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Abstract
Cognitive radio (CR) has been proposed as a technology to improve the spectrum effi-
ciency by giving an opportunistic access of the licensed-user spectra to unlicensed users. 
We consider an overlay CR consisting of a primary macro-cell and cognitive small cells of 
cooperative secondary base stations (SBS). We suggest studying a CR where an orthogonal 
frequency division multiplexing is used for both the primary users (PU) and the secondary 
users (SU). In order to cancel the interferences, a precoding is required at the SBS. There-
fore, we first derive the interferences expression due to SU at the PU receiver. Then, zero 
forcing beamforming (ZFBF) is considered to cancel the interferences. However, applying 
ZFBF depends on the channels between the SBS and the PU. A channel estimation is hence 
necessary. For this purpose, we propose to approximate the channel by an autoregressive 
process (AR) and to consider the channel estimation issue by using a training sequence. 
The received signals, also called the observations, are considered to be disturbed by an 
additive white measurement noise. In that case, the AR parameters and the channel can be 
jointly estimated from the received noisy signal by using a recursive approach. Neverthe-
less, the corresponding state space representation of the system is non-linear. Then, we 
propose to carry out a complementary study by compare non-linear Kalman filter based 
approaches.

Keywords Overlay cognitive radio · OFDM · Channel estimation · Nonlinear Kalman 
filters

 * Ahmed Abdou 
 aabdou@staff.alquds.edu

 Ali Abdo 
 aabdo@birzeit.edu

 Ali Jamoos 
 ali.jamoos@staff.alquds.edu

1 Department of Electronic and Communication Engineering, Najjad Zeenni Faculty of Engineering, 
Al-Quds university, P.O Box 20002, Jerusalem, Palestine

2 Department of Electrical and Computer Engineering, Engineering Faculty, Birzeit University, 
Ramallah, Palestine

http://orcid.org/0000-0003-2430-0780
http://crossmark.crossref.org/dialog/?doi=10.1007/s11277-019-06455-2&domain=pdf


1080 A. Abdou et al.

1 3

1 Introduction

With the increasing number of wireless devices, the radio spectrum becomes more and 
more overcrowded. At the same time, some studies show that wide ranges of the spectrum 
are rarely used most of the time, unlike other bands [1–3]. Those unused portions of the 
spectrum are licensed and thus can only be used by the license owners. In order to meet 
the needs and optimize the use of the resources, a novel technology is required and could 
benefit from the unused spectrum. In that context, cognitive radios (CRs) have been firstly 
proposed by Mitola [4] to allow spectrum reuse. Indeed, a CR is an intelligent radio that is 
dynamically configured to detect and then to use the available spectrum bands to transmit 
data. In that case, two systems must coexist:

1. The primary system (PS) which is a system already in operation using a license of the 
spectrum such as global system for mobile communications (GSM), long term evolution 
(LTE) system, etc. It cannot be modified.

2. The secondary system (SS) which aims at using the free resources of the PS in order to 
transmit its own data. CRs compose the SS.

They respectively involve the so-called primary users (PU) and secondary users (SU) who 
have to share the spectrum.

This can be done in various ways [5] and has led to three main families of CR sys-
tems: the so-called “interweave” , “underlay”  and “overlay”  modes. Thus, in the “inter-
weave”  mode, opportunistic communications consist in searching the spectrum holes left 
by the PU. It has been for instance used in [6–8]. In the “underlay”  mode, PU and SU are 
allowed to simultaneously transmit data. It should be noted that the SU signal must be 
spread over a bandwidth large enough to ensure that the amount of interferences caused to 
the PU is under a certain threshold. This mode is useful for short range communications. 
For more details, the reader can for instance refer to [9–11]. In the “overlay”  mode, some 
a priori information of the PU at the secondary transmitter is required to mitigate the inter-
ferences at the secondary receiver. It has led to several studies1 such as in [13–16].

In this research, we consider the overlay CR mode. Therefore, the channel estimation 
issue is addressed. Indeed, the estimation of the fading process is essential to achieve sym-
bol detection at the receiver. In this paper, we consider the training sequence/pilot-aided 
techniques family. Thus, during the training mode, the training symbols make it possible to 
estimate the channel. Then, during the decision mode, the channel estimates and prediction 
are used for symbol detection.

A brief state of the art about channel modeling can be found in [17–21] etc. In this 
paper, we focus our attention on the autoregressive (AR) model [22, 23] to represent the 
real and imaginary parts of the stationary channel.

When estimating the channel based on a training sequence and an a priori AR mod-
eling, the received signal is used. It must be clearly expressed. Usually, it corresponds to 
the transmitted signal disturbed by the influences of the channel and an additive noise. The 
standard assumption is to consider the additive noise as a white2 sequence [22, 23]. In that 

1 In [12], the authors suggest switching from an overlay CR mode to an underlay one.
2 The case of an additive measurement colored noise, and more particularly a noise that can be modeled by 
a moving average (MA) process is also considered in [26].
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case, the AR parameters and the channel can be jointly estimated from the received noisy 
signal during the training mode by using a recursive approach. As the corresponding state 
space representation of the system is non-linear, methods such as the extended Kalman 
filter (EKF), the second order EKF (SOEKF) [24] and unscented Kalman filter (UKF) [25] 
can be used. Several other variants of Kalman filtering have been proposed in the literature, 
but they have not been compared one another. Therefore, we propose to carry out a com-
plementary study by investigating the relevance of the quadrature Kalman filter (QKF) [27] 
and the cubature Kalman filter (CKF) [28].

The rest of the paper is organized as follows. Section  2 overviews the system model 
of the system. The channel estimation is studied in Sect.  3. Simulation results are illus-
trated in Sect. 4. Finally, conclusion remarks are drawn in Sect. 5 and the appendices are 
addressed in Sect. 1.

2  System Model

Small cell is a new trend in cellular communications. In any cell, smaller base stations can 
be inserted to aid capacity and coverage. Such smaller base stations are called small cells. 
A small cell can be inserted on lamp posts, trees and buildings. These low consumption 
radio transceivers are cheap and need low power. Therefore, if one of these base stations is 
ceased, the others around it compensate its loss. To do this, these small cells must be intel-
ligent and have a real-time situations awareness.

Unlike micro-cells, small cells aim at intelligently reusing the same band as the micro-
cells and hence maximizing the spectral efficiency. A question could be asked: what is the 
useful of the small cells that allow to operate side by side with micro-cells and cellulars 
and sharing the same band and the same radio access technology?

Indeed, if the whole radio network is seen from the CR perspective, i.e., macro-base sta-
tions and its users, acting as the primary system, are protected from interferences. In addi-
tion, the cooperative small-cells and its users, acting as the secondary system, can accept 
interferences from the macro-base stations. Then, the idea of dynamic spectrum access 
comes as a candidate solution.

In the next section, the small cells are applied in CR scenario.

2.1  CR Based OFDM in a Small Cell

Let us consider a primary macro-cell composed of virtual MIMO networks, based on 
small-cells SBS cooperation as shown in Fig. 1. In this system, we consider a SISO PS 
whereas the SS consists of U SBS’s each equipped with A antennas. The PS and the SS are 
CP-OFDM system with N subcarriers for each. The effect of the different CFO’s of each 
SBS on the received signal at the PU are now considered.

The received signal at the PU receiver rp(n) , where the CFO between the PBS and the 
PU is assumed to be estimated and removed at the receiver3, can be expressed as follows:

where the interferences i(n) is defined as:
(1)rp(n) =xp(n) ∗ hp(n) + i(n) + b(n)

3 For more information, the reader may refer to [29, 30].
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and xa,u
s
(n) is the secondary transmitted CP-OFDM signal of the ath antenna of the uth SBS 

and ha,u
s
(n) is the channel between the PU and the ath antenna of uth SBS. In addition, �u is 

the difference between the normalized CFO of the PBS and the normalized CFO of the 
uth SBS. It should be noted that (2) can no longer be presented as a simple multiplication 
because of the effect of CFO that breaks the subcarrier orthogonality. Indeed, the kth sub-
carrier at the receiver is affected by the neighbours subcarriers. Therefore, the interferences 
after the FFT of the PU receiver can be written as follows:

where

At this stage, let us recall the mathematical representation of the transmitted CP-OFDM 
transmitted signal, the transmitted block can be written as follows:

where IFFT{ }N−1
0

 is the normalized IFFT of the transmitted symbols sm(l) of the mth 
carrier and lth symbol. Using (5), and by taking the 0th CP-OFDM symbol, (4) can be 
expressed as:

(2)i(n) =

A∑
a=1

U∑
u=1

xa,u
s
(n) ∗ ha,u

s
(n)e

j2��u
n

N

(3)X̂p,k = sp,kHp,k + FFTk{b(n)}
N−1
0

+

U∑
u=1

Iu
k

(4)Iu
k
= FFTk{e

j2��u
n

N

A∑
a=1

xa,u
s
(n) ∗ ha,u

s
(n)}N−1

0

(5)xp(n) =
1√
N

N−1�
m=0

sm(l)e
j2� mn

N = IFFT{sm(0)}
N−1
0

(6)Iu
k
=FFT{e

j2��u
n

N
1√
N

A�
a=1

N−1�
m=0

sa,u
m,s

e
j2�m n

N ∗ ha,u
s
(n)}k

Fig. 1  General case for overlay CR system based on CP-OFDM for PS and small-cell SBS cooperation
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The above equation can be reformulated as follows:

In order to apply the Fourier transform, it is possible to add a rectangular window w(n) on 
(8) as follows:

where

Hence it can be expressed as follows:

where Ha,u
s
(f ) denote the FFT of ha,u

s
(n) and W(f ) =

√
Npsinc(fNp)e

−j2�f
Np

2  . By assuming we 
can neglect the influence of the convolution W(f )|

f=
(k−�u−m)

N

 , (11) can be rewritten as 
follows:

One can notice that the N − 1 subcarriers in the SU system are considered even if some SU 
subcarriers do not interfere much with the kth PU subcarrier. In the next sections, the ZFBF 
design is presented. Then, we propose to make an approximation in order to select the most 
interfering SU subcarriers around the kth PU subcarrier.

For that reason and for the sake of simplicity, let us denote for m = 0,⋯ ,N − 1:

(7)=
1√
N

N−1�
n=0

A�
a=1

(

N−1�
m=0

sa,u
m,s

e
j2�m n

N ∗ ha,u
s
(n))e

−j2�n
(k−�u )

N

(8)=
1√
N

A�
a=1

N−1�
n=0

N−1�
m=0

� +∞�
n�=−∞

sa,u
m,s

ha,u
s
(n�)e

−j2�m n�

N

�
e
−j2�n

(k−�u−m)

N

(9)=
1√
N

A�
a=1

+∞�
n=−∞

� N−1�
m=0

sa,u
m,s

∗ ha,u
s
(n)e

−j2� nm

N

�
e
−j2�n(

k−�u−m

N
)
.w(n)

(10)w(n) =

{
1,

0,

n = 0, 1, ...,N − 1

otherwise

(11)Iu
k
=

A∑
a=1

N−1∑
m=0

sa,u
m,s

Ha,u
s
(f +

m

N
) ∗ W(f )|

f=
(k−�u−m)

N

(12)Iu
k
=

A∑
a=1

N−1∑
m=0

sa,u
m,s

Ha,u
s
(f +

m

N
)|
f=

(k−�u−m)

N

(13)fk,m =
(k − �u − m)

N
= fk,0 −

m

N
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2.2  Designing the ZFBF

To perform the ZFBF, let us set all the symbols to be equal4 i.e., su
m,s

= sa,u
m,s

 . In that case 
(12) can be rewritten in a matrix form as follows:

where

with Nsc the considered neighbouring subcarrier that affect on the kth PU subcarrier. In 
addition, �u

k
 is the (2Nsc + 1) × A matrix that contains all the channels interfering with the 

kth PU subcarrier:

and the column vector �
u
k
=
[
Z
1,u

k
Z
2,u

k
... Z

A,u

k

]T
 with length (A × 1) storing the 

beamformers.
To solve this issue, we suggest finding a set {Za,u

k
} that satisfies:

In addition to the trivial solution �u
k
= � , another solution is based on a property of the sin-

gular value decomposition (SVD) of the channel matrix �u
k
 when A > (2Nsc + 1) . Indeed, 

one thing the SVD of the matrix Hu
k
 does is to supply an orthonormal basis of its kernel5. 

Therefore, provided that the channel matrix is a priori known or estimated, the SVD of the 
channel matrix �u

k
 can be computed. Indeed, the SVD of the matrix �u

k
 satisfies:

where � is a (Nsc + 1) × (Nsc + 1) orthogonal matrix whose columns are the left singular 
vectors {�i}i=1,⋯,Nsc+1

 , � is the (Nsc + 1) × A pseudo-diagonal matrix with diagonal entries 
�i corresponding to the singular values of �u

k
 and �T is a A × A orthogonal matrix whose 

columns are the right singular vector {�i}i=1,⋯,A.
When A > Nsc + 1,

otherwise,

Therefore, one can define the kernel of �u
k
 . More particularly, using the SVD (18) and pre-

multiplying the matrix �u
k
 by the pth right singular vector �p , where p > Nsc + 1 , one has:

(14)(�u
k
.�u

k
)T�u =0

(15)�
u =

[
su
m−Nsc ,s

⋯ su
m+Nsc ,s

]T

(16)�
u
k
=

⎡⎢⎢⎣

H1,u
s
(fk,0) ⋯ HA,u

s
(fk,0)

⋮ ⋱ ⋮

H1,u
s
(fk,0) ⋯ HA,u

s
(fk,0)

⎤⎥⎥⎦

(17)�
u
k
�
u
k
= �

(18)�
u
k
= ���

T

(19)�
u
k
�i = �i�i for i = 1,⋯ ,Nsc + 1

(20)�
u
k
�i = 0

(21)�
u
k
�

T
p
= �

⎡⎢⎢⎣

�1 ⋯ 0 0 ⋯ 0

⋮ ⋱ 0 ⋮ ⋮

0 ⋯ �Nsc+1
0 0

⎤⎥⎥⎦
[�1 ⋯�A]

T
�

T
p
= 0

5 As an alternative to SVD, QR factorization could be also considered.

4 This assumption is considered to perform the ZFBF. This assumption does not decrease the spectral effi-
ciency as it is in the ZFBF context and it is done by many authors such as [15, 31].
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It can be shown that when Zu
k
 is the pth right singular vector, (17) is satisfied. Then, �u

k
 can 

be set to the value of the pth right singular vector, where 2Nsc + 1 < p ≤ A . In the next sec-
tion, a complementary study for non-linear Kalman filter based approaches is considered as 
a main issue to apply ZFBF.

3  Channel Estimation Issue

In this section, the channel6 is assumed to be approximated by a pth order AR process as 
follows:

where {ai}i=1,⋯,p are the AR parameters and the driving process u(n) is a zero-mean white 
Gaussian process with variance �2

u
(p).

Let us consider an OFDM system. The received signal7 on each subcarrier can be 
expressed as a simple multiplication between the channel and the symbol as follows:

where s(n) is the transmitted symbol. In addition, the noise b(n) in (23) is a zero-mean 
white noise with a variance �2

b
 uncorrelated with u(n).

In the following, two cases are considered:

1. The AR parameters have been a priori estimated, whereas the channel is unknown;
2. Both the AR parameters and the channel are unknown.

3.1  Estimation of the Fading Channel When the AR Parameters Have Been a priori 
Estimated

Let us first assume that the AR parameters {ai}i=1,⋯,p have been a priori estimated by using 
some approaches such as high-order Yule-Walker equation (HOYW) when the observa-
tions disturbed by an additive white noise. The reader can read [22] and [26]. In that case, 
Kalman filter can be used to estimate the fading process by minimizing the estimation error 
variance. Therefore, the state vector �(n) can be written as follows:

Given the state vector (24), the state space representation of (22) and (23) can be expressed 
that way:

(22)h(n) = −

p∑
i=1

aih(n − i) + u(n)

(23)y(n) = h(n)s(n) + b(n)

(24)�(n) =
[
h(n) h(n − 1)⋯ h(n − p + 1)

]T

6 For the sake of simplicity ha,u
s
(n) in (2) is written as h(n).

7 As mentioned before that for sake of simplicity and without loss of generality, we deal with the real part 
only, i.e., the real part of r(n), h(n), s(n) and b(n) are considered. The same procedure can be done when the 
imaginary parts are considered.
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and

where �(n) is the transition companion matrix defined as follows:

and � = [1 0⋯ 0
⏟⏟⏟

p−1

]T . In addition, the observation vector is �T (n) = [s(n) 0⋯ 0
⏟⏟⏟

p−1

] and 

b(n) and u(n) assumed to be uncorrelated with the elements of the initial state vector �(0) . 
The above equations define the state space representation of one-carrier fading channel 
system. At that stage, a standard Kalman (see "Appendix 1") filtering algorithm can be car-
ried out to provide the estimation �̂(n|n) of the state vector �(n) given the set of observa-
tions {y(n)}n=1,⋯N.

The next section presents the case when both the AR parameters and the channel are 
unknown.

3.2  Joint Estimations of the AR Parameters and the Channel (Nonlinear Estimation 
Approaches)

In this section, the AR parameters and the channel are jointly estimated. In that case, the state 
vector contains the unknown values and can be written as follows:

where �h(n) =
[
a1 ⋯ ap

]T and �(n) is defined in (24). In addition, the AR-process param-
eters do not vary in time. Therefore, the vector storing these quantities are updated as 
follows:

Given (25), (28) and (29), �(n) can be updated as follows:

where � is a non-linear function and � (n) = [ 0⋯ 0
⏟⏟⏟

p

1 0⋯ 0
⏟⏟⏟

p−1

]T.

In the above equation, the non-linear function � can be expressed as follows:

with:

(25)�(n) = �(n)�(n − 1) +�u(n)

(26)y(n) = �
T (n)�(n) + b(n)

(27)�(n) =

⎡
⎢⎢⎢⎣

−a1 ⋯ − ap−1 − ap
1 0⋯ 0 0

⋮ ⋱ ⋮

0 ⋯ 1 0

⎤
⎥⎥⎥⎦

(28)�(n) =
[
�h(n)

T
�(n)T

]T

(29)�h(n) = �h(n − 1)

(30)�(n) = �
(
�(n − 1);n, n − 1

)
+ � u(n)

(31)�
(
�(n − 1);n, n − 1

)
= ��(n − 1) + �

T�T (n − 1)��(n − 1)

(32)� =

⎡⎢⎢⎣

�p �p×(p−1) �p×1

�1×p �1×(p−1) 0

�(p−1)×p �(p−1) �(p−1)×1

⎤⎥⎥⎦
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and

The observation equation can be written as follows:

where ��T (n) =
[
�1×p s(n) �1×(p−1)

]
.

As the state space representation described in (30) and (35) is non-linear, one can use 
the EKF, the SOEKF and the UKF. For more information about these algorithms, see the 
"Appendices 2–4". In addition, we suggest in this research to investigate the relevance of 
other variants such as the QKF and the CKF, see "Appendices 5–7".

4  Simulation Results

In this section, we carry out a comparative study on the estimation of OFDM fading chan-
nels between several methods based on Kalman filter. We consider an OFDM system with 
QPSK modulation and 64 subcarriers. Moreover, the channel is Rayleigh fading channel 
with a maximum Doppler frequency chosen randomly between 50 and 150 Hz.

Concerning the channels in our simulations, they are generated by using pth-order AR 
process. In order to see the influence of the order on the channel properties, Fig. 2 provides 
the estimation of the correlation function of the channel for various AR-process orders, 

(33)� =
[
�1×p 1 �1×(p−1)

]

(34)� =

[
�p×p − �p

�p×p �p×p

]

(35)y(n) = �
�T (n)�(n) + b(n)

Fig. 2  Autocorrelation of the channel for different AR-process order p 



1088 A. Abdou et al.

1 3

namely p = 2, 5, 10, 20 and 50. In addition, these estimations are compared with the theo-
retical autocorrelation of the channel. We can notice that the higher the order is, the more 
accurate the resulting correlation function is. As pointed out by Baddour, an order of 50 
can be a compromise to simulate the channels in the transmission chain.

Concerning the receiver, by considering a training sequence mode, we propose to ana-
lyze the BER performance vs SNR of the following methods:

Fig. 3  BER performance versus SNR of the OFDM system with p = 2

Fig. 4  BER performance versus SNR of the OFDM system with p = 5



1089Overlay Cognitive Radio Based on OFDM with Channel Estimation…

1 3

1. Kalman filter with known AR parameters (known),
2. The UKF,
3. HOYW-based approach,
4. The QKF “with a quadrature point equal to 3”  and the CKF.
5. The EKF and the SOEKF,

In addition, we study several assumptions on the AR channel order. Thus, p is set to 2, 5 
and 10 respectively in Figs. 3,  4 and  5.

On the one hand, it is true that when the highest AR-process order p is considered, the 
lower BER is obtained. However, choosing a higher order leads to a higher number of AR 
parameters to be estimated and hence a higher computational cost. Choosing the order of 
the AR process p equal to 4 or 5 can be a trade-off between computational cost and perfor-
mance in terms of BER.

On the other hand, as shown in the Figs. 3 , 4 and 5, the QKF8 and the CKF do not lead 
to major improvements for channel estimation. Both have higher computational costs than 
the other approaches. It should be noted that the UKF and the HOYW give the lowest BER 
compared with the other approaches.

5  Conclusions and Perspectives

In this paper, we have investigated the relevance of the performing the precoding, i.e., zero-
forcing beamforming (ZFBF) by taking into account the signal at the receiver after OFDM 
demodulation has the advantages of decreasing the effect of the carrier frequency offset 
(CFO) and hence reducing the number of subcarriers needed for the interference cancel-
lation. However, ZFBF depends on the channels between the SS and the PS. They must 

Fig. 5  BER performance versus SNR of the OFDM system with p = 10

8 The higher the chosen number of quadrature points is, the more accurate the results are.
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hence be known or estimated. Therefore, we focus our attention on the channel estimation 
where the channel is approximated by an autoregressive (AR) process. We focus our atten-
tion on channels disturbed by an additive white noise were considered. This issue has been 
addressed by several authors in the literature. Our contribution was to analyze the perfor-
mance of variants of Kalman filters, more particularly, the quadrature Kalman filter (QKF) 
and the cubature Kalman filter (CKF). A comparative study was carried out between: the 
extended Kalman filter (EKF), the second-order EKF (SOEKF), the unscented Kalman fil-
ter (UKF), the QKF and the CKF. The above approaches were also compared with the 
overdetermined high-order Yule-Walker (HOYW) equations and the Kalman filter when 
the AR parameters are known. The comparative study showed that the QKF and the CKF 
do not lead to major improvements for channel estimation whereas both have higher com-
putational costs than the other methods. In addition, the UKF and the HOYW equations 
give the lowest BER compared with the other approaches. Since non-linear estimation 
methods are crucial in signal processing, a great deal of attention is paid to design a new 
approach. Therefore, we could in the future study another novel nonlinear filter named 
sparse-grid quadrature filter (SGQF) and compare it with the above nonlinear estimators.

Appendices

Kalman filter (KF) has been used in a wide range of applications, from speech enhance-
ment to time-varying autoregressive parameters tracking, from biomedical applications 
to mobile communications. More particularly, in this paper, Kalman filter can be used 
to estimate the channel (see "Appendix 1"). In the "Appendices 2 and 3", we recall how 
to address the estimation of the state vector by using the extended Kalman filter (EKF) 
or the second-order EKF (SOEKF), where Taylor series expansion is used. It should be 
noted that the state noise and the measurement noise are still assumed to be Gaussian. In 
"Appendix 4", the UKF was proposed as an alternative to the EKF to avoid the lineariza-
tion step. Like the UKF, the Quadrature Kalman filter (QKF) and Cubature Kalman filter 
(CKF) are a sigma point Kalman filter (SPKF) (See "Appendix 5"). The main difference 
between QKF, CKF and UKF is the way to choose the sigma points. In "Appendices 6 and 
7" deal with how to choose the sigma points. Indeed, in QKF the sigma points are chosen 
by using the Gauss-Hermite quadrature where CKF differs from QKF by the considered 
way of approximation.

Appendix 1: Kalman filter

- initialize the value of �̂(0|0) and �(0|0).
The prediction step
- update the state vector:
�̂(n|n − 1) = �(n)�̂(n − 1|n − 1)

- update the error covariance matrix:
�(n|n − 1) = �(n)�(n − 1|n − 1)�H(n) +���H

The filtering step
- update the Kalman gain:

�(n) = �(n|n − 1)�(n)H
(
�(n)�(n|n − 1)�(n)H + �

)−1
- update the state vector:
�̂(n|n) = �̂(n|n − 1) +�(n)(�(n) −�(n)�̂(n|n − 1))
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Appendix 1: Kalman filter

- finally, update the error covariance matrix:
�(n|n) = {�U −�(n)�(n)}�(n|n − 1)

Appendix 2: Extended Kalman filter

- initialize the value of �̂(0|0) and �(0|0).
- calculate the Jacobian matrix ∇

�
�n|�̂(n−1|n−1).

- update the a priori state vector:
�̂(n|n − 1) = �n(�̂(n − 1|n − 1))

- update the a priori error covariance matrix:
𝐏(n|n − 1) = ∇

𝐱
𝐟n|�̂�(n−1|n−1)𝐏(n − 1|n − 1)∇

𝐱
𝐟H
n
|
�̂�(n−1|n−1) +𝐆𝐐𝐆H

- calculate the Jacobian matrix ∇
�
�n|�̂(n|n−1).

- update the Kalman gain �(n):

�(n) = �(n|n − 1)∇
�
�H
n
|
�̂(n|n−1)

(
∇

�
�n|�̂(n|n−1)�(n|n − 1)∇

�
�H
n
|
�̂(n|n−1) + �

)−1
- deduce the a posteriori state vector:
�̂�(n|n) = �̂�(n|n − 1) +𝐊(n){𝐲(n) − 𝐡n(�̂�(n|n − 1))}

- finally, update the error covariance error matrix:
𝐏(n|n) = {𝐈U −𝐊(n)∇

𝐱
𝐡n|�̂�(n|n−1)(n)}𝐏(n|n − 1)

Appendix 3: Second-order extended Kalman filter

- calculate the Jacobian matrix ∇
�
�n|�̂(n−1|n−1) and �

mean

n−1
 using:

f
mean

n
= �{�n|�(0),… , �(n − 1)} =

U∑
u=1

�f

u
f
mean

n,u

with �f
u
 is a U × 1 vector with zeros everywhere except for the uth element

which is equal to 1. see [24]
- update the a priori state vector:

�̂(n|n − 1) = �n(�̂(n − 1|n − 1)) +
1

2
�
mean

n−1

- update the a priori error covariance matrix:
𝐏(n|n − 1) = ∇

𝐱
𝐟n|�̂�(n−1|n−1)𝐏(n − 1|n − 1)∇

𝐱
𝐟H
n
|
�̂�(n−1|n−1) +𝐆𝐐𝐆H

- calculate the Jacobian matrix ∇
�
�n|�̂(n|n−1) and �n using (??).

- update the Kalman gain �(n) as follows:

�(n) = �(n|n − 1)∇
�
�H
n
|
�̂(n|n−1)

(
∇

�
�n|�̂(n|n−1)�(n|n − 1)∇

�
�H
n
|
�̂(n|n−1) + �

)−1
- deduce the a posteriori state vector:

�̂�(n|n) = �̂�(n|n − 1) +𝐊(n){𝐲(n) − 𝐡n(�̂�(n|n − 1)) −
1

2
𝐡n}

- finally, update the error covariance error matrix:
𝐏(n|n) = {𝐈U −𝐊(n)∇

𝐱
𝐡n|�̂�(n|n−1)(n)}𝐏(n|n − 1)

Appendix 4: Unscented Kalman filter

- calculate the sigma points:

�(n − 1�n − 1) =

�
�̂(n − 1�n − 1), �̂(n − 1�n − 1) ±

�√
(Nd + 𝜆)�(n − 1�n − 1)

��

- calculate the prediction of the system:
�(n − 1|n − 1) = �n(�(n − 1|n − 1))

- update the a priori mean is:

�̂−(n�n − 1) =
∑2U

�=0
w
(c0)
�

�
�
(n�n − 1)
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Appendix 4: Unscented Kalman filter

- update the a priori error covariance matrix:

�(n|n − 1) =

2U∑
�=0

w(c1)
�

[
�

�
(n|n − 1) − �̂

−(n|n − 1)
]⋆

+���
H

- calculate �̂−(n|n − 1):

�̂−(n�n − 1) =
∑2U

m=0
wc0
m
�m(n�n − 1)

where
�(n|n − 1) = �n(�(n|n − 1))

- update the Kalman gain:
�(n) = {�xy}{�yy}−1

where �yyand �xy are defined as:

�
��(n) =

2U∑
m=0

wc1
m

[
�m(n|n − 1) − �̂

−(n|n − 1)
]⋆

+ �

 
and

�
��(n) =

2U∑
m=0

wc1
�

[
�m(n|n − 1) − �̂

−(n)
]
×
[
�m(n|n − 1) − �̂

−(n|n − 1)
]

- update the state vector:
�̂(n|n) = �̂(n|n − 1) +�(n){�(n) − �̂−(n|n − 1)}

- update the error covariance matrix:
�(n|n) = �(n|n − 1) −�(n)���(n)�H(n)

Appendix 5: Quadrature Kalman filter and Cubature Kalman Filter

Prediction:
- compute the Cholesky factor of �(n − 1|n − 1):
�(n − 1|n − 1) = �(n − 1|n − 1)�(n − 1|n − 1)H

- compute the sigma points and the weights according to "Appendix 6 (Gauss-Hermite
quadrature points for QKF) or according to "Appendix 7" (the cubature points for CKF).
- evaluate the sigma points:
�l(n − 1|n − 1) = �̂(n − 1|n − 1) + �(n − 1|n − 1)𝜉l
- propagate the sigma points through the non-linear update function:
�

∗
l
(n|n − 1) = �n(�l(n − 1|n − 1))

- estimate the a priori state vector by combining the a posteriori sigma points:
�̂(n�n − 1) =

∑
l wl�

∗
l
(n − 1�n − 1)

- estimate the a priori estimation error covariance matrix:
�(n�n − 1) =

∑
l wl�

∗
l
(n − 1�n − 1)�∗

l
(n − 1�n − 1)H

−�̂(n|n − 1)�̂(n|n − 1)H +���H

Update
- compute the Cholesky factor of �(n|n − 1):
�(n|n − 1) = �(n|n − 1)�(n|n − 1)H

- compute again the sigma points and the weights according to "Appendix 6" (Gauss-Hermite
quadrature points for QKF) or according to "Appendix 7" (the cubature points for CKF).
- evaluate the sigma points:
�l(n|n − 1) = �̂(n|n − 1) + �(n|n − 1)𝜉l
- propagate the sigma points through the non-linear observation function:
�(n|n − 1) = �n(�l(n|n − 1)

- calculate �̂−(n|n − 1):
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Appendix 5: Quadrature Kalman filter and Cubature Kalman Filter

�̂−(n�n − 1) =
∑

l wl�(n�n − 1)

- update the Kalman gain:
�(n) = {�xy}{�yy}−1

where
�xy =

∑
l wl�l(n�n − 1)�(n�n − 1)H − �̂(n�n − 1)�̂−(n�n − 1)H

and
�yy =

∑
l wl�(n�n − 1)�(n�n − 1)H − �̂−(n�n − 1)�̂−(n�n − 1)H + �

- update the state vector:
�̂(n|n) = �̂(n|n − 1) +�(n){�(n) − �̂−(n|n − 1)}

- update the error covariance matrix:
�(n|n) = �(n|n − 1) −�(n)���(n)�H(n)

Appendix 6: Calculation of Gauss-Hermite quadrature points and weights

- Set the number of hermite polynomial points m and thus Um points where
U is the size of the state vector.
- generate a symmetric tridiagonal matrix with zero diagonal elements � such that:

Ji,i+1 =

√
i

2
 where i = 1,⋯ ,m

- compute 
{
�i
}
i=1,⋯,m

 , which are the eigenvalues of �

- set �l =
√
2�i.

- set wi = (ei)
2

1
 where (ei)1 is the first element of the ith normalized eigenvector of �.

- extend the one-dimensional quadrature point set of m points in one dimension to
a lattice of Um cubature points in U dimensions by using the product rule:
∑

i1,i2,⋯iU
wi1

wi2
⋯wiU

f (x
i1
1
, x

i2
2
,⋯ x

iU
U
)

- the weights for these Gauss-Hermite cubature points are calculated
by the product of the corresponding one-dimensional weights.

- by changing the variable � =
√
2� + � we get Gauss-Hermite weighted

sum approximation for multidimensional Gaussian integral where � is the mean

and � is the covariance of Gaussian (� =
√
�
√
�H).

- Then, let ∫ c(�)𝒩{�;�;�}d� ≈
∑

i1,i2,⋯iU
wi1

wi2
⋯wiU

f (
√
��i1,i2,⋯iU

+ �).

- wi1,i2,⋯iU
=

1

�m∕2
wi1

wi2
⋯wiU

- �i1,i2,⋯iU
=
√
2(x

i1
1
, x

i2
2
,⋯ x

iU
U
).

Appendix 7: Calculation of cubature points and weights

- Set the number of cubature points, m = 2U where U is the size of the state vector.

-set �i =
√

m

2
[�]i where [�] is ith column of the matrix

[�] =

⎧⎪⎨⎪⎩

1 0 ⋯ − 1 0 ⋯

0 1 ⋯ 0 − 1 ⋯

⋮ 0 ⋯ ⋮ 0 ⋯

0 0 ⋯ 0 0 ⋯

⎫⎪⎬⎪⎭
- set the weight to wi =

1

m
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