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Abstract. Generalized queries are defined as sets of clauses in implica-
tion form. They cover several tasks of practical importance for database
maintenance such as answering positive queries, computing database
completions and integrity constraints checking. We address the issue of
answering generalized queries under the minimal model semantics for
the class of Disjunctive Deductive Databases (DDDBs). Our approach is
based on having the query induce an order on the models returned by a
sound and complete minimal model generating procedure. We consider
answers that are true in all and those that are true in some minimal
models of the theory and investigate the monotonicity properties of the
different classes of queries and answers.

1 Introduction

Minimal model semantics was one of the first to be defined for disjunctive
theories[12, 10]. Several model classes defined under other semantics, such as
the perfect and stable models for theories with body negation, are subsets of the
minimal models and coincide with the minimal models in the absence of body
negation.

Minimal models proved important for defining database completion: the
mechanism to avoid the explicit storage of negative data. The Closed World
Assumption and its extensions to disjunctive theories were defined in terms of
minimal models [14, 12, 20]. Limiting our attention to the class of minimal mod-
els reconciles the concepts of derivability in all models and in all minimal models
of the completed theory for positive and negative formulas [16, 20].

In this paper we consider several aspects of generalized query answering
based on minimal model generation. The classes of queries considered are of
importance for database maintenance and exploitation. Our approach is based
on having the query induce an order on the models returned by a sound and
complete minimal model generation procedure. This order is used to answer the
query and to decide the monotonicity of the answers returned for the query
under consideration.

The rest of the paper is organized as follows. In the next section we give some
relevant definitions and describe a sound and complete minimal model generating
procedure that will be used for query answering. We define the concept of a



generalized query and two classes of answers: those #rue in all minimal models
and those that are true in some minimal models. In Section 3 we show how
to use a minimal model generating procedure for generalized query answering.
In Section 4 we discuss the monotonicity properties of the generalized query
answering process for the classes of queries and answers considered. In Section 5
we give our conclusions and mention some possible directions for further research.

2 Preliminaries and Background Material

We assume familiarity with the basic concepts as in [10] and limit ourselves to
briefly recalling the basic material needed for the results presented here.

Definition1. (DDDB) A disjunctive deductive database (DDDB), DB, is a
set of clauses in implication form: C' = Ay V---V A, — By A... A B,, where
m,n > 0 and the A; and B; are atoms in a First Order Language (FOL) £
with no function symbols. C' is positive if n = 0 (head is T, true, empty) and
negative or denial if m = 0 (body is L, false, empty). By Head(C') we denote the
disjunction of atoms Ay V ---V A, and by Body(C') we denote the conjunction
of atoms By A ... A By,. So C = Head(C) — Body(C).

The Herbrand base of DB, HBpp, 1s the set of all ground atoms that can
be formed using the predicate symbols and constants in £. A Herbrand inter-
pretation is any subset of H Bpg. A Herbrand model of DB, M, is a Herbrand
interpretation such that M = DB (all clauses of DB are truein M). M is min-
tmal if no proper subset of M is a model of DB. The set of all minimal models

of DB is denoted by MM (DB).

Definition2. (range-restriction) A clause C' is range-restricted if every vari-
able occurring in the head of C' also appears in the body of C'. A database is
range-restricted if and only if all its clauses are range-restricted.

In this paper we assume the theory to be range-restricted (RR).

Definition3. (closed world assumption)[12, 20] Let DB be a DDDB. Then
CWA(DB) ={-A41V---V-A,|A; € HBpp and n > 0 and A a minimal model
of DB, M such that {4;,---, A,} C M}. n always equal to 1 gives the GCWA
and allowing arbitrary values for n results in EGCWA.

The completed database refers to the set of positive and negative ground
clauses derivable directly from DB or by the appropriate default rule for nega-
tion. We adopt the EGCWA because of the following result:

Lemmad4. [20] Let DB be a DDDB. Then DB® = DBU EGCWA(DB) has
as ils models the set of minimal models of DB. Thal is, M = DB* iff M €
MM(DB).

Definition5. If C'= A, V...V A, is a digjunction of atoms, then by Neg(C') we
denote the set of clauses in implication form Neg(C) := {41 — L, ..., A, — L}.

If M ={A1,..., Ap} is a finite interpretation then Neg(M) denotes the clause
in implication form Neg(M) = A1 A ... A Ay — L.



2.1 Model Generation

The main results of this paper are based on using a model generating proce-
dure [3, 19]. First we give a brief description of a minimal model generating
procedure that is sound and complete [3]: it returns all and only minimal mod-
els of its input theory. Given a DDDB, DB, the procedure constructs a (model)
tree with the atomic clauses in each root-to-leaf branch representing a minimal
model of DB. Starting from T (¢rue) at the root, the procedure expands a tree
for DB, by applying the following expansion rules [3]:

Definition 6. (expansion rules) Let DB be a DDDB. If the elements above
the horizontal line are in a branch B then B can be expanded by the elements
below the line in each of the following rules.

Positive unit hyper-resolution (PUHR): Complement-Splitting:
By EiVE,
: Ey | Ea
B, [Neg(E2)] |
Fo

where o is a most general unifier of the body of a clause (A1 A...A Ay — E) €
DB with {By, ..., B,}. That is, {A1, ..., An}o = {Bi, ..., Bn}.

Range-restriction ensures that splitting is applied only to ground disjunctions.

Definition 7. (model tree) A Model Tree for a DDDB, DB, is a tree struc-
ture the nodes of which are (sets of) ground atoms, disjunctions and denials
constructed as follows:

1. {T} is the top (root) node of the tree.

2. If T is a leaf node in the tree for DB, such that an application of the PUHR,
rule (respectively complement splitting rule) is possible to yield a formula
E (resp. two formulas Fy and E3) not subsumed by an atom already in the
branch, then the branch is extended by adding the child node E (resp. the
two children nodes {F1, Neg(F>)} and E2) as successor(s) to T.

We always select ) for splitting a disjunction (E; V Fs3) to be atomic and
expand the leftmost atom of a disjunction first. As a result atoms of the clause
are expanded from left to right. Our interest is only in branches with no oc-
currences of false (L), that is, open branches. The branch expansion is stopped
when (L) is added (the branch closes). The expansion continues until no new
expansions are applicable (all open branches are saturated). A branch represents
the interpretation in which all (ground) unit clauses are assigned the truth value
true. For the class of RR DDDBs the procedure is model sound in the sense that
all tree branches represent models of the theory and complete in the sense that
the tree has at least one branch representing each minimal model of DB. The



first (leftmost) model generated by the procedure is minimal and no duplicates
are produced. However, not all branches represent minimal models [3].

If additionally, for each minimal model generated so far, M, we augment the
theory by the negation of M, (< Neg(M) >) for subsequent processing steps,
then we achieve a model generating procedure that is minimal model sound and
complete. It returns all and only minimal models of its input theory. [3] contains
a Prolog implementation of the procedure, called MM-Satchmo.

Fzample 1. Figure 1 shows the search spaces of MM-Satchmo for DB = {

T — P(a)V P(b) P(a)
T — P(a)V P(c) P(b) — P(a)V P(d

~—
!

Some nonminimal models were deleted by complement splitting (L enclosed
in square brackets [ ]) and others by model minimization (L enclosed in <>).
The minimal model tree construction is depicted in Figure 1. All and only
minimal models are returned and are represented by the open branches of the

tree. MM(DB) = {{P(a), P(d)}, {P(a), P(5)} {P(3), P(c), P(d)}}.

T
I
Pla)V P(b)
________________ |
I I
[P b)—>J_] <P(a)/\P(d)—>J_>
Pl(a) Pl(b)
P(b) v P(d) Pla)V P(c)
_______ I __ R FE
I I I I
[P(d) — 1] | [Pc)— 1] < P(B)APa)— L>
| | Pla) P(e)
P(b) P(d) |
| Pla) Vv P(d)
s ________ |
I I
[P(d)— 1] < P(d) >
Pl(a)
<l>

Fig.1. A Run of the Model Generator MM-Satchmo for Example 1.



2.2 Queries, Answers and the Minimal Model Semantics

We are interested in yes/no answers to generalized ground queries which are
defined as follows:

Definition 8. (elementary generalized query) An elementary generalized
query is a ground clause in implication form: it is positive if the body is empty,
negative if the head is empty and mixed otherwise [17].

Definition 9. (positive/negative queries) A query @ is positive (negative)
if it can be translated into a set of positive (negative, denial) clauses. @ is mixed
if 1t 1s neither positive nor negative.

Atomic, conjunctive and disjunctive queries are all positive queries. For a
query @, by {@} and Neg(Q) we denote the set of clauses that represent @ and
the negation of (), respectively.

Definition 10. (answers) Let DB be a DDDB and let @ be a ground query.

— @ 1s a SURE answer in DB iff ) is true in all minimal models of DB.
@ 1s minimal if, additionally, no proper subset of @) is a SURE answer.
— @@ isa MAY BE answer in DB iff ) is true in some minimal models of DB.

Clearly, every component of a minimal SURE answer is also a M AY BE
answer and every MAYBE answer is a component of a (minimal) SURE answer
to a query.

Lemmall. Let DB be « DDDB, I be an interpretation and C be a set of ground
denial rules (constraints): C = {C' : Ay A ... N A, — L, where A; are ground
atoms, i = 1..n for some n}; then:

1. If C is violated in I then it is also violated in all supersets of I. That is, if
T C then I' = C, for all I such that T C I'.
2. Assume I |=C. Then, I = DBUC iff I = DB and I | DBUC iff I | DB.

Proof. Immediate.

As a counterexample for the case of nondenial rules consider DB = {P(a)},
the single rule P(a) — P(b) and the interpretations {P(a)} and {P(a), P(b)}.
Only the latter satisfies the constraint.

Theorem 12. Let DB be a DDDB and C be a set of denial rules. Then:

1. If M s a minimal model for DB UC then M s a minimal model for DB.

2. MM(DBUC) = MM(DB)\{M : M [£C}.

3. If C = {Neg(M)|M € MM(DB)} then (DB UC) is inconsistent: (has no
models and MM(DBUC) =10).

4. If Cq,...,Cy are sets of denial rules such that C, C ... CCy . Then:
MM(DBUC) C ... C MM(DBUC,).

Proof. Straightforward.

Theorem 12 shows that adding denial constraints can change the status of
models to nonmodels but cannot affect model minimality.



3 Query Answering

Using the semantic characterization of query answers (Definition 10) we try to
reduce the process of query answering to an invocation of a sound and complete
minimal model generating procedure (e.g. MM-Satchmo [3]). This can be done
in two ways:

The first is to use a static representation of the theory in terms of 1ts min-
imal models, say in the form of a minimal model tree. The query answering is
converted into searches in the tree [5, 19]. The minimal model generating pro-
cedure 1s used to construct such a tree and the representation is independent
of the query. Special arrangements such as indexing or tree restructuring are
needed to facilitate the search for elements of the query in the tree. However,
if the theory changes state then the model generating procedure can be used to
regenerate the minimal model structure of the updated theory. If updates are
frequent then reconstructing the minimal model tree may become costly. An-
other drawback is that one may need to store two representations of the theory:
the original (clausal) and the minimal model representation, since the two rep-
resentations are only minimal model equivalent in the sense that they have the
same set of minimal models but are not equivalent in the more general sense as
demonstrated by the following example:

Frample 2. Consider the DDDB, DB = {P(c), P(a) — P(b)} with the only min-
imal model {P(¢)}. Updating DB by adding P(a) will result in minimal model
sets: {P(c), P(a)} and {P(c), P(a), P(b)} for the minimal model and clausal

representations of the (original and updated) theory, respectively.

The second way is to retain only the clausal representation and generate the
minimal models, possibly in a query induced order, at query answering time. In
this paper we concentrate on the last approach.

3.1 Answering Positive and Negative Queries

The standard approach for query answering is to try to refute the theory aug-
mented by the negation of the query. For positive queries, minimal model rea-
soning is the same as reasoning under “all models semantics”. It was shown
that a complete minimal model generating procedure is sound and complete for
refutations (for DDDB’s) [11, 3]. However, minimal model generation produces
information that can be used to enrich the query answering process.

Theorem 13. Let DB be a DDDB and () be a positive query. Then:
MM(DB) = Min(MM(DBU Neg(Q)) U MM(DBU{Q})),

where Min(S) returns the set of minimal elements of the set S.

Proof. (—) Let M € MM(DB). Either M | @ and M [£ Neg(Q): M €

MM(DBU{Q}) and is also in Min(MM(DBUNeg(Q))UMM(DBU{Q})).
Orelse M |E Neg(Q) and M = Q. M € MM(DB U Neg(R)) and is also in

Min(MM(DBUNeg(Q)) UMM(DB) U{Q})) by Theorem 12.



(—)Let M € MM(DB U {Q}). Two cases are possible: M € MM(DB)
and M ¢ MM(DBU Neg(Q)) and therefore M € Min(MM(DBU Neg(Q))U
MM(DBU{@})). Or else, M is a nonminimal model of DB. There exists M; C
M such that My € MM(DB). My = Q. My = Neg(Q). My € MM(DB U
Neg(®)). My € Min(MM(DB U Neg(Q)) UMM(DBU{Q})).

If M € MM(DB U Neg(Q)) then it is also a minimal model of DB by
Theorem 12 since Neg(Q) consists entirely of denial rules.

Frample 3. Let DB = {P(a) — P(b)} and Q = P(a). DB has the only mini-
mal model {}. The minimal model for DB U {=P(a)} is {} while the minimal
model for DBU{P(a)} is {P(a), P(b)} which is subsumed by {}. MM(DB) =
Min(MM(DBUNeg(Q)) U MM(DBU{Q})) = {}.

For positive queries model subsumption, if any, is unidirectional: minimal
models of DBU Neg(®) can subsume (be a subset of) minimal models of DB U
{@} but not the reverse. This is so since a model of DBUNeg(Q) has no elements
of @ while DB U{@} must have some. Theorem 13 suggests a simple procedure
for answering positive queries by partitioning the set of minimal models of DB
into two sets: one in which @) 1s true and the other in which @ is false then check
for model minimality. Our way is to run two MM-Satchmo processes:

— The first process of MM-Satchmo will operate on DB U Neg(Q). We denote
the (possibly empty) set of minimal models returned by MM(DB)ney(q)-

— The second will operate on the set union of the theory DB, the query ) and
the constraints corresponding to the minimal models returned by the first
process. That is, it operates on DBU{Q}U{Neg(M)|M € MM(DB)Neyq)}-
We call the (possibly empty) set of minimal models returned MM(DB)q; .

The constraints in the second process are used to remove the models that
satisfy () but are not minimal for DB alone. The two processes are not inde-
pendent. While we can avoid adding {@Q} in the second process we can use it to
impose an order on the set of minimal models generated in the second branch.
The entire process is equivalent to augmenting DB with the clause =@ V @,
a tautology, and therefore a minimal model preserving modification. The first
(left) process will generate the minimal models of the theory in which the query
is not satisfied. The second process returns the minimal models satisfying the
query. The structure of the resulting tree 1s displayed in Figure 2. If DB is
consistent (MM (DB) # ), we can have one of the following possible cases:

L. MM(DB)neyq) = MM(DB) and MM(DB)q, = 0. That is, the first
process returns all the minimal models of DB and the second returns no
minimal models. The query is false in all minimal models of DB and its
negation can be assumed to be {rue under the Closed World Assumption.

2. MM(DB)qy = MM(DB) and MM(DB)ney(q) = 0. That is, the second
process returns all the minimal models of DB and the first returns none.
The query is true in all minimal models of DB (a logical consequence of
DB) and @ is a (not necessarily minimal) SURE answer.



3. MM(DB)Neg(q) # 0 and MM(DB);qy # 0. That is, each of the two
processes returns some minimal models of DB. The query is true in some
minimal models (MM(DB);qy) and false in others (MM(DB)yey(q)). @
is a M AY BE answer.

Neg(Q) QU {Neg(M)|M € MMy.gq)}
I I
MMNegQ) MM, qy

Fig. 2. The Minimal Model Tree Structure for Positive Queries.

One may elect to have the procedure stop when the first process generates no
models on the assumption that the query is a logical consequence of the theory.
However, running the second process will have the added advantage of showing
that there are models for the theory and therefore it is consistent. Additionally
we may want to use the second pass for more refined query answering [17].

When @ is negative, Neg(Q®) is positive. MM-Satchmo will operate on @
and Neg(®), in that order to maintain the unidirectional model subsumption
property. That is, we still process the negative component first. The results
obtained for positive queries can be applied here with the obvious modifications.

Fzample /. DB = {T — aVba — ¢,b — ¢;d — ¢e}. Q1 = ¢, Q2 = b and
Q3 = ~d. MM(DB) = {{a,c}{b,c}}.

— DB U {=c¢} F O. (DB U {=c} has no models). The tree for @1 is given in
Figure 3-a.

— DBU{=b} I/ O. DB U {—=b} has the only minimal model {a,c}, a minimal
model for DB. )2 is a MAYBE answer. The tree for )5 is given in Figure 3-2.

— DBU{d}# 0. DB U{d} has the minimal models {a, ¢,d, e} and {b,¢,d, e}.
None of these models is minimal for DB. MM (DBU{-~d}) = {{a,c}{b,c}} =
MM(DB). =d € GCW A(DB). The tree for Q3 is given in Figure 3-c.

Example 7 offers some more complex cases.

3.2 Mixed Queries

A mixed query can be represented as a clause in implication form with the
conjunction of negatively occurring atoms as the body and the disjunction of
positively occurring atoms as the head.
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Fig. 3. Minimal Model Tree Structure for Queries of Example 4.

Let @ = Body(Q) — Head(Q) or @ = —Body(Q) V Head(Q). @ is true
in DB if all minimal models of DB satisfy @@ and false otherwise. That 1s, )
is false if and only if there exists a minimal model of DB in which @ is false:
AM € MM(DB)|M = Body(Q) and M = Head(Q).

To answer such a query, we use the order it induces on the minimal model
set to find the elements in which the query is falsified, if any. To retain the
unidirectionality of model subsumption, we work with most constrained theories
first (Theorem 12 item 4). We start by searching for minimal models in which
Head(Q) is false by adding Head(®) — L to the theory to be expanded in the
current branch. We denote this set by MAM,. The set of remaining minimal
models of DB, those in which the head of @ is true, is denoted by MM,.
Clearly, MM(DB) = MM; U MM,. Farther, we split MM into two sub-
branches: first we find the set of minimal models in which Body(Q) is false
by adding Body(Q}) — L and denote this set by MM, ;. Then we find the
minimal models in which Body(Q) is true by adding Body(Q) and the negation



of all elements of MM, 1, {Neg(M)|M € MM, 1}. We call this set MM, 5.

Figure 4 displays the model structure for the resulting tree.

| {Neg(M)|M € MM}
Head(Q) — L Head(Q)
________ | I

Body(Q) — L {Neg(M)|M € MM, .}

| Body(Q)
| |
MMy 4 MMy o
| < LIl MMy LLLL>]| MM

Fig.4. The Model Tree Structure for Nonpositive Queries.

Theorem 14. Under the above partitioning of the set of minimal models of DB
induced by components of Q(Figure 4): Q is true in DB iff MM, 5 = 0.

Proof. The correctness of the model computation process is the result of com-
puting most constrained models first as required by Theorem 12.

() is satisfied by elements of MM by having Head(Q) satisfied. () is satisfied
by elements of MM, 1 by having Body(Q) falsified. ) can be falsified only by
an element M € MM, » satisfying Body(Q) while Head((Q)) is falsified in M.

The result follows immediately.

Fzample 5. Let DB ={T —aVe, T —-bVeVe T —cVdVeec— dVe},
Qi=aAb—cvVdand @z =aAd—cVe. For Qi1: MM, = () and therefore
(21 1s true in DB. The tree is given in Figure 5-a.

For Qo: MM, 5 = {{a,b,d}} and therefore @2 is false in DB. The corre-

sponding tree is given in Figure 5-b. It is easy to verify the answers by noting

that MM(DB) = {{a,b,d}, {a,e},{c,d}, {c,e}}.

A mixed query can be interpreted as an integrity constraint. Answering it is
checking for the satisfiability in the current state of the database. Satisfiability
of a constraint under the SURF semantics is interpreted as having it {rue in all
minimal models of the theory (theoremhood approach) [8]. This can be weakened
to give an affirmative answer under the M AY BE semantics when @ is satisfied
in at least one minimal model of DB. This happens when MM(DB)\ MM, » =
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Fig.5. The Model Trees Structure for Queries of Example 5.

MM 1 U MMs is nonempty!. Answering @ in this case is integrity checking
where the satisfiability of a constraint is interpreted as having it ¢rue in at least
one minimal model of the theory (consistency approach) [8].

Mixed queries can be viewed as a generalization of other cases as reflected in

Table 1.

||#|Item of Fig. 4| For a Positive Query | For a Negative Query ||
0| Query Form | T — @ (empty body) Q — 1(empty head)
1|Head(Q) — L Neg(Q) 1 — 1 adds nothing
2|Body(Q) — L| T — L: a contradiction {Q}
3| Body(Q) |T, adding it has no effect Neg(Q)
4 MM @ (In view of item 2) MM gy (In view of item 2)
5 MM, 5 MMiyeg ) MM y.gy (In view of item 3)
6 MM; MMy 0, (Head(Q) = 1)

Table 1. Positive/Negative Queries as Special Cases of Mixed Queries.

! The set MM(DB)\ MM, is the set of minimal models in which the constraint
corresponding to @ is satisfied. This may be interpreted as the set of the legitimate
minimal models of DB given the constraint @ and its consistency interpretation.
The detailed treatment of this issue is beyond the scope of this paper.



The common feature of the seemingly different classes of queries: the class
of pure (positive and negative) queries and the class of mixed queries under the
minimal model semantics is that the queries themselves are not allowed to “ac-
tively” participate in the model generation process. In this regard they exhibit
the same behavior as integrity constraints. This is in line with the epistemic or
meta-level view of integrity constraints under which the constraints are under-
stood as statements specifying what is true about the DDDB rather than about
the world modeled by the DDDB [7, 15, 9]. Answering the types of queries dis-
cussed here can therefore be viewed as checking if the corresponding epistemic
constraint holds in the given theory. No positive atom is added to the model tree
with the sole purpose of satisfying a generalized query?. In this regard they look
more like integrity constraints and differ from positive facts and derivation rules
which are used to add atoms to the model tree. The generalized query answering
process consists of checking that the query holds in every minimal model of the
theory. In a sense, the query is treated as an element external to the theory: it
may participate in ordering the tree branches or even closing them but not in
their expansion. The approach presented here can be viewed as a way to achieve
this behavior.

Another point to stress is that while we used the collection of constraints
corresponding to generated minimal models to ensure minimal model soundness,
other approaches for minimality checking can be utilized [13, 18].

4 Monotonicity Properties of Query Answering

The classes of queries discussed in this paper span many of the applications
encountered in database maintenance and exploitation. For each class we con-
sidered both MAYBE and SURE answers. Of interest is the monotonicity of
the query answering process for each of the query classes considered. This refers
to the validity of an already generated answer to a query after the database
undergoes a clause addition update.

In this section we show that different classes of queries/answers exhibit differ-
ent monotonicity properties and use the results to prove that certain inferences
used in the query answering process can be nonmonotonic for DDDBs even for
positive queries.

Definition15. (monotonicity) Let DB and DB be two consecutive states®
of a DDDB such that DBt is the result of adding some clauses to DB: DB C

DB*. Property 7 is monotonic if whenever 7 holds in DB then 7 also holds in
DBT.

2 The order of model generation and the additional constraints corresponding to each
minimal model produced ensure that query items added during the answering process
have no effect on the minimal model structure.

? We assume that DB and DBY are consistent.



The following lemma is an extension of a result in [6] that relates the models
of successive states of a digjunctive deductive database, before and after a clause
addition update.

Lemmal6. Let DB and DB be two consecutive states of a« DDDB such that
DBt is the result of adding some clauses to DB: DB C DBY. Then:

— For all Mt |= DBT there exists M |= DB such that M C M. In particular:
for all MT € MM(DB) there exists M € MM(DB) such that M C M*.

— There may exist models M € MM(DB) but no M+ € MM(DB™T) such
that M C MT.

Proof. Immediate in view of Lemma 11, Theorem 12 and Example 6.

Ezample 6. DB = {aVb,c}. DBt = DBU{a — b}. MM(DB) = {{a,c},{b,c}}.
MM(DB*) = {{b,c}}.

Note that for a definite database the only relevant cardinality 1s that of its
only minimal model. Adding a (positive) definite fact will result in extending
the minimal model by adding that and maybe some other atoms that were not
previously derivable. The minimal model remains unchanged otherwise.

Theorem 17. Let DB and DBY be two states of a DDDB such that DBT s
the result of adding clauses to DB: DB C DBT and @ be a generalized query
such that @ = Body(Q) — Head(Q).

— Assume that @ is true in all minimal models of DB (a SURE answer). If
this 1s because:
1. Head(Q) is true in all minimal models of DB then Q is true in all
minimal models of DB (Monotonic).
2. Or else Body(Q) is false in some minimal models of DB then @ need
not be true in all minimal models of DBt (Nonmonotonic).
— If Q is true in some, but not all, minimal models of DB (¢ MAYBE answer)
then @ need not be true in any minimal models of DBt (Nonmonotonic).

Proof. — Let C'€ DBY\DB.If C'is negative (denial rule) then by Theorem 11,
MM(DB*') C MM(DB) and the result is clear. Otherwise, by Lemma 16,
for any M+ € MM(DB') there is an M € MM(DB) such that M C M.

1. If Head(QR) is true in all elements of MM (DB) then @ necessarily holds
for any M since M* is a (not necessarily proper) superset of an element
in MM(DB).

2. If Body(Q) is false in some elements of MM (DB) then Body(®) may
become true in the expansions of such models and thus make the @ false
if its head was not earlier satisfied.

— If @ is true only in some elements of MM C MM (DB), then it may hold for
no element of MM(DBTY) if every one of the expansions of the elements of
MM, call this set MM™T | is subsumed by elements in the set (MM (DBT)\
MM™). That is, if for all MT € MMT IM € (MM(DBT)\ MM) such
that M C M*. Therefore, Q@ may be false in DBT.



Corollary 18. Given a DDDB, DB, DB* the updated version of DB by clause
addition and a query ). Then:

1. If Q) s positive then:
— The SURFE answer property is monotonic. If Q) is a SURFE answer in
DB then it is also a SURE answer in DBT.
— The MAY BE answer property is nonmonotonic. Q) can be a MAY BE
answer in DB but not a MAY BE answer in DBT.
2. If Q is nonpositive (negative or mized) then both SURE and M AY BE an-
swers are nonmonotonic.

Proof. Immediate.

Frample 7. Let DB = {P(a) V P(b),Q(a),Q(b), P(c) V P( ), P(d) — P(c)

P(a)}. @1 = P(a), Q2 = P(a) A Q(a)
Q4 = P(c) V P(d), @5 = Q(a) — P( 6 b
Ple) — L, Qs = P(b) AQ(b) — L. MM(DB) = {{P(a),Q(a),Q(b), P(c)},
{P(b), Q(a), Q(b), P(0)}. {P(a), Q(a), Q(b), P(d)}}. Consider DB+ = DBU
{P(b), P(c), P(e)}. MM(DB*) = {{P(b), Q(a), Q(b), P(c), Pe)}}.

Q@1 is a MAYBE answer in DB but not in DBT. Q5 is a MAYBE answer in
DB but not in DB, @3 and Q4 are SURE answers in DB and DB*. Q5 is a
MAYBE answer in DB but not in DB*Y. Q¢ is a SURE answer in DB but not
in DBT. ()7 is a SURE answer in DB but not in DBT. Jg is a MAYBE answer
in DB but not in DBT.

The monotonicity of the SURE answers for positive queries was established
in [2] in the context of defining the sub-implication which is also based on min-
imal model properties. OQur results show that, in general, the monotonicity of
answers depends not only on the query itself but also on the minimal model
structure of the theory and how it relates to the query under consideration. The
nonmonotonicity of closed world reasoning is in line with Theorem 17.

We considered only addition updates but didn’t limit ourselves to adding
positive clauses. The addition of nonpositive clauses is allowed as well. Positive
and mixed clause addition may change the status of individual minimal models
in the transition (from DB to DB™), when some of the minimal models of DB
attempt to expand. Negative clauses, however, cannot cause model expansion.
They can at most make minimal models of DB nonmodels of DB, as suggested
by Theorem 12, including making DB1 inconsistent.

It is possible to use similar reasoning to obtain monotonicity results, parallel
to those discussed here, for the case of no answers to queries. One may also
consider the case when updates are performed through clause deletions. However,
we don’t elaborate on these issues here.

An important point is that the information returned by the query answering
procedure can be utilized to decide the monotonicity properties of individual
queries. As suggested by Theorem 17 and Corollary 18 and the tree in Figure
4, a generalized query @ is monotonic if and only if MM, = MM(DB) for
yes answers. As a result the outlined procedure makes it possible to tag an



answer as monotonic/ nonmonotonic at no extra cost. Once a query is tagged
as monotonic, future database updates will not affect its status and it need
not be rechecked. This can be employed to enable an incremental construction
of the minimal model tree for a theory. After an update, only nonmonotonic
rules (treated as queries) need to be rechecked. If not satisfied then further
additions may be initiated to guarantee their satisfaction. Actually, one may
reduce the checking granularity by relating the monotonicity of individual clauses
to individual models. However, the gain achieved by incremental checking needs
to be weighted against the overhead cost of maintaining the necessary tables.

5 Conclusion and Remarks

We presented an approach to generalized query answering under the minimal
model semantics for the class of range-restricted disjunctive deductive databases.
It is based on the use of a sound and complete minimal model generating pro-
cedure . The concept of a query was extended to cover many classes of practical
importance for database maintenance and exploitation. The efficiency of the
approach depends on the efficiency of the used minimal model generating proce-
dure. Experiments with a prototype of our procedure pointed to its efficiency as
compared with similar ones reported in the literature [13]. It was able to handle
theories with large numbers of models [3]. Of course, since the procedure retains
already generated minimal models for subsequent model generation, one should
expect the performance to degrade when the number of minimal models is very
large: space requirements to store the corresponding constraints and the time
needed to process them will increase. However, this is a major improvement on
approaches that produce a complete set of models then compare them to test
model minimality. Additionally, any efficiency enhancement tuning of the model
generating procedure will reflect on the query answering process outlined in this
paper without affecting the reported theoretical results [13, 18, 19]. Of course,
the size of individual models can be large and the number of models will gen-
erally depend on the degree of indefiniteness of the theory. Adopting the model
tree structure, separating the definite and indefinite components of the theory
and other optimization techniques will enable sharing of atoms between mod-
els [5, 19]. The fact that our approach is limited to range-restricted DDDBs is an
important limitation despite the algorithm given in [3] to convert other theories
to this format. Therefore, our approach will benefit from approaches to mini-
mal model generations that can handle DDDBs that are not range-restricted [1].
One of the main advantages of our approach is that it returns information that
can be used to fine-tune the query answering process so as to decide the answer
monotonicity or to specify the updates needed to have particular answers. If the
user is interested in a simple yes/no answer then the minimal model generating
procedure can be guided by the query to construct the most relevant models to
the query answering process.

We also made distinction between SURFE and M AY BE answers to a query.
Both concepts were defined in terms of minimal models. We presented some



results regarding the monotonicity properties of different types of answers to
different classes of queries. SURFE answers to positive queries were shown to
be monotonic relative to updating the database by clause addition. MAYBE
answers on the other hand were shown to have a nonmonotonic nature and
therefore needed re-computation after database updates. While other types of
queries exhibited nonmonotonic behavior for all types of answers considered,
we defined the conditions under which the answers are monotonic. Determining
if these conditions hold can be viewed as a byproduct of the query answering
process. This was shown to be useful for incremental construction of the minimal
model structure of the theory.

Among the topics for further research are the use of a similar approach to an-
swering queries under other database semantics such as stable and perfect model
semantics [18] and treating answer monotonicity under updates other than clause
addition. Another topic is using the monotonicity results of this paper to develop
incremental methods for query processing in DDDBs [4] and the development
of an integrated system based on a minimal model generator for the different
aspects of database processing such as integrity enforcement and updates.
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