
Evolving neural networks using bird swarm algorithm for data
classification and regression applications

Ibrahim Aljarah1 • Hossam Faris1 • Seyedali Mirjalili2 • Nailah Al-Madi3 • Alaa Sheta4 • Majdi Mafarja5

Received: 24 April 2018 / Revised: 4 January 2019 / Accepted: 31 January 2019 / Published online: 15 February 2019
� Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
This work proposes a new evolutionary multilayer perceptron neural networks using the recently proposed Bird Swarm

Algorithm. The problem of finding the optimal connection weights and neuron biases is first formulated as a minimization

problem with mean square error as the objective function. The BSA is then used to estimate the global optimum for this

problem. A comprehensive comparative study is conducted using 13 classification datasets, three function approximation

datasets, and one real-world case study (Tennessee Eastman chemical reactor problem) to benchmark the performance of

the proposed evolutionary neural network. The results are compared with well-regarded conventional and evolutionary

trainers and show that the proposed method provides very competitive results. The paper also considers a deep analysis of

the results, revealing the flexibility, robustness, and reliability of the proposed trainer when applied to different datasets.

Keywords Optimization � Neural networks � Multilayer perceptron � Bird Swarm Algorithm � Classification �
Regression

1 Introduction

Classification, function approximation, and prediction

using machine learning techniques has been popular

applications in different fields of study. Undoubtedly,

Artificial neural networks (ANNs) are among the most

well-regarded techniques in this area which have been

largely applied to different problems. ANNs [65, 71, 96]

are non-paramateric mathematical models inspired by

biological neural systems. ANNs represent a robust infor-

mation processing system, which is composed of highly

interconnected elements called neurons. ANNs perform

simultaneous computations and data processing to solve

specific problems with different complexities. ANNs have

became more popular over the last decade, and have

directed most of researchers’ attention to apply ANNs in

different fields. ANNs benefit from high performance and

ease of implementation, and they are able to capture the

hidden relationship between the inputs. In addition, ANNs

are high scalable and can be implemented in parallel

architectures, taking advantage of modern advancements

and technologies in this context [93, 94]. Furthermore,

& Ibrahim Aljarah

i.aljarah@ju.edu.jo

Hossam Faris

hossam.faris@ju.edu.jo

Seyedali Mirjalili

seyedali.mirjalili@griffithuni.edu.au

Nailah Al-Madi

n.madi@psut.edu.jo

Alaa Sheta

alaa.sheta@tamucc.edu

Majdi Mafarja

mmafarja@birzeit.edu

1 Department of Information Technology, King Abdullah II

School for Information Technology, The University of

Jordan, Amman, Jordan

2 School of Information and Communication Technology,

Griffith University, Nathan, Brisbane, QLD 4111, Australia

3 King Hussein Faculty of Computing Sciences, Princess

Sumaya University for Technology, Amman, Jordan

4 Department of Computing Sciences, Texas A&M University,

Corpus Christi, TX 78412, USA

5 Department of Computer Science, Birzeit University, Birzeit,

Palestine

123

Cluster Computing (2019) 22:1317–1345
https://doi.org/10.1007/s10586-019-02913-5(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-9265-9819
http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-019-02913-5&domain=pdf
https://doi.org/10.1007/s10586-019-02913-5

ANNs have a remarkable ability to solve challenging

problems such as image recognition [56, 69, 92], data

classification [1, 3, 55, 97], function approximation [52],

control of non-linear systems modeling [34, 85], environ-

mental forecasting [24] and many others.

In general, ANNs consist of two main components:

neurons, which represent the processing units, and con-

nections between the neurons. Each connection carries a

weight, which is used to accomplish the computational

process by the neuron with its current information.

A variety of ANNs have been developed in the literature

such as feedforward neural network (FNN) [15], radial

basis function network (RBF) [36, 41], and recurrent neural

networks [70]. Most of these ANNs have different struc-

tures to process the information inside the network and

depend on how the network neurons exchange the infor-

mation between each other.

FNNs consist of two main types of neural networks:

single-layer perceptrons (SLP) [37] and multi-layer per-

ceptrons (MLP) [13, 49]. SLP is proper for modeling the

linear problems, while MLP is used for non-linear

problems.

One of the most impact properties of a ANNs is the

ability to learn. ANNs structure can be adapted by

adjusting ere are four common strategies to learn the neural

network, namely; supervised learning [21, 23], unsuper-

vised learning [59, 75], and reinforcement learning

[44, 83], and meta-heuristic learning [35, 47, 80, 95].

Supervised learning is used when the problem outputs are

known in prior as in pattern recognition and classification

problems. A common supervised learning approach used in

ANNs is the back-propagation (BP) algorithm

[20, 40, 78, 98], which is a gradient-based algorithm. BP

has some drawbacks that make it unreliable for practical

applications such slow convergence, and premature con-

vergence to local optimum.

Unsupervised learning is used when the outputs are

missing or unknown. Unsupervised learning is frequently

used in text categorization and clustering based applica-

tions [61]. On the other hand, reinforcement learning is

used when the problem has complex stochastic structure

and very difficult to analyze, like control optimization

problems.

Meta-heuristic algorithms are search strategies to find

sufficiently good solution for the optimization problems

[5–7]. Meta-heuristic learning has the ability to estimate

optimal or semi-optimal connection weights set for ANNs

with less probability to be trapped into the many local

optima in the search space [4, 35, 80]. Many meta-heuristic

learning algorithms have been used to train ANNs such as

Genetic Algorithm (GA) [66, 76], Particle Swarm Opti-

mization (PSO) [101], Evolutionary Strategies (ES) [90],

Ant Colony Optimization (ACO) [57], Cuckoo Search (CS)

[68, 86], Krill Herd Optimization (KH) [25, 48], Firefly

Algorithm (FA) [19], Population-Based Incremental

Learning (PBIL) [30], Differential Evolution (DE) [42, 88],

Artificial Bee Colony (ABC) [45], and many others.

As mentioned in the previous paragraph, there are many

meta-heuristic algorithms used for learning ANNs, which

give a clear indication of the efficiency of the meta-

heuristic learning algorithms. Furthermore, most of these

algorithms tried to resolve the drawbacks of gradient-based

methods like BP by accelerating the convergence and

avoiding the local optima. Moreover, we noticed that there

is no superior meta-heuristic algorithm can perfectly learn

the ANNs and handle all type of the problems. This has

been proven by the well-known No Free Lunch theorem

(NFL) [18, 39]. As a result, all of these reasons encourage a

lot of researchers to apply other meta-heuristic algorithms

to train ANNs.

Bird Swarm Algorithm (BSA) [60] is one of the most

recent meta-heuristic algorithm, which is a global opti-

mization algorithm that uses strong formulation strategy to

achieve optimal or semi-optimal problem solutions. BSA is

similar to other meta-heuristics algorithms that use guided

randomization mechanism to generate solutions with high

diversity property.

This paper presents a new learning approach based on

BSA to optimize the MLP. In this work, we have made the

following key contributions:

– The BSA is proposed for the first time to optimize the

MLP neural networks. In this approach, BSA is

integrated as a learner into MLP neural network to

solve different data classification and regression

problems.

– The performance of the proposed approach is evaluated

on thirteen real world classification datasets with

different settings and characteristics to demonstrate its

effectiveness and quality of solutions.

– The performance of the proposed approach is tested on

three regression problems, which represent real func-

tion approximations.

– The BSA-based learner is applied to a very challenging

real world problem called Tennessee Eastman (TE)

chemical process reactor problem [22] as well, which is

a simulation of an actual system at the Tennessee

Eastman Company, USA. TE is considered as a large-

scale nonlinear, open-loop unstable system with both

fast and slow variable dynamics [43]. This makes it a

challenge process for both system identification and

control. The proposed BSA learner assists the MLP

network to find the optimal chemical process models.

– The proposed approach is compared with six popular

meta-heuristic learners such as GA, DE, Evolution

Strategy (ES), ABC, PSO, and ACO, and two popular

1318 Cluster Computing (2019) 22:1317–1345

123

standard gradient decent learning algorithms: the BP

algorithm and Levenberg–Marquardt (LM).

This paper is organized as follows: several related works in

the literature are presented in Sect. 2. The preliminary

background concerning the BSA and MLP are presented in

Sects. 3, and 4 respectively. In Sect. 5, the proposed lear-

ner and the design details of the MLP are described. In

Sect. 6, the experimental results for BSA learner and other

comparison are described. Finally, in Sects. 7, the general

conclusions, and future directions of this research are

given.

2 Related works

The learning of ANNs has received much attention in last

decade to improve the efficiency of the ANNs modeling

results. Due to space constraints, we focus only on closely

related work of meta-heuristics algorithms that employed

in the learning process of MLPs .

Genetic Algorithm (GA) is considered as one of the first

meta-heuristic algorithms used for training MLPs [66].

Many authors in the literature applied GA to learn MLP

networks. In [66], the authors applied the GA to find an

optimal set of weights in an acceptable running time. They

evaluated the GA optimizer using sonar images dataset

with different forms of mutations and crossover operations.

The results showed that the GA optimizer is efficient and

able to outperform the standard BP learning algorithm.

Another work based on GA was proposed in [17], the

authors applied the GA to find the global solution of some

continuous functions. In addition, more variants of GA are

proposed in [11, 53, 76, 89] to enhance the MLP learning

process.

In [42], Jarmo et al. applied the differential evolution

(DE) optimization method in the MLP learning process.

The performance results of DE as a learning algorithm

were very competitive with the gradient-based methods. In

addition, their work did not disclose any obvious evidence

to use DE over gradient-based methods. Another work in

[81] used the DE to optimize the weights of the MLP

network. In this work, an adaptive mechanism to select DE

control parameters was proposed to enhance the efficiency

of the DE optimizer. The proposed algorithm was evalu-

ated using the parity-p classification problem with

promising results. A hybrid method in [84] was proposed

that combining the DE with gradient based methods. The

work was applied to solve the nonlinear system identifi-

cation problem.

Christian et al. in [32] introduced a new MLP learning

mechanism based on the Evolution Strategy (ES). The ES-

based trainer showed better performance in many

applications such as car detection and tracking problems.

Another work in [90] used the ES algorithm to train MLP

networks.

Particle swarm optimization (PSO) in [99] was used to

evolve the MLP networks; namely, the weights and net-

work structure. The learning process was adapted based on

PSO obtained better accuracy than other optimizers. Other

researches such as [31, 58, 87] implemented modified PSO

variants to enhance the PSO performance in the learning

process. A hybrid method in [101] combining PSO opti-

mizer with back-propagation was proposed to learn MLP

network. The hybrid method resolve the local searching

limitations of PSO by back-propagation.

In [57, 82], the authors introduced an Ant Colony

Optimization algorithm (ACO) to solve the continuous

optimization. The work was applied to learning of MLP

networks, and evaluated using different data classification

problems. In addition, the ACO was combined with dif-

ferent gradient based methods such as Levenberg–Mar-

quardt and back-propagation algorithms to solve large-

scale classification problems.

Recently, many new meta-heuristic algorithms have

been used for learning such biogeography-based optimizer

(BBO) [64], Moth-flame optimization [91], multi-verse

optimizer (MVO) [27], Grey Wolf optimizer (GWO) [63],

and many others [8, 9, 26, 28, 29, 38].

3 Multi-layer perceptron neural networks
(MLP)

Multilayer perceptron (MLP) neural networks is considered

the most popular type of FNNs.An MLP maps a set of

inputs onto a set of suitable outputs by applying transfor-

mation procedure to obtain the outputs. MLP is comprised

of nodes called neurons distributed in different levels of

layers; namely, input layer, hidden layer, and output layer.

The input layer receives n data inputs and direct them to

the next layer. The hidden layers form the middle point

between input and the output layers. The MLP network

could have more than one hidden layer, where the number

depends on the type of the problem. Most of the researches

used one hidden layer as a default number. The main

objective of the neurons in hidden layer is to transform the

inputs to desired outputs using a transfer function. The

output layer collects the final results of the network. Fur-

thermore, the number of neurons in output layer is selected

based on the data classes.

Figure 1 shows a simple MLP neural network and single

neuron. Figure 1a shows an MLP with input layer, single

hidden layer, and output layer, and Fig. 1b shows one

single neuron. The input layer contains n neurons, hidden

layer has m neurons, and output layer has k neurons. The

Cluster Computing (2019) 22:1317–1345 1319

123

MLP forms a well connected directed graph such as each

hidden neuron is connected with n connection weights with

extra one called bias weight. In each hidden neuron, two

main operations are used to aggregate the final neurons

output: summation and activation operations. The output of

the summation operation of the neuron j is accomplished

by Eq. 1. After that, the summation operation output is

mapped using a special type of functions called transfer or

activation functions. The activation operation is accom-

plished using Eq. 2.

Sumj ¼
Xn

i¼1

wij � ini þ bj ð1Þ

where wij is the connection weight between the input

neuron i and hidden neuron j; bj is the bias j to hidden

neuron j.

yj ¼ f ðSumjÞ ð2Þ

where yj is the neuron j output; j ¼ 1; 2; . . .;m ; f is a

Sigmoid function, and calculated using Eq. 3.

f ðSumjÞ ¼
1

1 þ e�Sumj
ð3Þ

After aggregating the outputs of all hidden nodes, the final

outputs Yj are calculated using the summation and activa-

tion operations as described in Eqs. 4 and 5:

Sumj ¼
Xm

i¼1

wij � yj þ bj ð4Þ

where wij is the connection weight between the hidden

neuron i and output neuron j; bj is the bias j to output

neuron j.

Yj ¼ f ðSumjÞ ð5Þ

where Yj is the final output j ; j ¼ 1; 2; . . .; k ; f is the same

Sigmoid function that used in Eq. 3.

4 The Bird Swarm Algorithm

Bird Swarm Algorithm (BSA) is a new swarm intelligent

and global optimization algorithm inspired by the behavior

of social iteration of birds in nature. Authors in [60], pro-

posed their BSA algorithm based on three main behaviors

of birds which are foraging, vigilance and flight. The

abstract idea of the algorithm can be summarized in the

following five rules:

– Rule 1: Each bird can be in one of two statuses either

vigilance or foraging.

– Rule 2: In the foraging status, each bird keeps tracking

and memorizes its own best experience and the best

experience among the swarm about food positions. This

information will affect its movement and search path

for food.

– Rule 3: In the vigilance status, each bird tries compet-

itively to move toward the center, assuming that birds

with higher reserves lie closer to the center of the flock.

Birds in the center are less probable to be attacked by

other predators.

– Rule 4: Birds keep moving from one site to another and

they iteratively keep switching between producing and

scrounging. The algorithm assumes that birds with

highest reserves are producers while the lowest are

scroungers. On the other hand, other birds are randomly

assumed to be producers or scroungers.

– Rule 5: Producing birds lead the search for food while

the scrounging ones randomly follow a producing bird.

(a)

(b)

Fig. 1 a MLP network with a single hidden layer. b One single

neuron

1320 Cluster Computing (2019) 22:1317–1345

123

Based on these assumptions, the main operators of the BSA

algorithm are modeled as follows: the algorithm starts by

initializing randomly a predetermined number of N birds in

a search space of D dimensions. As specified in Rule 2,

each bird searches for food based on its experience and the

best experience of the flock. This rule is modeled as shown

in Eq. 6. xti;j is the value of element j of bird number i of

generation t, where i 2 ½1; . . .;N�, j 2 ½1; . . .;D� and randa
is random number drawn from the normal distribution in

the interval [0, 1]. C and S are called the cognitive and

social accelerated coefficients which are two constant

positive numbers. Pi;j and gi represent the personal and

global experience, respectively.

xtþ1
i;j ¼ xti;j þ ðpi;j � xti;jÞ � C � randa þ ðgj � xti;jÞ � S

� randa ð6Þ

This foraging behavior is activated if a randomly generated

number is larger than a threshold P. This is implemented as

a simple application of Rule 1.

BSA models the movement of competing birds toward

the center which was described previously in Rule 3 as

given in Eqs. 7, 8 and 9.

xtþ1
i;j ¼ xti;j þ A1ðmeanj � xti;jÞ � randa þ A2ðpk;j � xti;jÞ � S

� randb

ð7Þ

A1 ¼ a1 � exp
�pFiti

sumFit þ e
� N

� �
ð8Þ

A2 ¼ a2 � exp
pFiti � pFitk

jpFitk � pFitij þ e

� �
N � pFitk

sumFit þ e

� �
ð9Þ

where a1 and a2 are positive constant integers in [0, 2],

pFiti is the best fitness value of bird i, sumFit is the sum of

all birds’ best fitness values, e is a very small constant to

avoid division by zero, meanj is the value of the jth element

of the average position of all the swarm.

In the previous model, the average fitness of the swarm

is used to replace the effect of the surroundings when the

birds move toward the center of the swarm.

Finally, Rule 4 is modeled to represent the producing

and scrounging birds after performing a flight behavior.

Equations 10 and 11 represent these birds respectively:

xtþ1
i;j ¼ xti;j þ randn� xti;j ð10Þ

xtþ1
i;j ¼ xti;j þ ðxtk;j � xti;jÞ � FL� randa ð11Þ

Fig. 2 Mapping a BSA individual to an MLP network

Cluster Computing (2019) 22:1317–1345 1321

123

where randn is a random drawn number drawn from the

Gaussian distribution with a mean 0 and standard deviation

of 1, k 2 ½1; . . .;N� and k 6¼ i, FL 2 ½0; 2�. The last model is

performed every FQ iterations.

The pseudocode of the BSA optimizer can be summa-

rized as shown in Algorithm 1.

5 BSA for learning MLP

There are many meta-heuristic algorithms in the literature

that are used to enhance the learning process of the MLP

network. Meng et al. in [60] proved that the BSA is an

efficient optimization algorithm for continuous functions.

Furthermore, BSA has distinguished properties such as

swarm integration, searching strategies, population diver-

sity, and local optima avoidance. All of these properties

encouraged us to integrate BSA with MLP neural network

to optimize its learning process, which is discussed in this

section.

In this paper, the BSA optimizer is used to find the

optimal set of the network connections (weights and bia-

ses). Because there is no standard way for choosing the

number of hidden nodes, the BSA uses fixed structure of

MLP network such as the number of neurons is calculated

based on the following equation:

m ¼ 2 � d þ 1 ð12Þ

where m is the number of neurons; d is the number of data

features or attributes.

Therefore, the total number of weights and biases (n) is

calculated based on the following equation:

n ¼ ðd � mÞ þ ð2 � mÞ þ 1 ð13Þ

In order to integrate the BSA optimizer with MLP net-

works, BSA individuals (birds) represent the weights and

biases fractions. The bird is represented by a vector with

n floating-point numbers. The bird representation and its

mapping to an MLP network is shown in Fig. 2.

MLP learning can be accomplished by BSA optimizer

by integrating the BSA operators with MLP network. The

flowchart of the proposed learning approach is presented in

Fig. 3. This process can be summarized in the following

steps:

– Initialization: The proposed method starts by specifying

the MLP structure such as the number of neurons (m),

and the total number of weights and biases (n). Then, a

random set of MLP networks (weights and biases) is

generated, which represent N birds are initialized.

– Fitness evaluation: In this step, the fitness value for

each bird is calculated using a fitness function and the

training dataset. In this paper, we used the mean

squared errors (MSE) in Eq. 14 as a fitness function.

MSE ¼ 1

k

Xk

i¼1

ðyi � ŷiÞ2 ð14Þ

where yi is actual output of ith training sample; ŷi is the

predicted output of ith training sample; k is the total

number of the training samples.

– Update: In order to train MLPs, the best global fitness

(best global MLP), and best personal fitness for each

bird are first updated. Each bird’s vector is then updated

based on the bird’s status (foraging or vigilance). In

addition, the birds will be divided into two groups

(producing and scrounging) to enhance the diversity of

the population. After that, the global fitness and its

related solution will be updated.

– Termination: These steps are repeated until the max-

imum number of iterations is reached.

It is worth mentioning here that the best global solution

(best MLP network) resulted from this iterative process is

used to calculate MSE using the testing samples to make

sure that the resulted MLP is applicable as a predictive

model.

Based on the previous proposed approach steps, the

BSA algorithm creates a set of new MLP networks con-

sidering the best MLP networks found so far. The process

of calculating MSEs and improving the MLPs continues

1322 Cluster Computing (2019) 22:1317–1345

123

until the satisfaction of the end criterion, which is the

maximum iterations in this approach. It should be noted

that the average MSE is calculated when classifying all

training samples in the dataset for each MLP network in the

proposed BSA-based trainer. Therefore, the computational

complexity is of O(ntd) where n is the number of random

MLP networks, t indicates the maximum iterations, and d is

the number of training samples in the dataset.

6 Experiments and results

In this section the BSA algorithm is evaluated on 13

classification datasets, and three function approximation

benchmark datasets. In addition, the BSA-based learner is

evaluated on a very challenging real world problem called

Tennessee Eastman chemical process reactor (TECPR)

problem [22].

The classification benchmark datasets are obtained from

the University of California at Irvine (UCI) Machine

Learning Repository [54]. The function approximation

datasets are a one-dimensional sigmoid, one-dimensional

sine with four peaks, and two-dimensional sphere. The

classification datasets are divided into fixed ratio such as

[2:1]; two folds for training, and one fold for testing. In the

function approximation datasets, the training-testing ratio

is [1:2]; one fold for training, and two folds for testing.

Note that the training-testing ratio for TE problem is [1:1].

The BSA algorithm is compared to DE, GA, PSO, ACO,

ES and ABC over these benchmark datasets in order to

verify its performance. Furthermore, the comparison with

gradient-based methods (backpropagation (BP) and

Levenberg–Marquardt (LM) methods) are discussed.

All dataset features are normalized using the min–max

method to the interval [0, 1]. To make fair comparisons, 30

runs are executed for each algorithm, each run is set to 250

iterations as stopping criteria. The number of birds, and

individuals is set to 100 and are randomly initialized in the

range [- 1,1]. Furthermore, all parameters and their initial

values as used in our experiments for all algorithms are

presented in Table 1 [33, 62, 79, 100].

In order to evaluate BSA-based learner and other algo-

rithms, different evaluation measures are used based on the

type of the experiment. For classification benchmark

datasets, we used the mean squared error (MSE), which is

given in Eq. 14, classification rate and Wilcoxons test over

the 30 runs. Another performance indicator is classification

rate which measures the rate of the correctly classified

samples to the actual classes. For each experiment, average

(AVE), standard deviation (STD), and Best of the

Fig. 3 Flow chart of the

proposed learning algorithm

(BSA-MLP)

Cluster Computing (2019) 22:1317–1345 1323

123

classification results are reported. Wilcoxons test is a

nonparametric statistical test that used to check the sig-

nificant difference of the given results. In this paper, the

Wilcoxons test is calculated at 5% significance level

against the calculated p-values.

For function approximation benchmark datasets, we

used the MSE, test error (the mean absolute error (MAE)),

and Wilcoxons test. MAE is computed using the following

equation:

MAE ¼ 1

k

Xk

i¼1

jyi � ŷij ð15Þ

where k is the total number of samples.

For TE problem, we used the MSE, test error (MAE),

variance-accounted-for (VAF), and Wilcoxons test. These

measures are used to evaluate how the predicted values are

closed to the real values. VAF is computed by the fol-

lowing equation:

VAF ¼ 1 � varðyi � ŷiÞ
varðyiÞ

� �
� 100% ð16Þ

where var is the variance; y is the actual value; ŷ is the

estimated output value;

As the qualitative results, the algorithms’ convergence

curves are investigated to check the speed of the algorithms

in achieving the optimal solutions. For the function

approximation datasets, we draw the shape of functions

approximated to qualitatively compare the training algo-

rithms as well.

The results of benchmark datasets are illustrated and

discussed in Sects. 6.1–6.3. In Sect. 6.1, BSA algorithm is

evaluated on different classification datasets, Sect. 6.2

discusses the results of function approximation benchmark

datasets, and Sect. 6.3 presents the results on the Tennessee

Eastman chemical process reactor problem.

6.1 Classification datasets

The proposed BSA-based learning algorithm is evaluated

using 13 popular classification datasets, which are selected

from the UCI repository1. Table 2 shows the selected

datasets with feature numbers, number of training and

testing samples, and the used MLP structures. The evalu-

ation results of the algorithms on these datasets are pre-

sented and discussed as follows:

– Breast dataset: the results of the BSA and other meta-

heuristics learning algorithms for this dataset are pre-

sented in Table 3. The average classification rates show

that BSA and PSO have the same results, and they

outperform the other meta-heuristics. The standard

deviations of the classification rates indicate that BSA

has the best results, which means that the BSA is a

robust algorithm compared to other algorithms. Fur-

thermore, MSE results show that the results of BSA are

very competitive . However, the best MSE and classi-

fication rates reported in Table 3 show that the BSA

finds very closed solutions to the global optimum. In

addition, the p-values of the statistical tests show that

the differences between BSA results and DE, ACO, and

ES are statistically significant, but not significant

compared with PSO, GA, and ABC.

Table 1 The initial parameters

of the metaheuristic algorithms
Algorithm Parameter Value

GA Crossover probability 0.9

Mutation probability 0.1

Selection mechanism Stochastic sampling

DE Crossover probability 0.9

Differential weight 0.5

ES k 10

r 1

PSO Acceleration constants [2.1,2.1]

Inertia weights [0.9,0.6]

ACO Initial pheromone (s) 1e-06

Pheromone update constant (Q) 20

Pheromone constant (q) 1

Global pheromone decay rate (pg) 0.9

Local pheromone decay rate (pt) 0.5

Pheromone sensitivity (a) 1

Visibility sensitivity (b) 5

ABC Acceleration coefficient upper bound 1

1 http://archive.ics.uci.edu/ml/

1324 Cluster Computing (2019) 22:1317–1345

123

http://archive.ics.uci.edu/ml/

– Liver dataset: The results of learning algorithms on

Liver dataset are presented in Table 4. Inspecting the

results of the different measures, it is evident that BSA

has the best ability to avoid local optima for this

dataset. Moreover, BSA has 70.28% classification rate,

which outperforms all the other learning algorithms. In

addition, the p-values of the statistical tests show that

the differences between BSA results and GA are not

statistically significant, but they significantly outper-

form others combined.

– Diagnosis I and Diagnosis II datasets: The experimental

results of these two datasets are given in Tables 5 and

6, respectively. According to the classification rate

results, the BSA obtained 100% classification rate for

the two datasets, which are similar to GA, PSO, ES, and

ABC, and better than DE and ACO results. However,

the p-values show that there is no statistically signif-

icant difference between BSA and other four learning

algorithms. This means that BSA provides very com-

petitive results on these two datasets.

– PlanningRelax dataset: the experimental results of this

dataset are shown in Table 7. It might be seen in this

table that the p-values results of BSA are significantly

outperform most of the other algorithms. Moreover,

BSA has the highest classification rate with comparable

MSE results.

– Diabetes dataset: the evaluation results of this dataset

are shown in Table 8. As per the results of classification

rates in this table, BSA provides the highest results with

comparable MSE results. The p-values of BSA are

significantly outperform four of the other algorithms.

– Haberman dataset: The results of learning algorithms

on Haberman dataset are shown in Table 9. The results

on this dataset reveal that BSA has the best perfor-

mances in terms of classification rates with 73.05%.

The average and standard deviation results of MSEs

show that the efficiency of the BSA and GA is very

close, and better than others. Furthermore, the p-values

of the statistical tests show that the differences between

BSA results and most of the other algorithms are

statistically significant.

– Hepatitis dataset: the results of this dataset are provided

in Table 10. The observed results for this dataset

indicate that GA has the best average classification

rates, but with no statistically significant difference

compared to the results of BSA. Moreover, the MSE

Table 2 Summary of the

classification datasets
No. Dataset #attributes #train instances #test instances MLP structure

1 Breast 8 461 238 8–17–1

2 Liver 6 227 118 6–13–1

3 Diagnosis I 6 79 41 6–13–1

4 Diagnosis II 6 79 41 6–13–1

5 PlanningRelax 12 120 62 12–25–1

6 Diabetes 8 506 262 8–17–1

7 Haberman 3 201 105 3–7–1

8 Hepatitis 10 102 53 10–21–1

9 Heart 13 178 92 13–27–1

10 Phoneme 5 3566 1838 5–11–1

11 Saheart 9 304 158 9–19–1

12 Spectf 44 176 91 44–89–1

13 Vertebral 6 204 106 6–13–1

Table 3 Classification rate,

p-values, and MSE results for

breast cancer dataset

Algorithm Classification rate p-values MSE

(AVE ± STD)[Best] (AVE ± STD)[Best]

BSA 0.9703 ± 0.0054[0.9790] 6.61E-01 3.17E-02 ± 2.25E-03[2.75E-02]

DE 0.9478 ± 0.0153[0.9748] 1.03E-12 5.18E-02 ± 6.41E-03[3.86E-02]

GA 0.9675 ± 0.0058[0.9748] 6.82E-02 2.84E-02 ± 9.66E-04[2.66E-02]

PSO 0.9704 ± 0.0075[0.9790] N/A 3.53E-02 ± 1.98E-03[3.00E-02]

ACO 0.9246 ± 0.0335[0.9664] 1.58E-09 7.20E-02 ± 1.38E-02[4.75E-02]

ES 0.9667 ± 0.0059[0.9790] 2.53E-02 3.71E-02 ± 1.60E-03[3.36E-02]

ABC 0.9689 ± 0.0079[0.9832] 3.88E-01 3.37E-02 ± 1.02E-03[3.13E-02]

The best results are marked in bold

Cluster Computing (2019) 22:1317–1345 1325

123

results of the GA and BSA are very close, and

outperform all of other algorithms.

– Heart dataset: the results of this dataset are reported in

Table 11. This table shows the superiority of the BSA

algorithm in term of the classification rate. The lowest

MSE results show the ability of the BSA to avoid local

optima. Also, the p-values show that the BSA results

are highly statistically significant compared with all of

other algorithms.

– Phoneme dataset: the results of Phoneme dataset

are presented in Table 12. It should be noted from the

results of this dataset that the classification rate of the

BSA is very close to ABC algorithm which has the

highest rate, and both of them outperform other

algorithms. Furthermore, the MSE results are very

competitive to the other algorithms.

– SAheart dataset: the results of the BSA and other

algorithms on SAheart dataset are shown in Table 13.

The BSA has the best classification rate with 73.02%.

The AVE, STD, and Best results of MSEs show that the

efficiency of the BSA to avoid local optima. Further-

more, the p-values of the statistical tests show that BSA

results are statistically significant in comparison with

GA, DE, ACO, and ABC algorithms.

– Spectf dataset: the results of Spectf dataset are

presented in Table 14. The table results show the

predominance of the BSA algorithm in term of the

classification rate and MSE measures. However, the

p-values show that the BSA results are statistically

significant compared the majority of other algorithms.

– Vertebral dataset: the results of the BSA and other

meta-heuristics optimizers on this dataset are presented

in Table 15. The average classification rates show that

BSA outperforms other meta-heuristics. The standard

deviations of the classification rates indicate that BSA

provide very competitive results, which means that the

BSA’s performance is very stable. Furthermore, aver-

age of MSE and Best MSE results reported in Table 15

show that the BSA is able to find very accurate

approximation of the global optimum. In addition, the

p-values of the BSA and other algorithms show that the

differences in the results are statistically significant.

As the qualitative results, Fig. 4 shows the convergence

curves of BSA, DE, GA, PSO, ACO, ES, and ABC based on

averages of the MSE for all classification datasets over 30

independent runs. These convergence curves prove that BSA

has acceptable convergence rate on the majority of the datasets.

The BSA algorithm is compared with the two popular

gradient-based learning methods as well: backpropagation

(BP) and Levenberg–Marquardt (LM). These two methods

are based on mathematical representation that employ the

derivatives and gradients to learn the MLPs network. The

BP, and LM results in terms of classification rate, MSE,

and p-values are reported in the Table 16. It can be seen

that the average and standard deviations results of the BSA

algorithm are better than BP, and LM in all datasets. The

results show that the BSA results are statistically signifi-

cant compared to gradient based trainer. Also, the BSA has

a superior ability to avoid the local optima and achieve

close solutions to the global optimum.

6.2 Function approximation datasets

The proposed BSA-based learning algorithm is evaluated

using three popular function approximation datasets as

well. Table 17 shows the selected function approximations

with function formula, number of training and testing

samples, dimensions, and MLP structure. The evaluation

results of the algorithms on these datasets are as follows:

– Sigmoid dataset: the results of MLP learning algorithms

for this function approximation dataset are presented in

Table 18. The results in the table show that the average

MSE, and the average Test Error of the BSA algorithm

outperform other algorithms. In addition, the p-values

indicate that the BSA has statistically significant results

and it has highly ability to avoid the local minima

compared with all other learners. To qualitatively

compare the algorithms, Fig. 5 is given that shows the

BSA owns the most accurate approximation curve for

the Sigmoid function compared with the actual curve.

– Sine dataset: the results of the BSA and other

algorithms for Sine dataset are reported in Table 19.

Inspecting these results, it may be observed that the

Test Error of the BSA algorithm is better than other

algorithms and shows competitive MSE results. More-

over, the p-values indicate that the BSA is not

statistically significant superiority compared to the

GA algorithm. However, BSA is statistically better

than other algorithms. Ina addition, Fig. 6 show that the

approximation curves of the Sine function of different

algorithms.This figure shows that none of the algo-

rithms finds an accurate shape. This is due to the

difficulty of this function and several fluctuations in the

curve. The accuracy of algorithm can be improved by

tuning parameters and increasing the number of nodes.

However, the main focus was on the comparison of the

algorithms under fair conditions and fine-tuning of

algorithm is out of the scope of this work.

– Sphere dataset: The results of the Sphere function

dataset are shown in Table 20. The experimental results

show that the BSA outperforms other algorithms in

terms of Test error and MSE measures. Furthermore,

the BSA results based on the p-values are statistically

significant. The approximation curves in Fig. 7 verify

the accuracy of BSA algorithm as well.

1326 Cluster Computing (2019) 22:1317–1345

123

Table 4 Classification rate,

p-values, and MSE results for

liver dataset

Algorithm Classification rate p-values MSE

(AVE ± STD)[Best] (AVE ± STD)[Best]

BSA 0.7028 ± 0.0340[0.7542] N/A 2.08E-01 ± 3.96E-03[2.00E-01]

DE 0.6121 ± 0.0509[0.7288] 1.17E-12 2.31E-01 ± 5.06E-03[2.22E-01]

GA 0.6949 ± 0.0302[0.7627] 2.02E-01 2.04E-01 ± 4.23E-03[1.95E-01]

PSO 0.6788 ± 0.0449[0.7881] 1.95E-02 2.16E-01 ± 3.20E-03[2.07E-01]

ACO 0.5819 ± 0.0354[0.6441] 4.01E-11 2.38E-01 ± 5.16E-03[2.28E-01]

ES 0.6596 ± 0.0481[0.7458] 3.25E-04 2.20E-01 ± 3.48E-03[2.14E-01]

ABC 0.6695 ± 0.0508[0.7881] 4.32E-03 2.14E-01 ± 4.29E-03[2.06E-01]

The best results are marked in bold

Table 5 Classification rate,

p-values, and MSE results for

diagnosis I dataset

Algorithm Classification rate p-values MSE

(AVE ± STD)[Best] (AVE ± STD)[Best]

BSA 1.0 ± 0.0[1.0] N/A 7.57E-04 ± 1.78E-03[3.19E-06]

DE 0.9341 ± 0.0690[1.0] 1.69E-14 4.11E-02 ± 1.63E-02[1.32E-02]

GA 1.0 ± 0.0[1.0] N/A 2.05E-06 ± 3.04E-06[1.23E-07]

PSO 1.0 ± 0.0[1.0] N/A 3.91E-03 ± 2.35E-03[2.68E-04]

ACO 0.8626 ± 0.1112[1.0] 5.06E-11 8.09E-02 ± 2.81E-02[1.07E-02]

ES 1.0 ± 0.0[1.0] N/A 3.75E-03 ± 2.70E-03[3.71E-04]

ABC 1.0 ± 0.0[1.0] N/A 0.0 ± 0.0?0.0[0.0]

The best results are marked in bold

Table 6 Classification rate,

p-values, and MSE results for

diagnosis II dataset

Algorithm Classification rate p-values MSE

(AVE ± STD)[Best] (AVE ± STD)[Best]

BSA 1.0 ± 0.0[1.0] N/A 1.76E-04 ± 1.85E-04[8.43E-06]

DE 0.9593 ± 0.0552[1.0] 1.69E-14 2.70E-02 ± 1.79E-02[2.17E-03]

GA 1.0 ± 0.0[1.0] N/A 1.33E-07 ± 2.70E-07[1.86E-08]

PSO 1.0 ± 0.0[1.0] N/A 1.13E-03 ± 7.27E-04[1.45E-05]

ACO 0.8789 ± 0.0940[1.0] 1.87E-10 7.39E-02 ± 2.84E-02[1.79E-02]

ES 1.0 ± 0.0[1.0] N/A 9.13E-04 ± 6.44E-04[1.45E-04]

ABC 1.0 ± 0.0[1.0] N/A 0.0 ± 0.0[0.0]

The best results are marked in bold

Table 7 Classification rate,

p-values, and MSE results for

PlanningRelax dataset

Algorithm Classification rate p-values MSE

(AVE ± STD)[Best] (AVE ± STD)[Best]

BSA 0.6511 ± 0.0177[0.6935] N/A 1.77E-01 ± 3.42E-03[1.68E-01]

DE 0.6355 ± 0.0253[0.6774] 8.38E-13 1.90E-01 ± 3.68E-03[1.82E-01]

GA 0.6301 ± 0.0236[0.6613] 3.44E-04 1.70E-01 ± 5.02E-03[1.56E-01]

PSO 0.6435 ± 0.0226[0.6774] 2.53E-01 1.81E-01 ± 1.20E-03[1.78E-01]

ACO 0.6317 ± 0.0258[0.6774] 1.37E-03 1.95E-01 ± 3.86E-03[1.89E-01]

ES 0.6183 ± 0.0350[0.6774] 2.88E-05 1.89E-01 ± 4.38E-03[1.79E-01]

ABC 0.6237 ± 0.0337[0.6613] 4.29E-04 1.74E-01 ± 2.44E-03[1.68E-01]

The best results are marked in bold

Cluster Computing (2019) 22:1317–1345 1327

123

Figure 8 shows the convergence curves of BSA, DE,

GA, PSO, ACO, ES, and ABC based on averages of the

MSE for all function approximation datasets. These

convergence curves qualitatively show that BSA pro-

vides the fastest convergence rate on all function

approximation datasets.

Table 8 Classification rate,

p-values, and MSE results for

diabetes dataset

Algorithm Classification rate p-values MSE

(AVE ± STD) (AVE ± STD)[Best]

BSA 0.7525 ± 0.0172[0.7824] N/A 1.54E-01 ± 2.76E-03[1.49E-01]

DE 0.7051 ± 0.0314[0.7786] 1.17E-12 1.82E-01 ± 6.56E-03[1.71E-01]

GA 0.7517 ± 0.0121[0.7824] 7.72E-01 1.52E-01 ± 2.56E-03[1.46E-01]

PSO 0.7310 ± 0.0248[0.7824] 4.20E-04 1.64E-01 ± 3.05E-03[1.55E-01]

ACO 0.6819 ± 0.0375[0.7634] 2.34E-09 1.92E-01 ± 9.78E-03[1.64E-01]

ES 0.7257 ± 0.0261[0.8015] 8.81E-06 1.75E-01 ± 4.30E-03[1.60E-01]

ABC 0.7482 ± 0.0198[0.8053] 3.17E-01 1.64E-01 ± 3.39E-03[1.56E-01]

The best results are marked in bold

Table 9 Classification rate,

p-values, and MSE results for

Haberman dataset

Algorithm Classification rate p-values MSE

(AVE ± STD)[Best] (AVE ± STD)[Best]

BSA 0.7305 ± 0.0104[0.7524] N/A 1.63E-01 ± 2.52E-03[1.60E-01]

DE 0.7222 ± 0.0094[0.7429] 7.69E-13 1.77E-01 ± 3.20E-03[1.70E-01]

GA 0.7248 ± 0.0088[0.7429] 3.06E-02 1.62E-01 ± 1.77E-03[1.58E-01]

PSO 0.7283 ± 0.0078[0.7524] 4.45E-01 1.67E-01 ± 1.49E-03[1.64E-01]

ACO 0.7238 ± 0.0087[0.7333] 2.64E-02 1.70E-01 ± 1.08E-03[1.68E-01]

ES 0.7298 ± 0.0113[0.7524] 9.32E-01 1.73E-01 ± 1.67E-03[1.68E-01]

ABC 0.7241 ± 0.0155[0.7524] 1.05E-01 1.65E-01 ± 2.29E-03[1.57E-01]

The best results are marked in bold

Table 10 Classification rate,

p-values, and MSE results for

Habitit dataset

Algorithm Classification rate p-values MSE

(AVE ± STD)[Best] (AVE ± STD)[Best]

BSA 0.8535 ± 0.0312[0.9057] 1.17E-01 8.28E-02 ± 8.58E-03[6.82E-02]

DE 0.8535 ± 0.0246[0.9057] 9.11E-13 1.19E-01 ± 5.61E-03[1.07E-01]

GA 0.8660 ± 0.0245[0.9245] N/A 7.09E-02 ± 5.41E-03[6.06E-02]

PSO 0.8484 ± 0.0264[0.9057] 1.05E-02 9.79E-02 ± 3.05E-03[9.08E-02]

ACO 0.8465 ± 0.0300[0.9057] 1.20E-02 1.30E-01 ± 9.87E-03[1.07E-01]

ES 0.8440 ± 0.0357[0.8868] 1.77E-02 1.03E-01 ± 4.10E-03[9.50E-02]

ABC 0.8346 ± 0.0327[0.8868] 1.58E-04 9.65E-02 ± 3.04E-03[8.94E-02]

The best results are marked in bold

Table 11 Classification rate,

p-values, and MSE results for

heart dataset

Algorithm Classification rate p-values MSE

(AVE ± STD)[Best] (AVE ± STD)[Best]

BSA 0.8362 ± 0.0245[0.8804] N/A 1.08E-01 ± 5.79E-03[9.86E-02]

DE 0.7819 ± 0.0382[0.8587] 1.08E-12 1.52E-01 ± 1.29E-02[1.32E-01]

GA 0.8232 ± 0.0180[0.8587] 1.04E-02 8.60E-02 ± 6.12E-03[7.63E-02]

PSO 0.8188 ± 0.0264[0.8696] 9.37E-03 1.21E-01 ± 3.52E-03[1.11E-01]

ACO 0.7819 ± 0.0164[0.8261] 1.81E-09 1.63E-01 ± 7.34E-03[1.47E-01]

ES 0.8069 ± 0.0270[0.8587] 4.11E-05 1.37E-01 ± 7.81E-03[1.15E-01]

ABC 0.8185 ± 0.0313[0.8587] 2.73E-02 1.21E-01 ± 5.06E-03[1.09E-01]

The best results are marked in bold

1328 Cluster Computing (2019) 22:1317–1345

123

Table 12 Classification rate,

p-values, and MSE results for

Phoneme dataset

Algorithm Classification rate p-values MSE

(AVE ± STD)[Best] (AVE ± STD)[Best]

BSA 0.7678 ± 0.0078[0.7818] 1.60E-06 1.54E-01 ± 2.05E-03[1.49E-01]

DE 0.7514 ± 0.0203[0.7933] 1.21E-12 1.66E-01 ± 4.83E-03[1.57E-01]

GA 0.7722 ± 0.0049[0.7824] 1.23E-05 1.52E-01 ± 1.49E-03[1.48E-01]

PSO 0.7609 ± 0.0106[0.7835] 5.98E-08 1.57E-01 ± 1.00E-03[1.55E-01]

ACO 0.7391 ± 0.0225[0.7840] 2.01E-09 1.67E-01 ± 3.83E-03[1.63E-01]

ES 0.7637 ± 0.0125[0.7829] 6.68E-07 1.57E-01 ± 2.29E-03[1.52E-01]

ABC 0.7816 ± 0.0106[0.8009] N/A 1.51E-01 ± 2.77E-03[1.44E-01]

The best results are marked in bold

Table 13 Classification rate,

p-values, and MSE results for

SAheart dataset

Algorithm Classification rate p-values MSE

(AVE ± STD)[Best] (AVE ± STD)[Best]

BSA 0.7302 ± 0.0159[0.7595] N/A 1.73E-01 ± 2.92E-03[1.65E-01]

DE 0.7034 ± 0.0340[0.7658] 1.14E-12 1.96E-01 ± 6.14E-03[1.79E-01]

GA 0.7181 ± 0.0176[0.7595] 9.20E-03 1.69E-01 ± 2.30E-03[1.65E-01]

PSO 0.7266 ± 0.0277[0.7785] 6.56E-01 1.80E-01 ± 2.03E-03[1.76E-01]

ACO 0.6863 ± 0.0471[0.7595] 7.09E-05 2.06E-01 ± 8.37E-03[1.89E-01]

ES 0.7148 ± 0.0358[0.7595] 1.20E-01 1.94E-01 ± 3.84E-03[1.86E-01]

ABC 0.7116 ± 0.0212[0.7658] 3.23E-04 1.82E-01 ± 2.32E-03[1.76E-01]

The best results are marked in bold

Table 14 Classification rate,

p-values, and MSE results for

Spectf dataset

Algorithm Classification rate p-values MSE

(AVE ± STD)[Best] (AVE ± STD)[Best]

BSA 0.7850 ± 0.0201[0.8242] N/A 1.19E-01 ± 6.16E-03[1.06E-01]

DE 0.7714 ± 0.0179[0.8022] 1.05E-12 1.53E-01 ± 6.05E-03[1.38E-01]

GA 0.7736 ± 0.0221[0.8132] 3.03E-02 9.63E-02 ± 6.94E-03[8.23E-02]

PSO 0.7641 ± 0.0284[0.8022] 1.31E-03 1.30E-01 ± 4.46E-03[1.18E-01]

ACO 0.7648 ± 0.0259[0.8022] 7.04E-04 1.59E-01 ± 8.73E-03[1.35E-01]

ES 0.7689 ± 0.0164[0.7912] 9.80E-04 1.39E-01 ± 4.53E-03[1.31E-01]

ABC 0.7780 ± 0.0183[0.8352] 3.44E-02 1.29E-01 ± 3.84E-03[1.20E-01]

The best results are marked in bold

Table 15 Classification rate,

p-values, and MSE results for

vertebral dataset

Algorithm Classification rate p-values MSE

(AVE ± STD)[Best] (AVE ± STD)[Best]

BSA 0.8679 ± 0.0238[0.9057] N/A 1.10E-01 ± 6.85E-03[9.81E-02]

DE 0.7752 ± 0.0401[0.8679] 1.10E-12 1.54E-01 ± 1.19E-02[1.34E-01]

GA 0.8579 ± 0.0105[0.8868] 2.51E-03 9.83E-02 ± 1.13E-03[9.59E-02]

PSO 0.8503 ± 0.0335[0.9057] 1.56E-02 1.20E-01 ± 4.13E-03[1.13E-01]

ACO 0.7358 ± 0.0412[0.8491] 4.59E-11 1.70E-01 ± 1.43E-02[1.40E-01]

ES 0.8321 ± 0.0298[0.8774] 5.41E-06 1.18E-01 ± 3.53E-03[1.06E-01]

ABC 0.8437 ± 0.0327[0.9057] 5.69E-04 1.06E-01 ± 5.21E-03[9.66E-02]

The best results are marked in bold

Cluster Computing (2019) 22:1317–1345 1329

123

(a)

(d)

(g)

(j)

(b)

(e)

(h)

(k)

(m)

(c)

(f)

(i)

(l)

Fig. 4 Convergence curves for all datasets

1330 Cluster Computing (2019) 22:1317–1345

123

Table 16 Classification rates, p-values, and MSEs, for BSA, BP, and LM, learners on all datasets

Dataset/optimizer BSA BP LM

Breast

C. Rate (AVE ± STD)[Best] 0.9703 ± 0.0054[0.9790] 0.8576 ± 0.0977[0.9748] 0.9458 ± 0.0164[0.9706]

p-values N/A 1.01E-12 5.48E-09

MSE (AVE ± STD) 3.17E-02 ± 2.25E-03 1.22E-01 ± 7.49E-02 1.11E-02 ± 1.38E-02

Liver

C. Rate (AVE ± STD)[Best] 0.7028 ± 0.0340[0.6441] 0.5395 ± 0.0531[0.6441] 0.6559[0.7712] ± 0.0515

p-values N/A 1.17E-12 2.19E-04

MSE (AVE ± STD) 2.08E-01 ± 3.96E-03 2.80E-01 ± 6.40E-02 1.18E-01 ± 8.84E-02

Diagnosis I

C. Rate (AVE ± STD)[Best] 1.0000 ± 0.0000[1.0000] 0.7390 ± 0.1572[1.0000] 0.9951 ± 0.0267[1.0000]

p-values N/A 1.69E-14 3.34E-01

MSE (AVE ± STD) 7.57E-04 ± 1.78E-03 1.72E-01 ± 1.14E-01 6.33E-03 ± 3.47E-02

Diagnosis II

C. Rate (AVE ± STD)[Best] 1.0000 ± 0.0000[1.0000] 0.7756 ± 0.1323[1.0000] 0.9837 ± 0.0619[1.0000]

p-values N/A 1.69E-14 1.61E-01

MSE (AVE ± STD) 1.76E-04 1.76E-01 ± 1.08E-01 1.31E-02 ± 5.20E-02

PlanningRelax

C. Rate (AVE ± STD)[Best] 0.6511 ± 0.0177 [0.6935] 0.6048 ± 0.0784 [0.6613] 0.5478 ± 0.0636 [0.6452]

p-values N/A 8.38E-13 4.42E-10

MSE (AVE ± STD) 1.77E-01 ± 3.42E-03 2.41E-01 ± 1.17E-01 3.89E-02 ± 5.52E-02

Diabetes

C. Rate (AVE ± STD)[Best] 0.7525 ± 0.0172 [0.7824] 0.6391 ± 0.0361 [0.7214] 0.7270 ± 0.0377 [0.7901]

p-values N/A 1.17E-12 8.96E-04

MSE (AVE ± STD) 1.54E-01 ± 2.76E-03 2.37E-01 ± 3.36E-02 1.35E-01 ± 7.59E-02

Haberman

C. Rate (AVE ± STD)[Best] 0.7305 ± 0.0104 [0.7524] 0.6876 ± 0.0862 [0.7524] 0.6883 ± 0.0388 [0.7524]

p-values N/A 7.69E-13 9.98E-08

MSE (AVE ± STD) 1.63E-01 ± 2.52E-03 2.20E-01 ± 6.55E-02 1.37E-01 ± 4.69E-02

Habitit

C. Rate (AVE ± STD)[Best] 0.8535 ± 0.0312 [0.9057] 0.8063 ± 0.0652 [0.8868] 0.8252 ± 0.0467 [0.9057]

p-values N/A 1.08E-12 2.01E-02

MSE (AVE ± STD) 8.28E-02 ± 8.58E-03 1.72E-01 ± 4.47E-02 2.29E-02 ± 5.62E-02

Heart

C. Rate (AVE ± STD)[Best] 0.8362 ± 0.0245 [0.8804] 0.6826 ± 0.0898 [0.8043] 0.7572 ± 0.0406 [0.8152]

p-values N/A 1.08E-12 8.40E-10

MSE (AVE ± STD) 1.08E-01 ± 5.79E-03 2.23E-01 ± 8.14E-02 2.87E-02 ± 6.26E-02

Phoneme

C. Rate (AVE ± STD)[Best] 0.7678 ± 0.0078 [0.7818] 0.6999 ± 0.0334 [0.7519] 0.8308 ± 0.0165 [0.8624]

p-values 8.08E-11 1.20E-12 N/A

MSE (AVE ± STD) 1.54E-01 ± 2.05E-03 2.20E-01 ± 3.17E-02 1.12E-017.94E-03

Saheart

C. Rate (AVE ± STD)[Best] 0.7302 ± 0.0159 [0.7595] 0.6411 ± 0.0737 [0.7405] 0.6793 ± 0.0298 [0.7532]

p-values N/A 1.14E-12 1.76E-08

MSE (AVE ± STD) 1.73E-012.92E-03 2.53E-018.02E-02 1.09E-014.60E-02

Spectf

C. Rate (AVE ± STD)[Best] 0.7850 ± 0.0201 [0.8242] 0.7670 ± 0.0256 [0.8022] 0.7560 ± 0.0259 [0.8022]

p-values N/A 1.05E-12 4.97E-05

MSE (AVE ± STD) 1.19E-016.16E-03 1.68E-012.26E-02 1.80E-025.17E-02

Cluster Computing (2019) 22:1317–1345 1331

123

Finally, the BP, and LM results for different function

approximation datasets in terms of Test error, MSE, and

p-values are reported in Table 21. The results show that the

BSA results are competitive compared with BP and LM

learners.

As an overall summary for the classification and func-

tion approximation datasets, Table 22 shows the results of

all comparative measures; namely, the classification rate/

test error, and p-values. The table values represent the

number of datasets each algorithm won/losses/ties on a

variety of measures. It appears that the BSA algorithm is

superior on 11 datasets out of 16 in terms of classification

rate or test error. Moreover, in term of significant measure

based on p-values, the results shows that the BSA are better

on 10 datasets out of 16. It appears that the BSA algorithm

ranked first 21 out of 32 times. We also used Friedman test

to rank the different algorithms applied on 13 classification

and 3 function approximation datasets. The results of

Friedman test in the last row of Table 22 show that the

BSA obtains the best rank. This confirms the ability of the

BSA algorithm to evolve the MLP network. All of these

results provide a solid evidence to support the BSA algo-

rithm for training MLPs.

6.3 Tennessee Eastman chemical process reactor
(TE) problem

The TE chemical process was first presented by [22] as an

academic research process. The process was a simulation

of an actual system at the Tennessee Eastman Company,

USA. It is considered as a large-scale nonlinear, open-loop

unstable system with both fast and slow variable dynamics

[43]. This makes it a challenge process for both system

identification and control. A simplified diagram of the

process is shown in Fig. 9. The TE chemical plant consists

of five major operations: a two phase reactor, a product

condenser, a vapor/liquid separator, a recycle compressor,

and a product stripper. The nonlinear dynamics of the plant

are mainly due to the chemical reactions within the reactor.

In 1995, N. L. Ricker provided a TE archive of software

simulation for the process. This archive was updated in

2005 [74]. The process is still interesting although it was

Table 16 (continued)

Dataset/optimizer BSA BP LM

Vertebral

C. Rate (AVE ± STD)[Best] 0.8679 ± 0.0238 [0.9057] 0.6513 ± 0.1011 [0.7925] 0.8028 ± 0.0550 [0.8585]

p-values N/A 1.10E-12 1.12E-08

MSE (AVE ± STD) 1.10E-016.85E-03 2.58E-018.91E-02 9.41E-021.16E-01

The best results are marked in bold

Table 17 Function approximation datasets

Functions Training samples Testing samples Dim MLP structure

Sigmoid: y ¼ 1
1þe�x 61 : x in ½�3:0 : 0:1 : 3:0� 121 : x in ½�3:0 : 0:05 : 3:0� 1 1–3–1

Sine: y ¼ sinð2xÞ 126 : x in ½�2p : 0:1 : 2p� 252 : x in ½�2p : 0:05 : 2p� 1 1–3–1

Sphere: z ¼ 1
2

P2
i¼1ðxiÞ

2; x ¼ x1; y ¼ x2
21 � 21 : x; y in ½�2 : 0:2 : 2� 41 � 41 : x; y in ½�2 : 0:1 : 2� 2 2–5–1

Table 18 MSE and test error

(MAE) results for Sigmoid

dataset

Algorithm MSE (AVE ± STD) p-values Test Error (AVE ± STD)

BSA 6.41E205 – 6.41E205 N/A 0.691553 – 0.357952

GA 0.000358 ± 0.000192 6.12E-10 1.859383 ± 0.542019

DE 0.002191 ± 0.001415 3.02E-11 4.517302 ± 1.371452

ES 0.002767 ± 0.001140 3.02E-11 5.045192 ± 1.061819

PSO 0.000498 ± 0.000197 6.07E-11 2.196162 ± 0.451043

ACO 0.000441 ± 7.11E-05 2.96E-11 2.184762 ± 0.231517

ABC 0.000635 ± 0.000321 6.70E-11 2.386619 ± 0.588302

The best results are marked in bold

1332 Cluster Computing (2019) 22:1317–1345

123

 0

 0.2

 0.4

 0.6

 0.8

 1

-3 -2 -1 0 1 2 3

Y

X

Actual Curve
Approximated Curve

 0

 0.2

 0.4

 0.6

 0.8

 1

-3 -2 -1 0 1 2 3

Y

X

Actual Curve
Approximated Curve

 0

 0.2

 0.4

 0.6

 0.8

 1

-3 -2 -1 0 1 2 3

Y

X

Actual Curve
Approximated Curve

 0

 0.2

 0.4

 0.6

 0.8

 1

-3 -2 -1 0 1 2 3

Y

X

Actual Curve
Approximated Curve

 0

 0.2

 0.4

 0.6

 0.8

 1

-3 -2 -1 0 1 2 3

Y

X

Actual Curve
Approximated Curve

 0

 0.2

 0.4

 0.6

 0.8

 1

-3 -2 -1 0 1 2 3

Y

X

Actual Curve
Approximated Curve

 0

 0.2

 0.4

 0.6

 0.8

 1

-3 -2 -1 0 1 2 3

Y

X

Actual Curve
Approximated Curve

(a) (b)

(c) (d)

(e)

(g)

(f)

Fig. 5 Approximated curves versus actual curves for Sigmoid function

Cluster Computing (2019) 22:1317–1345 1333

123

-1

-0.5

 0

 0.5

 1

-6 -4 -2 0 2 4 6

Y

X

Actual Curve
Approximated Curve

(a) BSA

-1

-0.5

 0

 0.5

 1

-6 -4 -2 0 2 4 6

Y

X

Actual Curve
Approximated Curve

(b) GA

-1

-0.5

 0

 0.5

 1

-6 -4 -2 0 2 4 6

Y

X

Actual Curve
Approximated Curve

(c) DE

-1

-0.5

 0

 0.5

 1

-6 -4 -2 0 2 4 6

Y

X

Actual Curve
Approximated Curve

(d) ES

-1

-0.5

 0

 0.5

 1

-6 -4 -2 0 2 4 6

Y

X

Actual Curve
Approximated Curve

(e) PSO

-1

-0.5

 0

 0.5

 1

-6 -4 -2 0 2 4 6

Y

X

Actual Curve
Approximated Curve

(f) ACO

-1

-0.5

 0

 0.5

 1

-6 -4 -2 0 2 4 6

Y

X

Actual Curve
Approximated Curve

(g) ABC

Fig. 6 Approximated curves versus actual curves for sine function

1334 Cluster Computing (2019) 22:1317–1345

123

presented almost three decades ago. In [14] Ricker pro-

vided a revision of his original TE process model presented

in [43].

Tennessee Eastman chemical process reactor was

explored in a number of publications [2, 73]. The reactor

process is decomposed of four subsystems: reactor level,

reactor pressure, reactor cooling water temperature, and

reactor temperature subsystems. The TE chemical reactor

process, given in Fig. 10, was simulated for control pur-

poses in [72, 77]. The use of BP neural network for mod-

eling the TE chemical process was proposed in 1990. Bhat

and McAvoy [16] were among the first whom used ANNs

for modeling nonlinear chemical processes. They show that

two layer BP-ANN is equivalent to the procedure of

impulse response convolution modeling of linear systems.

However, the standard BP learning algorithm suffers

from many drawbacks such as slow convergence, lack of

robustness, and inefficiency [10, 50]. To address the slow

convergence rate problem of the BP learning algorithm,

many researchers proposed the use of conjugate gradient

method to provide a faster convergence as given in

[46, 51, 67]. In this section, we explore the use of BSA

algorithm to learn the MLP to solve TE problem. Table 23

shows the summary of the reactor sub-problems with the

number of the training and testing samples, and MLP

structures that are used in this experiment.

The experimental results of modeling the TE reactor for

Level, Pressure, Cooling, and Temperature sub-problems

using BSA-MLP optimizer and other meta-heuristics

optimizes algorithms are reported in Tables 24, 25, 26, and

27, respectively.

Inspecting the results presented in Tables 24, 25, 26, and

27, it can be noted that the average VAF, MSE, and MAE

results show that BSA outperforms other meta-heuristics in

Level, Pressure, and Cooling reactors, and it provides very

competitive results in the Temperature reactor. In addition,

the p-values of the statistical tests show that the differences

between BSA results and the majority of other meta-

heuristics are statistically significant. These results prove

that BSA is very effective in learning the MLPs.

Finally, the BP, and LM results for different TE reactors

sub-problems in terms of VAF, MSE, MAE, and p-values

are reported in Table 28. The results show that the BSA

learner has the best results compared to BP and LM

learners in all TE sub-problems.

The performance of the BSA-MLP in tracking the actual

TE process through the testing stage of the Level, Pressure,

Cooling, and Temperature reactors is shown in Fig. 11.

The approximation curves in Fig. 11 verify that the ability

of BSA algorithm to represent the behavior of the TE

process.

Figure 12 shows the convergence curves of BSA, DE,

GA, PSO, ACO, ES, and ABC based on averages of the

MSE for TE reactors sub-problems. These convergence

curves prove that BSA achieves the fastest convergence for

the all sub-problems.

To sum up, the results and discussions of this paper

showed that the BSA algorithm is able to efficiently train

Table 19 MSE and test error

(MAE) results for Sine dataset
Algorithm MSE (AVE ± STD) p-values Test Error (AVE ± STD)

BSA 0.426660 ± 0.022908 0.61 142.8721 – 5.914724

GA 0.426332 – 0.018264 N/A 143.2926 ± 4.845956

DE 0.482856 ± 0.002272 3.02E-11 155.2637 ± 0.794425

ES 0.450017 ± 0.005971 3.47E-10 145.6933 ± 1.405172

PSO 0.445715 ± 0.010231 2.20E-07 145.6614 ± 2.850955

ACO 0.453036 ± 0.010317 2.67E-09 148.6939 ± 3.249246

ABC 0.445424 ± 0.015359 2.00E-06 146.0510 ± 4.223806

The best results are marked in bold

Table 20 MSE and test error

(MAE) results for Sphere

dataset

Algorithm MSE (AVE ± STD) p-values Test Error (AVE ± STD)

BSA 0.129917 – 0.024166 N/A 12.1338 – 1.061407

GA 0.148478 ± 0.028735 0.0112 12.2941 ± 1.180819

DE 3.506696 ± 0.902888 3.02E-11 63.3252 ± 9.598388

ES 0.697140 ± 0.254678 3.02E-11 26.5494 ± 5.106035

PSO 0.294729 ± 0.063154 3.69E-11 17.1874 ± 2.095087

ACO 2.434236 ± 0.906094 3.02E-11 48.8703 ± 11.375460

ABC 0.506430 ± 0.154559 3.02E-11 22.3203 ± 3.733071

The best results are marked in bold

Cluster Computing (2019) 22:1317–1345 1335

123

-2 -1 0 1 2-2
-1

 0
 1

 2
 0
 2
 4
 6
 8

Z

X
Y

Z

 0
 1
 2
 3
 4
 5
 6
 7
 8

-2 -1 0 1 2-2
-1

 0
 1

 2
 0
 2
 4
 6
 8

Z

X
Y

Z

 0
 1
 2
 3
 4
 5
 6
 7
 8

-2 -1 0 1 2-2
-1

 0
 1

 2
 0
 2
 4
 6
 8

Z

X
Y

Z

 0
 1
 2
 3
 4
 5
 6
 7

-2 -1 0 1 2-2
-1

 0
 1

 2
 0
 2
 4
 6
 8

Z

X
Y

Z

 1.5
 2
 2.5
 3
 3.5
 4
 4.5

-2 -1 0 1 2-2
-1

 0
 1

 2
 0
 2
 4
 6
 8

Z

X
Y

Z

 0
 1
 2
 3
 4
 5
 6
 7

-2 -1 0 1 2-2
-1

 0
 1

 2
 0
 2
 4
 6
 8

Z

X
Y

Z

 0
 1
 2
 3
 4
 5
 6
 7

-2 -1 0 1 2-2
-1

 0
 1

 2
 0
 2
 4
 6
 8

Z

X
Y

Z

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

-2 -1 0 1 2-2
-1

 0
 1

 2
 0
 2
 4
 6
 8

Z

X
Y

Z

 0
 1
 2
 3
 4
 5
 6
 7

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 7 Approximated curves versus actual curve for sphere function

1336 Cluster Computing (2019) 22:1317–1345

123

MLP to classify different datasets. The superiority of the

results compared to BP and LM algorithms is due to the

gradient-free mechanism of BSA. The search space of

training MLP changes for every dataset and consequently a

training algorithm deals with a different search space when

changing a dataset. Real datasets and all the benchmark

datasets employed in this work are very challenging and

their search spaces have a massive number of local solu-

tions. Therefore, an algorithm should be able to avoid local

solutions to eventually determine the global optimum. BP

and LM are gradient-based algorithms which intrinsically

suffer from local optima stagnation. This was the main

reason of their poor performance on the benchmark data-

sets. On the other hand, BSA is a stochastic algorithm and

 0

 0.004

 0.008

 0.012

 0.016

 0 50

(a) (b) (c)

 100 150 200 250

M
S

E

#Iterations

BSA
GA
DE
ES

PSO
ACO
ABC

 0.4

 0.5

 0.6

 0 50 100 150 200 250

M
S

E

#Iterations

BSA
GA
DE
ES

PSO
ACO
ABC

 0.8

 1.6

 2.4

 3.2

 4

 4.8

 5.6

 6.4

 0 50 100 150 200 250

M
S

E

#Iterations

BSA
GA
DE
ES

PSO
ACO
ABC

Fig. 8 Convergence curves for sigmod, sine, and sphere functions

Table 21 Test error, p-values, and MSE, for BSA, BP, and LM on Sigmoid, Sine, and Sphere function approximation datasets

Dataset/optimizer BSA LM BP

Sigmoid

Test error (AVE ± STD) 0.6916 ± 0.3580 0.1854 ± 0.2018 29.6807 ± 16.8143

p-values 4.57E-09 N/A 3.02E-11

MSE (AVE ± STD) 6.41E-05 ± 6.41E-05 8.33E-06 ± 2.06E-05 1.10E-01 ± 1.05E-01

Sine

Test error (AVE ± STD) 142.8721 ± 5.9147 111.5707 ± 8.8675 156.6969 ± 5.2270

p-values 2.98E-11 N/A 2.98E-11

MSE (AVE ± STD) 4.27E-01 ± 2.29E-02 3.13E-01 ± 3.28E-02 4.86E-01 ± 2.84E-02

Sphere

Test error (AVE ± STD) 12.1338 ± 1.0614 15.0053 ± 25.6014 15.7599 ± 8.9057

p-values N/A 9.79E-05 5.61E-05

MSE (AVE ± STD) 12.99E-02 ± 2.42E-02 1.38E?00 ± 3.16E?00 4.14E-01 ± 1.26E?00

The best results are marked in bold

Table 22 Final statistical results on a variety of measures

BSA DE GA PSO ACO ES ABC LM BP

W L T W L T W L T W L T W L T W L T W L T W L T W L T

Class. rate or Test

Err.

11 3 2 0 16 0 1 13 2 1 13 2 0 16 0 1 13 2 1 14 2 3 13 0 0 16 0

Significant (p-

values)

10 4 2 0 16 0 2 12 2 1 13 2 0 16 0 1 13 2 1 13 2 3 13 0 0 16 0

Total 21 7 4 0 32 0 3 25 4 2 26 4 0 32 0 2 26 4 2 27 4 6 26 0 0 32 0

Ranking

(Friedman)

1.7308 5.9231 2.8462 3.4615 7.0385 4.6923 3.9231 6.6923 8.6923

The best results are marked in bold

The table values represent the Number of datasets each algorithm won/losses/ties on a variety of measures

Cluster Computing (2019) 22:1317–1345 1337

123

benefits from a substantially better local optima avoidance.

The results proved that BSA is significantly better than BP

and LM, which is due to randomness in this algorithm and

less probability of local optima avoidance. The discrepancy

results of BSA and BP/LM when solving the real case

study evidently showed the importance of a stochastic

trainer when solving real problems.

BSA also outperformed the current stochastic algo-

rithms on the majority of datasets. BSA were more efficient

than PSO since this algorithm divides the particles to dif-

ferent groups with diverse behaviors. In the basic version

of PSO, all the particles are considered the same and per-

form the search in a similar manner. The particles in BSA,

however, show different search patters with more ran-

domness which results in a better local optima avoidance.

The convergence curves on the benchmark functions

showed that this might negatively impacts the convergence

rate, yet it is essential when training MLPs due to the large

number of local solutions. The ACO algorithm showed

worst results in many of the datasets. This algorithm

evolves a matrix of metronomes and suits best for combi-

natorial problems. This is why the BSA algorithm managed

to outperform this algorithm on all the datasets.

GA, ES, and DA are all evolutionary algorithms which

intrinsically own a higher exploration and local optima

avoidance compared to swarm intelligence techniques.

However, the results of this study showed that BSA, as a

Fig. 9 A simplified diagram of

the Tennessee Eastman

challenge process [43]

Fig. 10 Description of the reactor system [12]

Table 23 Summary of the TE

chemical reactor sub-problems
Problem no. Problem name #attributes #train samples #test samples MLP structure

1 Level 4 150 150 4–9–1

2 Pressure 4 150 150 4–9–1

3 Cooling temperature 4 150 150 4-9–1

4 Temperature 4 150 150 4–9–1

1338 Cluster Computing (2019) 22:1317–1345

123

swarm intelligence technique, provide very competitive

results and tend to be superior. This is due to the

involvement of all individuals in defining the center of

swarm and their impacts on the overall movement. This

mechanism encourages particles not to converge to the

local optima and show better exploration compared to other

swarm intelligence techniques. This assists BSA to com-

pete with evolutionary algorithms very well in terms of

exploration of the search space and avoiding local

solutions.

Table 24 VAF, MSE, p-values,

and MAE results for reactor

level sub-problem

Algorithm VAF (AVE ± STD) MSE (AVE ± STD) p-values MAE (AVE ± STD)

BSA 57.3666 ± 1.1140 0.4321 ± 0.0119 N/A 0.5224 ± 0.0062

GA 57.1058 ± 1.5292 0.4407 ± 0.0195 0.3075 0.5258 ± 0.0095

DE 34.4535 ± 14.0966 0.7673 ± 0.1417 1.83E-04 0.6947 ± 0.0700

ES 22.9420 ± 37.7420 0.8253 ± 0.4316 1.83E-04 0.7304 ± 0.1775

PSO 49.0539 ± 3.9203 0.5260 ± 0.0464 5.83E-04 0.5786 ± 0.0243

ACO 1.7336 ± 11.1505 1.0819 ± 0.1564 1.83E-04 0.8326 ± 0.0708

ABC 44.0884 ± 11.8402 0.5998 ± 0.1187 1.83E-04 0.6218 ± 0.0542

The best results are marked in bold

Table 25 VAF, MSE, p-values,

and MAE results for reactor

pressure sub-problem

Algorithm VAF (AVE ± STD) MSE (AVE ± STD) p-values MAE (AVE ± STD)

BSA 41.2088 ± 1.5064 0.0411 ± 0.0012 N/A 0.1623 ± 0.0022

GA 40.1118 ± 1.1170 0.0415 ± 0.0007 0.0890 0.1632 ± 0.0018

DE 14.2230 ± 14.8915 0.0610 ± 0.0108 1.83E-04 0.1978 ± 0.0185

ES 5.9268 ± 12.9509 0.0670 ± 0.0127 1.81E-04 0.2022 ± 0.0213

PSO 32.8378 ± 3.4979 0.0471 ± 0.0024 2.46E-04 0.1737 ± 0.0055

ACO 6.35690 ± 11.1727 0.0692 ± 0.0077 1.83E-04 0.2112 ± 0.0143

ABC 19.3026 ± 12.9417 0.0570 ± 0.0086 1.83E-04 0.1853 ± 0.0127

The best results are marked in bold

Table 26 VAF, MSE, p-values,

and MAE results for reactor

cooling sub-problem

Algorithm VAF (AVE ± STD) MSE (AVE ± STD) p-values MAE (AVE ± STD)

BSA 73.2451 ± 1.3723 0.001069 ± 0.0001 N/A 0.0220 ± 0.0006

GA 71.7688 ± 1.3724 0.001143 ± 0.0001 0.0211 0.0226 ± 0.0006

DE 70.0409 ± 5.9681 0.001244 ± 0.0003 0.1859 0.0246 ± 0.0036

ES 71.5651 ± 4.6791 0.001184 ± 0.0001 0.0640 0.0242 ± 0.0027

PSO 73.0226 ± 1.4820 0.001078 ± 0.0001 0.6232 0.0224 ± 0.0012

ACO 69.6228 ± 2.3113 0.001194 ± 0.0002 0.0376 0.024965 ± 0.0020

ABC 71.8410 ± 3.7949 0.001149 ± 0.0002 0.5708 0.0231 ± 0.0018

The best results are marked in bold

Table 27 VAF, MSE, p-values,

and MAE results for reactor

temperature sub-problem

Algorithm VAF (AVE ± STD) MSE (AVE ± STD) p-values MAE (AVE ± STD)

BSA 98.5775 ± 0.5889 0.003160 ± 0.0012 0.6776 0.0440 ± 0.0086

GA 98.6946 ± 0.3904 0.002852 ± 0.0008 N/A 0.0432 ± 0.0069

DE 89.1314 ± 4.2085 0.027535 ± 0.0097 1.83E-04 0.1346 ± 0.0309

ES 89.5911 ± 10.5617 0.025540 ± 0.0231 1.83E-04 0.1290 ± 0.0417

PSO 96.3750 ± 1.3878 0.008312 ± 0.0030 1.83E-04 0.0736 ± 0.0152

ACO 82.3085 ± 3.4616 0.052792 ± 0.0084 1.83E-04 0.1827 ± 0.0246

ABC 93.1904 ± 1.4173 0.016919 ± 0.0034 1.83E-04 0.1054 ± 0.0103

The best results are marked in bold

Cluster Computing (2019) 22:1317–1345 1339

123

Table 28 AF, p-values, MSE,

and MAE for BSA, BP, and

LM, learners on all TE reactor

sub-problems

Sub-problem/

optimizer

BSA BP LM

Level

VAF (AVE ± STD) 57.3666 ± 1.1140 52.7786 ± 4.8022 - 18.19654 ± 37.2888

MSE

(AVE ± STD)

0.4321 ± 0.0119 0.4819 ± 0.0576 1.8705 ± 1.9272

p-values N/A 0.0113 1.83E-04

MAE

(AVE ± STD)

0.5224 ± 0.0062 0.5536 ± 0.0304 1.0047 ± 0.5345

Pressure

VAF (AVE ± STD) 41.2088 ± 1.5064 -85.5850 ± 70.6489 -42.7350 ± 32.1506

MSE

(AVE ± STD)

0.0411 ± 0.0012 0.1695 ± 0.1064 0.1001 ± 0.0226

p-values N/A 7.69E-04 1.83E-04

MAE

(AVE ± STD)

0.1623 ± 0.0022 0.3252 ± 0.1184 0.2326 ± 0.0258

Cooling

VAF (AVE ± STD) 73.2451 ± 1.3723 -45.5397 ± 57.1028 65.2363 ± 15.5368

MSE

(AVE ± STD)

0.0011 ± 0.0001 0.0062 ± 0.0016 0.0014 ± 0.0007

p-values N/A 1.83E-04 1.83E-04

MAE

(AVE ± STD)

0.0220 ± 0.0006 0.0644 ± 0.0110 0.0240 ± 0.0033

Temperature

VAF (AVE ± STD) 98.5775 ± 0.5889 82.7270 ± 12.8165 70.0980 ± 61.4790

MSE

(AVE ± STD)

0.0031 ± 0.0012 0.0378 ± 0.0279 0.1396 ± 0.3068

p-values N/A 1.83E-04 0.0028

MAE

(AVE ± STD)

0.0440 ± 0.0086 0.1510 ± 0.0497 0.1643 ± 0.2964

The best results are marked in bold

 72

 74

 76

 78

 80

 30 60 90 120 150

A
m

pl
itu

de

Time (Samples)

Observed Reactor Level Detection

Actual Curve
Approximated Curve (BSA)

(a)

 119.5

 120

 120.5

 121

 121.5

 122

 30 60 90 120 150

A
m

pl
itu

de

Time (Samples)

Observed Reactor Pressure Detection

Actual Curve
Approximated Curve (BSA)

(b)

 2.4

 2.5

 2.6

 2.7

 2.8

 2.9

 30 60 90 120 150

A
m

pl
itu

de

Time (Samples)

Observed Reactor Cooling Detection

Actual Curve
Approximated Curve (BSA)

(c)

 94

 95

 96

 97

 30 60 90 120 150

A
m

pl
itu

de

Time (Samples)

Observed Reactor Temperature Detection

Actual Curve
Approximated Curve (BSA)

(d)

Fig. 11 Approximated curves

versus actual curve for all

reactor sub-problems

1340 Cluster Computing (2019) 22:1317–1345

123

Another finding of this work was the consistent perfor-

mance of BSA on classification, function approximation,

and real datasets. The performance of BSA did not get

degraded remarkably in any of the dataset which shows the

robustness of this algorithm. The three sets of problems

employed in this work have different natures and tested the

performance of BSA from different perspective. The

results showed that BSA is very flexible to solve a diverse

set of problem. This is due to the fact that BSA considers

training of MLP as a black box. It just tunes the variables

of this problem and observes its outputs to improve the

performance. This is also the reason of superiority of all

stochastic algorithms in the work on all datasets compared

to BP and LM. After this comprehensive study, we assert

that BSA has merits to be considered as a training algo-

rithms for MLP and other ANNs. Due to the stochastic

nature of this algorithm and the so-called NFL theorem,

however, it does solve the problem of training MLP and

might show poor performance on a particular set of

problems.

7 Conclusion

This paper proposed a new evolutionary MLP based on the

recent BSA algorithm. The main motivation for selecting

BSA as a trainer was its structure, in which particles are

divided to different groups and benefit from a very high

local optima avoidance compared to similar algorithms.

We first formulated the problem of training MLP and then

proposed a BSA-based trainer for optimizing this problem.

To test the performance of this new trainer, three main

phases of experiments were conducted. In the first phase,

13 well-regarded and challenging classification datasets

were employed. In the second phase, three function

approximation datasets were created and used to test the

proposed algorithm. In the last phase, a real dataset for a

reactor system was solved to prove the applicability of the

BSA trainer. For results verification, nine algorithms

including seven stochastic and two classical training

algorithm were employed. The obtained results were

compared quantitatively and qualitatively. For quantitative

results, a set of performance indicators was selected: MSE,

Test error, classification error, and Wilcoxons ranksum

test. For the qualitative results, the convergence and shape

of the approximated functions were visualized in the paper.

The results proved that the BSA is able to train MLP for

classifying a wide range of datasets with different charac-

teristics. BSA showed very competitive results in all per-

formance indicators, although the convergence speed was

not very fast in some of the case studies. The superiority of

the results of BSA can be explained by the high local

optima avoidance which was proved to be beneficial when

classifying challenging datasets. The results of the real case

study testified the performance of the proposed BSA trainer

in practice. As per the results, discussions, findings, and

analyses of this work, we offer the BSA trainer as a very

reliable and robust alternative to the current training

algorithms for MLP to be applied to different datasets.

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 50 100 150 200 250

M
S

E

#Iterations

Reactor Level Detection

DE
GA
PSO
ACO
ES
ABC
BSA

(a)

 0.02

 0.04

 0.06

 0.08

 0.1

 0 50 100 150 200 250

M
S

E

#Iterations

Reactor Pressure Detection

DE
GA
PSO
ACO
ES
ABC
BSA

(b)

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0 50 100 150 200 250

M
S

E

#Iterations

Reactor Cooling Detection

DE
GA
PSO
ACO
ES
ABC
BSA

(c)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 50 100 150 200 250

M
S

E

#Iterations

Reactor Cooling Detection

DE
GA
PSO
ACO
ES
ABC
BSA

(d)

Fig. 12 Convergence curves for

all reactor sub-problems

Cluster Computing (2019) 22:1317–1345 1341

123

The promising results of BSA in training the single-

hidden layer network give a strong motivation to extend

this work and investigate its efficiency in training deeper

neural networks with more hidden layers. It is interesting

also design the BSA trainer in way to include other

important parameters of the MLP network such as the

number of hidden neurons and the structure of the network.

In order to develop more efficient implementation of the

proposed trainer, it is planned also to implement this trainer

as part of EvoloPy which is nature-inspired optimization

framework in Python developed by the authors.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of

interest.

References

1. Adwan, O., Faris, H., Jaradat, K., Harfoushi, O., Ghatasheh, N.:

Predicting customer churn in telecom industry using multilayer

preceptron neural networks: modeling and analysis. Life Sci. J.

11(3), 75–81 (2014)

2. Al-Hiary, H., Sheta, A., Ayesh, A.: Identification of a chemical

process reactor using soft computing techniques. In: Proceedings

of the 2008 International Conference on Fuzzy Systems

(FUZZ2008) within the 2008 IEEE World Congress on Com-

putational Intelligence (WCCI2008), Hong Kong, 1–6 June,

pp. 845–653 (2008)

3. Al-Shayea, Q.K.: Artificial neural networks in medical diagno-

sis. Int. J. Comput. Sci. Issues 8(2), 150–154 (2011)

4. Alboaneen, D.A., Tianfield, H., Zhang, Y.: Glowworm swarm

optimisation for training multi-layer perceptrons. In: Proceed-

ings of the Fourth IEEE/ACM International Conference on Big

Data Computing, Applications and Technologies, BDCAT ’17,

pp. 131–138, New York, NY (2017). ACM

5. Aljarah, I., Ludwig, S.A.: A mapreduce based glowworm swarm

optimization approach for multimodal functions. In: 2013 IEEE

Symposium on Swarm Intelligence (SIS), pp. 22–31. IEEE

(2013)

6. Aljarah, I., Ludwig, S.A.: Towards a scalable intrusion detection

system based on parallel pso clustering using MapReduce. In:

Proceedings of the 15th Annual Conference Companion on

Genetic and Evolutionary Computation, pp. 169–170. ACM

(2013)

7. Aljarah, I., Ludwig, S.A.: A scalable mapreduce-enabled

glowworm swarm optimization approach for high dimensional

multimodal functions. Int. J. Swarm Intell. Res. (IJSIR) 7(1),

32–54 (2016)

8. Aljarah, I., Faris, H., Mirjalili, S.: Optimizing connection

weights in neural networks using the whale optimization algo-

rithm. Soft Comput. 22(1), 1–15 (2018)

9. Aljarah, I., Faris, H., Mirjalili, S., Al-Madi, N.: Training radial

basis function networks using biogeography-based optimizer.

Neural Comput. Appl. 29(7), 529–553 (2018)

10. Amaldi, E., Mayoraz, E., de Werra, D.: A review of combina-

torial problems arising in feedforward neural network design.

Discret. Appl. Math. 52(2), 111–138 (1994)

11. Arifovic, J., Gencay, R.: Using genetic algorithms to select

architecture of a feedforward artificial neural network. Physica

A 289(3), 574–594 (2001)

12. Barton, I.P., Martinsen, S.W.: Equation-oriented simulator

training. In Proceedings of the American Control Conference,

Albuquerque, New Mexico, pp. 2960–2965 (1997)

13. Basheer, I.A., Hajmeer, M.: Artificial neural networks: funda-

mentals, computing, design, and application. J. Microbiol.

Methods 43(1), 3–31 (2000)

14. Bathelt, A., Ricker, N.L., Jelali, M.: Revision of the Tennessee

Eastman process model. IFAC-PapersOnLine 48(8), 309–314

(2015)

15. Bebis, G., Georgiopoulos, M.: Feed-forward neural networks.

IEEE Potentials 13(4), 27–31 (1994)

16. Bhat, N., McAvoy, T.J.: Use of neural nets for dynamic mod-

eling and control of chemical process systems. Comput. Chem.

Eng. 14, 573–582 (1990)

17. Bornholdt, S., Graudenz, D.: General asymmetric neural net-

works and structure design by genetic algorithms. Neural Netw.

5(2), 327–334 (1992)

18. Boussaı̈D, I., Lepagnot, J., Siarry, P.: A survey on optimization

metaheuristics. Inf. Sci. 237, 82–117 (2013)

19. Brajevic, I., Tuba, M.: Training feed-forward neural networks

using firefly algorithm. In: Proceedings of the 12th International

Conference on Artificial Intelligence, Knowledge Engineering

and Data Bases (AIKED’13), pp. 156–161 (2013)

20. Buscema, M.: Back propagation neural networks. Subst. Use

Misuse 33(2), 233–270 (1998)

21. Chen, C.L.P.: A rapid supervised learning neural network for

function interpolation and approximation. IEEE Trans. Neural

Netw. 7(5), 1220–1230 (1996)

22. Downs, J.J., Vogel, E.F.: A plant-wide industrial process control

problem. Comput. Chem. Eng. 17(3), 245–255 (1993)

23. Engelbrecht, A.P.: Supervised learning neural networks. Com-

putational Intelligence: An Introduction, 2nd edn., pp. 27-54.

Wiley, Singapore (2007)

24. Faris, H., Alkasassbeh, M., Rodan, A.: Artificial neural networks

for surface ozone prediction: models and analysis. Pol. J. Envi-

ron. Stud. 23(2), 341–348 (2014)

25. Faris, H., Aljarah, I., et al.: Optimizing feedforward neural

networks using krill herd algorithm for e-mail spam detection.

In: 2015 IEEE Jordan Conference on Applied Electrical Engi-

neering and Computing Technologies (AEECT), pp. 1–5. IEEE

(2015)

26. Faris, H., Aljarah, I., Al-Madi, N., Mirjalili, S.: Optimizing the

learning process of feedforward neural networks using lightning

search algorithm. Int. J. Artif. Intell. Tools 25(06), 1650033

(2016)

27. Faris, H., Aljarah, I., Mirjalili, S.: Training feedforward neural

networks using multi-verse optimizer for binary classification

problems. Applied Intelligence, pp. 1–11 (2016)

28. Faris, H., Aljarah, I., Mirjalili, S.: Evolving radial basis function

networks using moth–flame optimizer. In: Handbook of Neural

Computation, pp. 537–550. Elsevier (2017)

29. Faris, H., Aljarah, I., Mirjalili, S.: Improved monarch butterfly

optimization for unconstrained global search and neural network

training. Appl. Intell. 48(2), 445–464 (2018)

30. Galić, E., Höhfeld, M.: Improving the generalization perfor-

mance of multi-layer-perceptrons with population-based incre-

mental learning. In: International Conference on Parallel

Problem Solving from Nature, pp. 740–750. Springer (1996)

31. Garro, B.A., Vázquez, R.A.: Designing artificial neural networks

using particle swarm optimization algorithms. Comput. Intell.

Neurosci. https://doi.org/10.1155/2015/369298 (2015)

32. Goerick, C., Rodemann, T.: Evolution strategies: an alternative

to gradient-based learning. In: Proceedings of the International

1342 Cluster Computing (2019) 22:1317–1345

123

https://doi.org/10.1155/2015/369298

Conference on Engineering Applications of Neural Networks,

vol. 1, pp. 479–482 (1996)

33. Goldberg, D.E. et al.: Genetic Algorithms in Search Optimiza-

tion and Machine Learning, vol. 412. Addison-Wesley, Reading

(1989)

34. Golfinopoulos, E., Tourville, J.A., Guenther, F.H.: The inte-

gration of large-scale neural network modeling and functional

brain imaging in speech motor control. Neuroimage 52(3),

862–874 (2010)

35. Gupta, J.N.D., Sexton, R.S.: Comparing backpropagation with a

genetic algorithm for neural network training. Omega 27(6),

679–684 (1999)

36. Gupta, M.M., Jin, L., Homma, N.: Radial basis function neural

networks. In: Static and Dynamic Neural Networks: From

Fundamentals to Advanced Theory, pp. 223–252 (2003)

37. Hansel, D., Sompolinsky, H.: Learning from examples in a

single-layer neural network. EPL Europhys. Lett. 11(7), 687

(1990)

38. Heidari, A.A., Faris, H., Aljarah, I., Mirjalili, S.: An efficient

hybrid multilayer perceptron neural network with grasshopper

optimization. Soft Comput. https://doi.org/10.1007/s00500-018-

3424-2(2018)

39. Ho, Y.-C., Pepyne, D.L.: Simple explanation of the no-free-

lunch theorem and its implications. J. Optim. Theory Appl.

115(3), 549–570 (2002)

40. Hush, D.R., Horne, B.G.: Progress in supervised neural net-

works. IEEE Signal Process. Mag. 10(1), 8–39 (1993)

41. Hwang, Y.-S., Bang, S.-Y.: An efficient method to construct a

radial basis function neural network classifier. Neural Netw.

10(8), 1495–1503 (1997)

42. Ilonen, J., Kamarainen, J.-K., Lampinen, J.: Differential evolu-

tion training algorithm for feed-forward neural networks. Neural

Process. Lett. 17(1), 93–105 (2003)

43. Juricek, B.C., Seborg, D.E., Larimore, W.E.: Identification of

the tennessee eastman challenge process with subspace methods.

Control Eng. Pract. 9(12), 1337–1351 (2001)

44. Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement

learning: a survey. J. Artif. Intell. Res. 4, 237–285 (1996)

45. Karaboga, D., Akay, B., Ozturk, C.: Artificial bee colony (abc)

optimization algorithm for training feed-forward neural net-

works. In: International Conference on Modeling Decisions for

Artificial Intelligence, pp. 318–329. Springer (2007)

46. Karim, M.N., Rivera, S.L.: Artificial neural networks in bio-

process state estimation. Adv. Biochem. Eng. Biotechnol. 46,

1–31 (1992)

47. Khan, K., Sahai, A.: A comparison of ba, ga, pso, bp and lm for

training feed forward neural networks in e-learning context. Int.

J. Intell. Syst. Appl. 4(7), 23 (2012)

48. Kowalski, P.A., Łukasik, S.: Training neural networks with krill

herd algorithm. Neural Process. Lett. 44, 5–17 (2015)

49. Kruse, R., Borgelt, C., Klawonn, F., Moewes, C., Steinbrecher,

M., Held, P.: Multi-layer perceptrons. In: Computational Intel-

ligence, pp. 47–81. Springer (2013)

50. Larochelle, H., Bengio, Y., Louradour, J., Lamblin, P.:

Exploring strategies for training deep neural networks. J. Mach.

Learn. Res. 10, 1–40 (2009)

51. Leonard, J., Kramer, M.A.: Improvement of the Backpropaga-

tion algorithm for training neural networks. Comput. Chem.

Eng. 14, 337–343 (1990)

52. Leshno, M., Lin, V.Y., Pinkus, A., Schocken, S.: Multilayer feed-

forward networks with a nonpolynomial activation function can

approximate any function. Neural Netw. 6(6), 861–867 (1993)

53. Leung, F.H.-F., Lam, H.-K., Ling, S.-H., Tam, P.K.-S.: Tuning

of the structure and parameters of a neural network using an

improved genetic algorithm. IEEE Trans. Neural Netw. 14(1),

79–88 (2003)

54. Lichman, M.: UCI Machine Learning Repository. University of

California, School of Information and Computer Science, Irvine

(2013)

55. Lippmann, R.P.: Pattern classification using neural networks.

IEEE Commun. Mag. 27(11), 47–50 (1989)

56. Lo, S.-C.B., Chan, H.-P., Lin, J.-S., Li, H., Freedman, M.T.,

Mun, S.K.: Artificial convolution neural network for medical

image pattern recognition. Neural Netw. 8(7), 1201–1214 (1995)

57. Mavrovouniotis, M., Yang, S.: Training neural networks with

ant colony optimization algorithms for pattern classification.

Soft Comput. 19(6), 1511–1522 (2015)

58. Meissner, M., Schmuker, M., Schneider, G.: Optimized particle

swarm optimization (OPSO) and its application to artificial

neural network training. BMC Bioinform. 7(1), 125 (2006)

59. Melin, P., Castillo, O.: Unsupervised learning neural networks.

In: Hybrid Intelligent Systems for Pattern Recognition Using

Soft Computing, pp. 85–107. Springer (2005)

60. Meng, X.-B., Gao, X.Z., Lu, L., Liu, Y., Zhang, H.: A new bio-

inspired optimisation algorithm: bird swarm algorithm. J. Exp.

Theor. Artif. Intell. https://doi.org/10.1080/0952813X.2015.

1042530(2015)

61. Merkl, D., Rauber, A.: Document classification with unsuper-

vised artificial neural networks. In: Soft Computing in Infor-

mation Retrieval, pp. 102–121. Springer (2000)

62. Mezura-Montes, E., Velázquez-Reyes, J., Coello Coello, C.A.:

A comparative study of differential evolution variants for global

optimization. In: Proceedings of the 8th Annual Conference on

Genetic and Evolutionary Computation, pp. 485–492. ACM

(2006)

63. Mirjalili, S.: How effective is the grey wolf optimizer in training

multi-layer perceptrons. Appl. Intell. 43(1), 150–161 (2015)

64. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Let a biogeography-

based optimizer train your multi-layer perceptron. Inf. Sci. 269,

188–209 (2014)

65. Mitchell, T.M: Artificial neural networks. Machine Learning,

pp. 81–127 (1997)

66. Montana, D.J., Davis, L.: Training feedforward neural networks

using genetic algorithms. IJCAI 89, 762–767 (1989)

67. Nahas, E.P., Henson, M.A., Seborg, D.E.: Nonlinear internal

model control strategy for neural network models. Comput.

Chem. Eng. 16, 1039–1057 (1992)

68. Nawi, N.M., Khan, A., Rehman, M.Z., Tutut H., Mustafa, M.D.:

Comparing performances of cuckoo search based neural net-

works. In: Recent Advances on Soft Computing and Data

Mining, pp. 163–172. Springer (2014)

69. Parisi, R., Di Claudio, E.D., Lucarelli, G., Orlandi, G.: Car plate

recognition by neural networks and image processing. In: Pro-

ceedings of the 1998 IEEE International Symposium on Circuits

and Systems, 1998. ISCAS’98, vol. 3, pp. 195–198. IEEE (1998)

70. Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of

training recurrent neural networks. ICML 3(28), 1310–1318

(2013)

71. Principe, J.C., Fancourt, C.L.: Artificial neural networks. In:

Pardalos, P.M., Romejin, H.E. (eds.) Handbook of Global

Optimization, vol. 2, pp. 363–386. Kluwer, Dordrecht (2013)

72. Ricker, N.L.: Nonlinear model predictive control of the ten-

nessee eastman challenge process. Comput. Chem. Eng. 19(9),

961–981 (1995)

73. Ricker, N.L.: Nonlinear modeling and state estimation of the

tennessee eastman challenge process. Comput. Chem. Eng.

19(9), 983–1005 (1995)

74. Ricker, N.L.: Tennessee Eastman challenge archive (2005)

75. Sanger, T.D.: Optimal unsupervised learning in a single-layer

linear feedforward neural network. Neural Netw. 2(6), 459–473

(1989)

Cluster Computing (2019) 22:1317–1345 1343

123

https://doi.org/10.1007/s00500-018-3424-2
https://doi.org/10.1007/s00500-018-3424-2
https://doi.org/10.1080/0952813X.2015.1042530
https://doi.org/10.1080/0952813X.2015.1042530

76. Seiffert, U.: Multiple layer perceptron training using genetic

algorithms. In: ESANN, pp. 159–164. Citeseer (2001)

77. Sheta, A., Al-Hiary, Heba, Braik, Malik: Identification and

model predictive controller design of the Tennessee Eastman

chemical process using ann. In: Proceedings of the 2009 Inter-

national Conference on Artificial Intelligence (ICAI’09), July

13–16, USA, vol. 1, pp. 25–31 (2009)

78. Sibi, P., Allwyn Jones, S., Siddarth, P.: Analysis of different

activation functions using back propagation neural networks.

J. Theor. Appl. Inf. Technol. 47(3), 1264–1268 (2013)

79. Simon, D.: Biogeography-based optimization. IEEE Trans.

Evol. Comput. 12(6), 702–713 (2008)

80. Sivagaminathan, R.K., Ramakrishnan, S.: A hybrid approach for

feature subset selection using neural networks and ant colony

optimization. Expert Syst. Appl. 33(1), 49–60 (2007)

81. Slowik, A., Bialko, M.: Training of artificial neural networks

using differential evolution algorithm. In: 2008 Conference on

Human System Interactions, pp. 60–65. IEEE (2008)

82. Socha, K., Blum, C.: An ant colony optimization algorithm for

continuous optimization: application to feed-forward neural

network training. Neural Comput. Appl. 16(3), 235–247 (2007)

83. Stanley, K.O.: Efficient reinforcement learning through evolving

neural network topologies. In: Proceedings of the Genetic and

Evolutionary Computation Conference (GECCO-2002). Cite-

seer (2002)

84. Subudhi, B., Jena, D.: Differential evolution and Levenberg

Marquardt trained neural network scheme for nonlinear system

identification. Neural Process. Lett. 27(3), 285–296 (2008)

85. Suykens, J.A.K., Vandewalle, J.P.L., de Moor, B.L.: Artificial

Neural Networks for Modelling and Control of Non-linear

Systems. Springer, Berlin (2012)

86. Valian, E., Mohanna, S., Tavakoli, S.: Improved cuckoo search

algorithm for feedforward neural network training. Int. J. Artif.

Intell. Appl. 2(3), 36–43 (2011)

87. van den Bergh, F., Engelbrecht, A.P., Engelbrecht, A.P.:

Cooperative learning in neural networks using particle swarm

optimizers. In: South African Computer Journal. Citeseer (2000)

88. Wdaa, A.S.I.: Differential evolution for neural networks learn-

ing enhancement. PhD thesis, Universiti Teknologi Malaysia

(2008)

89. Whitley, D., Starkweather, T., Bogart, C.: Genetic algorithms

and neural networks: optimizing connections and connectivity.

Parallel Comput. 14(3), 347–361 (1990)

90. Wienholt, W.: Minimizing the system error in feedforward

neural networks with evolution strategy. In: ICANN’93,

pp. 490–493. Springer (1993)

91. Yamany, W., Fawzy, M., Tharwat, A., Hassanien, A.E.: Moth-

flame optimization for training multi-layer perceptrons. In: 2015

11th International Computer Engineering Conference

(ICENCO), pp. 267–272. IEEE (2015)

92. Yang, C.C., Prasher, S.O., Landry, J.A., DiTommaso, A.:

Application of artificial neural networks in image recognition

and classification of crop and weeds. Can. Agric. Eng. 42(3),

147–152 (2000)

93. Yang, Z., Hoseinzadeh, M., Andrews, A., Mayers, C., Evans,

D.T., Bolt, R.T., Bhimani, J., Mi, N., Swanson, S.: Autotiering:

automatic data placement manager in multi-tier all-flash data-

center. In: 2017 IEEE 36th International on Performance

Computing and Communications Conference (IPCCC), pp. 1–8.

IEEE (2017)

94. Yang, Z., Jia, D., Ioannidis, S., Mi, N., Sheng, B.: Intermediate

data caching optimization for multi-stage and parallel big data

frameworks. arXiv:1804.10563 (2018)

95. Yao, X.: A review of evolutionary artificial neural networks. Int.

J. Intell. Syst. 8(4), 539–567 (1993)

96. Yegnanarayana, B.: Artificial neural networks. PHI Learning

Pvt. Ltd., New Delhi (2009)

97. Zhang, G.P.: Neural networks for classification: a survey. IEEE

Trans. Syst. Man Cybern. C 30(4), 451–462 (2000)

98. Zhang, N.: An online gradient method with momentum for two-

layer feedforward neural networks. Appl. Math. Comput.

212(2), 488–498 (2009)

99. Zhang, C., Shao, H., Li, Y.: Particle swarm optimisation for

evolving artificial neural network. In: 2000 IEEE International

Conference on Systems, Man, and Cybernetics, vol. 4,

pp. 2487–2490. IEEE (2000)

100. Zhang, J., Sanderson, A.C.: Jade: adaptive differential evolution

with optional external archive. IEEE Trans. Evol. Comput.

13(5), 945–958 (2009)

101. Zhang, J.-R., Zhang, J., Lok, T.-M., Lyu, M.R.: A hybrid par-

ticle swarm optimization–back-propagation algorithm for feed-

forward neural network training. Appl. Math. Comput. 185(2),

1026–1037 (2007)

Ibrahim Aljarah is an associ-

ate professor of BIG Data Min-

ing and Computational

Intelligence at the University of

Jordan - Department of Infor-

mation Technology, Jordan. He

obtained his bachelor degree in

Computer Science from Yar-

mouk University - Jordan, 2003.

Dr. Aljarah also obtained his

master degree in computer sci-

ence and information systems

from the Jordan University of

Science and Technology - Jor-

dan in 2006. He also obtained

his Ph.D. In computer Science from the North Dakota State Univer-

sity (NDSU), USA, in May 2014. He organized and participated in

many conferences in the field of data mining, machine learning, and

Big data such as NTIT, CSIT, IEEE NABIC, CASON, and BIG-

DATA Congress. Furthermore, he contributed in many projects in

USA such as Vehicle Class Detection System (VCDS), Pavement

Analysis Via Vehicle Electronic Telemetry (PAVVET), and Farm

Cloud Storage System (CSS) projects. He has published more than 45

papers in refereed international conferences and journals. His research

focuses on data mining, Machine Learning, Big Data, MapReduce,

Hadoop, Swarm intelligence, Evolutionary Computation, Social

Network Analysis (SNA), and large scale distributed algorithms.

Hossam Faris is an associate

professor at Information Tech-

nology department/King

Abdullah II School for Infor-

mation Technology/ The

University of Jordan (Jordan).

Hossam Faris received his B.A.,

M.Sc. degrees (with excellent

rates) in Computer Science from

Yarmouk University and Al-

Balqa‘ Applied University in

2004 and 2008 respectively in

Jordan. Since then, he has been

awarded a full-time competi-

tion-based Ph.D. scholarship

from the Italian Ministry of Education and Research to peruse his

Ph.D. degrees in e-Business at University of Salento, Italy, where he

obtained his Ph.D. degree in 2011. In 2016, he worked as a

1344 Cluster Computing (2019) 22:1317–1345

123

http://arxiv.org/abs/1804.10563

Postdoctoral researcher with GeNeura team at the Information and

Communication Technologies Research Center (CITIC), University

of Granada (Spain). His research interests include: Applied Compu-

tational Intelligence, Evolutionary Computation, Knowledge Sys-

tems, Data mining, Semantic Web and Ontologies.

Seyedali Mirjalili is a lecturer in

Griffith College, Griffith

University. He received his

B.Sc. degree in Computer

Engineering (software) from

Yazd University, M.Sc. degree

in Computer Science from

Universiti Teknologi Malaysia

(UTM), and Ph.D. in Computer

Science from Griffith Univer-

sity. He was an active member

of Soft Computing Research

Group (SCRG) at UTM and

Institute for Integrated and

Intelligent Systems (IIIS) at

Griffith University. His research interests include Robust Optimisa-

tion, Engineering Optimisation, Multi-objective Optimisation, Swarm

Intelligence, Evolutionary Algorithms, and Artificial Neural Net-

works. He is working on the application of multi-objective and robust

meta-heuristic optimisation techniques in Computational Fluid

Dynamic (CFD) problems as well. Dr. Mirjalili is internationally

recognised for his advances in Swarm Intelligence (SI) and optimi-

sation, including the first set of SI techniques from a synthetic

intelligence standpoint ± a radical departure from how natural sys-

tems are typically understood ± and a systematic design framework

to reliably benchmark, evaluate, and propose computationally cheap

robust optimisation algorithms. He has published over 50 journal

articles, many in high-impact journals. Dr Mirjalili has over 2000

citations in total with an H-index of 21 and G-index of 47. From

Google Scholar metrics, he is globally the 5th most cited researcher in

Engineering Optimisation and the 9th most cited in Robust

Optimisation.

Nailah Al-Madi received her

Ph.D. degree in Computer Sci-

ence from North Dakota State

University, USA, in 2014. She

earned her M.Sc. degree in

Computer Science from Jordan

University of Science and

Technology, Jordan, in 2009.

She received her B.Sc. degree in

Computer Information Systems

from Al al-Bayt University,

Jordan, in 2005. She is currently

working as an Assistant Profes-

sor in Princess Sumaya Univer-

sity for Technology, Jordan. Her

research interests include: Optimization and Evolutionary

Computation, Data Mining, Big Data, MapReduce and Hadoop

Framework, Robotics, and Wireless Sensor Networks.

Alaa Sheta is a Professor in the

Department of Computing Sci-

ences, Texas A&M University-

Corpus Christi, TX, USA where

he has been a faculty member

since 2016. Alaa completed his

Ph.D. at George Mason

University, USA and his under-

graduate studies at Cairo

University, Egypt. His research

interests lie in the area of

machine learning and image

processing ranging from theory

to design to implementation. He

has collaborated actively with

researchers in several other disciplines, particularly manufacture

process modeling, biochemistry, software reliability and many others.

Alaa published more than 120 journal and conference papers. He is a

co-editor of the book entitled,’’ Business Intelligence and Perfor-

mance Management - Theory, Systems and Industrial Applications’’

by Springer Verlag, UK 2013. He received number of awards

including the Best Poster Award from the SGAI International Con-

ference on Artificial Intelligence, Cambridge, UK, 2011 for his

publication on Quality Management of Manufacturing Processes and

the Best Citation Prize based Google Citation Index, Taif University,

2013. Dr. successfully graduated about two dozen of graduate stu-

dents. Dr. Sheta has served as a chair, co-chair and technical com-

mittee on roughly thirty conference and workshop program

committees.

Majdi Mafarja received his B.Sc.

in Software Engineering and

M.Sc. in Computer Information

Systems from Philadelphia

University and The Arab Acad-

emy for Banking and Financial

Sciences, Jordan in 2005 and

2007 respectively. He did his

Ph.D. in Computer Science at

National University of Malaysia

(UKM). He was a member in

Datamining and Optimization

Research Group (DMO). Now

he is an assistant professor at the

Department of Computer Sci-

ence at Birzeit University. His research interests include Evolutionary

Computation, Meta-heuristics and Data mining.

Cluster Computing (2019) 22:1317–1345 1345

123

	Evolving neural networks using bird swarm algorithm for data classification and regression applications
	Abstract
	Introduction
	Related works
	Multi-layer perceptron neural networks (MLP)
	The Bird Swarm Algorithm
	BSA for learning MLP
	Experiments and results
	Classification datasets
	Function approximation datasets
	Tennessee Eastman chemical process reactor (TE) problem

	Conclusion
	References

