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Abstract

Time series for the distance between selected residues surrounding the active site in bovine pancreatic trypsin inhibitor

(BPTI) protein are analyzed using a one-dimensional Langevin-type stochastic difference equation. The time series are

extracted from molecular dynamics simulations performed on the protein in vacuum and water. The deterministic and

stochastic contributions to the time series show interesting behavior for certain residue pairs only, and only in solvated

molecular dynamics simulations.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Proteins are examples of complex stochastic systems [1]. There are indications that the internal protein

dynamics are a ‘‘slave ‘‘to the properties of the surrounding environment, most notably the surrounding

solvent [2]. In addition, fast random changes in protein structure take place on the pico- and nano-scales [3].

The dynamical behavior of proteins also displays large random fluctuations beginning at a transition

temperature of 180–230K [4,5]. These time scales are easily accessible using molecular dynamics simulations.

This offers a way of probing the dynamics involved in structural changes in the protein. And since protein

function depends on its structure (conformation), and its ability to switch between different conformations, it

is important to understand how exactly this switching takes place. In this work, we analyze a set of time series

of inter-residue distances for a selected number of residues surrounding the active site in the protein bovine

pancreatic trypsin inhibitor (BPTI). This is done using a recently developed method for extracting the

deterministic and stochastic contributions from time series [6,7]. This method has been used to analyze many

interesting physical systems [8–13]. It is based on the estimation of the Langevin differential equation [14,15]

d

dt
X ðtÞ ¼ gðX ðtÞ; tÞ þ hðX ðtÞ; tÞGðtÞ, (1)

ARTICLE IN PRESS

www.elsevier.com/locate/physa

0378-4371/$ - see front matter r 2006 Elsevier B.V. All rights reserved.

doi:10.1016/j.physa.2006.10.070

�Corresponding author. Tel.: +970 972 26717824.

E-mail address: wqaran@birzeit.edu (W.I. Karain).

www.elsevier.com/locate/physa
dx.doi.org/10.1016/j.physa.2006.10.070
mailto:wqaran@birzeit.edu


where X(t) is the state of the system at time t, the nonlinear function g provides the deterministic change, the

function h gives the amplitude of the stochastic part, and G(t) provides an uncorrelated white noise term with

an average value of zero.

2. Computational methods

The molecular dynamics simulation and analysis were performed using NAMD [16] and VMD[17]. The

starting X-ray structure for the simulation (6PTI) was obtained from the Protein Data Bank [18]. The

Charmm force field was used [19,20].

Periodic boundary conditions were used. The solvent box volume was 44.9 Å� 40.8 Å� 41.3 Å, and left a

5 Å thick layer between the sides of the water box and the protein edges. The protein was neutralized using the

auto-ionize feature in VMD. The simulation contained a total of 1893 water molecules, 882 protein atoms,

and 6Cl� ions. The MD simulation in the water box was initialized by minimizing the water molecules for

500 fs while keeping the BPTI proteins and ions fixed. Next, the water molecules were heated from 0 to 300K

in 5 ps, and equilibrated for 10 ps at 300K. The BPTI protein atoms were then released, and the whole system

(protein, ions, and water molecules) was minimized for 1000 fs. The system was then heated from 0 to 300K in

10 ps, and equilibrated for 40 ps at 300K. The production stage of the 5 ns simulation was started after this

equilibration stage. Coordinates of Ca were saved every 50 fs for analysis. The conjugate gradient method was

used for minimization. The configurations were fitted and aligned to the first (reference) frame. This was done

by removing all translational motion of the center of mass, and then using a least square fit procedure [21].

Each time series consisted of 100,000 points with a time step of 50 fs. The set of time series consisted of inter-

residue distances for a selected group of residues surrounding the BPTI active site. These distances were

extracted from simulations performed on the protein in vacuum and water.

BPTI is a very well researched and its properties are well documented. It has been called the ‘‘hydrogen

molecule’’ of protein dynamics. It is a small and globular protein that lends itself easily to long MD

simulations. It is very compact and its shape resembles that of a pear. It binds to and inhibits proteolytic

enzymes like trypsin. The reactive site bond in BPTI lies in the narrow edge of the ‘pear’ between the residues

Lys15 and Ala16. The section of the protein that binds to the enzyme during the inhibition is defined by the

two anti-parallel strands consisting of residues 12–19, and 34–40 [22–24].

It is the aim of this article to show that the system can be modeled by a difference form of the Langevin

equation (1):

X ðtþ tÞ ¼ X ðtÞ þ gðX ðtÞ; tÞ þ hðX ðtÞ; tÞCðtÞ, (2)

gðxÞ ¼ lim
t!0

1

t
oX ðtþ tÞ � x4

�

�

X ðtÞ¼x
, (3)

hðxÞ � hT ðxÞ ¼ lim
t!0

1

t
oðX ðtþ tÞ � xÞ � ðX ðtþ tÞ � xÞT4jX ðtÞ¼x, (4)

where t is the lag time, g(x) the drift coefficient, and h(x)� hT(x) the diffusion coefficient [25]. If small lag

times are possible then the limit t-0 can be taken in Eq. (2) to get the differential equation (1), provided that

the dependence on t takes the form g(X(t);t)Et g(X(t)) [26,27]. The functions g and h are assumed to have no

explicit time dependence. However, they could depend on the lag time t. In this work, this model will be valid

for a certain range of values for t, where the functions g(X(t);t) and h(X(t);t) are not significantly dependent

on the value of t. Another essential feature is that the system is Markovian, i.e. with no memory effects.

The technique for finding g(x) and h(x) in Eq. (2) using the definitions in Eq. (3) and (4) is the following: the

inter-residue distance values in a time series are divided into bins, with the middle value of the bin, x, being the

representative value. Given any value X(t) within the bounds of a bin, the future value X(t+t) is stored. All

future values for a bin form a distribution. The values for g(x) and h(x) are then calculated using Eqs. (3) and

(4), respectively.

The Markovian property for each series is checked by comparing the one-step and the two-step conditional

probability densities. Agreement of the two would point to a lack of memory effects [7].
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3. Analysis and discussion

A typical time series is shown in Fig. 1. This is the inter-residue distance between residues 13 and 39. The

series is 5 ns long.

The Markovian property is shown by calculating the one- and two-step conditional probability density

functions. As can be seen in Fig. 2, the two closely resemble each other. Simple regression analysis provides a

slope very close to 1. This shows that there is no memory dependence in the values of the time series.

The deterministic and random contributions to this data time series, using a lag time value t ¼ 100 time

steps (5 ps) are shown in Fig. 3. The function g(x) in Fig. 3a shows the deterministic contribution. There are

three fixed points, where the value of g(x) is zero. The two outside fixed points are stable. The fixed point

inside in unstable. Any attempt by the protein to deviate to the left of the first stable fixed point, or to the right

of the second stable fixed point, results in a large deterministic contribution that tends to return the protein to
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Fig. 1. Time series showing the inter-residue distance between residues 13 and 39.
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Fig. 2. The relationship between the one- and two-step conditional probability density functions.
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the region defined by the two stable fixed points. The stochastic contributions (Fig. 3b) at these two stable

points are small. In comparison, the stochastic contribution at the unstable point is large. Thus, while the

deterministic contribution holds the protein at the two stable conformations, the stochastic contribution

provides a large random jolt that sends the protein from one stable conformation to another stable

conformation.

The dependence of this dynamic behavior on the lag time t is shown in Figs. 4(a) and (b) for the

deterministic contribution and the stochastic contribution, respectively. While it is true that the g and h

reconstructions are obtained for the smallest step or as t-0, it is still very interesting to note that the behavior
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Fig. 3. (a) The deterministic (g(x)) and (b) the random (h(x)) contribution (in arbitrary units) for the 13–39 inter-residue distance time

series. The protein is solvated in water.
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Fig. 4. (a) The time dependence for the deterministic contribution (in arbitrary units) for the time series of the inter-residue distance

between residues 13 and 39 (K ¼ 10 steps,’ ¼ 50 steps, x ¼ 100 steps, + ¼ 500 steps,~ ¼ 1000 steps). (b) The time dependence for the

stochastic contribution (Å) for the time series of the inter-residue distance between residues 13 and 39 (K ¼ 10 steps, ’ ¼ 50 steps,

x ¼ 100 steps, + ¼ 500 steps, ~ ¼ 1000 steps).
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of g and h are significantly independent off t in the range between 10 time steps and 1000 time steps. It should

be clearly stated that different regions of the dynamics in phase space are being included the larger the

value of t.

To check whether this dynamic behavior truly results from the dynamics of the system, or whether it is an

artifact, the time series values were reshuffled randomly. This was done by breaking the time series into

segments of equal length and mixing them randomly before applying the analysis discussed above. The

original analysis was performed at a lag time of 100 steps. The time series was broken up into segments 10 time

steps long (shorter than lag time) and 1000 steps (longer than lag time). The results for g(x) and h(x) are shown

in Figs. 5(a) and (b), respectively. It is clear that while breaking up the series into pieces smaller than the time
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Fig. 5. (a) The effect of shuffling the time series on the value of the deterministic contribution. (b) The effect of shuffling the time series on

the value of the stochastic contribution.
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Fig. 6. (a) The deterministic and (b) stochastic contributions (in arbitrary units) for the 13–39 inter-residue distance time series extracted

from a simulation with no solvent surrounding the protein.
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lag removes the dynamic behavior completely, shuffling the series in pieces larger than the time lag keeps the

dynamic behavior.

The same analysis was repeated for the time series of the inter-residue distance between residues 13 and 39

extracted from molecular dynamics simulations of the protein in vacuum, with no solvent water present. This

was done to check whether the protein dynamics are indeed a ‘slave’ to the surrounding solvent. As can be

seen in Fig. 6, the dynamic behavior exhibited for the solvated protein disappears. This clearly shows that the

presence of the solvent plays a very important role in the dynamics of the protein, and the way it switches

between conformations.

Other types of dynamical behavior were exhibited when the same analysis was performed on different

residue pairs with the data extracted from the solvated protein simulation. A sampling representing different

types of results are shown in Figs. 7(a)–(e).

The behavior in Fig. 7(a) and (e) shows non-linearity in the deterministic contribution with one stable fixed

point and two stable fixed points, respectively. This is in contrast to the behavior shown in Fig. 7(c), which

shows no nonlinearity. The stochastic contributions in Figs. 7(b) and (f) show a rich collection of local

maxima as opposed to Fig. 7(d). This sampling of results points to the fact that different residue pairs perform

correlated motions, jumping between different conformations.

4. Conclusion

The deterministic and stochastic contributions to time series of inter-residue distance in the active region of

the BPTI protein show a rich variety of dynamic behavior. This behavior is dependent on the presence of

solvent around the protein, offering further evidence that proteins are a ‘slave’ to the surrounding

environment. The results can pinpoint residues that collaborate to perform jumps between different

conformations, and others that show no such correlation. This analysis technique can further clarify how

proteins perform their different functions by adapting their structure accordingly. The analysis of time series

extracted from longer simulations and performed at different temperatures, should give a clearer picture of the

dynamics involved in concerted protein motions using this analysis technique.
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