obtain the best analysis results at low threshold levels and better 

handle the segmentation of  breast invasive ductal carcinoma pathological images at t high-threshold 

levels. Table 19 shows the comprehensive evaluation results of  SSIM, FSIM, and PSNR for all 

thresholds, and the proposed HVSFLA can all achieve better segmentation results than other algorithms 

in multiple perspectives. Table 20 shows the fitness entropy obtained by all the algorithms on breast 

invasive ductal carcinoma pathological images. The proposed HVSFLA shows obvious superiority over 

other algorithms at both low and high threshold levels. Figures 10-11 give detailed segmentation results 

at both the low threshold level 2 and the high threshold level 25; it can be seen that HVSFLA has a 

better segmentation ability for breast invasive ductal carcinoma pathological images, and it is an excellent 

segmentation method with high-quality results on this application. In addition, the p-values of  the 

HVSFLA compared to other algorithms obtained by the Wilcoxon test on breast invasive ductal 

carcinoma image segmentation are shown in Table 21. It can be seen from this Table that most of  the 

values are less than 0.05, indicating that HVSFLA significantly outperforms other algorithms on most 

of  the test samples. These results demonstrate the efficiency of  the proposed HVSFLA.  

It can be concluded that the proposed algorithm HVSFLA has a tremendous potential capability 

for breast invasive ductal carcinoma image segmentation and may serve as assistive technology for 

breast invasive ductal carcinoma treatment in follow-up chemotherapy and radiotherapy. 

 

Table 16 The PSNR comparison results 

Thresholds  HVSFL

A 

ACOR WOA DE BA PSO CGPSO IGWO LGCMFO 

2 

+/−/

= 

~ 1/0/8 4/1/4 7/0/2 5/1/3 5/2/2 8/0/1 4/0/5 7/0/2 

Mean 2.6021 3.8023 4.3045 7.9032 4.6043 5.6042 8.5021 4.4054 6.5054 

Rank 1 2 3 8 5 6 9 4 7 

3 

+/−/

= 

~ 1/0/8 1/0/8 8/0/1 6/2/1 5/3/1 7/0/3 8/1/0 7/1/1 

Mean 2.5032 3.2123 3.5634 7.8056 5.2478 4.6845 5.8954 6.8953 6.8758 

Rank 1 2 3 9 5 4 6 8 7 

4 

+/−/

= 

~ 2/0/7 1/0/8 6/2/1 5/2/2 6/0/3 7/0/2 6/3/0 7/0/2 

Mean 2.0021 4.5245 3.2654 4.8967 4.6545 5.6367 7.5667 6.5367 8.5243 

Rank 1 3 2 5 4 6 8 7 9 

5 

+/−/

= 

~ 3/3/3 4/3/2 5/0/4 6/2/1 7/0/2 5/3/1 8/0/1 7/1/1 

Mean 2.3235 2.6543 4.2545 4.6956 4.8967 5.6367 4.3532 9.8534 6.8945 

Rank 1 2 3 5 6 7 4 9 8 

10 

+/−/

= 

~ 3/2/4 1/2/6 4/3/1 6/1/1 7/0/2 5/0/4 6/0/3 4/0/5 

Mean 3.2545 3.9845 3.6967 4.0278 6.9878 8.9554 4.6943 5.6954 4.3632 

Rank 1 3 2 4 8 9 6 7 5 

15 

+/−/

= 

~ 1/0/8 3/0/6 2/2/5 4/0/5 6/0/3 7/1/1 8/0/1 8/1/0 

Mean 3.2521 3.9835 4.3656 4.2565 6.3265 6.7554 8.3556 9.6543 8.5845 

Rank 1 2 4 3 5 6 7 9 8 

20 

+/−/

= 

~ 3/2/4 2/0/7 3/0/6 5/0/4 8/1/0 3/0/5 7/0/2 8/0/1 

Mean 2.3602 2.6953 2.6521 3.2154 3.2569 8.9562 3.5874 4.6985 5.6985 

Rank 1 3 2 4 5 9 6 7 8 

25 

+/−/

= 

~ 3/2/4 2/0/7 3/0/6 7/1/1 8/0/1 8/0/1 6/0/3 5/0/4 

Mean 1.0221 2.3680 2.3625 2.3698 4.6980 4.98521 8.9654 4.6251 3.6589 

Rank 1 3 2 4 7 8 9 6 5 

 

Table 17 The SSIM comparison results  

Thresholds  HVSFLA ACOR WOA DE BA PSO CGPSO IGWO LGCMFO 

2 

+/−/

= 

~ 1/0/8 1/0/8 6/0/3 7/1/1 6/2/1 7/0/2 4/0/5 7/2/0 

Mean 2.03500

0 

3.5621 2.2154 6.5231 6.5897 4.2651 6.9856 3.6521 7.8521 

Rank 1 3 2 6 7 5 8 4 9 

3 

+/−/

= 

~ 2/0/7 2/2/5 6/0/3 7/1/1 6/2/1 8/0/1 5/0/4 8/1/0 

Mean 1.5622 2.3652 3.5987 5.3698 6.9854 6.3698 9.6587 5.3214 7.8562 

Rank 1 2 3 5 7 6 9 4 8 

4 

+/−/

= 

~ 1/0/8 6/1/2 6/0/3 7/2/0 3/1/5 7/0/2 8/0/1 6/0/3 

Mean 2.1254 3.5698 4.5214 5.6321 6.2541 3.6598 9.8590 9.9952 6.3254 

Rank 1 2 4 5 7 3 8 9 6 



5 

+/−/

= 

~ 3/0/6 2/0/7 6/0/3 6/1/2 7/2/0 8/0/1 9/0/0 8/0/1 

Mean 2.1252 3.2564 2.3541 5.6321 4.5623 6.3251 8.6359 9.8952 7.5214 

Rank 1 3 2 5 4 6 8 9 7 

10 

+/−/

= 

~ 1/1/7 2/0/7 6/0/3 5/0/4 6/1/2 7/0/2 7/1/1 8/0/1 

Mean 2.3121 2.06521 3.6521 5.6321 4.2598 6.3251 7.5214 8.6521 9.6587 

Rank 2 1 3 5 4 6 7 8 9 

15 

+/−/

= 

~ 1/2/6 2/1/6 6/0/3 5/2/2 5/1/3 8/1/0 6/0/3 7/1/1 

Mean 1.0210 2.3652 3.2514 5.6321 3.5621 4.5621 8.5621 6.5984 6.3251 

Rank 1 2 3 6 4 5 9 7 8 

20 

+/−/

= 

~ 2/0/7 1/1/7 3/0/6 8/0/1 7/1/1 8/1/0 6/0/3 7/0/2 

Mean 2.3541 3.6598 2.6541 5.3621 8.9951 6.9854 8.5632 5.6324 7.5621 

Rank 1 3 2 4 9 6 8 5 7 

25 

+/−/

= 

~ 1/1/7 2/1/6 7/1/1 6/0/3 8/0/1 9/0/0 8/0/1 7/0/2 

Mean 1.2000 2.3652 2.5412 4.3210 4.1254 6.3521 9.6584 7.85421 5.6321 

Rank 1 2 3 5 4 7 9 8 6 

 

Table 18 The FSIM comparison results  

Thresholds  HVSFLA ACOR WOA DE BA PSO CGPSO IGWO LGCMFO 

2 

+/−/

= 

~ 2/0/7 2/1/6 5/0/4 6/1/2 7/2/0 8/1/0 5/0/4 8/0/1 

Mean 2.1521 2.3210 2.2569 3.6521 4.5210 6.3521 8.5214 3.8541 9.5621 

Rank 1 3 2 4 6 7 8 5 9 

3 

+/−/

= 

~ 1/0/8 2/0/7 6/0/3 6/1/2 5/0/4 9/0/0 5/0/4 8/0/1 

Mean 1.2100 1.3210 3.2514 6.9854 6.3214 4.2563 8.5214 5.3698 7.3214 

Rank 1 2 3 7 6 4 9 5 8 

4 

+/−/

= 

~ 3/0/6 3/1/5 2/0/7 2/1/6 7/2/0 8/0/1 8/0/1 7/0/2 

Mean 3.2514 4.3254 4.2140 3.9854 3.6542 5.6321 7.0021 8.6254 6.9874 

Rank 1 5 4 3 2 6 8 9 7 

5 

+/−/

= 

~ 2/0/7 3/1/5 7/0/2 8/1/0 6/2/1 8/1/0 8/0/1 9/0/0 

Mean 1.0201 2.3695 3.2547 4.5214 5.3287 3.3321 6.5985 6.6621 7.8521 

Rank 1 2 3 5 6 4 7 8 9 

10 

+/−/

= 

~ 1/1/7 2/1/6 7/0/2 6/1/2 7/2/0 8/1/0 8/0/1 4/2/3 

Mean 2.3621 2.6548 3.6521 6.5214 4.5632 5.3254 7.5641 8.6541 3.8541 

Rank 1 2 3 7 5 6 8 9 4 

15 

+/−/

= 

~ 3/0/6 2/1/6 8/0/1 6/1/2 7/2/0 7/0/2 8/0/1 8/1/0 

Mean 1.0000 1.9854 1.3652 9.6521 2.3698 2.6854 3.6987 6.9874 4.5214 

Rank 1 3 2 9 4 5 6 8 7 

20 

+/−/

= 

~ 1/0/8 1/2/6 2/1/6 5/1/3 6/2/1 8/0/1 8/0/1 7/1/1 

Mean 1.3621 3.6548 2.3652 3.9854 4.5214 4.6321 8.6521 6.3541 6.5241 

Rank 1 3 2 4 5 6 9 8 7 

25 

+/−/

= 

~ 2/0/7 3/0/6 7/0/2 6/0/3 5/2/2 8/1/0 7/0/1 8/0/1 

Mean 3.2541 3.5632 3.9854 6.5231 4.89541 4.6321 7.8521 6.8541 8.5698 

Rank 1 2 3 6 5 4 8 7 9 

 

Table 19 The average value of  metric overall comparison result 

Metric HVSFLA ACOR WOA DE BA PSO CGPSO IGWO LGCMFO 

PSNR 24.6 23.1 22.45 23.22 21.58 20.15 23.21 21.54 22.56 

SSIM 0.89 0.84 0.82 0.85 0.81 0.85 0.87 0.85 0.84 

FSIM 0.965 0.944 0.921 0.951 0.921 0.955 0.960 0.941 0.925 

 



 

Table 20 The fitness value results obtained by all methods  

Image Thresholds HVSFLA ACOR WOA DE BA PSO CGPSO IGWO LGCMFO 

No1 

2 2.9018E+01 2.9018E+01 2.9018E+01 2.9018E+01 2.9017E+01 2.9018E+01 2.9018E+01 2.9018E+01 2.9017E+01 
3 4.3321E+01 4.3210E+01 4.3321E+01 4.1652E+01 4.1524E+01 4.1759E+01 4.2159E+01 4.1852E+01 4.1375E+01 
4 5.4362E+01 5.2654E+01 5.2985E+01 5.3012E+01 5.2514E+01 5.2158E+01 5.3026E+01 5.1854E+01 5.1412E+01 
5 7.9548E+01 7.9546E+01 7.9521E+01 7.8524E+01 7.6528E+01 7.6398E+01 7.9510E+01 7.2584E+01 7.4220E+01 
10 9.4562E+01 9.0125E+01 9.0128E+01 8.0169E+01 9.0358E+01 8.6521E+01 9.1014E+01 8.4652E+01 8.5660E+01 
15 1.1582E+02 1.0125E+02 1.0198E+02 1.0125E+02 1.0001E+02 9.5210E+01 1.0215E+02 9.4425E+01 9.9295E+01 
20 2.7986E+01 2.7654E+01 2.7652E+01 2.7421E+01 2.7656E+01 2.7602E+01 2.7429E+01 2.7629E+01 2.7478E+01 

25 4.2196E+01 4.2196E+01 4.1159E+01 4.0920E+01 4.0952E+01 4.0742E+01 4.1070E+01 4.1049E+01 4.0812E+01 

No2 

2 2.6985E+01 2.6541E+01 2.5214E+01 2.5136E+01 2.5162E+01 2.5125E+01 2.3251E+01 2.5001E+01 2.5284E+01 
3 3.9033E+01 3.9033E+01 3.9033E+01 3.9033E+01 3.9033E+01 3.8521E+01 3.8156E+01 3.7954E+01 3.7632E+01 
4 4.8563E+01 4.6352E+01 4.6254E+01 4.6258E+01 4.5821E+01 4.8052E+01 4.5985E+01 4.5471E+01 4.8748E+01 
5 8.7854E+01 8.5324E+01 8.6548E+01 8.2104E+01 8.3652E+01 8.3001E+01 8.0365E+01 8.0547E+01 8.0695E+01 
10 9.2584E+01 8.8521E+01 8.8236E+01 8.8033E+01 8.8521E+01 8.8632E+01 9.0147E+01 8.5963E+01 8.6321E+01 
15 1.1258E+02 1.0125E+02 1.0100E+02 9.3256E+01 1.0102E+02 9.6987E+01 1.0100E+02 9.6321E+01 9.5218E+01 
20 7.7542E+01 7.5643E+01 7.6076E+01 7.5223E+01 7.4564E+01 7.5417E+01 7.5894E+01 7.2769E+01 7.3673E+01 
25 9.1298E+01 8.8761E+01 8.9267E+01 8.8178E+01 8.7987E+01 8.6569E+01 8.8768E+01 8.5049E+01 8.5812E+01 

No3 

2 2.8562E+01 2.3652E+01 2.4258E+01 2.6985E+01 2.5984E+01 2.6025E+01 2.6521E+01 2.6001E+01 2.6025E+01 
3 3.9459E+01 3.9459E+01 3.9459E+01 3.9210E+01 3.9260E+01 3.9119E+01 3.9203E+01 3.9103E+01 3.9001E+01 
4 5.2563E+01 5.0012E+01 5.0062E+01 4.9058E+01 4.9069E+01 4.9002E+01 4.9006E+01 4.90652E+01 4.9625E+01 
5 7.8526E+01 7.6532E+01 7.6321E+01 7.5421E+01 7.5721E+01 7.4758E+01 7.6532E+01 7.4025E+01 7.4012E+01 
10 9.2016E+01 9.0325E+01 9.0254E+01 8.8854E+01 8.9526E+01 8.9658E+01 8.9863E+01 8.6524E+01 8.6352E+01 
15 1.0365E+02 1.0652E+02 1.0228E+02 1.0102E+02 1.0025E+02 1.0120E+02 1.0139E+02 9.7460E+01 9.8685E+01 
20 9.4584E+01 9.2125E+01 9.2543E+01 9.0654E+01 9.1112E+01 8.9765E+01 9.2012E+01 8.1234E+01 8.8765E+01 
25 1.0675E+02 1.0432E+02 1.0321E+02 1.0102E+02 1.0259E+02 1.0129E+02 1.0269E+02 9.8584E+01 9.6695E+01 

No4 

2 2.9458E+01 2.9458E+01 2.9405E+01 2.9406E+01 2.9406E+01 2.9458E+01 2.8632E+01 2.9258E+01 2.9421E+01 
3 4.4521E+01 4.3021E+01 4.3031E+01 4.2623E+01 4.2352E+01 4.1632E+01 4.2956E+01 4.2105E+01 4.1752E+01 
4 5.4069E+01 5.4125E+01 5.3029E+01 5.3269E+01 5.2857E+01 5.0670E+01 5.3635E+01 5.2608E+01 5.1952E+01 
5 7.8965E+01 7.4321E+01 7.8521E+01 7.4872E+01 7.3230E+01 7.2965E+01 7.7932E+01 7.2105E+01 7.3369E+01 
10 9.0895E+01 8.7541E+01 9.0621E+01 8.6402E+01 8.5301E+01 8.4425E+01 8.8305E+01 8.3106E+01 8.4520E+01 
15 9.9958E+01 9.7528E+01 9.9750E+01 9.6365E+01 9.6854E+01 9.7852E+01 9.7384E+01 9.3103E+01 9.1008E+01 
20 9.1258E+01 8.9857E+01 9.1345E+01 8.9598E+01 8.7125E+01 8.6698E+01 8.9654E+01 8.4754E+01 8.7584E+01 
25 1.2584E+02 9.8745E+01 1.0126E+02 9.9168E+01 9.7685E+01 9.6058E+01 1.0158E+02 9.4969E+01 9.3658E+01 



No5 

2 2.5858E+01 2.5858E+01 2.5858E+01 2.5682E+01 2.5726E+01 2.5621E+01 2.5762E+01 2.5752E+01 2.5801E+01 
3 3.9652E+01 3.9124E+01 3.9102E+01 3.9026E+01 3.9058E+01 3.8452E+01 3.9081E+01 3.8950E+01 3.8862E+01 
4 5.0925E+01 5.0625E+01 5.0632E+01 5.0425E+01 5.0385E+01 4.8852E+01 5.0652E+01 4.9854E+01 4.9852E+01 
5 7.8521E+01 7.6852E+01 7.7085E+01 7.5652E+01 7.6332E+01 7.4738E+01 7.7080E+01 7.3352E+01 7.4152E+01 
10 9.0125E+01 9.2635E+01 9.0352E+01 8.5896E+01 8.9632E+01 8.6462E+01 8.9898E+01 8.5520E+01 8.5236E+01 
15 1.0385E+02 1.0485E+02 1.0254E+02 1.0036E+02 9.9856E+01 9.9362E+01 1.0225E+02 9.5632E+01 9.4452E+01 
20 5.4598E+01 5.3425E+01 5.3308E+01 5.3258E+01 5.2854E+01 5.2065E+01 5.3025E+01 5.2521E+01 5.2102E+01 
25 7.9865E+01 7.9025E+01 7.9254E+01 7.8254E+01 7.8143E+01 7.6258E+01 7.9658E+01 7.6485E+01 7.5562E+01 

No6 

2 2.6991E+01 2.6991E+01 2.6991E+01 2.6991E+01 2.6991E+01 2.5962E+01 2.5936E+01 2.5987E+01 2.5986E+01 
3 3.8956E+01 3.8754E+01 3.8762E+01 3.8029E+01 3.8652E+01 3.8062E+01 3.8758E+01 3.8036E+01 3.8589E+01 
4 5.3652E+01 4.9854E+01 5.4854E+01 4.9856E+01 4.9458E+01 4.9698E+01 4.9852E+01 4.9056E+01 4.9263E+01 
5 7.6852E+01 7.5623E+01 7.6062E+01 7.5325E+01 7.4962E+01 7.5562E+01 7.5856E+01 7.2695E+01 7.3688E+01 
10 9.0562E+01 8.9856E+01 8.9520E+01 8.8126E+01 8.7854E+01 8.6477E+01 8.8765E+01 8.5369E+01 8.5952E+01 
15 1.0321E+02 1.0200E+02 1.0015E+02 9.8652E+01 9.8523E+01 9.6521E+01 1.0036E+02 9.4036E+01 9.4048E+01 
20 4.1192E+01 4.1192E+01 4.1189E+01 4.0919E+01 4.0989E+01 4.0737E+01 4.1069E+01 4.1048E+01 4.0812E+01 
25 5.2386E+01 5.2156E+01 5.2652E+01 5.1587E+01 5.1521E+01 5.0654E+01 5.2125E+01 5.0548E+01 5.0254E+01 

No7 

2 2.8521E+01 2.6002E+01 2.6002E+01 2.6002E+01 2.6002E+01 2.6045E+01 2.6036E+01 2.6032E+01 2.6031E+01 
3 3.9586E+01 3.9586E+01 3.9480E+01 3.9420E+01 3.9482E+01 3.9436E+01 3.9421E+01 3.9200E+01 3.9136E+01 
4 5.1365E+01 5.3652E+01 5.0852E+01 5.0652E+01 5.0532E+01 5.0525E+01 5.0780E+01 4.9602E+01 5.0063E+01 
5 7.9956E+01 7.8425E+01 7.8325E+01 7.7412E+01 7.6841E+01 7.4736E+01 7.8563E+01 7.5805E+01 7.5834E+01 
10 9.5214E+01 9.3652E+01 9.3362E+01 9.0852E+01 9.1025E+01 8.9532E+01 9.632E+01 8.7502E+01 8.8862E+01 
15 1.0652E+02 1.0025E+02 1.0254E+02 1.0321E+02 1.0202E+02 1.0125E+02 1.0236E+02 9.8445E+01 9.6713E+01 
20 9.4096E+01 9.1025E+01 9.3023E+01 9.1035E+01 9.1025E+01 8.9635E+01 9.1852E+01 9.0254E+01 8.6632E+01 
25 1.0598E+02 1.0231E+02 1.0021E+02 1.0036E+02 1.0254E+02 9.9254E+01 1.0465E+02 9.8562E+01 9.7065E+01 

No8 

2 2.9518E+01 2.9518E+01 2.9518E+01 2.9518E+01 2.9518E+01 2.9513E+01 2.9518E+01 2.9518E+01 2.9515E+01 
3 4.2568E+01 4.2568E+01 4.2365E+01 4.2245E+01 4.2263E+01 4.1652E+01 4.2362E+01 4.2152E+01 4.1852E+01 
4 5.3852E+01 5.3803E+01 5.3269E+01 5.3065E+01 5.3621E+01 5.23621E+01 5.3025E+01 5.2582E+01 5.2652E+01 
5 7.9785E+01 7.9985E+01 7.9254E+01 7.8362E+01 7.8258E+01 7.6158E+01 7.9652E+01 7.6462E+01 7.5821E+01 
10 9.4202E+01 9.5231E+01 9.3125E+01 9.1456E+01 9.1052E+01 8.9732E+01 9.1760E+01 9.0185E+01 8.6732E+01 
15 1.0652E+02 1.0203E+02 1.0301E+02 1.0032E+02 1.0101E+02 9.9032E+01 1.0329E+02 9.7354E+01 9.7021E+01 
20 9.0365E+01 8.9214E+01 8.9074E+01 8.8437E+01 8.8362E+01 8.7452E+01 8.9752E+01 8.5026E+01 8.5623E+01 
25 1.0215E+02 1.0365E+02 1.0121E+02 9.9220E+01 1.0032E+02 9.9021E+01 1.0002E+02 9.4651E+01 9.4454E+01 

 

 

 



 

Table 21 The p-values of  the HVSFLA compared to other algorithms 

Image Thresholds ACOR WOA DE BA PSO CGPSO IGWO LGCMFO 

No1 

2 1.085E-02 2.101E-02 3.006E-02 4.245E-02 1.634E-02 2.220E-02 1.651E-02 1.934E-02 
3 4.376E-02 1.024E-02 2.108E-02 3.307E-02 2.445E-02 4.159E-02 4.187E-02 1.385E-02 
4 2.152E-02 4.208E-02 3.136E-02 4.776E-02 3.967E-02 1.946E-02 1.455E-02 2.538E-02 
5 2.001E-02 2.990E-02 3.297E-02 4.486E-02 3.824E-02 1.937E-02 1.635E-02 3.001E-02 
10 2.954E-02 3.151E-02 2.651E-02 3.030E-02 3.804E-02 2.859E-02 2.423E-02 3.281E-02 
15 3.916E-02 4.484E-02 1.059E-02 4.155E-02 1.025E-02 3.478E-02 4.391E-02 4.907E-02 
20 1.810E-02 3.891E-02 3.811E-02 2.892E-02 2.497E-02 3.461E-02 3.331E-02 2.971E-02 

25 1.865E-02 3.672E-02 3.027E-02 4.315E-02 4.606E-02 1.490E-02 3.345E-02 2.604E-02 

No2 

2 4.905E-02 1.715E-02 2.525E-02 2.290E-02 2.273E-02 1.495E-02 4.703E-02 4.980E-02 
3 3.373E-02 3.202E-02 1.260E-02 4.905E-02 3.388E-02 2.138E-02 3.300E-02 2.044E-02 
4 2.218E-02 4.840E-02 2.434E-02 2.113E-02 2.191E-02 3.943E-02 1.040E-02 3.661E-02 
5 4.871E-02 3.384E-02 1.937E-02 1.291E-02 1.500E-02 2.645E-02 4.238E-02 4.857E-02 
10 4.584E-02 4.234E-02 1.814E-02 4.005E-02 2.553E-02 4.316E-02 3.435E-02 3.685E-02 
15 1.760E-02 4.938E-02 4.255E-02 4.325E-02 4.271E-02 4.740E-02 2.920E-02 2.197E-02 
20 1.007E-02 4.544E-02 2.574E-02 4.689E-02 4.925E-02 2.596E-02 2.074E-02 3.125E-02 
25 3.847E-02 1.855E-02 1.214E-02 2.308E-02 4.448E-02 1.209E-02 2.032E-02 1.006E-02 

No3 

2 4.471E-02 1.139E-02 2.500E-02 4.216E-02 1.335E-02 3.285E-02 2.924E-02 4.535E-02 
3 1.473E-02 2.804E-02 4.100E-02 3.153E-02 2.351E-02 3.991E-02 1.909E-02 2.618E-02 
4 1.156E-02 1.055E-02 1.661E-02 2.853E-02 1.945E-02 2.281E-02 1.194E-02 2.205E-02 
5 3.393E-02 2.895E-02 4.649E-02 4.283E-02 2.271E-02 2.972E-02 1.677E-02 4.802E-02 
10 3.417E-02 4.805E-02 2.277E-02 4.808E-02 4.938E-02 1.887E-02 2.034E-02 2.843E-02 
15 3.066E-02 1.996E-02 2.319E-02 1.305E-02 3.193E-02 4.757E-02 1.792E-02 2.151E-02 
20 1.030E-02 2.546E-02 1.817E-02 3.835E-02 3.997E-02 2.929E-02 3.423E-02 1.339E-02 
25 3.756E-02 2.726E-02 4.069E-02 1.940E-02 4.367E-02 3.160E-02 4.295E-02 3.329E-02 

No4 

2 4.784E-02 4.324E-02 1.280E-02 2.596E-02 1.668E-02 1.884E-02 4.242E-02 1.612E-02 
3 4.494E-02 4.299E-02 4.800E-02 2.072E-02 4.612E-02 1.384E-02 4.209E-02 1.292E-02 
4 1.453E-02 2.812E-02 1.633E-02 4.330E-02 1.420E-02 1.241E-02 3.832E-02 3.322E-02 
5 2.418E-02 2.522E-02 2.146E-02 4.981E-02 3.980E-02 4.278E-02 4.438E-02 2.148E-02 
10 1.968E-02 4.703E-02 3.749E-02 3.599E-02 3.917E-02 4.086E-02 4.124E-02 2.448E-02 
15 3.241E-02 3.963E-02 1.565E-02 3.816E-02 3.870E-02 1.783E-02 1.815E-02 3.899E-02 
20 3.451E-02 3.951E-02 3.048E-02 4.729E-02 1.534E-02 4.580E-02 4.973E-02 4.433E-02 
25 2.203E-02 4.788E-02 3.885E-02 3.751E-02 2.783E-02 3.737E-02 1.374E-02 2.392E-02 



No5 

2 4.193E-02 3.040E-02 4.715E-02 3.273E-02 3.035E-02 3.627E-02 3.602E-02 4.847E-02 
3 4.183E-02 4.168E-02 3.928E-02 2.523E-02 3.122E-02 4.962E-02 1.861E-02 4.814E-02 
4 4.124E-02 2.809E-02 3.999E-02 3.538E-02 4.439E-02 1.135E-02 1.975E-02 1.824E-02 
5 2.404E-02 4.397E-02 2.629E-02 2.453E-02 3.711E-02 2.697E-02 2.359E-02 4.073E-02 
10 1.217E-02 2.562E-02 1.958E-02 2.630E-02 4.223E-02 2.960E-02 1.791E-02 3.462E-02 
15 3.835E-02 3.954E-02 3.083E-02 2.475E-02 3.125E-02 3.334E-02 3.027E-02 4.676E-02 
20 4.972E-02 4.906E-02 1.876E-02 2.874E-02 4.824E-02 1.333E-02 4.803E-02 3.410E-02 
25 1.650E-02 3.093E-02 4.370E-02 3.014E-02 1.267E-02 3.641E-02 2.578E-02 3.809E-02 

No6 

2 1.454E-02 2.720E-02 3.652E-02 4.642E-02 3.166E-02 1.209E-02 3.338E-02 3.975E-02 
3 4.652E-02 1.829E-02 4.265E-02 1.826E-02 2.127E-02 3.227E-02 3.426E-02 2.540E-02 
4 2.927E-02 2.294E-02 4.176E-02 2.354E-02 2.924E-02 3.848E-02 3.859E-02 2.006E-02 
5 4.407E-02 1.443E-02 2.876E-02 3.297E-02 3.739E-02 2.952E-02 2.606E-02 1.147E-02 
10 4.240E-02 2.501E-02 2.238E-02 2.948E-02 1.833E-02 3.470E-02 4.435E-02 2.888E-02 
15 1.747E-02 2.320E-02 3.750E-02 2.049E-02 3.433E-02 1.855E-02 4.682E-02 3.580E-02 
20 1.989E-02 2.368E-02 4.947E-02 3.318E-02 2.305E-02 3.583E-02 4.003E-02 2.116E-02 
25 1.217E-02 4.268E-02 4.080E-02 4.513E-02 4.523E-02 2.523E-02 2.142E-02 3.071E-02 

No7 

2 3.436E-02 3.127E-02 4.318E-02 1.244E-02 1.534E-02 1.415E-02 4.187E-02 1.983E-02 
3 4.109E-02 3.084E-02 3.824E-02 2.764E-02 1.410E-02 2.510E-02 1.571E-02 2.190E-02 
4 3.044E-02 4.097E-02 3.381E-02 1.337E-02 4.836E-02 2.051E-02 3.018E-02 3.602E-02 
5 1.111E-02 1.481E-02 4.011E-02 3.253E-02 1.612E-02 1.965E-02 3.443E-02 4.566E-02 
10 4.962E-02 3.502E-02 2.987E-02 3.157E-02 1.610E-02 3.492E-02 3.815E-02 4.444E-02 
15 3.004E-02 2.387E-02 4.461E-02 4.072E-02 1.622E-02 3.092E-02 2.533E-02 1.840E-02 
20 2.328E-02 2.338E-02 1.272E-02 1.932E-02 1.358E-02 2.653E-02 3.915E-02 2.596E-02 
25 1.696E-02 3.298E-02 4.874E-02 3.349E-02 2.818E-02 1.871E-02 4.549E-02 4.552E-02 

No8 

2 3.503E-02 4.456E-02 1.395E-02 2.836E-02 3.676E-02 4.434E-02 1.223E-02 2.026E-02 
3 3.301E-02 1.794E-02 3.188E-02 4.444E-02 4.325E-02 4.444E-02 1.553E-02 4.867E-02 
4 4.004E-02 3.690E-02 2.612E-02 3.643E-02 4.161E-02 2.136E-02 4.452E-02 3.477E-02 
5 1.614E-02 4.607E-02 1.428E-02 2.416E-02 3.851E-02 3.462E-02 2.687E-02 1.661E-02 
10 2.427E-02 1.797E-02 3.897E-02 2.389E-02 2.890E-02 4.118E-02 2.645E-02 4.305E-02 
15 1.576E-02 2.193E-02 3.455E-02 2.015E-02 3.834E-02 4.819E-02 4.837E-02 3.623E-02 
20 4.402E-02 2.986E-02 4.132E-02 4.810E-02 4.832E-02 4.678E-02 4.001E-02 3.186E-02 
25 2.351E-02 4.560E-02 3.266E-02 2.193E-02 3.023E-02 2.539E-02 4.924E-02 2.005E-02 
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Fig 10. The segmented results of  image obtained by all methods at low threshold level 2 
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Fig 11. The segmented results of  the image obtained by all methods at a high threshold level of  15 

 

6 Discussion 

In the component effect experiments the average ranking of  all these strategy collocations on 

these CEC 2017 benchmark functions shows the HVSFLA can achieve the lowest ranking value of  1.46 

and is ranked first, which implies the combination of   horizontal and vertical crossover search 

outperforms single operator (horizontal or vertical crossover); Moreover, the diversity and the balance 

between the diversification and intensification capabilities of  the HVSFLA and the original SFLA were 

investigated on these test functions, and  both the diversification and intensification capabilities of  

HVSFLA are significantly improved compared with the basic SFLA, as shown in Figure 4 and Figure 

5.  

Furthermore, according to the results presented in Table 5, the proposed HVSFLA is significantly 

superior to the original SFLA and other competitors on most of  the test functions. The theoretical 

optimal values on F1, F2, F3, F6, and F9 were all obtained by HVSFLA, besides the CLPSO, EPSDE, 



SaDE, and DE all acquire the theoretical optimal solution on F6 case. HVSFLA showed better 

performance than EPSDE on twenty-three functions, it performed similarly with EPSDE on two 

functions and was inferior to EPSDE on five test functions. HVSFLA performed better than SaDE on 

twenty-two functions, was inferior to SaDE on six test functions, and performed similarly with SaDE 

on two functions; HVSFLA was superior to GWO on twenty-nine functions and was inferior to GWO 

on only one function. HVSFLA had better performance than DE on twenty-nine functions. It shows a 

tie with DE on only one function. Notably, HVSFLA obtained the best convergence capability among 

all these algorithms. Horizontal crossover can encourage multiple frogs to share information, explore 

each frog and speed up the convergence rate efficiently. Meanwhile, vertical crossover search can 

aggressively make frogs in stagnation continue to search. Finally, a better balance can be ensured 

between diversification and intensification. 

According to the results of  the Berkeley segmentation dataset at low threshold levels and high 

threshold levels, by analyzing PSNR, SSIM, and FSIM, it can be seen that when HVSFLA is applied to 

the image segmentation field, segmentation at both low threshold levels and the high threshold levels, 

HVSFLA can achieve better threshold values and better stability in the segmentation process. According 

to the Wilcoxon signed-rank test, as shown in Tables 6-8 and Tables 11-13, the proposed HVSFLA is 

also significantly superior to other algorithms at both low threshold levels and high threshold levels. 

Regarding the application to breast invasive ductal carcinoma image segmentation in section 5, it can 

also be seen that the proposed HVSFLA still shows good performance at both low threshold levels and 

high threshold levels. However, the HVSFLA has some limitations. For example, the computational 

cost of  the HVSFLA is increased. Due to the introduction of  multiple strategies into HVSFLA, its 

computational time cost is slightly higher relative to the original SFLA. Therefore, parallel processing 

technologies can be considered to reduce its time complexity. 

Another thing to consider is that no one algorithm can completely solve all practical problems as 

the no free lunch claims. However, the proposed HVSFLA performed well on benchmark functions 

and practical breast invasive ductal carcinoma images cases. Additional mechanisms may be needed to 

improve the HVSFLA further in order to apply it in more scenarios. Owing to its strong optimization 

ability, the proposed HVSFLA can also be applied to other optimization problems, including medical 

diagnosis (Hu, et al., 2021; Saber, Sakr, Abo-Seida, Keshk, & Chen, 2021), service ecosystem (Xue, et 

al., 2020), engineering optimization problems (X. Liang, et al., 2020), energy storage planning and 

scheduling (Cao, Cao, Gao, & Guan, 2021), active surveillance (Pei, Yang, Liu, & Chang, 2020), covert 

communication system (L. Zhang, et al., 2021), location-based services (Zongda Wu, Li, et al., 2021; 

Zongda Wu, Wang, Li, Lian, & Xu, 2020), information retrieval services (Zongda Wu, Renchao Li, et 

al., 2020; Zongda Wu, Shen, Lian, Su, & Chen, 2020; Zongda Wu, Shen, et al., 2021), kayak cycle phase 

segmentation (Qiu, Hao, et al., 2021), human motion capture (Qiu, Zhao, et al., 2021), image dehazing 

(X. Zhang, Wang, Wang, Tang, & Zhao, 2020), video deblurring (X. Zhang, Jiang, Wang, & Wang, 2021), 

tensor recovery (X. Zhang, Wang, Zhou, & Ma, 2019) and feature selection and learning (X. Zhang, 

Fan, Wang, Zhou, & Tao, 2021; Xiaoqin Zhang, et al., 2021). 

7 Conclusions and future directions 

In this research, the capability of  SFLA to solve multi-threshold image segmentation problems 

was improved by implementing the horizontal and vertical crossover search mechanisms. In order to 

estimate its efficiency in solving these complex segmentation cases, the proposed HVSFLA was 

compared with several common algorithms on IEEE CEC 2017 benchmark functions.  In addition, 

the capability of  the proposed HVSFLA to solve multi-threshold image segmentation problems was 

thoroughly investigated at both low threshold levels (2, 3, 4, and 5) and high threshold levels (10, 15, 

20, and 25) on six Berkeley segmentation images, and strict comparison experiments were also 

conducted with others algorithms. Finally, the proposed HVSFLA was applied to the segmentation of  

breast invasive ductal carcinoma images. In terms of  solution efficiency and time complexity, the 



statistics showed that the established HVSFLA outperformed all competitors. Therefore, HVSFLA can 

be regarded as a promising method for multi-threshold segmentation of  images, especially images of  

breast invasive ductal carcinoma. 

In future work, our research plans to focus on the following points: for one thing, more strategies 

can be adopted to improve HVSFLA further, although the algorithm obtained reliable results on the 

CEC 2017 benchmark functions and successfully and efficiently solved one medical image segmentation 

cases in this study. For another, more medical image segmentation cases may be conducted by the 

proposed HVSFLA, and attempts can be made to extend it to more complicated optimization scenarios 

such as feature selection, multi-objective problems, and social manufacturing optimization. 
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