
Generalized Query Answeringin Disjunctive Deductive Databases:Procedural and Nonmonotonic AspectsAdnan H. Yahyayahya@ee.birzeit.eduElectrical Engineering Department, Birzeit University, Birzeit, PalestineAbstract. Generalized queries are de�ned as sets of clauses in implica-tion form. They cover several tasks of practical importance for databasemaintenance such as answering positive queries, computing databasecompletions and integrity constraints checking. We address the issue ofanswering generalized queries under the minimal model semantics forthe class of Disjunctive Deductive Databases (DDDBs). Our approach isbased on having the query induce an order on the models returned by asound and complete minimal model generating procedure. We consideranswers that are true in all and those that are true in some minimalmodels of the theory and investigate the monotonicity properties of thedi�erent classes of queries and answers.1 IntroductionMinimal model semantics was one of the �rst to be de�ned for disjunctivetheories[12, 10]. Several model classes de�ned under other semantics, such asthe perfect and stable models for theories with body negation, are subsets of theminimal models and coincide with the minimal models in the absence of bodynegation.Minimal models proved important for de�ning database completion: themechanism to avoid the explicit storage of negative data. The Closed WorldAssumption and its extensions to disjunctive theories were de�ned in terms ofminimalmodels [14, 12, 20]. Limiting our attention to the class of minimalmod-els reconciles the concepts of derivability in all models and in all minimalmodelsof the completed theory for positive and negative formulas [16, 20].In this paper we consider several aspects of generalized query answeringbased on minimal model generation. The classes of queries considered are ofimportance for database maintenance and exploitation. Our approach is basedon having the query induce an order on the models returned by a sound andcomplete minimal model generation procedure. This order is used to answer thequery and to decide the monotonicity of the answers returned for the queryunder consideration.The rest of the paper is organized as follows. In the next section we give somerelevant de�nitions and describe a sound and complete minimalmodel generatingprocedure that will be used for query answering. We de�ne the concept of a



generalized query and two classes of answers: those true in all minimal modelsand those that are true in some minimal models. In Section 3 we show howto use a minimal model generating procedure for generalized query answering.In Section 4 we discuss the monotonicity properties of the generalized queryanswering process for the classes of queries and answers considered. In Section 5we give our conclusions and mention some possible directions for further research.2 Preliminaries and Background MaterialWe assume familiarity with the basic concepts as in [10] and limit ourselves tobrie
y recalling the basic material needed for the results presented here.De�nition1. (DDDB) A disjunctive deductive database (DDDB), DB, is aset of clauses in implication form: C = A1 _ � � � _ Am  B1 ^ . . . ^ Bn; wherem;n � 0 and the Ai and Bj are atoms in a First Order Language (FOL) Lwith no function symbols. C is positive if n = 0 (head is >, true, empty) andnegative or denial ifm = 0 (body is ?, false, empty). By Head(C) we denote thedisjunction of atoms A1 _ � � � _Am and by Body(C) we denote the conjunctionof atoms B1 ^ . . .^Bn. So C = Head(C) Body(C).The Herbrand base of DB, HBDB , is the set of all ground atoms that canbe formed using the predicate symbols and constants in L. A Herbrand inter-pretation is any subset of HBDB . A Herbrand model of DB, M , is a Herbrandinterpretation such that M j= DB (all clauses of DB are true in M ).M is min-imal if no proper subset of M is a model of DB. The set of all minimal modelsof DB is denoted byMM(DB).De�nition2. (range-restriction)A clause C is range-restricted if every vari-able occurring in the head of C also appears in the body of C. A database isrange-restricted if and only if all its clauses are range-restricted.In this paper we assume the theory to be range-restricted (RR).De�nition3. (closed world assumption)[12, 20] Let DB be a DDDB. ThenCWA(DB) = f:A1_� � �_:AnjAi 2 HBDB and n > 0 and 6 9 a minimal modelof DB; M such that fA1; � � � ; Ang �Mg. n always equal to 1 gives the GCWAand allowing arbitrary values for n results in EGCWA.The completed database refers to the set of positive and negative groundclauses derivable directly from DB or by the appropriate default rule for nega-tion. We adopt the EGCWA because of the following result:Lemma4. [20] Let DB be a DDDB. Then DBc = DB [ EGCWA(DB) hasas its models the set of minimal models of DB. That is, M j= DBc i� M 2MM(DB).De�nition5. If C = A1_ :::_An is a disjunction of atoms, then by Neg(C) wedenote the set of clauses in implication form Neg(C) := fA1 !?; :::;An!?g.If M = fA1; :::; Ang is a �nite interpretation then Neg(M ) denotes the clausein implication form Neg(M ) = A1 ^ :::^An !?.



2.1 Model GenerationThe main results of this paper are based on using a model generating proce-dure [3, 19]. First we give a brief description of a minimal model generatingprocedure that is sound and complete [3]: it returns all and only minimal mod-els of its input theory. Given a DDDB, DB, the procedure constructs a (model)tree with the atomic clauses in each root-to-leaf branch representing a minimalmodel of DB. Starting from > (true) at the root, the procedure expands a treefor DB, by applying the following expansion rules [3]:De�nition6. (expansion rules) Let DB be a DDDB. If the elements abovethe horizontal line are in a branch B then B can be expanded by the elementsbelow the line in each of the following rules.Positive unit hyper-resolution (PUHR): Complement-Splitting:B1 E1 _E2... E1 j E2Bn [Neg(E2)] jE�where � is a most general uni�er of the body of a clause (A1 ^ :::^Am ! E) 2DB with fB1; :::; Bng. That is, fA1; :::; Amg� = fB1; :::; Bng.Range-restriction ensures that splitting is applied only to ground disjunctions.De�nition7. (model tree) A Model Tree for a DDDB, DB, is a tree struc-ture the nodes of which are (sets of) ground atoms, disjunctions and denialsconstructed as follows:1. f>g is the top (root) node of the tree.2. If T is a leaf node in the tree for DB, such that an application of the PUHRrule (respectively complement splitting rule) is possible to yield a formulaE (resp. two formulas E1 and E2) not subsumed by an atom already in thebranch, then the branch is extended by adding the child node E (resp. thetwo children nodes fE1; Neg(E2)g and E2) as successor(s) to T .We always select E1 for splitting a disjunction (E1 _ E2) to be atomic andexpand the leftmost atom of a disjunction �rst. As a result atoms of the clauseare expanded from left to right. Our interest is only in branches with no oc-currences of false (?), that is, open branches. The branch expansion is stoppedwhen (?) is added (the branch closes). The expansion continues until no newexpansions are applicable (all open branches are saturated). A branch representsthe interpretation in which all (ground) unit clauses are assigned the truth valuetrue. For the class of RR DDDBs the procedure is model sound in the sense thatall tree branches represent models of the theory and complete in the sense thatthe tree has at least one branch representing each minimal model of DB. The



�rst (leftmost) model generated by the procedure is minimal and no duplicatesare produced. However, not all branches represent minimal models [3].If additionally, for each minimal model generated so far, M , we augment thetheory by the negation of M , (< Neg(M ) >) for subsequent processing steps,then we achieve a model generating procedure that is minimal model sound andcomplete. It returns all and only minimal models of its input theory. [3] containsa Prolog implementation of the procedure, called MM-Satchmo.Example 1. Figure 1 shows the search spaces of MM-Satchmo for DB = f> ! P (a) _ P (b) P (a)! P (b) _ P (d)>! P (a) _ P (c) P (b)! P (a) _ P (d)gSome nonminimal models were deleted by complement splitting (? enclosedin square brackets [ ]) and others by model minimization (? enclosed in <>).The minimal model tree construction is depicted in Figure 1. All and onlyminimal models are returned and are represented by the open branches of thetree. MM(DB) = ffP (a); P (d)g; fP (a); P (b)g;fP (b); P (c); P (d)gg.>|P (a) _ P (b)________________|_____________| |[P (b)! ?] < P (a) ^ P (d)! ? >P (a) P (b)| |P (b) _ P (d) P (a) _ P (c)_______|______ ____________|_______| | | |[P (d)! ?] | [P (c)! ?] < P (b) ^ P (a)! ?>| | P (a) P (c)P (b) P (d) || P (a) _ P (d)[?] ________|_____| |[P (d)! ?] < P (d) >P (a)|< ? >Fig. 1. A Run of the Model Generator MM-Satchmo for Example 1.



2.2 Queries, Answers and the Minimal Model SemanticsWe are interested in yes/no answers to generalized ground queries which arede�ned as follows:De�nition8. (elementary generalized query) An elementary generalizedquery is a ground clause in implication form: it is positive if the body is empty,negative if the head is empty and mixed otherwise [17].De�nition9. (positive/negative queries) A query Q is positive (negative)if it can be translated into a set of positive (negative, denial) clauses. Q is mixedif it is neither positive nor negative.Atomic, conjunctive and disjunctive queries are all positive queries. For aquery Q, by fQg and Neg(Q) we denote the set of clauses that represent Q andthe negation of Q, respectively.De�nition10. (answers) Let DB be a DDDB and let Q be a ground query.{ Q is a SURE answer in DB i� Q is true in all minimal models of DB.Q is minimal if, additionally, no proper subset of Q is a SURE answer.{ Q is a MAYBE answer in DB i� Q is true in some minimal models of DB.Clearly, every component of a minimal SURE answer is also a MAYBEanswer and every MAYBE answer is a component of a (minimal) SURE answerto a query.Lemma11. Let DB be a DDDB, I be an interpretation and C be a set of grounddenial rules (constraints): C = fC : A1 ^ :::: ^ An ! ?, where Ai are groundatoms, i = 1:::n for some ng; then:1. If C is violated in I then it is also violated in all supersets of I. That is, ifI 6j= C then I 0 6j= C, for all I 0 such that I � I 0.2. Assume I j= C. Then, I j= DB [C i� I j= DB and I 6j= DB [C i� I 6j= DB.Proof. Immediate.As a counterexample for the case of nondenial rules consider DB = fP (a)g,the single rule P (a) ! P (b) and the interpretations fP (a)g and fP (a); P (b)g.Only the latter satis�es the constraint.Theorem12. Let DB be a DDDB and C be a set of denial rules. Then:1. If M is a minimal model for DB [ C then M is a minimal model for DB.2. MM(DB [ C) =MM(DB) n fM :M 6j= Cg.3. If C = fNeg(M )jM 2 MM(DB)g then (DB [ C) is inconsistent: (has nomodels and MM(DB [ C) = ;).4. If C1; :::; Cn are sets of denial rules such that Cn � ::: � C1 . Then:MM(DB [ C1) � ::: �MM(DB [ Cn).Proof. Straightforward.Theorem 12 shows that adding denial constraints can change the status ofmodels to nonmodels but cannot a�ect model minimality.



3 Query AnsweringUsing the semantic characterization of query answers (De�nition 10) we try toreduce the process of query answering to an invocation of a sound and completeminimal model generating procedure (e.g. MM-Satchmo [3]). This can be donein two ways:The �rst is to use a static representation of the theory in terms of its min-imal models, say in the form of a minimal model tree. The query answering isconverted into searches in the tree [5, 19]. The minimal model generating pro-cedure is used to construct such a tree and the representation is independentof the query. Special arrangements such as indexing or tree restructuring areneeded to facilitate the search for elements of the query in the tree. However,if the theory changes state then the model generating procedure can be used toregenerate the minimal model structure of the updated theory. If updates arefrequent then reconstructing the minimal model tree may become costly. An-other drawback is that one may need to store two representations of the theory:the original (clausal) and the minimal model representation, since the two rep-resentations are only minimal model equivalent in the sense that they have thesame set of minimal models but are not equivalent in the more general sense asdemonstrated by the following example:Example 2. Consider the DDDB,DB = fP (c); P (a)! P (b)gwith the only min-imal model fP (c)g. Updating DB by adding P (a) will result in minimal modelsets: fP (c); P (a)g and fP (c); P (a); P (b)g for the minimal model and clausalrepresentations of the (original and updated) theory, respectively.The second way is to retain only the clausal representation and generate theminimal models, possibly in a query induced order, at query answering time. Inthis paper we concentrate on the last approach.3.1 Answering Positive and Negative QueriesThe standard approach for query answering is to try to refute the theory aug-mented by the negation of the query. For positive queries, minimal model rea-soning is the same as reasoning under \all models semantics". It was shownthat a complete minimal model generating procedure is sound and complete forrefutations (for DDDB's) [11, 3]. However, minimal model generation producesinformation that can be used to enrich the query answering process.Theorem13. Let DB be a DDDB and Q be a positive query. Then:MM(DB) = Min(MM(DB [Neg(Q)) [MM(DB [ fQg)),where Min(S) returns the set of minimal elements of the set S.Proof. (!) Let M 2 MM(DB). Either M j= Q and M 6j= Neg(Q): M 2MM(DB [fQg) and is also in Min(MM(DB [Neg(Q))[MM(DB [fQg)).Or else M j= Neg(Q) and M 6j= Q. M 2MM(DB [Neg(Q)) and is also inMin(MM(DB [Neg(Q)) [MM(DB) [ fQg)) by Theorem 12.



( )Let M 2 MM(DB [ fQg). Two cases are possible: M 2 MM(DB)and M 62 MM(DB [Neg(Q)) and therefore M 2Min(MM(DB [Neg(Q))[MM(DB[fQg)). Or else, M is a nonminimalmodel ofDB. There exists M1 �M such that M1 2 MM(DB). M1 6j= Q. M1 j= Neg(Q). M1 2 MM(DB [Neg(Q)). M1 2Min(MM(DB [Neg(Q)) [MM(DB [ fQg)).If M 2 MM(DB [ Neg(Q)) then it is also a minimal model of DB byTheorem 12 since Neg(Q) consists entirely of denial rules.Example 3. Let DB = fP (a) ! P (b)g and Q = P (a). DB has the only mini-mal model fg. The minimal model for DB [ f:P (a)g is fg while the minimalmodel for DB [ fP (a)g is fP (a); P (b)g which is subsumed by fg.MM(DB) =Min(MM(DB [Neg(Q)) [MM(DB [ fQg)) = fg.For positive queries model subsumption, if any, is unidirectional: minimalmodels of DB [Neg(Q) can subsume (be a subset of) minimal models of DB [fQg but not the reverse. This is so since a model ofDB[Neg(Q) has no elementsof Q while DB [fQg must have some. Theorem 13 suggests a simple procedurefor answering positive queries by partitioning the set of minimal models of DBinto two sets: one in which Q is true and the other in which Q is false then checkfor model minimality. Our way is to run two MM-Satchmo processes:{ The �rst process of MM-Satchmo will operate on DB [Neg(Q). We denotethe (possibly empty) set of minimal models returned byMM(DB)Neg(Q) .{ The second will operate on the set union of the theory DB, the query Q andthe constraints corresponding to the minimal models returned by the �rstprocess. That is, it operates onDB[fQg[fNeg(M )jM 2MM(DB)Neg(Q)g.We call the (possibly empty) set of minimalmodels returnedMM(DB)fQg .The constraints in the second process are used to remove the models thatsatisfy Q but are not minimal for DB alone. The two processes are not inde-pendent. While we can avoid adding fQg in the second process we can use it toimpose an order on the set of minimal models generated in the second branch.The entire process is equivalent to augmenting DB with the clause :Q _ Q,a tautology, and therefore a minimal model preserving modi�cation. The �rst(left) process will generate the minimal models of the theory in which the queryis not satis�ed. The second process returns the minimal models satisfying thequery. The structure of the resulting tree is displayed in Figure 2. If DB isconsistent (MM(DB) 6= ;), we can have one of the following possible cases:1. MM(DB)Neg(Q) = MM(DB) and MM(DB)fQg = ;. That is, the �rstprocess returns all the minimal models of DB and the second returns nominimal models. The query is false in all minimal models of DB and itsnegation can be assumed to be true under the Closed World Assumption.2. MM(DB)fQg =MM(DB) andMM(DB)Neg(Q) = ;. That is, the secondprocess returns all the minimal models of DB and the �rst returns none.The query is true in all minimal models of DB (a logical consequence ofDB) and Q is a (not necessarily minimal) SURE answer.



3. MM(DB)Neg(Q) 6= ; and MM(DB)fQg 6= ;. That is, each of the twoprocesses returns some minimal models of DB. The query is true in someminimal models (MM(DB)fQg) and false in others (MM(DB)Neg(Q)). Qis a MAY BE answer. >|DB___________________|______________| |Neg(Q) Q [ fNeg(M)jM 2MMNeg(Q)g| |MMNeg(Q) MMfQgFig. 2. The Minimal Model Tree Structure for Positive Queries.One may elect to have the procedure stop when the �rst process generates nomodels on the assumption that the query is a logical consequence of the theory.However, running the second process will have the added advantage of showingthat there are models for the theory and therefore it is consistent. Additionallywe may want to use the second pass for more re�ned query answering [17].When Q is negative, Neg(Q) is positive. MM-Satchmo will operate on Qand Neg(Q), in that order to maintain the unidirectional model subsumptionproperty. That is, we still process the negative component �rst. The resultsobtained for positive queries can be applied here with the obvious modi�cations.Example 4. DB = f> ! a _ b; a ! c; b ! c; d ! eg. Q1 = c, Q2 = b andQ3 = :d. MM(DB) = ffa; cgfb; cgg.{ DB [ f:cg ` 2. (DB [ f:cg has no models). The tree for Q1 is given inFigure 3-a.{ DB [ f:bg 6` 2. DB [ f:bg has the only minimal model fa; cg, a minimalmodel forDB. Q2 is a MAYBE answer. The tree for Q2 is given in Figure 3-2.{ DB [ fdg 6` 2. DB [ fdg has the minimal models fa; c; d; eg and fb; c; d; eg.None of these models is minimal forDB.MM(DB[f:dg) = ffa; cgfb; cgg=MM(DB). :d 2 GCWA(DB). The tree for Q3 is given in Figure 3-c.Example 7 o�ers some more complex cases.3.2 Mixed QueriesA mixed query can be represented as a clause in implication form with theconjunction of negatively occurring atoms as the body and the disjunction ofpositively occurring atoms as the head.



> >| |:c _ c :b _ b_______|______ _________|_____| | | |:c c :b b____|______ ____|_____ ______|_____ || | | | | | |a b a b a b a ^ c! ?| | | | |c c c ? c? ? a bMMNeg(Q1) MMfQ1g MMfQ2g MMNeg(Q2)>|:d _ d_________________|_________________| |:d d_______|_________ a ^ c! ?; b ^ c! ?| | _________|_____a b | || a ^ c! ? a b| | | |c c c c| |c ? ?MMfQ3g MMNeg(Q3)Fig. 3. Minimal Model Tree Structure for Queries of Example 4.Let Q = Body(Q) ! Head(Q) or Q = :Body(Q) _ Head(Q). Q is truein DB if all minimal models of DB satisfy Q and false otherwise. That is, Qis false if and only if there exists a minimal model of DB in which Q is false:9M 2MM(DB)jM j= Body(Q) and M 6j= Head(Q).To answer such a query, we use the order it induces on the minimal modelset to �nd the elements in which the query is falsi�ed, if any. To retain theunidirectionality of model subsumption, we work with most constrained theories�rst (Theorem 12 item 4). We start by searching for minimal models in whichHead(Q) is false by adding Head(Q)!? to the theory to be expanded in thecurrent branch. We denote this set by MM1. The set of remaining minimalmodels of DB, those in which the head of Q is true, is denoted by MM2.Clearly, MM(DB) = MM1 [MM2. Further, we split MM1 into two sub-branches: �rst we �nd the set of minimal models in which Body(Q) is falseby adding Body(Q) ! ? and denote this set by MM1;1. Then we �nd theminimal models in which Body(Q) is true by adding Body(Q) and the negation



of all elements of MM1;1, fNeg(M )jM 2 MM1;1g. We call this set MM1;2.Figure 4 displays the model structure for the resulting tree.>|DB___________________|______________| || fNeg(M)jM 2MM1gHead(Q)! ? Head(Q)________|_______________ || | .Body(Q)! ? fNeg(M)jM 2MM1;1g .| Body(Q) .| | .MM1;1 MM1;2j < ��MM1 ���� > j MM2Fig. 4. The Model Tree Structure for Nonpositive Queries.Theorem14. Under the above partitioning of the set of minimal models of DBinduced by components of Q(Figure 4): Q is true in DB i� MM1;2 = ;.Proof. The correctness of the model computation process is the result of com-puting most constrained models �rst as required by Theorem 12.Q is satis�ed by elements ofMM2 by havingHead(Q) satis�ed. Q is satis�edby elements of MM1;1 by having Body(Q) falsi�ed. Q can be falsi�ed only byan element M 2 MM1;2 satisfying Body(Q) while Head(Q) is falsi�ed in M .The result follows immediately.Example 5. Let DB = f> ! a _ c;> ! b _ c _ e;> ! c _ d _ e; c ! d _ eg,Q1 = a ^ b! c _ d and Q2 = a ^ d! c _ e. For Q1: MM1;2 = ; and thereforeQ1 is true in DB. The tree is given in Figure 5-a.For Q2: MM1;2 = ffa; b; dgg and therefore Q2 is false in DB. The corre-sponding tree is given in Figure 5-b. It is easy to verify the answers by notingthat MM(DB) = ffa; b; dg; fa; eg;fc; dg;fc; egg.A mixed query can be interpreted as an integrity constraint. Answering it ischecking for the satis�ability in the current state of the database. Satis�abilityof a constraint under the SURE semantics is interpreted as having it true in allminimalmodels of the theory (theoremhood approach) [8]. This can be weakenedto give an a�rmative answer under the MAYBE semantics when Q is satis�edin at least one minimalmodel ofDB. This happens whenMM(DB)nMM1;2 =



> >| |DB DB_______|_________ _________|______| | | |c! ? a ^ e! ? c! ? a ^ b ^ d! ?d! ? >! c _ d e! ? >! c _ e_______|______ | ______|_____ || | . | | .a ^ b! ? a ^ e! ? . a ^ d! ? | .| | . | | .a a . a a .| | . | | .| b . b d .| | . | | .e e . d b .| . ? .? a . bMM1;1 MM1;2 MM1;1 MM1;2j < �MM1� > j MM2 j < �MM1� > j MM2Fig. 5. The Model Trees Structure for Queries of Example 5.MM1;1 [MM2 is nonempty1. Answering Q in this case is integrity checkingwhere the satis�ability of a constraint is interpreted as having it true in at leastone minimal model of the theory (consistency approach) [8].Mixed queries can be viewed as a generalization of other cases as re
ected inTable 1.# Item of Fig. 4 For a Positive Query For a Negative Query0 Query Form >! Q (empty body) Q! ?(empty head)1 Head(Q)! ? Neg(Q) ?! ? adds nothing2 Body(Q)! ? >! ?: a contradiction fQg3 Body(Q) >, adding it has no e�ect Neg(Q)4 MM1;1 ; (In view of item 2) MMfQg (In view of item 2)5 MM1;2 MMNeg(Q) MMNeg(Q) (In view of item 3)6 MM2 MMfQg ;, (Head(Q) = ?)Table 1. Positive/Negative Queries as Special Cases of Mixed Queries.1 The set MM(DB) n MM1;2 is the set of minimal models in which the constraintcorresponding to Q is satis�ed. This may be interpreted as the set of the legitimateminimal models of DB given the constraint Q and its consistency interpretation.The detailed treatment of this issue is beyond the scope of this paper.



The common feature of the seemingly di�erent classes of queries: the classof pure (positive and negative) queries and the class of mixed queries under theminimal model semantics is that the queries themselves are not allowed to \ac-tively" participate in the model generation process. In this regard they exhibitthe same behavior as integrity constraints. This is in line with the epistemic ormeta-level view of integrity constraints under which the constraints are under-stood as statements specifying what is true about the DDDB rather than aboutthe world modeled by the DDDB [7, 15, 9]. Answering the types of queries dis-cussed here can therefore be viewed as checking if the corresponding epistemicconstraint holds in the given theory. No positive atom is added to the model treewith the sole purpose of satisfying a generalized query2. In this regard they lookmore like integrity constraints and di�er from positive facts and derivation ruleswhich are used to add atoms to the model tree. The generalized query answeringprocess consists of checking that the query holds in every minimal model of thetheory. In a sense, the query is treated as an element external to the theory: itmay participate in ordering the tree branches or even closing them but not intheir expansion. The approach presented here can be viewed as a way to achievethis behavior.Another point to stress is that while we used the collection of constraintscorresponding to generated minimalmodels to ensure minimalmodel soundness,other approaches for minimality checking can be utilized [13, 18].4 Monotonicity Properties of Query AnsweringThe classes of queries discussed in this paper span many of the applicationsencountered in database maintenance and exploitation. For each class we con-sidered both MAYBE and SURE answers. Of interest is the monotonicity ofthe query answering process for each of the query classes considered. This refersto the validity of an already generated answer to a query after the databaseundergoes a clause addition update.In this section we show that di�erent classes of queries/answers exhibit di�er-ent monotonicity properties and use the results to prove that certain inferencesused in the query answering process can be nonmonotonic for DDDBs even forpositive queries.De�nition15. (monotonicity) Let DB and DB+ be two consecutive states3of a DDDB such that DB+ is the result of adding some clauses to DB: DB �DB+ . Property � is monotonic if whenever � holds in DB then � also holds inDB+ .2 The order of model generation and the additional constraints corresponding to eachminimal model produced ensure that query items added during the answering processhave no e�ect on the minimal model structure.3 We assume that DB and DB+ are consistent.



The following lemma is an extension of a result in [6] that relates the modelsof successive states of a disjunctive deductive database, before and after a clauseaddition update.Lemma16. Let DB and DB+ be two consecutive states of a DDDB such thatDB+ is the result of adding some clauses to DB: DB � DB+ . Then:{ For allM+ j= DB+ there existsM j= DB such thatM �M+. In particular:for all M+ 2MM(DB+) there exists M 2MM(DB) such that M �M+.{ There may exist models M 2 MM(DB) but no M+ 2 MM(DB+) suchthat M �M+.Proof. Immediate in view of Lemma 11, Theorem 12 and Example 6.Example 6. DB = fa_b; cg.DB+ = DB[fa! bg.MM(DB) = ffa; cg; fb; cgg.MM(DB+) = ffb; cgg.Note that for a de�nite database the only relevant cardinality is that of itsonly minimal model. Adding a (positive) de�nite fact will result in extendingthe minimal model by adding that and maybe some other atoms that were notpreviously derivable. The minimal model remains unchanged otherwise.Theorem17. Let DB and DB+ be two states of a DDDB such that DB+ isthe result of adding clauses to DB: DB � DB+ and Q be a generalized querysuch that Q = Body(Q) ! Head(Q).{ Assume that Q is true in all minimal models of DB (a SURE answer). Ifthis is because:1. Head(Q) is true in all minimal models of DB then Q is true in allminimal models of DB+ (Monotonic).2. Or else Body(Q) is false in some minimal models of DB then Q neednot be true in all minimal models of DB+ (Nonmonotonic).{ If Q is true in some, but not all, minimal models of DB (a MAYBE answer)then Q need not be true in any minimal models of DB+ (Nonmonotonic).Proof. { Let C 2 DB+nDB. If C is negative (denial rule) then by Theorem 11,MM(DB+) �MM(DB) and the result is clear. Otherwise, by Lemma 16,for any M+ 2 MM(DB+) there is anM 2MM(DB) such that M �M+.1. If Head(Q) is true in all elements ofMM(DB) then Q necessarily holdsfor anyM+ sinceM+ is a (not necessarily proper) superset of an elementin MM(DB).2. If Body(Q) is false in some elements of MM(DB) then Body(Q) maybecome true in the expansions of such models and thus make the Q falseif its head was not earlier satis�ed.{ If Q is true only in some elements ofMM�MM(DB), then it may hold forno element of MM(DB+) if every one of the expansions of the elements ofMM, call this setMM+, is subsumed by elements in the set (MM(DB+)nMM+). That is, if for all M+ 2 MM+ 9M 2 (MM(DB+) nMM) suchthat M �M+. Therefore, Q may be false in DB+.



Corollary 18. Given a DDDB, DB, DB+ the updated version of DB by clauseaddition and a query Q. Then:1. If Q is positive then:{ The SURE answer property is monotonic. If Q is a SURE answer inDB then it is also a SURE answer in DB+.{ The MAYBE answer property is nonmonotonic. Q can be a MAY BEanswer in DB but not a MAYBE answer in DB+ .2. If Q is nonpositive (negative or mixed) then both SURE and MAY BE an-swers are nonmonotonic.Proof. Immediate.Example 7. Let DB = fP (a) _ P (b); Q(a); Q(b); P (c) _ P (d), P (d) ! P (c) _P (a)g. Q1 = P (a), Q2 = P (a) ^ Q(a), Q3 = (P (a) ^ Q(a)) _ (P (b) ^ Q(b)),Q4 = P (c) _ P (d), Q5 = Q(a) ! P (a), Q6 = P (e) ! P (a), Q7 = P (b) ^P (e) ! ?, Q8 = P (b) ^ Q(b) ! ?. MM(DB) = ffP (a); Q(a); Q(b); P (c)g,fP (b); Q(a); Q(b); P (c)g; fP (a); Q(a);Q(b); P (d)gg. Consider DB+ = DB[fP (b); P (c); P (e)g.MM(DB+) = ffP (b); Q(a); Q(b); P (c); P (e)gg.Q1 is a MAYBE answer in DB but not in DB+ . Q2 is a MAYBE answer inDB but not in DB+ . Q3 and Q4 are SURE answers in DB and DB+ . Q5 is aMAYBE answer in DB but not in DB+ . Q6 is a SURE answer in DB but notin DB+. Q7 is a SURE answer in DB but not in DB+. Q8 is a MAYBE answerin DB but not in DB+ .The monotonicity of the SURE answers for positive queries was establishedin [2] in the context of de�ning the sub-implication which is also based on min-imal model properties. Our results show that, in general, the monotonicity ofanswers depends not only on the query itself but also on the minimal modelstructure of the theory and how it relates to the query under consideration. Thenonmonotonicity of closed world reasoning is in line with Theorem 17.We considered only addition updates but didn't limit ourselves to addingpositive clauses. The addition of nonpositive clauses is allowed as well. Positiveand mixed clause addition may change the status of individual minimal modelsin the transition (from DB to DB+), when some of the minimal models of DBattempt to expand. Negative clauses, however, cannot cause model expansion.They can at most make minimalmodels of DB nonmodels ofDB+ , as suggestedby Theorem 12, including making DB+ inconsistent.It is possible to use similar reasoning to obtain monotonicity results, parallelto those discussed here, for the case of no answers to queries. One may alsoconsider the case when updates are performed through clause deletions. However,we don't elaborate on these issues here.An important point is that the information returned by the query answeringprocedure can be utilized to decide the monotonicity properties of individualqueries. As suggested by Theorem 17 and Corollary 18 and the tree in Figure4, a generalized query Q is monotonic if and only if MM2 = MM(DB) foryes answers. As a result the outlined procedure makes it possible to tag an



answer as monotonic/ nonmonotonic at no extra cost. Once a query is taggedas monotonic, future database updates will not a�ect its status and it neednot be rechecked. This can be employed to enable an incremental constructionof the minimal model tree for a theory. After an update, only nonmonotonicrules (treated as queries) need to be rechecked. If not satis�ed then furtheradditions may be initiated to guarantee their satisfaction. Actually, one mayreduce the checking granularity by relating the monotonicity of individual clausesto individual models. However, the gain achieved by incremental checking needsto be weighted against the overhead cost of maintaining the necessary tables.5 Conclusion and RemarksWe presented an approach to generalized query answering under the minimalmodel semantics for the class of range-restricted disjunctive deductive databases.It is based on the use of a sound and complete minimal model generating pro-cedure . The concept of a query was extended to cover many classes of practicalimportance for database maintenance and exploitation. The e�ciency of theapproach depends on the e�ciency of the used minimal model generating proce-dure. Experiments with a prototype of our procedure pointed to its e�ciency ascompared with similar ones reported in the literature [13]. It was able to handletheories with large numbers of models [3]. Of course, since the procedure retainsalready generated minimal models for subsequent model generation, one shouldexpect the performance to degrade when the number of minimal models is verylarge: space requirements to store the corresponding constraints and the timeneeded to process them will increase. However, this is a major improvement onapproaches that produce a complete set of models then compare them to testmodel minimality. Additionally, any e�ciency enhancement tuning of the modelgenerating procedure will re
ect on the query answering process outlined in thispaper without a�ecting the reported theoretical results [13, 18, 19]. Of course,the size of individual models can be large and the number of models will gen-erally depend on the degree of inde�niteness of the theory. Adopting the modeltree structure, separating the de�nite and inde�nite components of the theoryand other optimization techniques will enable sharing of atoms between mod-els [5, 19]. The fact that our approach is limited to range-restricted DDDBs is animportant limitation despite the algorithm given in [3] to convert other theoriesto this format. Therefore, our approach will bene�t from approaches to mini-mal model generations that can handle DDDBs that are not range-restricted [1].One of the main advantages of our approach is that it returns information thatcan be used to �ne-tune the query answering process so as to decide the answermonotonicity or to specify the updates needed to have particular answers. If theuser is interested in a simple yes/no answer then the minimal model generatingprocedure can be guided by the query to construct the most relevant models tothe query answering process.We also made distinction between SURE and MAYBE answers to a query.Both concepts were de�ned in terms of minimal models. We presented some



results regarding the monotonicity properties of di�erent types of answers todi�erent classes of queries. SURE answers to positive queries were shown tobe monotonic relative to updating the database by clause addition. MAYBEanswers on the other hand were shown to have a nonmonotonic nature andtherefore needed re-computation after database updates. While other types ofqueries exhibited nonmonotonic behavior for all types of answers considered,we de�ned the conditions under which the answers are monotonic. Determiningif these conditions hold can be viewed as a byproduct of the query answeringprocess. This was shown to be useful for incremental construction of the minimalmodel structure of the theory.Among the topics for further research are the use of a similar approach to an-swering queries under other database semantics such as stable and perfect modelsemantics [18] and treating answer monotonicity under updates other than clauseaddition. Another topic is using the monotonicity results of this paper to developincremental methods for query processing in DDDBs [4] and the developmentof an integrated system based on a minimal model generator for the di�erentaspects of database processing such as integrity enforcement and updates.Acknowledgement:Part of this research was done while the author was visiting at Munich University.The author thanks Prof. F.Bry and his group in Munich, the Alexander vonHumboldt Stiftung for the support and the anonymous referees for their valuablecomments.References1. P. Baumgatrner, U. Furbach, and I. Niemmel�a. Hyper tabluaux. Technical Report8-96, Institut f�ur Informatik, Univesit�at Koblenz, Koblenz, Germany, feb 1996.2. G. Bossu and P. Siegel. Saturation, nonmonotonic reasoning and the closed-worldassumption. Arti�cial Intelligence, 25(1):13{63, January 1985.3. F. Bry and A. Yahya. Minimal model generation with positive unit hyper-resolution tableaux. In P. Miglioli, U. Moscato, D. Mundici, and M. Ornaghi,editors, Proceedings of the Fifth Workshop on Theorem Proving with An-alytic Tableaux and Related Methods, pages 143{159, Palermo, Italy, May1996. Springer-Verlag. Vol. 1071, Full version: http://www.pms.informatik.uni-muenchen.de/publikationen/.4. G. Dong, S. Jianwen, and R. Topor. Nonrecursive incremental evaluation of dat-alog queries. Annals of Mathematics and Arti�cial Intelligence, 14(1):187{223,1995.5. J. A. Fern�andez and J. Minker. Computing perfect models of strati�ed disjunctivedatabases. Annals of Mathematics and Arti�cial Intelligence, 1993. Submitted.Preliminary version presented at the ILPS'91 Workshop on Disjunctive Logic Pro-grams, San Diego, California.6. J. A. Fern�andez and J. Minker. Bottom-up computation of perfect models fordisjunctive strati�ed theories. Journal of Logic Programming, 25(1):33{50, 1995.



7. A.C. Kakas, R.A. Kowalski, and F. Toni. Abductive logic programming. Journalof Logic and Computation, 2(6):719{770, 1993.8. R. Kowalski and F. Sadri. A theorem proving approach to database integrity. InJ. Minker, editor, Foundations of Deductive Databases and Logic Programming.Morgan Kaufmann, 1988.9. R.A. Kowalski. Problems and promises of computational logic. In Lecture Notesin Computer Science Series, pages 80{95. Springer-Verlag, 1990.10. J. Lobo, J. Minker, and A. Rajasekar. Foundations of Disjunctive Logic Program-ming. MIT Press, 1992.11. R. Manthey and F. Bry. Satchmo: a theorem prover implemented in prolog. InJ.L. Lassez, editor, Proc. 9th CADE, pages 456{459, 1988.12. J. Minker. On inde�nite databases and the closed world assumption. In LectureNotes in Computer Science 138, pages 292{308. Springer-Verlag, 1982.13. I. Niemel�a. A tableau calculus for minimal model reasoning. In P. Miglioli,U. Moscato, D. Mundici, and M. Ornaghi, editors, Proceedings of the Fifth Work-shop on Theorem Proving with Analytic Tableaux and Related Methods, pages 278{294, Palermo, Italy, May 1996. Springer-Verlag. Vol. 1071.14. R. Reiter. On closed world databases. In H. Gallaire and J. Minker, editors, Logicand Data Bases, pages 55{76. Plenum Press, New York, 1978.15. R. Reiter. On asking what a database knows. In J.Lloyd, editor, Proc. Symposiumon Computational Logic, 1990. Lecture Notes in Computer Science.16. M. Suchenek. First-order syntactic characterizations of minimal entailment, do-main minimal entailment and herbrand entailment. Journal of Automated Rea-soning, 10:237{236, 1993.17. A. Yahya. Generalized query answering in disjunctive databases using mini-mal model generation. Technical Report PMS-FB-96-13, LMU-M�unchen, Mu-nich University, Munich, Germany, aug 1996. WWW: http://www.informatik.uni-muenchen.de/pms/publikationen/berichte/PMS-FB-1996-13.ps.gz.18. A. Yahya. Model generation in disjunctive normal databases. Technical ReportPMS-FB-96-10, LMU-M�unchen, Munich University, Munich, Germany, jun 1996.WWW: http://www.informatik.uni-muenchen.de/pms/publikationen/berichte/PMS-FB-1996-10.ps.gz.19. A. Yahya, J.A. Fernandez, and J. Minker. Ordered model trees: A normal form fordisjunctive deductive databases. J. Automated Reasoning, 13(1):117{144, 1994.20. A. Yahya and L.J. Henschen. Deduction in Non-Horn Databases. J. AutomatedReasoning, 1(2):141{160, 1985.
This article was processed using the LaTEX macro package with LLNCS style


