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Self-Energy Quantum Electrodynamics: 
Multipole Radiation 1 

Y o u s e f  1. S a l a m i a  2 

Received October 25, 1991 

Within the context of  Barut's self-field approach to quantum electrodynamics, we 
show that the exact relativistic expression for the Einstein A-coefficient o f  atomic 
spontaneous emission reduces, in the long wavelength approximation, to a form 
containing electric'- and magnetic-like multipole contributions related to the 
transition charge and current distributions o f  the relativistic electron. A number o f  
interesting features of  the expressions involved are discussed, and their general 
ization to interacting composite systems is also pointed out. 

1. INTRODUCTION 

Within the framework of self-energy quantum electrodynamics (SEQED), 
advanced by Barut et  al., (1~6) spontaneous emission from one-electron 
atoms is treated as a self-energy attribute in a fashion close in spirit to the 
classical idea of radiation reaction. So far in this theory, only a first 
iteration of the action functional of the matter plus radiation field has been 
considered, in direct correspondence with first-order perturbation theory. 
Yet, to this order of iteration, account within the context of this approach 
has been made (4) of the electron's anomalous magnetic moment ( g -  2), the 
Unruh and Casimir effects, the Lamb shift, and others, besides atomic 
spontaneous ~5'6) emission and absorption. 

The subject of this paper is also spontaneous emission. Encouraged by 
the success of our formulation in producing precise atomic decay rates for 
some of the low-lying hydrogenic excited states reported elsewhere, (5/ we 
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have recently employed ~6) our general relativistic formula for the Einstein 
A-coefficient in a calculation of the decay rates of the 2S metastable 
hydrogenlike states of atoms and ions with values of the atomic number Z 
ranging between 1 and 92. Agreement between our results and those of 
other formulations as well as with experiment is good, especially for high 
Z values where a relativistic treatment is essential. 

In this paper, we bring our exact formula ~5) for the atomic transition 
rates one step closer to the familiar language and terminology of the 
standard theory. This goal is fulfilled by the retention, in the fo rmula ,  
of more terms than is usually done when the dipole approximation is 
adopted. We show that, in this regime, our expression, which was arrived 
at fully relativistically, reduces to a sum of terms formally similar to the 
ones one gets from contributions from all the electric and magnetic multi- 
poles of the radiating system, namely the electron. We introduce a unified 
definition for the relativistic multipole moments in which the separation 
into electric and magnetic is made redundant. It will also be shown that 
contribution from the monopole term is automatically excluded. Finally, 
the same expression will be cast into a form reminiscent of the squared- 
amplitude language of the standard radiation theory. 

2. T H E O R Y  

Within the context of SEQED, we have arrived at the following 
expression ~5) for the Einstein A-coefficient of atomic spontaneous emission, 
or the transition probability per unit time for the decay of an atomic state 
n to a lower state s 

An ~s = - 2 Im(AE,,s) 

= --~- f  d3k T.~(k) T s n ( - k ) ~ , b ( E ~ - E . +  Ik1¢3) 
2 k 

~rc~ d~2k Tns(k) Tsn(-k)~,, (1) 
2 

where Im stands for the imaginary part, n and s stand for the totality of the 
respective states' quantum numbers n, I, J, and M, and natural units 
(h = c = 1) are used. In the last step of Eq. (1) the radial integration over 
]kl has been carried out, resulting in the understanding that Ik[ is to be 
replaced everywhere by c ~ - - E n - E , ,  by virtue of the delta function. 
Moreover, d~2~ = sin 0 k dog d~k and the quantities 

i d3 r 
T~(k) = (270 3/2 j~s ( r  )eik r (2) 
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are Fourier transforms, or transition form factors, of the electron current 

J.~(r) = - e ~ , ( r )  ?"~b,(r) 

= -e(p~, ,  J, ,)  (3) 

The wave functions t) are, everywhere, the well-known exact solutions of 
the Dirac equation for a single electron in the Coulomb field of the atomic 
nucleus and ~ is the Dirac adjoint of 0- 

Equation (1) is thus exact and has been the basis of our decay rate 
calculations referred to above. At this point, however, we would like to 
distinguish between two levels of approximation. First, the dipole limit, on 
the basis of which most decay rates to date have been reported, is achieved 
by replacing the exponential factor in Eq. (2) by unity. Equation (1) has 
been shown (5) to reduce, in this limit, to its well-known nonrelativistic 
counterpart. Although retaining only the dipole term is believed to the 
sufficient for most purposes in atomic physics calculations, this may turn 
out to be too severe for radiation from atoms with high values of the 
atomic number Z, where the relativistic corrections become important. It 
may also prove to be equally as severe for calculations involving the 
properties of atomic Rydberg states, where the atomic dimensions are 
typically of the order n2ao, with n the principal quantum number (which 
can be quite large) and ao the Bohr radius. 

At a second level, when the long wavelength approxirnation, 2 to be 
described shortly, is adopted, ~7'8) a familiar picture begins to emerge. We 
shall demonstrate that the decay rate formula reduces to a sum of contribu- 
tions from objects formally related to the classical electric and magnetic 
multipoles of the system, to all orders. In this way, some degree of resem- 
blance will be established between Barut's fully relativistic semiclassical 
formulation and the familiar theory of nonrelativistic multipole radiation 
from atoms. 

The starting point for the reduction of Eq. (1) to meet the condi- 
tions of the above-mentioned approximation is the observation that 

// _ _  T~.( k) a + = T,,(k) . Equation (t)  can then be written in expanded form as 

A ~ , -  2 ~° f dS~k { / T,°~(k)j2 - IT.~.(k)J 2 } (4) 

2 Emphasis is added to point to the well-known fact that the basis for both approximations 
is one and the same, namely, that the radiation wavelength be large compared with the 
atomic dimensions. 
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Next we look at 

d3r _ 
V . ° ( k )  = - e  I ~ On(r)~q~(r)e ~k" 

4~e f d3r gt(°gr) Ytm(r) p,~,(r) 
- (27c)3/2 ~ i'Y,*,(ff:) (5) 

where use has been made of the following expansion for the exponential term 
in terms of spherical Bessel functions gt(cor) and spherical harmonics Y~ 

and where 

l 

eik"= 4re ~ ~ iZgz((or) Y,m(f) r*,~([C) (6) 
l=O m = - - l  

p.s(r) = ~.(r) q).(r) (7) 

As is well known from the standard textbooks (7,s) of quantum mechanics, 
the long wavelength approximation amounts to retaining only the first term 
in the power series expansion of the spherical Bessel function 

g,(cor) ~ (2(l+r)' 1)~! (8) 

When (8) is put back into (5), we obtain 

T,O(k) ~ ~ ~ ( _  1),,,+ 1 x /2 l+1  
(2l+ t)!! (io))'Yt*.(fQ(Q,, ,.,)~ (9) 

where 

(Qlm)"'='V 2/+ 1 p.~(r)/Y*,,,(f) d3r (10) 

are transition matrix elements of the quantities 

42/~1 Qlm =- rlY*m(p) (11) 

Proceeding basically along the same lines, as has been done to arrive at 
Eq. (9) for the scalar objects, the vector quantities in the main decay rate 
formula can be put into the following form: 
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T~.~(k) = f d3r ~ a.~(r) 

In Eq. (12), 

e ik  - r 

4 7 E e  

- (2rc)3/2 ~ z'tYz,~(k ~ f d3r gt(cor) Ytm(/) J, , (r)  
bn 

e 

(2l + 1 )v~ (im)~ YL(/~)(Q,.-m),,~. (12) 

(Q/m)ns -= J,,s(r) r'Y*m(?) d3r (13) 

are transition matrix elements of the quantities 

QtmI=-_ Qlm7 (14) 

7 = (71, ~2, Y3) are the familiar Dirac gamma matrices, and I is the 4 x 4 
identity matrix. Furthermore, we have taken the transition probability 
current as 

J~s(r) = ~.(r)  70.(r)  (15) 

Note at this stage that the classical objects defined by Eqs. (11) and (14) 
form the components of a four-vector 

Q~'m = (Qtm, Qtm) (16) 

We call -e(Qlm),~, the relativistic (quantum mechanical) multipole moments 
of the electron. This is justified as follows. In the program of SEQED, 
Schrrdinger's interpretation of the wave function is adopted, whereby 
p = - e  I~bl 2 is the real charge density of the electron. Within the context of 
this interpretation, p,s(r) is the charge associated with the electron 
transition n--, s in the (external) Coulomb field of the atomic nucleus. 
Recall that the textbook (7-9) definition of the multipole moments of a 
classical charge distribution of density p is 

qt,. = f p(r) rlYl*,(?) d3r (17) 

apart from the multiplicative factor upfront in some places. With all of this 
in mind and provided we take -ep,,s(r ) as a transition density for the 
electronic charge distribution, our (quantum mechanical) interpretation of 

,u the quantities -e(Qtm),,s becomes all too obvious. 
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Now we insert (9) and (12) back into (4) and carry out the remaining 
trivial integration over the k-space angles, arriving finally at 

e 2 ~ 2 l+  1 2~+I~" 2 
A , ~ s ~  -4--£ ,,, [ (2 /+  1)!!] 2 co tl(Qz,-m)n,I - I (Q , ,  m),~l 

2} 

e 2 2 l+  1 2l+1 
- ~ [ (2 /+ 1)!!]2 co (Q,,-m)~,(Q~,-m~),,s (18) 

Within the same context, and using the same language as before, we call 
the expression given in Eq. (18) the probability of 2 I+ ~-pole radiation. The 
basis for this choice of nomenclature will be further highlighted in the dis- 
cussion below. In the meantime, readers not at ease with this slight abuse 
of language are invited to make the (legitimate) transformation l -~ t -  1 in 
the series (18) and to keep using the same standard terminology, whereby 
l = 1 gives the dipole term, l = 2 the quadrupole term, and so on. While the 
suggested change of dummy index will keep the predictive power of the 
formula intact, it will still automatically exclude contribution from the l = 0 
term. This exclusion evolves naturally from the mathematics, in addition to 
being justified on sound physical grounds. More on this will be given in the 
discussion section. 

Before moving on to the next section, we would like to remark that 
Eq. (18) can be easily generalized to the case of N interacting particles. 
All that needs to be done (7~ is express the transition charge and current 
densities in terms of the wave functions of the composite system in question. 

3. DISCUSSION AND CONCLUSIONS 

Let us begin the discussion by taking up the question of whether the 
dipole formula can be recovered from the series (18) of the previous 
section. The first term in the sum corresponds to l = 0. We have no choice 
but to take it as such. We now show that the l = 0  term is indeed the 
probability of (electric) dipole radiation, in light of the fact that departure 
from the dipole limit has been elected by Eq. (8) for the spherical Bessel 
functions. Note that setting l = 0 in (8) and working backwards to (6) leads 
naturally to the desired limit. 

The proof is carried out in two steps. First, the (relativistic) Dirac 
wave functions are to be replaced with their (nonrelativistic) Schr6dinger 
counterparts. An immediate consequence of this is to lose the electron spin. 
We make up for this by multiplying the result by a factor of 2, as has been 
explained elsewhere. (s'l°) Second, the photon polarization will be brought 
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into the picture according to the prescription of the standard theory. The 
result of all this will be the dipole term in full glory, complete with the 
famous factor 4/3, the selection rules and all. 

With l = 0 ,  Eq. (18) yields 

e 2 
As + ,(dipole) = - ~ 0) { I (Qoo)~,t 2 __ I ( O O O ) n s l  2 ~ (19) 

From (10) and orthogonality of the wave functions, we get 

(Ooo),,, --+ f ~b*~O, d3r = 0 (20) 

Furthermore, Eqs. (11), (13), and (14) lead to 

(Qoo)~s = f 0 ; " 0 ,  d~r - '  V,,s (21) 

where %, is the transition matrix element of the velocity operator which 
can be expressed, in the Heisenberg picture, in terms of the matrix element 
of the position vector of the electron as 

Vns = -icor~s (22) 

With (20)-(22) inserted back into (19), we have 

e 2 
A~ ~ ,(dipole) = ~ 0) 3 Irn,[ 2 

= 1 0)3 [d~,l 2 (23) 

where the dipole moment operator is d -= - e r .  At this point, we follow the 
textbooks in introducing the photon polarization, summing over polariza- 
tion states and integrating over all spatial directions. Remembering to 
multiply by a factor of 2 to account for the lost electron spin, the result of 
all this, in natural units, will be 

A,~_,(dipole) = 2 1  0)3 ~ I j%.d,,~j2 d[2 
~ = t  

4 3 2 = ~ co jd.,I (24) 
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The second point in this section concerns the monopole term. We find 
the absence of this term from our theory particularly interesting and 
consistency of this rigorous prediction with classical radiation theory quite 
remarkable. For  the sake of comparison and contrast, we quote, (7/below, 
the probability of electric multipole radiation (in the same system of units 
as we have, so far, been using) 

e 2 2 ( 2 l + l ) ( l + l ) c j + 1 i ( Q , _ , ~ ) n , { 2  
W , ~ , = ~ - - ~  / [ ( 2 / +  t ) ! ! ]  2 (25) 

Equation (25) is derived within the context of conventional QED using the 
same approximation as has been introduced by Eq. (8) above. For  l =  1, 
this formula reduces to the probability of electric dipole radiation. 
Whereas, if one naively sets l = 0 in it, one gets 

0 
W n ~ s  = (26) 

0 

an indeterminate quantity. Yet, standard QED does not tell us anything 
about this potential drawback, apart possibly from the remark that 
Jn = 0 -~ Js = 0 transitions are absolutely ruled out by the transverse nature 
of the radiation field. This may be added to the list of mathematical incon- 
sistencies that beset the foundations of conventional QED. As a side to this 
problem, we would like to add that, in arriving at (25), an arbitrary 
normalization constant for the photon wavefunction is used, (7) chosen as 
- ~  + 1)/l to make things right for the case of l = 1. 

In conclusion: 

• We have expressed the Einstein A-coefficient of spontaneous 
emission, within the context of SEQED, in terms of suitably 
defined relativistic radiating multipoles. 

• We have rigorously shown that the monopole term is entirely out 
of the picture. 

• The dipole approximation has been fully recovered and corre- 
sponds to the first term in the series ( t=  0). 

R E F E R E N C E S  

1. For reviews, see: A. O. Barut in New Frontiers in Quantum Electrodynamics and Quantum 
Optics, A.O. Barut, ed. (Plenum, New York, 1990); A.O. Barut, Phys. Scr. T 21, t8 
(1988). 

2. A. O. Barut and J. Kraus, Found. Phys. 13, t89 (1983). 



Self-Energy Quantum Eiectrodynamics 849 

3. A. O. Barut and J. Kraus, Trieste Preprint No. IC/86/228. 
4. The relevant papers are: A. O. Barut and J. P. DoMing, Phys. Rev. A 36, 649, 2550 (1987); 

41, 2277, 2284 (1989); Z. Naturwiss. 44a, 1051 (1989); A. O. Barut, J. Kraus, Y. I. Salamin 
and N. Onal, Phys. Rev. A 4g, 7740 (1992); A.O. Barut, J. P. Dowling, and J. F. van 
Heule, Phys. Rev. A 38, 4405 (1988). 

5. A. O. Barut and Y. I. Salamin, Phys. Rev. A 37, 2284 (1988). 
6. A. O. Barut and Y. I. Salamin, Phys. Rev. A 43, 2524 (1991). 
7. V. B. Beresttetskii, E. M. Lifschitz, and L. P. Pitaevskii, Quantum Electrodynamics 

(Pergamon, New York, 1982), §46. 
8. A. S. Davydov, Quantum Mechanics, 2nd edn. (Pergamon, New York, 1965). 
9. J. D. Jackson, Classical Electrodynamics, 2nd edn. (Wiley, New York, t975). 

10. A. O. Barut and Y. I. Salamin, Z. Phys. D 21, 1 (1991). 

View publication stats

https://www.researchgate.net/publication/243171305

