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The relativistic-Hartree-Bogoliubov formalism using density-dependent zero and finite range N-N
interactions, and separable pairing, is applied to the Kr isotopes (Z = 36) and N = 34 - 64 isotopes,
neutron-rich Sr(Z=38) and Zr(Z=40) nuclei with neutron numbers N=48-70. A systematic search of
triaxial ground state and the phenomena of unusual structural change and the coexistence of shape
for 70−100Kr, and at N=58 in the 86−108Sr and 88−110Zr isotopes are done. A reasonable agreement
is found with the available experimental data and with the macro-microscopic finite range droplet
model. The findings are also in good agreement with the self-consistent Hartree-Fock-Bogoliubov
calculations based on the interaction Gogny-D1S force, and with relativistic calculations.

PACS numbers: 21.60.Jz, 24.75.+i, 27.90.+b

I. INTRODUCTION

The availability of modern radioactive ion beam (RIB)
facilities has greatly reinvigorated theoretical as well as
experimental interest in investigating new and often ex-
otic nuclear structure phenomena of neutron-rich nuclei
throughout the chart of nuclei. Neutron-rich nuclei in
the mass region A≈100 of the nucleic chart are of special
interest. These neutron-rich nuclei are relevant for the
r-process of stellar nucleosynthesis. They show some evi-
dence of unusual features in some of their isotopic chains
with an abrupt variation of particular nuclear properties,
such as the quadrupole deformation, and show the corre-
sponding phenomena of shape coexistence. Two distinct
quantum configurations of nucleons at the very low exci-
tation energy with very different intrinsic properties are
interpreted as the phenomena of shape coexistence.
In many neutron-rich isotopes, an extremely abrupt

transition in shape and shape coexistence has been ob-
served experimentally [1–7]. Abrupt change of shape
from spherical to deformed shape and shape coexistence
between spherical and deformed configurations is best
seen in the neutron-rich nuclei with N ≈ 60. Neutron-
rich Sr and Zr nuclei are the best candidates to study such
phenomena in this region with N ≈ 58. These effects are
attributed to the interplay between the spherical gaps at
Z=38, 40, and N=56, 58, and the deformed subshell clo-
sures at Z=38, 40, and N=60, 62, and 64. Observation
of very low-lying 02

+ states is an another unusual fea-
ture in this region along with the shape transition. It is
interpreted as an evidence for shape coexistence. In re-
cent studies of Sr and Zr nuclei, irregularities in the neu-
tron separation energy, charge radii, and the first 2+ ex-
cited state energy, have provided evidence about unusual
abrupt change in the nuclear structure at N = 60 [8–10].
An extensive review upon the unified description of shape
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coexistence in this mass region is presented in Ref. [11]
and references therein.

Recently, as reported by research performed at the
REX-ISOLDE facility at CERN, the reduced transi-
tion probabilities and spectroscopic quadrupole moments
manifested experimental evidence for shape coexistence
in neutron-rich strontium (96,98Sr) isotopes at N =
60 [12]. Another observation of collective structure in
the closed-subshell nucleus 94Zr manifested the shape co-
existence in 94Zr. The role of subshells for nuclear col-
lectivity is suggested to be important in this case [13].
On the basis of some indirect evidences in the analysis
of energy patterns from rotational band [14? , 15] and
electric monopole transition strength [2, 16–18], possibil-
ity of the shape coexistence is suggested in the zirconium
(94Zr and 100Zr) isotopes.

In order to understand the exotic features in this mass
region, recent as well as earlier experimental data are
needed to be fully described and compared. Therefore,
different nuclear structure models are aimed in their re-
cent nuclear structure studies at understanding the vari-
ous unusual structural transitions and effects arising due
to the competition between the macroscopic and micro-
scopic degrees of freedom. In this regard, a realistic
description of the structural evolution and shape coex-
istence in Kr, Sr and Zr isotopes has been addressed
earlier in many theoretical studies within the different
formalisms. Nomura et al. in thiet recent study [19]
showed the rapid structural change between N=58 and
60 in 94−110Zr and 92−108Sr isotopes, within the SCMF-
to-IBM mapping procedure based on the Gogny-D1M
EDF. In the same framework Nomura et al. [20] studied
the shape evolution in Kr isotopes, and showed the pro-
late and oblate shape transitions and shape coexistence
on both sides of the isotopic chains. The triple shape
coexistence specific for the 0+ states and the evolution
of the shape coexistence and mixing in the neutron-rich
N = 58 Sr and Zr isotopes are studied within the com-
plex excited VAMPIR approach [21]. A realistic, effec-
tive interaction based on the Bonn A potential is used in
this approach. In the shell model(SM) framework [22],
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the spherical-to-deformed shape transition in Zr(Z=40)
isotopes with neutron numbers from N = 50 to N = 58
is studied using a modest valence space with a 78Ni in-
ert core. In another recent work by J. Xinag et al. [23]
within the covariant density functional theory (DFT),
the coexistence of prolate and oblate shapes is observed
in 98Sr and 100Zr. They also found a moderate shape
transition in Kr isotopes. However, one takes into con-
sideration that treatment of pairing correlation in [23]
is done based on the BCS approximation. In his study,
the sharp kink observed in the charge radii at N = 60
is shown to be related to the abrupt change in nuclear
shapes. Numerous other theoretical studies aiming to
understand the structural evolution are done within dif-
ferent formalism. These include the relativistic mean-
field (RMF) theory [24, 25], the generator coordinate
method (GCM) [26], the interacting boson model(IBM)
approximation [27], the VAMPIRE model [28, 29], the
macroscopic-microscopic method [? ], the shell model
(SM) [30–36], the Hartree-Fock (HF) and Hartree-Fock-
Bogoliubov (HFB) method [37, 38], the Monte Carlo shell
model[39].
In the present study, we shall present the numerical

results of a systematic calculation in the search of tri-
axial ground state properties and shape coexistence in
the shape coexistence in the neutron-rich Sr(Z=38) and
Zr(Z=40) nuclei with neutron numbers N=54-70, and in
the Kr (Z=36) isotope chain with N=34-64. The present
analysis is an attempt to describe self-consistently the
phenomena of unusual structural change and the co-
existence of shape in the 94−110Zr and 92−108Sr iso-
topes at N=58, and for the Kr isotopes chain. The
systematic constrained triaxial calculation is done in
the self-consistent mean field model the relativistic-
Hartree-Bogoliubov (RHB) with density-dependent zero
and finite range N-N interactions. The model pa-
rameter used are the density-dependent point-coupling
DD-PC1 [40], and non-linear meson-exchange coupling
NL3* [41]. They provide a successful description of
ground state properties[42–45] over all the nuclear charts.
Pairing correlations are considered in the separable pair-
ing model [46].
This article is organized as follows. In Sec. II a general

overview of the RHB formalism is presented. Potential
energy surfaces for the three isotopic chains are discussed
and compared with the results from others in Sec. III.
Bulk properties for the ground state will be discussed in
Sec. IV. Summary and conclusions are in Sec. V.

II. THEORETICAL FRAMEWORK

For the present investigation, the self-consistent RHB
with density-dependent finite range meson-exchange
model and a density-dependent zero-range point-coupling
model are used [40, 47–50]. These models provide a very
successful and an excellent description of different ground
states and excited state properties over the entire nu-

cleic chart [42–45, 47, 51–56]. The present investiga-
tion uses the very successful, density-dependent point-
coupling DD-PC1 [40], and nonlinear meson-nucleon cou-
pling NL3* [41] parameters.

A. The meson-exchange model

The meson-exchange model is defined by the stan-
dard Lagrangian density with medium dependence ver-
tices [57]

L = ψ [γ(i∂ − gωω − gρ~ρ~τ − eA)−m − gσσ]ψ

+
1

2
(∂σ)

2 − 1

2
mσ

2σ2 − 1

4
ΩµνΩ

µν +
1

2
m2

ωω
2

− 1

4
~Rµν

~Rµν +
1

2
m2

ρ ~ρ
2 − 1

4
FµνF

µν . (1)

where m is the bare nucleon mass and ψ denotes the
Dirac spinors. The masses mσ, mω, and mρ are those
of the σ meson, ω meson, and the ρ meson, with the
corresponding coupling constants for the mesons to the
nucleons as gσ, gω, gρ, respectively, and e is the charge
of the proton. These coupling constants and unknown
meson masses are the Lagrangian equation.(1) parame-

ters. Here, Ωµν , ~Rµν , and Fµν are the field tensors of
the vector fields ω, ρ, and the photon.
This linear model has first been introduced by

Walecka [58, 59], however, this simple model does not
provide a quantitative description of nuclear system [60,
61] with interaction terms that are only linear in the me-
son fields. For a realistic description of complex nuclear
system properties one can either introduce a nonlinear
self-coupling or a density dependence in the coupling con-
stants.
For the nonlinear self coupling, one has to add the

following term to the Lagrangian:

U(σ) =
1

2
m2

σσ
2 +

1

3
g2σ

3 +
1

4
g3σ

4 (2)

for scalar mesons this has turned out to be crucial [60].
This model has been successfully used in a number of
studies [57, 62–64]. We have used the recently proposed
parameter set NL3* [41], which is a modern version of
the widely used parameter set NL3 [63]. It improves the
description of the ground state properties of many nu-
clei over parameter set NL3, and provides a simultane-
ously excellent description of excited states with collec-
tive character in spherical as well as in deformed nuclei.
In the case of the density dependent coupling constants

one defines the dependence as

gi(ρ) = gi(ρsat)fi(x) (3)

i can be any of the three mesons σ,ω, and ρ where the
density dependence is given by

fi(x) = ai
1 + bi(x+ di)

2

1 + ci(x+ di)2
. (4)
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for σ and ω and by

fρ(x) = exp(−aρ(x− 1)). (5)

for the ρ meson. x is defined as the ratio between the
baryonic density ρ at a specific location and the baryonic
density at saturation ρsat in symmetric nuclear matter.
The eight parameters in Eq. (4) are not independent,

but constrained as follows: fi(1) = 1, f
′′

σ (1) = f
′′

ω (1),

and f
′′

i (0) = 0. These constrains reduce the number of
independent parameters for density dependence to three.
This model is represented in the present investigations
by the parameter set DD-ME2 [47].

B. The point-coupling model

The effective Lagrangian density for the density-
dependent point-coupling model [40, 65, 66] that includes
the isoscalar-scalar, isoscalar-vector, and isovector-vector
four-fermion interactions is given by

L = ψ̄(iγ.∂ −m)ψ

− 1

2
αs(ρ̂)(ψ̄ψ)(ψ̄ψ)−

1

2
αV (ρ̂)(ψ̄γ

µψ)(ψ̄γµψ)

− 1

2
αTV (ρ̂)(ψ̄~τγ

µψ)(ψ̄τ̃γµψ)

− 1

2
δS(∂v ψ̄ψ)(∂

v ψ̄ψ)− eψ̄γ ·A1 − τ3
2

ψ (6)

It contains the free-nucleon Lagrangian, the point-
coupling interaction terms, and in addition to these two
the model includes the coupling of the proton to the elec-
tromagnetic field. The derivative terms in Eq.(6) account
for the leading effects of finite-range interactions that are
crucial for a quantitative description of the nuclear prop-
erties. The functional form of the point-couplings chosen
is

αi(ρ) = ai + (bi + cix ) e
−dix , (i = S, V, TV ) (7)

where x = ρ/ρsat , and ρsat denotes the nucleon density
at saturation in symmetric nuclear matter. In the present
work, we have used the recently developed density-
dependent point-coupling interaction DD-PC1 [40].
In the present investigation, the triaxial RHB with sep-

arable pairing model is used [46, 67]. In the presence of
pairing the single-particle density matrix is generalized
to two densities [68]: the normal density ρ̂ and the pair-

ing tensor k̂. The RHB energy density functional is then
given by:

ERHB [ρ̂, k̂] = ERMF [ρ̂] + Epair[k̂], (8)

where, ERMF [ρ̂] is given by:

ERMF [ψ, ψ̄, σ, ω
µ, ~ρµ, Aµ] =

∫

d3rH (9)

and the Epair[k̂] is given by:

Epair[k̂] =
1

4

∑

n1n
′

1

∑

n2n
′

2

k∗
n1n

′

1

〈n1n
′

1|V PP |n2n
′

2〉kn2n
′

2

.

(10)
The index n refers to the original basis, and <
n1n

′

1|V PP |n2n
′

2 > are the matrix elements of the two-
body pairing interaction. The effective interaction in the
pp-channel, in r-space has the form

V PP (r1, r2, r
′
1
, r′

2
) = −Gδ (R−R

′)P (r)P (r′) (11)

where

R =
1√
2
(r1 + r2) (12)

r =
1√
2
(r1 − r2)

being the center of mass and the relative coordinates,
respectively. The form factor P (r) is of the Gaussian
shape

P (r) =
1

(4πa2)
3/2

e−r2/2a2

. (13)

The two parameters G=728 MeV fm3 and a=0.644 fm
of this interaction are the same for protons and neutrons.
It is derived in Ref. [69–72] by a mapping of the 1S0
pairing gap of infinite nuclear matter to that of the Gogny
force D1S [73].
The constrained calculations are performed by im-

posing constraints on both axial and triaxial mass
quadrupole moments. The potential energy surface
(PES) study as a function of the quadrupole deforma-
tion parameter is performed by the method of quadratic
constraint [68]. The method of quadratic constraints uses
an unrestricted variation of the function

〈Ĥ〉+
∑

µ=0,2

C2µ(〈Q̂2µ〉 − q2µ)
2

(14)

where 〈Ĥ〉 is the total energy, (〈Q̂2µ〉 denotes the expec-
tation values of mass quadrupole operators,

Q̂20 = 2z2 − x2 − y2 and Q̂22 = x2 − y2 (15)

q2µ is the constrained value of the multipole moment, and
C2µ is the corresponding stiffness constant [68]. More-
over, the quadratic constraint adds an extra force term
∑

µ=0,2 λµQ̂2µ to the system, where

λµ = 2C2µ(〈Q̂2µ〉 − q2µ)
2

(16)

for a self consistent solution. This term is necessary to
force the system to a point in deformation space differ-
ent from a stationary point. The augmented Lagrangian
method [74] has also been implemented in order to re-
solve the problem of convergence of the self-consistent
procedure which, diverges while increasing the value of
stiffness constant C2µ used in the procedure.
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III. POTENTIAL ENERGY SURFACES

Potential energy surfaces (PES) have been calculated
for Kr isotopes from neutron number N = 34 to 64 and
for neutron rich Sr and Zr isotopes from neutron number
N=48 to 70 in the (β, γ) plane. This is done system-
atically within the constrained triaxial calculations map-
ping the quadrupole deformation space defined by β2 and
γ using DD-ME2, NL3*, and DD-PC1 parametrizations.
Contour plots have been made to investigate the location
of a triaxial ground state, and the possible shape coex-
istence. The location of the ground state in the β − γ
deformation space is indicated by the point (β0, γ0).

A. Kr isotopes

Kr isotopes show a very rich structure and unusual
shape coexistence phenomena in the ground state. In
DD-PC1 results, one can notice that at the low end of
the isotopic chain, that Kr isotopes have an axial oblate
shape for N = 34. However, a very complex structure
shows up for N = 36. In fact, four different minima can
be found with energy difference less than 1 MeV. The
global minimum is identical to the one in N = 34 case,
but its location in the deformation space is shifted to
larger β2 deformation. Two of the remaining minima are
triaxial one of them has γ = 50, β2 = 0.2 and the other
has γ = 20. β2 = 0.55. The last minimum is prolate
and located at β2 = 0.4. It worth noting that there is a
barrier of around 4 MeV in the middle of the PES sepa-
rating the minima, two on each side of the barrier. As we
move along the chain the minima merge with each other
and we have only two minima for 74−78Kr isotopes, and
then, between 80−88Kr, only one minimum is found, and
it is spherical except the axial prolate shape for 82Kr.
Starting from 90Kr (N = 54), the ground state starts to
depart from spherical shape, and become deformed and
soft in the γ direction. For 92Kr (N = 56), the ground
state is axially deformed and oblate. The ground state
remains oblate up to the end of the isotopic chain. Shape
coexistence manifest itself in the nuclei at either end of
the isotopic chain, i.e. in 72−78,90−100Kr, with 94Kr as
the only exception. The result is very similar to the one
we obtain with DD-ME2 parametrizations with two vari-
ations. These variations are seen in 84Kr where we ob-
tain a prolate axial ground state deformation instead of
spherical ground state.
Shape evolution in Kr isotopes has been studied within

the relativistic framework with BCS approximation for
the pairing interaction using PC-PK1 parametrization in
[23] which is a point coupling parametrization similar
to the one we use, DD-PC1. However, DD-PC1 works
much better for deformed nuclei, while PC-PK1 works
better for spherical nuclei[65]. This difference in the both
parametrization and pairing correlation lead to the dif-
ference in the bulk properties as will be seen later in the
discussion. However, the authors of [23] studied only

TABLE I. Location of the two ground state minima indicated
by (β0, γ0) for Kr isotopes using DD-PC1 parametrizations.
The first minimum is the deepest minimum

Nucleus 1st minimum 2nd minimum ∆Ebin (MeV)
70Kr (0.3,60o) - N/A
72Kr (0.35,60o) (0.2,50o) 1.1
74Kr (0.15,60o) (0.5,0o) 0.5
76Kr Spherical (0.2,60o) 0.7
78Kr Spherical (0.2,60o) 0.7
80Kr Spherical - N/A
82Kr (0.15,0o) - N/A
84Kr Spherical - N/A
86Kr Spherical - N/A
88Kr Spherical - N/A
90Kr (0.20,0o − 60o) - N/A
92Kr (0.25,60o) (0.25,0o) 0.19
94Kr (0.30,60o) - N/A
96Kr (0.35,60o) (0.45,0o) 2.2
98Kr (0.30,60o) (0.40,0o) 1.7
100Kr (0.30,60o) (0.40,0o) 1.4

the neutron rich isotopes, 86−104Kr and missed the inter-
esting features in the neutron deficient side of the chain
shown in the PES of 72Kr. Our results fully agree with
the results presented in Ref.[23].
It was also studied within the interacting boson model

(IBM) derived from the Gogny energy density functional
[20]. The results with Gogny-D1M density functional
and the mapped IBM shows very similar results to our
calculations. However, they do not show the complex
structure we have in 72Kr. In addition, our results show
a higher barrier between the minimum in 72,74Kr.
In Tables I and II the list of the absolute minimum

and the first excited minimum are listed for all the Kr
isotopes under study. It is clear that the difference in
energy between the two minima are less than 2.8 MeV.

B. Sr and Zr isotopes

In Figs. 3 and 4 , we can see a sudden transition in
ground state shape in the Sr chain, mainly as we move
from 94Sr (N = 56) to 96Sr (N = 58). At the begin-
ning of the chain, for 86−90Sr, the ground state mini-
mum is spherical and there is no second minimum. How-
ever, moving along the chain, we encounter a triaxial
ground state for 92,94Sr according in the DD-PC1 calcu-
lations, but almost axial (oblate) with NL3∗, but both
parametrization do not predict a second minimum.
As we move along the chain and increase the neutron

number, an emerging hill start to form and emerges from
near β2 = 0 and cause the existence of two new min-
ima. Both of these minima are axial, but one of them
is prolate and the other is oblate. The exact location of
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FIG. 1. (Color online) Potential energy surfaces of the Kr isotopes from neutron number N = 34 to 64 in the
(β, γ) plane, obtained from a triaxial RHB calculations with the DD-PC1 parameter set. The color scale shown
at the right has the unit of MeV, and scaled such that the ground state has a zero MeV energy.

TABLE II. Location of the two ground state minimum indi-
cated by (β0, γ0) for Kr isotopes using DD-ME2 parameteri-
zations. The first minimum is the deepest minimum

Nucleus 1st minimum 2nd minimum ∆Ebin (MeV)
70Kr (0.3,60o) (0.25,0o) 1.3
72Kr (0.35,60o) (0.2,40o) 1.5
74Kr (0.15,60o) (0.35,60o) 0.14
76Kr Spherical (0.2,60o) 0.64
78Kr Spherical (0.2,60o) 0.64
80Kr Spherical - N/A
82Kr (0.15,0o) - N/A
84Kr (0.15,0o) - N/A
86Kr Spherical - N/A
88Kr Spherical - N/A
90Kr (0.20,0o − 60o) - N/A
92Kr (0.25,60o) (0.25,0o) 0.4
94Kr (0.30,60o) (0.45,0o) 2.7
96Kr (0.35,60o) (0.45,0o) 2.8
98Kr (0.30,60o) (0.40,15o) 2.2
100Kr (0.30,60o) (0.45,5o) 1.9

these two minima and the difference in energy is shown
in Tables III and IV. For the NL3∗, one can notice that
from N = 56 up to N = 66, the oblate minimum is deeper
than the prolate minimum with the energy difference less
than 1.0 MeV. After that we can see that the ground state
minimum becomes spherical and the difference in energy
becomes more than 1.0 MeV and reaching a maximum
value of 2.7 MeV for 108Sr. Similar results are also ob-
tained using the DD-PC1 parameter set. However, the
main difference lies in the fact that DD-PC1 will always
provide the first minimum to have an oblate shape and
that the difference in energy between the two minima is
less than 1 MeV in all of the cases specially for 106, 108Sr.
Nevertheless, one can claim that the general trend of the
results is independent from our choice of parametriza-
tions, it is still noticeable that the size and height of the
hill that developed for N = 58 are larger for the DD-PC1
results as compared with the NL3* results.
Softness in the γ - direction is clearer near the oblate

minimum in the NL3* calculations. The existence of two
ground state minima is present in Sr isotopes with neu-
tron numbers greater than 54 and manifests itself at N
= 60. Our results agree with the results presented in
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FIG. 2. (Color online) Potential energy surfaces of the Kr isotopes from neutron number N = 34 to 64 in the
(β, γ) plane, obtained from a triaxial RHB calculations with the DD-ME2 parameter set. The color scale shown
at the right has the unit of MeV, and scaled such that the ground state has a zero MeV energy.

TABLE III. Location of the two ground state minima indi-
cated by (β0, γ0) for Sr isotopes using NL3* parametrizations.
The first minimum is the deepest minimum

Nucleus 1st minimum 2nd minimum ∆Ebin (MeV)
86Sr (0.0,0o) - N/A
88Sr (0.0,0o) - N/A
90Sr (0.0,0o) - N/A
92Sr (0.15,55o) - N/A
94Sr (0.20,60o) (0.4,0o) 0.67
96Sr (0.50,0o) (0.25,60o) 0.098
98Sr (0.45,0o) (0.35,60o) 0
100Sr (0.45,0o) (0.30,55o) 0.134
102Sr (0.20,60o) (0.45,0o) 0.28
104Sr (0.15,60o) (0.45,0o) 0.60
106Sr (0.0,0o) (0.45,0o) 1.2
108Sr (0.0,0o) (0.45,0o) 2.7

[10], where the authors uses, a self-consistent mean-field
approximation based on the D1S[77] interaction. In ad-
dition, our results are in agreement with other studies

TABLE IV. Location of the two ground state minima indi-
cated by (β0, γ0) for Sr isotopes using DD-PC1 parametriza-
tions. The first minimum is the deepest minimum

Nucleus 1st minimum 2nd minimum ∆Ebin (MeV)
86Sr (0.0,0o) - N/A
88Sr (0.0,0o) - N/A
90Sr (0.0,0o) - N/A
92Sr (0.20,30o) - N/A
94Sr (0.25,40o) (0.45,0o) 0.03
96Sr (0.50,0o) (0.25,60o) 0.94
98Sr (0.45,0o) (0.30,60o) 0.65
100Sr (0.45,0o) (0.30,55o) 0.86
102Sr (0.45,0o) (0.25,50o) 0.68
104Sr (0.45,0o) (0.25,60o) 0.24
106Sr (0.40,0o) (0.25,60o) 0.53
108Sr (0.45,0o) (0.0,0o) 0.40

performed with the relativistic mean field approach[23] in
predicting the shape evolution of the ground state with
the NL3∗. Our DD-PC1 results predict a prolate min-
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imum in most of the cases. However, as we mentioned
before the difference in energy between the prolate and
oblate minimum is very small.

For the Zr ( Z = 40) isotopic chain, the ground state
for 88−92Zr are spherical and there is no secondary min-
imum. However, for 94,96Zr the ground state is triaxial
in both parametrizations. However, after that there is
slight disagreement between the results from the the two
parametrization.

As can be seen from Tables V and VI, one can see that
NL3∗ predict an oblate ground state for both 98,100Zr and
a prolate axial second minimum with an energy difference
of less than 0.25 MeV. On the other hand DD-PC1 pre-
dicts the opposite, i.e. the ground state is prolate while
the second minimum is oblate. Still the energy difference
is considerably small and less than 1 MeV. Similarly, one
notices similar behavior for 102,108,110Zr, where the loca-
tions of the first and second minima are flipped in both
parameterizations. However, they agree for 104,106Zr.

This difference will not affect the binding energy and
binding energy per nucleon, but will differently affect the
neutron (proton) radius as will be shown later.

The major difference is that NL3∗ usually gives a
higher difference as compared with DD-PC1. One of the
minima is almost prolate and the other is almost oblate.
It is interesting to see the existence of softness in the γ-
direction. This softness comes in the shape of a belt that
covers all the values of γ. However, as the barrier start
to develop around β2 = 0.2 it starts to split the belt into
two separate regions and create two distinct minimum, a
prolate and an oblate minimum. However, the splitting
is stronger in the case of the DD-PC1 as compared with
NL3*, and thus the existence of two shapes at ground
state are more pronounced in the DD-PC1 results. Our
results in both parametrizations agree with the results
obtained in [23] where at the beginning of the chain the
ground state shape is spherical then it becomes oblate
and at the end of the chain it becomes spherical again.

The difference in energy between the two minima is less
than 2 MeV in all of the cases and less than 1 MeV in the
majority of them. Although, similar to the Sr isotopes
results, the general trend of the evolution of the PES
is independent of the type of parametrization. There
are two interesting results that deserve a special discus-
sion. 108,110Zr. The NL3* results show two minima one
of them is spherical and the other is oblate, and the dif-
ference in energy is 0.07 and 1.0 MeV, respectively. The
DD-PC1 results are quite different. What really makes
these two nuclei very interesting is the existence of a third
minimum. The NL3∗ results indicate that this minimum
is axially deformed and located at β2 = 0.45 and it is
prolate. Since there are some differences between both
parametrizations in the ordering of the first and second
minima, we can expect a slight difference in the location
of the their minima in DD-PC1. The third minimum
is for 108Zr triaxial and located at β2 = 0.35 and γ =
30, and is 0.93 MeV higher than the first minimum. For
110Zr the first minimum is oblate and the second one

TABLE V. Location of the two ground state minima indicated
by (β0, γ0) for Zr isotopes using NL3* parametrizations. The
first minimum is the deepest minimum

Nucleus 1st minimum 2nd minimum ∆Ebin (MeV)
88Zr (0.0,0o) - N/A
90Zr (0.0,0o) - N/A
92Zr (0.0,0o) - N/A
94Zr (0.20,30o) - N/A
96Zr (0.20,50o) (0.45,0o) 1.25
98Zr (0.20,60o) (0.55,0o) 0.09
100Zr (0.20,60o) (0.45,0o) 0.25
102Zr (0.20,60o) (0.45,15o) 0.54
104Zr (0.20,60o) (0.45,10o) 0.90
106Zr (0.20,60o) (0.40,0o) 1.0
108Zr (0.0,0o) (0.20,60o) 0.07
110Zr (0.0,0o) (0.20,60o) 1.0

TABLE VI. Location of the two ground state minima indi-
cated by (β0, γ0) for Zr isotopes using DD-PC1 parametriza-
tions. The first minimum is the deepest minimum

Nucleus 1st minimum 2nd minimum ∆Ebin (MeV)
88Zr (0.0,0o) - N/A
90Zr (0.0,0o) - N/A
92Zr (0.0,0o) - N/A
94Zr (0.20,30o) - N/A
96Zr (0.20,45o) (0.45,0o) 1.14
98Zr (0.55,0o) (0.25,60o) 0.87
100Zr (0.55,0o) (0.25,60o) 0.46
102Zr (0.40,15o) (0.25,60o) 0.29
104Zr (0.25,55o) (0.4,10o) 0.18
106Zr (0.20,60o) (0.40,0o) 0.57
108Zr (0.25,60o) (0.40,0o) 0.22
110Zr (0.20,60o) (0.40,0o) 0.54

is prolate, and not spherical. However, one can see an
emerging minimum starts to develop at spherical shape
for 110Zr with an energy difference around 0.7 MeV and
forms a third minimum. Thus, it is our belief that our
result is independent from the choice of the parameter
set, and that our finding is in complete agreement with
the results of Ref. [10].

IV. PHYSICAL PROPERTIES

One can relate the shape evolution seen in the previous
section with the change in the value of several physical
properties of the ground state of these nuclei, namely,
the binding energy (BE), proton radii (Rp) and neu-
tron radii (Rn), two neutron separation energies (S2n)
and root mean square charge radii (Rc) with δ〈r2c 〉50,N =
〈r2c 〉N − 〈r2c 〉50.
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FIG. 3. (Color online) Potential energy surfaces of the Sr isotopes from neutron number N = 48 to 70 in the
(β, γ) plane, obtained from a triaxial RHB calculations with the NL3* parameter set. The color scale shown at
the right has the unit of MeV, and scaled such that the ground state has a zero MeV energy.
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FIG. 4. (Color online) Same as in Fig. 3 but with DD-PC1.

The charge radius (Rc) is defined as

Rc =
√

R2
p + 0.64 (17)

where the 0.64 is a correction due to the finite size of

the proton. A smooth transition in the ground state de-
formation will be seen as a smooth evolution of these
properties. And a sudden change in the ground state
deformation will be reflected as a sharp jump in these
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FIG. 5. (Color online) Potential energy surfaces of the Zr isotopes from neutron number N = 48 to 70 in the
(β, γ) plane, obtained from a triaxial RHB calculations with the NL3* parameter set. The color scale shown at
the right has the unit of MeV, and scaled such that the ground state has a zero MeV energy.
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FIG. 6. (Color online) Same as in Fig. 5 but with DD-PC1

properties. A. Kr isotopes

Our numerical results for the binding energy, binding
energy per nucleon, and the two neutron separation en-
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ergy (S2n) for Kr isotopes are shown in Fig.7. Our results
show very good agreement with experimental results and
the results from FRDM and HFB based on D1S Gogny
force. One exception can be found in the S2n results at
N = 52 , where our results show a sharp change. This is
in agreement with the PES for Kr isotopes, specifically
the transition between 88Kr and 90Kr corresponds to the
change from spherical shape to a triaxial ground state
with softness in the γ-direction.
There is a good agreement in Fig8.a for Rn values be-

tween our results and HFB results based on the Gogny-
D1S. However, Rp, Rc and δ〈r2c 〉50,N = 〈r2c 〉N − 〈r2c 〉50
show a deviation from the HFB results. This is due to
the fact that we predict a spherical shape for most of
these nuclei, while they predict an oblate result. If we
compare our results with the relativistic mean field cal-
culations shown in Figure 6 in [23], then we will have a
very good agreement with the values of the physical ob-
servable at the ground state minimum. It was mentioned
in the previous section that our PES agrees with theirs.
There are no sudden changes in the ground state de-

formation along the Kr isotopic chain. This is well re-
flected in the behavior of the physical properties, which
is smoothly changing with neutron number.

B. Sr and Zr isotopes

Theses results obtained in the previous sections are
different from the ones obtained for Mo and Ru isotopes
in [51]. It was shown that the shape transition along the
isotopic chains was smooth, and that was reflected in the
smooth evolution of the ground state properties. Thus,
in the case of the Sr and Zr isotope chain, where there is
a sudden transition in the ground state shape near the N
= 60 shell gap one would expect a sharp change in the
value of several physical properties of the ground state.
It is useful for our discussion to see the connection

between figures of the PES and the tables of the location
of the ground state minimum and the evolution of the
physical observables at the ground state. To begin with
we notice that there is a perfect agreement between our
calculations using both NL3∗ and DD-PC1 and FRDM
[75] and RMFT[76], which uses BCS approximation for
pairing correlation, and HFB based on D1S Gogny force,
for binding energy, the binding energy per nucleon and
two neutron separation energy. It is worth noticing that
the N = 50 shell gap is well pronounced and is directly
related to the change of the slope of the two neutron
separation energy S2n shown in Fig. 12.
However, this agreement does not last, and we start

to have fluctuations in the other quantities. For Sr iso-
topes the neutron and proton radius are shown in panels
(a) and (b) of Fig. 13. One can notice that the sudden
transition from spherical shape in the ground state to de-
formed shape in Sr isotopes is reflected in a sharp change
in both neutron radius (Rn) and proton radius (Rp) at
N = 56. NL3∗ predicts smaller values of Rp as compared
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FIG. 7. (Color online) Binding energy, binding energy per
nucleon and two neutron separation energy for Kr isotopes are
shown in (a), (b) and (c) respectively. The results are shown
using DD-PC1 and DD-ME2 as a function of neutron number.
Comparison with FRDM [75] results, and HFB calculations
based on the D1S Gogny force [77], and experimental data
[78] are shown.

with the one obtained using DD-PC1 and other mod-
els. The main difference is coming from the fact that for
N ≥ 64 NL3∗ predicts a different location of the ground
state minimum (i.e. different shape), but since the en-
ergy difference between the first and second minimum is
very small this difference is not reflected in the behavior
of the binding energy and related quantities. We notice
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that there is a decrease in both Rp and Rc in the NL3∗

calculations, this is due to the fact that it predicts either
an oblate axial or a spherical ground state while DD-PC1
predicts a prolate axial ground state deformation.
We can also compare the charge radius of Sr isotopes

with the results shown in Figure 5.b in Ref.[82], which
can be found to agree with our results with DD-PC1.
Both of them find the ground state to be prolate along
the end of the isotopic chain. The values obtained with
NL3∗ agrees with the oblate results shown in Fig. 5.b in
Ref.[82].
Similarly, one can see that for Zr isotopes the deviation

is restricted to only two nuclei, with N = 58 and 60.
These two nuclei have different ground states in both
parametrizations. It is also interesting to see that there
is a decrease in Rp values of Zr isotopes using DD-PC1,
for N = 60-66. This can be related to the fact that the
value of β2 deformation for the ground state decreases
along these nuclei. If one uses the Rp values at the same
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FIG. 10. (Color online) Binding energy per nucleon For Sr
isotopes (a) and for Zr isotopes (b) using both NL3∗ and
DD-PC1 as a function of neutron number. Comparison with
FRDM [75] results, Relativistic Mean Field (RMF) model
with NL3 functional [76], and HFB calculations based on the
D1S Gogny force [77], and experimental data [78] are shown.
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FIG. 11. Similar as Fig.10 but for total binding energy

deformation as in NL3∗ then we will get very similar
results. The rest of the chain isotopes follow the same
trend as the other models. The charge radius Rc, shown
in Fig. 14, and δ〈r2c 〉50,N , shown in Fig. 15, behave
in a similar fashion to Rp and show the same type of
deviation.

Although there is some deviation between our calcula-
tions and the results obtained in experiments and other
models in some of the nuclei, due to the different predic-
tion of the ground state minimum, it is still safe to say
that our results show in general the same trend as other
models and agrees with them.
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FIG. 12. Similar as Fig.10 but for two-neutrons separation
energy (S2n)
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FIG. 13. Neutron radius (Rn) and proton radius Rp For Sr
isotopes and for Zr isotopes using both NL3∗ and DD-PC1 as
a function of neutron number. Comparison with Relativistic
Mean Field (RMF) model with NL3 functional [76], and HFB
calculations based on the D1S Gogny force [77] are shown.

V. CONCLUSION

We have used the Relativistic-Hartree-Bogoliubov
(RHB) formalism with separable pairing to perform a
systematic calculation along three isotopic chains, Kr,
Sr, and Zr, to investigate the triaxial ground state, the
phenomena of unusual structural change and the coex-
istence of shape. Our results indicated that shape tran-
sition is smooth for the Kr isotopes. On the other side
the shape evolution in Zr and Sr isotopes is not smooth ,
but rather sudden. This is well reflected in the behavior
of physical observables such as the proton and neutron

radii as well as the two neutron separation energies. 72Kr
and 108,110Zr show a complicated PES structure, four and
three minima, respectively. One can see the existence of
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FIG. 14. Charge radius Rc For Sr isotopes and for Zr isotopes
using both NL3∗ and DD-PC1 as a function of neutron num-
ber. Comparison with Relativistic Mean Field (RMF) model
with NL3 functional [76], and HFB calculations based on the
D1S Gogny force [77] and experimental data [79] are shown.
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FIG. 15. δ〈r2c〉
50,N for Sr and Zr isotopes as a function of

neutron numbers. Experimental data are taken from [79–81]

three minima, while all other nuclei show only two.

Our overall results show independence from the choice
of parameterizations, and in good agreement with results
obtained from different models. It agrees with the results
obtained in FRDM [75], Relativistic Mean Field (RMF)
model with NL3 functional [23, 76], and HFB calculations
based on the D1S Gogny force [77].
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[46] T. Nikšić, N. Paar, D. Vretenar, and P. Ring, Comp.
Phys. Comm. 185, 1808 (2014).

[47] G. A. Lalazissis, T. Nikšić, D. Vretenar, and P. Ring,
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[75] P. Möller, J.R. Nix, K.-L. Kratz, At. Data Nucl. Data
Tables 66, 131 (1997).

[76] G.A. Lalazissis, S. Raman, P. Ring, At. Data Nucl. Data
Tables 71, 1 (1999)

[77] http : //www − phynu.cea.fr/HFB −Gognyeng.htm.
[78] M. Wang, G. Audi, A.H. Wapstra et al., Chin. Phys. C

36, 1603 (2012).
[79] I. Angeli, K.P. Marinova, At. Data Nucl. Data Table 99,

69 (2013)
[80] F. Buchinger, et al., Phys. Rev. C 41, 2883 (1990).
[81] P. Campbell, et al., Phys. Rev. Lett. 89, 082501 (2002)
[82] P. Sarriguren Phys. Rev. C 91, 044304 (2015)


