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ABSTRACT

We present a simple approach to the relativistic calculation of the rates of spontaneous
emission starting from the Heisenberg picture fonnula for the power radiated by a charged particle
undergoing acceleration, and evaluate atomic decay rates using relativistic Dirac^Coulomb wave-
functions. The spin of the electron, embedded in its relativistic wavefunction, is shown to correctly
provide the two polarization states of the emitted radiation. We discuss selection rules and calculate
the Hydrogen 2P -t IS transition rate, among others, to be

r = (6.2650 ±0.0007) x 1 0 V

in good agreement with the full field theory calculation as well as with experiment.
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I. INTRODUCTION

The purpose of this paper is to elucidate the origin and mechanism of spontaneous

emission and to provide a simple method of calculating more accurate Tetativistic de-

cay rates than the presently available nonrelativistic ones, for which the literature is

extensive'1'2'.

As is well known, the debate about spontaneous emission has a long history. Different

mechanisms and different methods of calculation have been proposed. According to one

of the two main pictures, spontaneous emission is due to the fluctuating vacuum of the

quantized electromagnetic field.'3^, while the other attributes it to the radiation reaction

force'4!. The first idea, taken seriously, gives only half of the Einstein ^-coefficientIs!. The

discussion about the roles of these two mechanisms still goes on'6'.

Recently, a relativistic theory of spontaneous emission has been given'8! within the

framework of the self-energy quantum electrodynamics^. This approach does not use a

second quantized radiation field, but rather the self-field produced by the current distri-

bution jjj = eififnip of the electron, and has been successively applied to all other radiative

processes'0!. In this paper, we implement a different version of this theory, namely that

spontaneous emission is simply the radiation emitted by an accelerating charge (which can

also, of course, absorb radiation). We use the Larmor formula for the energy emitted by

an accelerating relativistic Dirac particle with acceleration a = a, where a(t) are the Dirac

alpha matrices in the Heisenberg representation.

The relativistic calculation is essential, because the spin of the electron current ac-

counts automatically for the two polarization states of the emitted radiation. This is a

solution to the problem of the missing factor of two mentioned above. Aside from the spin

degrees of freedom, the relativistic corrections turn out to be small for the H- atom, as



expected, but might be large for Muonium and other exotic atoms and ions.

In Section II, we derive the decay rate formula. We evaluate the matrix elements

in Section III and give a summary, in Section IV, of the selection rules arising from their

angular parts. The general results are finally applied to the decay rates of some of the

low-lying Hydrogen levels in Section V.

II. THEORY

For the time rate at which energy in the form of radiation is emitted by the atomic

electron we borrow the classical expression for an electron of charge e undergoing an

acceleration'10'

dE_ _ e2 2 v2

dt ~ 4TT 3e3 * 1 -
+ terms in (V.V)TT2 and (v x v)-/2} (1)

where E is the energy, c is the speed of light, fi — v/c and 72 = 1/(1 - /32). In the

instantaneous rest frame of the electron, v = 0, we get

"5T = 4 ^ 3 ^ ^

We next turn this into a probability for emission by dividing the expression in equation

(2) by the quantity

(3)

which does not necessarily depend upon T, and write

r ^ dE/dt _ e3

AE ~ 4JT

Notice that F already has the units of a~l.

In quantum mechanics, the radiation process is described as follows. As the electron

makes a transition from a (stationary) excited state n to the ground (or less excited) state

s, it emits energy of the magnitude AE — hw, where h is Planck's constant and at is the

transition frequency, in the form of radiation. The idea now is to turn (4) into a quantum

mechanical expression for the atomic decay rate in two steps'1'!; (a) We let AE -- tvui

and (b) We replace the acceleration v by the matrix element of the acceleration operator

between the initial and final states. In other words, we let v =< s|v,,,,|tr >, This procedure

is further justified by comparing it with the Schrodinger picture calculation'7'8!. After this

has been done in the system of units where h = c = 1, and with the fine structure constant

a = e2/4?r, equation (4) becomes

_ 2 | < n]ir\s >
»_, — —a

3 w (5)

and Tn^, is identified with the decay rate of level n to level s. In the lab frame, the

contribution of all terms beyond the first one in equation (l) is very small. In fact, -^

differs from unity by a few parts in 10~7 for an electron in its first excited state and gets

only closer to one for higher states.

Now, from the Heisenberg equations, we have

(6)

We look first at the nonrelativistic limit, where H is the Schrodinger Hamiltonian and r

is the position operator of the atomic electron. Therefore

< n v|* > = - ( £ „ - E.)*rn.

and hence



Recall that the famous expression for the Einstein yl-coefficient of spontaneous emis-

sion in the dipole approximation'L2' contains a factor of 5 rather than the 3 we have in

equation (7). Customarily, the lost factor of 2 is restored by introducing the familiar con-

cept of polarization for the emitted photon. We shall show, however, that if relativistic

Dirac-Coulomb wavefunctions, with their full spin dependence, were used instead of the

Schrodinger ones, the final result will numerically agree with experiment, without the need

to invoke the polarized photon concept at allt8'. The light emitted from the relativistic

eSectron with spin has the two polarizations. On the other hand, in the relativistic case,

with v = a, where a — (0:1,0:2,0:3) represent the Dirac alpha matrices, we have

= i < s\\H, a}\n

= iu-i < slain > (8)

where H here is the Dirac Hamiltonian of the atomic electron and \n > and \s > belong to

its set of eigenstates and u = En — E,. Putting (8) back into (5), we arrive at the simple

formula

rn-», = - a w |

(9)

Equation (9) gives the partial decay rate of level re to level a. If one is interested in a

calculation of the total decay rate, Tn, then one must sum (9) over all states s, where

s < n, as well as over the total magnetic quantum numbers Mn and M,. In the next

Section, we evaluate the matrix elements Mnt exactly.

III. THE MATRIX ELEMENTS

With the help of Appendix A, and with a in the standard representation, Mn,

becomes

(10)

where

= H r*dr g»{r)f.(
Jo

= ->/(! +£»)(!-€.) Un U, {h + h-h- /«} (lla)

and

= I r2dr fa[r) g.{r)
Ja

O Un U, {/, - h + h - (116)

with

h= I r2An(r)A,{T)dr = nrsT ^ £ (-•»' + l)i-(-*r +
Jo p=0 ,=0

/2 = r T*An(r)Bm{r)dr = nT{N. - is.) £ E ( - n ,

J3 = [°° r2Bn(r)A,(r)dr = (//„ - «„)«, '

p=0 ,=Q

P=o ,=0

and

(12a)

(126)

(12c)

(12d)

(13)

Moreover (see Appendix B)

K t = [(2Jn + 1)(2J. + I)]"* jtfn o tl., do

T



and

K2 - [(2Jn + 1)(2J, + I)]"* I U{, a U, do

j + (C - D)k} 6tn,,_, (146)

where do = sin2 6d0d(j>, and

•=( *" I I M ( - A /

K + i ~i -M.

Finally, A,B,C and D can readily be written down from the expressions for a,b,c and d,

respectively, by letting fn -* ln< and I,: -* t,.

When equations (14) are put back into (10) and after squaring Mn, and substituting

the result in equation (9), remembering to sum over Mn and M,, the total decay rate of

the nth atomic level becomes

M,M,
2 + B2 - CD) + C7- +

(16)- 2RiR2[2{aA + bB) + cC + dD - cD - dC\)

Notice that in our final result, equation (16), we have divided by the degeneracy

Sn. = 2£n + 1 of the nth level, following general practice. In the next section, we go back

to equations (14) and extract selection rules from them.
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IV. THE SELECTION RULES

From the Kronecker 6- function in equations (14), we can immediately write down

the following rules:

(i) = 0 unless tn - (.- = 0.

(ii) K2 = 0 unless £„- - I, = 0.

These follow from 6fntt, and St^t.,, respectively. On the other hand, imnm,, and

^m.<m. impose the following conditions upon the various components of K ( and K-2 {see

equation B3 in Appendix B)

(1) a and A vanish unless M, — Mn — —1.

(2) b and B vanish unless M, - Mn = +1.

(3) c, C, d and D vanish unless AT, - Mn ~ 0.

As usual, in a specific calculation, attention paid to these rules will prove to be time-

saving. As we shall have occasion to encounter in section V, rules (i) and (it) prohibit

some transitions from taking place altogether.

V. EXAMPLES

We now apply equation (16) to the following transitions in Hydrogen:

(1) The 2S — IS transition:

t n - t,< = - 1 and £ „ • - £ , = +1 render Kt = K2 = 0 and hence this transition is

strictly forbidden.



(2) The transition:

In - I*' — in' ~ t, = 0 imples that both K ( and K2 are nonzero. Furthermore,

equations (15) together with the rules (1) through (3), yield (summation over Aftl and M,

is implied)

2 t 2 ^ 2 d2 * 4 # # c* ti> \

12' 12 6

Thus

On the other hand, equqtions (11) and (12) yield

(17)

( l - f n ) ( l + t . ) ^ (JV2 - JV + 2)

' (1 + £ „ ) ( ! - £ , ) ' JV(JV-3)

where 7 = i / l - (2"a)2, Â  = v/2T + 2 . *« = V1 ~ (Za/N)2'

10 — m{tn — f,) and m is the electron's reduced mass in the atom.

Taking 7 ss 1, gives JV ss 2, tn e& 1 — ( %' , «, « 1 -

w R; fma2, we get

(3) The 2Pi -» 15i transition:

£, = 7 and

-, r) 5s — 1 and

(18)

= ft* = J

- L,< = 0 implies that Ki ^ 0 while t, - t^ - - 2 renders Kj = 0. Moreover,

= rf2 = - i a = -±. Thus

(19)

where

1 ~

and where 7n = \/4 - (Za)2 , T. = y/l - (Za)9, tn =

Here, too, if we take in » 2, and 7, as 1, then £„ « 1 -

get

= m(f n - t < ) .

a n { j £< « 1 - t z ° ) , a n d we

(20)

A more careful calculation, however.using the exact expressions (17) and (19), gives

r,~is, + r 2 r , ^ i S i = (6.2650 ± 0.0007) x 108ji~ (21)

It is a common practice to report the total decay rate of the 2P —» 15 transition as the

weighted sum 3^1*1-.-ISI + I ^ P s —is, , where the weights are calculated assuming that

all the 2F sublevels are equally probable'^'. The weight factors have been included in our

main result, equation (16), for the partial decay rate of a sublevel (see the two paragraphs

flanking equation (16) ). Thus, the reader should not be alarmed by the appearance of

equation (21).

The uncertainty reported in equation (21) has been calculated from the expression

Ar = | ^ SOJ
aw

for an uncertainty Sw in the transition frequency that is of the order of magnitude of the

hyperfine splitting ma*. This result agrees extremely well with experiment as well as with

all preexisting theoretical calculations'8!.

VI. DISCUSSION AND CONCLUSIONS

Once more, we have demonstrated, by a simple explicit calculation, that an aspect

of the quantized nature of radiation is merely a reflection of the quantized nature of its

10
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source, the bound electron^'. In particular, the inclusion of the spin of the source has

rendered the sum over the photon polarization states unnecessary I Tl.

In its approximate form, equation (8) gives a number easy to remember, namely

rsp^i.s- ss (§)8 ma {Zee)*, (see equations (18) and (20) and compare with the rate of

positronium decay F -̂, = ^mor5). In the present calculation,, the 2S ~> IS transition

is strictly forbidden by the selection rules. This is maybe due to the neglect of some

relativistic terms, for the complete relativistic calculation gives a small nonvanishing rate

for this decay I7'.

Finally, we think that the calculation of the matrix elements in Section III a.nd

Appendix B will be useful in other atomic calculations involving the use of Dirac-Coulomb

wavefunctions, whenever analytic closed form expressions are sought.
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APPENDIX A: THE DIRAC-COULOMB WAVEFUNCTIONS

With the desire to make this paper self-contained, we quote below from reference JS|,

Appendix B, the Dirac-Coulomb wavefunctions of the discrete part of the spectrum. We

write the wavefunction of the nth level as

In (Al), n and n' stand collectively for all the good quantum numbers of the states. In

other words, n ~ (n, Jn,ln,Mrl) and n' = (n,JU ]( n l ,AfJ , where £„. = 2Jn - I,,. = £„ ± 1.

The radial parts in equation (Al) are given by

ff,4(r) - VTTtZ Un {An. - Bn)

/,,(^)--v /r^f/Tl(4n + Bn)

where

t-1) l4JVrl(7Vn-Kn) nrV

An{r) = n r F(-nr + 1 ,2^ + l;2Anr)e"x-'

Also

and where
Zam

r(6)

n r = n - f •=

n

And finally, the angular parts of the wavefunctions are given by

12



is obtainable from n,4 by letting tn —> £„< and

n -> mn> and xlln is a two-component Pauli spinor.

APPENDIX B;THE ANGULAR MATRIX ELEMENTS

In component form, we write

where, for example

K^ = \{2J7i + \)(2J. Jnl ox n,.

x < tama\t,,m,< > xA a* X,t,

Using < lnm,i\l,-m,< >= 6tnt.,6,,,.m,, and X/ii^Xm = *<.».-,.,> ^i« becomes

We get rid of the sum over mu by invoking the property of a 3j- symbol, whereby the sum

of the entries in its second row should vanish. As a byproduct, we also get

ln = Mn - Mi = M, (S3)

When* finally, the summation over ^ n = ± | is carried out explicitly* equation (B2) be-

comes

Equation (B3), on the other hand, gives the conditions for the nonvanishing of a and ft

when fin is set equal to +5 and —|, respectively. K\v and K\t can be derived in a similar

fashion, the only difference being that

and

(BS)

(B6)

13 14
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