
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tcim20

International Journal of Computer Integrated
Manufacturing

ISSN: 0951-192X (Print) 1362-3052 (Online) Journal homepage: https://www.tandfonline.com/loi/tcim20

Single and multi-row layout design for flexible
manufacturing systems

Allan Tubaileh & Jamal Siam

To cite this article: Allan Tubaileh & Jamal Siam (2017) Single and multi-row layout design for
flexible manufacturing systems, International Journal of Computer Integrated Manufacturing,
30:12, 1316-1330, DOI: 10.1080/0951192X.2017.1314013

To link to this article:  https://doi.org/10.1080/0951192X.2017.1314013

Published online: 20 Apr 2017.

Submit your article to this journal 

Article views: 489

View related articles 

View Crossmark data

Citing articles: 9 View citing articles 

https://www.tandfonline.com/action/journalInformation?journalCode=tcim20
https://www.tandfonline.com/loi/tcim20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/0951192X.2017.1314013
https://doi.org/10.1080/0951192X.2017.1314013
https://www.tandfonline.com/action/authorSubmission?journalCode=tcim20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tcim20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/0951192X.2017.1314013
https://www.tandfonline.com/doi/mlt/10.1080/0951192X.2017.1314013
http://crossmark.crossref.org/dialog/?doi=10.1080/0951192X.2017.1314013&domain=pdf&date_stamp=2017-04-20
http://crossmark.crossref.org/dialog/?doi=10.1080/0951192X.2017.1314013&domain=pdf&date_stamp=2017-04-20
https://www.tandfonline.com/doi/citedby/10.1080/0951192X.2017.1314013#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/0951192X.2017.1314013#tabModule


Single and multi-row layout design for flexible manufacturing systems
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In this paper, machines are allocated in horizontal rows along sides of an automated guided vehicle path so that the total
cost of material transportation between machines is optimised. The problems of locating machines in single, double and
multi-row layouts are addressed. Different layout arrangements as well as random permutations of machines are obtained
using a simple construction algorithm, then the search for optimal solution and the best machine arrangements is obtained
by implementing both Ant Colony and Simulated Annealing algorithms. Computational test examples show that the
proposed method provides the best-known solutions for the single-row and double-row layout problems. Furthermore,
experimental results demonstrate that both algorithms provide identical solutions for the single and multi-row layout
problems.

Keywords: machine layout; ant colony optimisation (ACO); simulated annealing (SA) algorithm; flexible manufacturing
systems (FMSs)

1. Introduction

An efficient layout design is crucial for flexible manufac-
turing systems (FMSs) implementation, because the layout
is difficult to design, costly to modify and therefore sig-
nificantly affects the efficiency of the entire system. The
facility layout consists of three phases: layout design,
material-handling system and facility system design
(Tompkins et al. 1996). The material-handling system
has a significant effect on the productivity of the entire
system. It has been estimated that up to half of the total
operating expenses within the manufacturing operation are
due to material handling. Tompkins et al. (1996) have
reported that effective layout design will reduce these
costs by, at least, 10–30%. Therefore, in order to improve
the production system, it is of great importance to develop
the layout considering the material-handling system per-
formance in the early stages of system design.

Several layout patterns are used in FMS. In these layouts,
facilities are located in single-row, multi-row, circular loop.
Since single-row and multi-row machine layouts are widely
implemented in today’s factories, therefore, the work of this
paper will concentrate on these types of layouts.

In the single-row layout problem (SRLP), the machines
are arranged along a single row on one side of the material-
handling system path. The multi-row layout problem
(MRLP) locates machines in multi-rows, where machines
are laid on both sides of the material-handling system
corridor. From practical point of view, MRLP layout often
deals with more efficient and realistic material flow struc-
ture than SRLP. In actual facilities, rooms are arranged in

both sides of a corridor and tool workstations are laid in the
same manner for efficient space utilisation and minimum
material-handling cost. For practical implementations of
these layouts, one can refer to the work of Chung and
Tanchoco (2010). Some researchers have discussed the
advantages of MRLP compared to SRLP (e.g. Heragu and
Alfa 1992; Solimanpur, Vrat, and Shankar 2005), but
MRLP has not received much attention in literature.

In order to design an efficient manufacturing system,
an appropriate material-handling device must be used for a
specific layout configuration. Meanwhile, to increase the
flexibility of the system, an automated handling device
must be used for material transportation between machines
such as automated guided vehicle (AGV) or a gantry
robot. AGVs are very flexible, and they have better per-
formance in moving in straight lines. Therefore, they are
widely used in modern factories, especially FMSs in
which machines are located in straight rows.

The machine layout problem in FMS involves the
positioning of machines in single or multi-rows, so as to
minimise the total material-handling cost. Machines are
represented as rectangular shapes of unequal dimensions,
in which the pick/up and drop-off points are located on
one side of the rectangle. The pick-up/drop-off points are
always directed towards the path of the AGV.

The problems presented in this paper are of combina-
torial nature. The most popular meta-heuristic algorithms
proposed to solve this type of problems are genetic algo-
rithm (GA), simulated annealing (SA), tabu search (TS)
and ant colony (AC). Recently, numerous studies were
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mainly concerned with performing comparative studies
among these algorithms with respect to quality of the
solution and the number of iterations required to obtain
the best solution. In this context, Aarts and Lenstra (1997)
presented a survey of these algorithms to the travelling
salesman problem (TSP). In this study, the authors
declared that if minimum cost is required and a consider-
able computational time is available, both SA and GA
provide better solutions than could be obtained from
other algorithms. Similarly, Alhamdy, Noudehi and
Majdara (2012) presented a comparative study of the
most popular meta-heuristic algorithms including SA,
GA, TS and AC for the TSP. The results of this study
showed that the AC provided the best performance and
SA came in second place with little difference. The same
authors indicated that GA is the most inefficient algorithm
for TSP as it yielded the worst solution among other
algorithms. On the other hand, Yossef, Sait and Adiche
(2001) affirmed that all mentioned algorithms are efficient
and robust to solve difficult combinatorial problems. Also,
they concluded that each one has its own merits and it
would be unwise to generalise the results obtained for a
specific problem to other types of problems.

A recent work by Ahnon et al. (2014) implemented TS
and SA algorithms for the corridor allocation problem
(CAP). The authors pointed out that both algorithms were
able to obtain the best-known optimal solutions for the
benchmark problems considered by Amaral (2012); how-
ever, the SA presented the optimal solution in a less
computational time. In addition, Chen et al. (2016)
demonstrated that SA outperformed TS for obtaining solu-
tion of manufacturing cell planning. For all the motives
discussed above, SA and ACO were used to solve the
layout problems addressed in this paper.

This paper makes the following contribution. First, it
presents a constructive algorithm that can be applied to
solve SRLP, DRLP and MRLP. Second, the presented
method considers the corridor length and width. It was
verified through some numerical examples that the length
of the corridor can considerably change the layout config-
uration. Third, the problem is formulated as an uncon-
strained layout problem which is solved by SA and ant
colony optimisation (ACO). These algorithms have pro-
ven to be efficient for solving difficult combinatorial pro-
blems. Finally, experimental results show that the
proposed technique provides good performance and the
best-known solution for some problems solved by other
methods.

The remainder of this paper is organised as follows.
Section 2 reviews the previously proposed methods for the
SRLP and MRLP, while Section 3 provides a description
of the problem. The solution methodology implemented to
search for the optimum solution is explained in Section 4.
Section 5 presents a comparison of the computational
performance of the proposed approach with other layout

methods. Finally, conclusions and recommendations for
future research are discussed in Section 6.

2. Literature review

The layout design of FMS should take into account var-
ious design aspects that are not extensively considered by
the general facility layout problem (FLP), like machine’s
shape, pick-up/drop-off points and the material-handling
device performance characteristics. Furthermore,
machines are normally of unequal area, this will increase
the complexity of the problem, mainly because unequal-
area layout will add a constraint to the problem (Heng and
Love 2000). Due to the differences between layout of
FMS and the general FLP, the methods developed to
solve FLP cannot be directly implemented for layout
of FMS.

Traditionally, general FLP is solved as quadratic assign-
ment problem (QAP). It is well known that the QAP is non-
deterministic polynomia (NP)-hard and cannot be used to
solve large-scale problems (Heragu and Alfa 1992). It has
been demonstrated by many authors that QAP is an inap-
propriate method to be used for layout of FMS, since it
cannot deal with machine dimensions and path of material-
handling system. The SRLP and MRLP are classified as
NP-hard, the application of exact methods to large-scale
problem is time-consuming, and therefore various heuristics
have been developed to obtain near optimal solutions for
these problems. The heuristics developed in past years for
SRLP and MRLP can be classified as

● Construction algorithm: This algorithm solves the
layout from scratch and iteratively places one or a
few machines at a time.

● Improvement heuristics: Using this type of algo-
rithm, the problem is solved starting with an initial
solution; then, the solution is improved during the
algorithm evolution process. The initial solution
could use constructive algorithm or random feasible
solution.

● Meta-heuristic: GA, SA algorithm, ACO and TS are
examples of meta-heuristics. These algorithms start
with initial solution at each iteration, the solution
may be obtained by a constructive-based algorithm
or may be generated randomly. The meta-heuristic
algorithm searches for the optimum solution among
all possible solutions.

● Exact solution: Mixed integer problem (MIP) for-
mulation was used by many researches in an
attempt to find exact solution to SRLP and MRLP.

The SRLP is concerned with the placement of a num-
ber of facilities along one side of the corridor such that the
material transportation cost between facilities is optimised.
SRLP can be solved by one of these approaches discussed
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previously. For example, Kumar et al. (2008) presented a
heuristic method that includes a scatter search for the
SRLP.

A hybrid SA algorithm was presented by Heragu and
Alfa (1992) for SRLP and MRLP of FMS. Samarghandi
and Eshghi (2010) developed a TS for SRLP. Datta,
Amaral and Figuiera (2011) developed a permutation-
based GA which proved to give best solution for large-
scale SRLP. Solimanpur, Vrat and Shankar (2005) solved
the SRLP using ant colony system. A particle swarm
optimisation was developed by Samarghandi, Taabayan
and Jahantigh (2010) for the SRLP.

Amaral (2006) developed a strong MIP formulation
which gives exact solutions to 15 machines by applying
the linear-ordering polytope. Computational tests showed
that his model provided better solutions than other pre-
vious MIP models proposed for the problem. Amaral
(2009) presented a strong lower bound based on linear
programming for large instances of SRLP. Similarly, a
strong lower bound obtained via semi-definite program-
ming was developed by Anjos, Kinning and Vannelli
(2005).

Chung and Tanchoco (2010) addressed the double-row
layout problem (DRLP) in which machines are placed in
both sides of the corridor. A MIP model was presented
with five heuristics in order to provide a good initial
solution and corresponding upper bound of DRLP.
However, the MIP model of Amaral (2013) was proven
to give better performance than the model of Chung and
Tanchoco (2010). As pointed out by Amaral (2013), pro-
blems size up to 12 machines were solved by both meth-
ods; however, larger size problems require high execution
time. The DRLP was also addressed by Amaral (2012),
denoted by CAP. He presented a MIP formulation and two
heuristics procedures for large problems using data from
benchmark SRLP. Murray, Smith and Zhang (2013) pre-
sented a method that combined combinatorial optimisation
using local search with continuous optimisation using
linear programming to solve the DRLP. Similarly, a
multi-objective TS with linear programming approach
was proposed by Zuo, Murray and Smith (2014) for an
extended DRLP, in which the objective was to optimise
the material transportation cost and layout area.

On the other hand, the MRLP consists of locating
machines in different rows such that the total transporta-
tion cost between machines is optimised. MRLP caught
the attention of a few researchers, for instance, Heragu and
Alfa (1992) solved this problem using hybrid SA heuristic
with machines of equal-area. In their work, the initial
solution is generated by modified penalty algorithm in
each iteration; then, the best solution is obtained by SA
algorithm. The MRLP with machines of unequal-area was
introduced by Gen, Ida and Cheng (1995). Their formula-
tion considered machine dimensions and the fuzzy clear-
ance between machines located in two rows. The

permutation of machines in each row and neat clearance
between machines and between boundaries is generated
randomly; subsequently, a GA is implemented to find the
best solution. It was assumed that the manufacturing facil-
ity is formed of two rows only where machines are allo-
cated in one side of the corridor, also the corridor width
was ignored by their formulation. MRLP of FMSs which
employs AGV to feed machines allocated in one side of
the corridor was presented by Ficko, Brezocnik and Balic
(2004). In their procedure, machine sequences in each row
and the favourable number of rows were established by
GA. Unlike previous methods in which machines are
located on one side of the corridor, locating machines on
both sides of the corridor will considerably decrease the
cost of material transportation as it will be illustrated later
in this paper.

Tubaileh (2014) presented a new approach to address
the single and double-row machine layout in FMS con-
sidering the kinematic constraints of the material-handling
system. The objective of this paper was to optimise the
time required by the autonomous vehicle to transport the
material between machines taking into account the velo-
city, acceleration and kinematic constraints of the steering
mechanism of the vehicle.

3. Procedure overview

3.1. Problem description

This paper investigates the single-row and multi-row
machine layout in FMS. Machines are located along the
corridor of one AGV which is used to transport material
between machines within the same row and between dif-
ferent rows. The length of single row path is not limited,
while locations of machines in multi-row system are lim-
ited by the vertical and horizontal dimensions of the
facility. Machines are assumed to be rectangular in shape
with pick-up/drop-off points located on the centre of either
machine sides. The pick-up/drop-off point must be located
on the side facing the corridor, so for simplicity, the
horizontal dimension of the ith machine on which the
pick-up/drop-off point is located is denoted as hi and the
other dimension is called vertical length vi, no matter
which is the longest one (see Figure 1).

The rectilinear corridor represents the flow path of
material handling between machines. The objective is to
minimise the cost of material movement, which is com-
puted as the material flow times the distance measured a
long rectilinear path. In single-row layout, the distance
between machines is the absolute difference between the
horizontal coordinates of pick-up/drop-off points as shown
in Figure 1.

While, for the multi-row layout, the objective is to
minimise the sum of the absolute horizontal and vertical
distances between all pairs of machines, it should be taken
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into consideration that this distance must be the minimum,
since there are two possibilities to turn from one row to
the other as illustrated in the next section.

In solving the single and multi-row layouts, it is neces-
sary to know the dimensions of the machines and the
minimum allowable clearance distance between each pair
of machines. Furthermore, flow between all pairs of
machines must be provided during a certain period of
time. Concerning the MRLP, the available space for the
FMS (hl, vl) and the width of the AGV path (w) must also
be known. In order to simplify the problem formulation, the
clearance distance between machines is incorporated in the
dimension of machines. Figure 2 describes a manufacturing
system of four rows with an AGVused to transport material
between machines located in different rows.

3.2. Representation

The solution procedure is divided into two basic steps:
The first is concerned with determining the sequence and

locations of the machines in the row, while the second
tries to find the number of rows required for assigning all
machines within the manufacturing system. The procedure
iterates between these two steps until the best layout
configuration is obtained. A SA algorithm, described in
Section 4, is used to search for the best solution.

Assigning machines to rows starts from the lower left
end, of the lowermost row, with the placement sequence
following a random permutation of machines obtained by
each iteration. When the total length of the lower side of
the row exceeds the length of the row a, or the total length
of machines exceeds the horizontal limit of the system, the
last placed machine must be moved to the upper left end
of the same path. Figure 3(a) illustrates this procedure,
where machines 1, 2 and 3 are the first three cells to be
placed. When attempting to allocate machine 4 in the
lower row, it will not fit because either the pick-up/drop-
off point position exceeds the row length (a) or the total
machines length exceeds the limit of the facility hl. Then,
machine 4 will be moved to the upper left side of the first
corridor.

When the upper side of the first path (i.e. second row)
is filled with machines 4 and 5 as shown in Figure 3(a),
then the procedure proceeds to assign machine 6 to the left
side of the next path (i.e. third row). In starting the third
row located on the second path, two layout configurations
might be generated according to the total number of rows
required to locate all machines. These two layout config-
urations are shown in Figure 3, where the numbered
machines indicate the order of placement. When the total
number of rows is odd, the priority is to place machines in
the upper side of next corridor. As explained in Figure 3
(a), this scheme will lead the proposed method to optimise
the displacement of the AGV by reducing the vertical
position of the row. However, for even number of rows,
the assignment starts from the lower left side of the
corridor until the row is filled. Then, the procedure con-
tinues to place machine 9 to the upper left end of the
fourth row as shown in Figure 3(b).

For a given random permutation of machines for sin-
gle-row layout, the placement starts from the left row end.
An example of single-row layout is described in Figure 4
where the sequence of machines is given by
π = [4,1,3,2,5], and location of machines is denoted by
m = [m1,m2,m3,m4,m5]. Hence, m1 corresponds to the
location of machine 4 and m2 represents location of
machine 1, etc.

Regarding the multi-row layout, the procedure of cal-
culating the coordinates of pick-up/drop-off points of
machines is illustrated in Figure 5. The width of the
transportation device and dimensions of machines must
be taken into consideration when calculating the coordi-
nates of the pick-up/drop-off points. As mentioned before,
the minimum clearance between pairs of machines is
included in the machine dimensions.

w

hi

vi

Machine

AGV Transport device

Pick-up/drop-off point

Transport path

AGV

hj

vj

Figure 1. Representation of single-row machine layout in FMS.

w

Machine

AGV Transport device

Pick-up/drop-off point

transport path

AGV

hi

vi

AGV

A
G

V

A
G

V

hl

vl

row4

row3

row2

row1

Figure 2. Representation of multi-row layout.
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According to Figure 5, machine locations are repre-
sented in the two-dimensional space by the following
three variables: xπr jð Þ, yπr jð Þ and r ¼ 1; 2; . . . ;R½ �, where,
xπr jð Þand yπr jð Þ represent the location of the pick-up/drop-
off point of the jth machine in row r 2 R, for a given
permutation of machines π.

Denote by �n the set of all machines permutation π
of N ¼ 1; . . . ; n½ �, the total number of rows is denoted
by R and nr is the number of machines in the rth row

such that
PR

r¼1 nr ¼ n. Then, the coordinates of
machines of pick-up/drop-off points are given as
follows:

xπr jð Þ ¼
hπr jð Þ
2

þ
Xj�1

i¼1

hπr ið Þ; r 2 1; . . . ;Rf g;

1 � j � n; π 2 �n

(1)

1
2

3 4

4

hl

5
6

6 7

vl

1
2

3

4

hl

5

6 7

vl

8

9a

(a) (b)

Figure 3. Spatial placement of machines for multi-row layout.
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m3
m5

location,         m=[m1,m2,m3,m4,m5]

x sequence, = [ 4,  1,  3,   2,  5]

m4

Figure 4. Spatial sequence of single-row layout.
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Figure 5. Flow path determination of multi-row arrangement.
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yπ1 ¼ yπ2 ¼ max vπ1 jð Þ
� �

; 1 � j � n1 (2)

yπr ¼ yπr�1 þmax vπr�1 jð Þ
� �

; nr�2 þ 1 � j � nr�1;

for R ¼ 3; 5; . . . ; odd

yπr ¼ yπr�1 þmax vπr�1 ið Þ þ vπr jð Þ
� �

;

nr�2 þ 1 � i � nr�1; nr�1 þ 1 � j � nr

yπr ¼ yπr�1 þmax vπr�1 ið Þ þ vπr jð Þ
� �

;

nr�2 þ 1 � i � nr�1; nr�1 þ 1 � j � nr;

for R ¼ 4; 6; . . . ; even

(3)

where hπr jð Þ denotes the horizontal dimension of jth
machine on row r for a given machine permutation π
and yπr represents the y coordinates of row r 2 R.
Equation 1 expresses the x coordinates of machine pick-
up/drop-off points, also it prevents machines overlapping.
In order to reduce the complexity of the problem formula-
tion, the clearance required for any machine can be easily
included in its dimensions. As described by Equation 2,
the y coordinate of the first corridor is defined by the
maximum vertical dimension (vj) of the machines located
in the first row, while Equation 3 represents the y coordi-
nate of the other corridors, which is determined by the
sum of the maximum height of machines in the last row
and the y coordinate of the previous row, for odd number
of rows. On the other hand, for even number of rows, the
coordinates are defined by the distance of the previous
corridor and the maximum height of the machines in the
last two rows.

Once the coordinates of pick-up/drop-off points are
calculated as explained in Figure 5, the distance travelled
by the material-handling device between a pair of
machines can be determined. If several paths between
pair of machines are possible, the shorter one is selected
(Ficko, Brezocnik, and Balic 2004). If machines i and j are
located in the same row, the distance of the path dij is
calculated according to the following equation:

dπij ¼ xπr ið Þ � xπr jð Þ
�� �� (4)

When machines are located in different rows, there are
two possible routes, as shown in Figure 5. The distance
associated with these two possible routes is defined by the
following equations:

dπ1ij ¼ xπr ið Þ þ xπr jð Þ þ wþ yπr ið Þ � yπr jð Þ
�� �� (5)

and

dπ2ij ¼ a� xπr ið Þ
� �þ a� xπr jð Þ

� �þ w

þ yπr ið Þ � yπr jð Þ
�� �� (6)

Between these two possible routes, the minimum path
length dπij is selected as indicated by the following equation:

dπij ¼ min dπ1ij ; d
π2
ij

� �
(7)

The same procedure is used to determine the minimum
path lengths dij between all pairs of machines.
Accordingly, to solve the SRLP and MRLP, it is necessary
to know the material flow between all pairs of machines
during a certain period of time, as well as the cost of travel
which depends on the material-handling system.

Taking into consideration all these issues, the machine
layout problem in FMS can be addressed as follows: for a
given permutation of machines, π, find the optimum loca-
tions of n machines such that the total cost of travel
between all pairs of machines is optimised. Thus, the
objective function can be formulated as

z ¼
Xn�1

i¼1

Xn

j¼iþ1

cijfijd
π
ij ; π 2 �n (8)

where fij and cij denote the number of trips and the material
transportation cost between machines i and j, respectively,
while dπij is the length of the path between machines i and j

corresponding to permutation π, as given by Equation (7).
Equation 8 represents the sum of the transportation

cost between machines for a given permutation π. To
find the optimum cost function for all possible permuta-
tions of machines, several meta-heuristics can be imple-
mented like GA, TS, SA and ACO. In this paper, the SA
and ACO algorithms have been utilised to find the best
solution among all randomly generated layout problems
for both SRLP and MRLP.

4. Solution methodology

The problems discussed in the previous section are of
combinatorial nature, at which the meta-heuristic algo-
rithms were proven to be effective in solving similar
problems. A brief description of SA and ACO implemen-
ted to solve the problems addressed in this paper will be
presented in the following sections.

4.1. Simulated annealing algorithm

SA is a general optimisation procedure proposed to solve
large combinatorial problems based on randomisation
technique. Kirkpatrick, Gelatt and Vecchi (1983) intro-
duced the concept of SA inspired by the physical anneal-
ing process of solids. Solution of combinatorial problems
is similar to the state of solid and the cost of the solution is
equivalent to the energy of state.
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The working principle of SA is simple. During the
search process, the algorithm tends to ‘hill climb’ towards
a better solution, while a worse solution is accepted with a
certain probability (P).

This attribute enables SA to obtain high-quality solu-
tion by permitting it to escape from local optimum.

The SA algorithm consists of four basic components:

(1) Configurations: all possible solutions for combi-
natorial problems (states).

(2) Configuration change: a mechanism to change the
configuration by small perturbation of state.

(3) Cost function: a measure of the quality of solution.
(4) Cooling schedule: reduce the temperature to pro-

duce a final equilibrium state with minimum
energy.

The general scheme of the SA procedure can be described
by the following pseudo-code programme:

1. Initialise
Initial temperature (To), initial configuration (S).
2. While the stop criterion is not satisfied
2.1. Perform the loop (NOVER) times

2.1.1. Generate random neighbour S′ from S
2.1.2. Let Δ = cost(S′)-cost(S)
2.1.3. If Δ ≤ 0, then set S = S′
2.1.4. If Δ > 0, then set S = S′ with probabil-

ity p ¼ exp �Δ=Tð Þ

2.2. Set Tk+1 = r Tk, where r is the reduction
ratio (0 < r < 1).

3. Go to 2.
In this work, the generation mechanism described by

step 2.1.1 randomly selects two machines and exchanges
the locations of these machines. The performance of the
SA strongly depends on the selection of a set of critical
values of the control parameters. Particularly, the para-
meters that must be carefully chosen for finite-time per-
formance are described in the following sections.

4.1.1. Cooling schedule

Evidently, the cooling schedule includes the initial tem-
perature, temperature reduction formula, the number of
iteration at each temperature and the time of the annealing
process.

The initial temperature (To) must be high enough in
order to make sure that the search will reach all possible
states. In physical analogy, the solid is heated up to high
temperature until all particles are randomly arranged in the
liquid phase. It was stated before that the quality of the
solution strongly depends on the initial temperature value.
Hence, the value of the initial temperature is crucial. The
SA starts with initial probability Po, from which the initial

temperature To is determined according to the Metropolis
criterion, Po ffi exp ��Δ=Toð Þ, while the mean cost increase �Δ
of the transitions was calculated by running the pro-
gramme several pilot runs.

SA technique requires very slow cooling schedule to
guarantee good performance. Slow cooling process
requires high computational time. Hence, the performance
of a finite-time implementation strongly depends on the
choice of control parameters. The CPU time is affected by
the number of configuration changes at each temperature
which is also identified as Markov chain length.

When the number of configuration reached the upper
bound of the Markov chain length, the temperature is
reduced according to a cooling schedule Tk+1 = rTk,
where r is the cooling ratio (0 < r < 1). Hence, the
equilibrium state will be attained when the final tempera-
ture (Tf) is reached.

The optimisation process stops when the optimal con-
figuration remains unchanged for a given number of
reduction stages (NOVER) or when the number of success-
ful transitions exceeds a prescribed value (NLIMIT).

A flow chart of the proposed SA is shown in Figure 6.

4.1.2. Parameters selection for SA

Several tests have been performed to select the appropriate
parameters required to optimise the layout problem using
the SA algorithm. The parameters provided by previous
researches are first selected; then, a change of one para-
meter at a time is performed to obtain the best perfor-
mance of the SA. For example, the parameters NOVER
and NLIMIT are set proportional to the number of
machines n at (100 × n) and (10 × n), respectively, as
indicated by Heragu and Alfa (1992). The same authors
recommended to take the temperature reduction factor r
from the range 0.8 to 0.99. A value of 0.9 is selected in
this research for an optimum layout convergence in a
reasonable execution time.

4.2. ACO

ACO is a meta-heuristic algorithm designed to solve com-
binatorial optimisation problems. ACO principles are
based on the natural behaviour of ants while searching
for the shortest path between their nest and some food
source. Ants need to travel several times between their
nest and a food source; while travelling, they leave in the
path a chemical substance called pheromone. The path
with high concentration of pheromone has the high prob-
ability to be selected by the ants to travel and hence more
pheromone is deposited through that path. Dorigo,
Maniezzo and Colorni (1996) developed the first version
of ACO to solve the TSP.

Generally, the optimisation problem under consid-
eration is transformed into a weighted Graph. Then,
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the ACO system iteratively dispenses a group of ants
onto the graph to create tours corresponding to possible
solutions. The optimisation technique by ACO has two
important phases, the tour creation and the pheromone-
updating scheme. The ant’s move from a node to
another in the network is probabilistically selected
based on pheromone quantities deposited on the tour
from the current node to the next node in the tour. Since
all ants start from the same node, a feasible solution is
obtained when all ants have been selected. When all
ants have developed their corresponding solutions, the
pheromone trails are updated. The pheromone values
are decreased through evaporation for tour with poorer

solution, on the other side; pheromone values are
increased for the tours which produce the best solutions.
The process of solutions development and pheromone
updating is repeated until the stopping condition has
been reached.

4.2.1. AC approach for the machine layout problem

The problem representation is the most important decision
to be made in solving any problem by ACO since inap-
propriate representation will lead to poor solution quality.
The ACO algorithm for the machine layout problem will
be illustrated in the following steps:

Start

Input data: fij,(hi,vi),(hl,vl),n

           Initial: T, r, ITMP=0
         Random sequence:  x

z =f (x )

Randomly selection of
machines for swpping

new configuration: ', x'
new OFV: z'= f (x')

z'< z
Calculate: Δ=z'-z
Random R: 0<R<1

R<exp(-Δ/t)

no

z=z', NLIMIT=NLIMIT+1
yes

yes

NOVER=NOVER+1
no

NOVER=100*n
           or
NLIMIT=10*n

yes

 ITEMP=ITEMP+1, t=r*T

NLIMIT=0,  or
ITEMP=ITEMPMAX

noNLIMIT=0
NOVER=0 z'<fmin

fmin=z
min=yes

Stop

yes

no

no

t > Tf
no

yes

π

π

π

π

Figure 6. Flow chart for optimum layout search by SA.
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(1) The layout problem is transformed into a directed
graph, a set of n nodes and a set of m arcs i; jð Þ.
The number of machines will be represented by the
number of nodes in the graph and the number of
nodes will be the number of ants.

(2) An ant is positioned arbitrarily to a node; then, an
equal pheromone is dispensed to each node. The
initial pheromone is given by the following equa-
tion:

τo ¼ 1

n�P
i2Cwi

(9)

where C is the initial machines sequence (machines
permutation), n is the number of nodes in the initial
sequence and

P
i2Cwi is the summation of the weights in

the initial sequence.

(3) The ant k in node i will select the next node to visit
j according to the following probabilistic equation:

pkj ¼

1; if q < qo and j ¼ argmax τr � ηβrk

n o
r2Ak

0; if q < qo and j�argmax τr � ηβrk

n o
r2Ak

τr�ηβjkP
r2Ak

τr�ηβrk
; q > qo

8>>>>><
>>>>>:

(10)

where Ak is the set of all possible nodes to be visited by
node k and the variable ηjk is given by

ηjk ¼
P

i;jð Þ2Eψk r; jð Þ
w jð Þ (11)

where ηjk stands for the number of nodes joined to
node j and it must be visited by ant k.

(4) When an ant selects a node, the pheromone is
updated on the node as follows:

τi ¼ 1� ρð Þτi þ ρτo (12)

where ρ represents the pheromone evaporation rate
ρ 2 0; 1½ � and τo is the initial pheromone defined by
Equation (9).

(5) The value of the objective function is calculated
after each ant has completed its tour. The objective
value for a given tour is saved as local best.

(6) Steps 3 and 4 are repeated till all ants have com-
pleted their tours. The lowest objective function

obtained by the current iteration is stored as best
solution.

(7) Let S be the best solution found by the current
iteration. The pheromone left on node i is updated
according to the following rule:

τi ¼ 1� ρð Þτi þ ρΔτi; if i 2 S
1� ρð Þτi; otherwise

	
(13)

where Δτi represents the pheromone quantity to be depos-
ited and is given by

Δτi ¼ 1P
j2Swj

(14)

(8) Steps 3–7 are repeated until the maximum number
of iterations is reached.

4.2.2. ACO parameters selection

The parameters are tested several times in order to select
the values which will give the best solutions. In our
simulation examples, the ACO parameters are set as

ρ ¼ 0:9, β ¼ 2, qo ¼ 0:9, number of ants = number of
machines.

5. Computational results

Three sets of experimental analysis were conducted in order
to study the effectiveness of the proposed method. The first
set has focused on comparing the results of single-row layout
obtained by the proposed method with those obtained by
others researchers. The second investigation set compared
the proposed method applied to double-row layout with the
methods of Amaral (2012), Das (1993) and Ahonen et al.
(2014). Finally, the third study explored the proposed new
approach for solving the multi-row layout using SA and
ACO techniques. The proposed algorithms are solved
using Matlab 7.9 and are executed on an HP notebook
having 2.0 GHz Intel Centrino dual-core and 3 GB of RAM.

In order to investigate the effectiveness of the pro-
posed method, several traditional problems of SRLP with
known best solutions are considered. Table 1 shows these
problems with the corresponding average transportation
cost function and the best-known optimal solution
obtained by previous works (Datta, Amaral, and Figuiera
2011; Amaral 2009; Samarghandi, Taabayan, and
Jahantigh 2010; Samarghandi and Eshghi 2010). It must
be declared that instances for the SRLPs are adopted from
Amaral (2009) and Anjos and Vannelli (2008). It can be
observed from Table 1 that the SA algorithm was able to
obtain the optimal solution for small-size SRLP in nearly
each run (out of 50 runs). In contrast, the performance of
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the SA becomes dependent on its various parameters as
the problem size is increased, as observed from the stan-
dard deviation values of Table 1.

Solimanpur, Vrat and Shankar (2005) stated that the
computational time should not be considered for compar-
ing the performance of different algorithms as the com-
puted machines are different. Instead, the number of
function evaluations would provide a better alternative
for the estimation of computational performance for algo-
rithms of meta-heuristic nature. As it can be noted from
Table 1 that the proposed SA method was able to obtain
the best solution in a reasonable number of function eva-
luations compared with the GA proposed by Datta,
Amaral and Figuiera (2011) and particle swam optimisa-
tion (PSO) of Samarghandi, Taabayan and Jahantigh
(2010) for SRLP. Table 2 shows the permutations of
machines obtained by the proposed method, and it can
be observed that they are identical to those obtained by all
previous works which were able to achieve the best-
known solution of the considered SRLPs.

Table 3 depicts the results of SRLP using ACO. It can
be observed from Table 3 that ACO was able to produce
the best-known solutions for the benchmark SRLPs.
However, the computational time required by ACO was
inferior to that required by SA approach.

In this paper, the DRLP denoted as SA-DRL is con-
sidered as a special case of MRLP. The performance of the
proposed SA-DRL is displayed in Tables 4 and 5. The
problems in Table 4 are adopted from Das (1993), while
the problems in Table 5 are taken from Amaral (2012). As
it can be observed from Table 4, the proposed SA-DRL
provides a better solution in nearly all the tested problems
solved by the Spline method presented by Das (1993)
except for problem 1 which consists of only 4 machines.
As the number of machines increases, the performance of
SA-DRL becomes more efficient than the Spline method.

Furthermore, Das reported that the Spline algorithm was
unable to reach optimal solutions for large size problems
(n > 12), unlike the proposed method which can be imple-
mented to solve large size problems in a reasonable com-
putational time as it can be seen later in this section.

Amaral (2012) denoted the DRLP by as the CAP. He
presented a MIP formulation and two heuristics to solve the
CAP problems that are too large to be solved by exact
approaches. The CPLEX 12.1.0 solved the MIP formula-
tion to optimality with problems up to 13 machines. He also
demonstrated that the exact formulation could not obtain an
optimal solution for the DRLP with 15 facilities even after
8.6 h of execution time. The data from SRLP benchmark
problems were solved by Amaral (2012) to test the

Table 1. Performance of the proposed SA method for traditional SRLP.

Problem
number

Number of
machines

Proposed SA method

Best-known
OFV‡

Average
time (s)

Average no. of function evaluations

Average
OFV†

Standard
deviation

Proposed
SA

Datta, Amaral, and Figuiera
(2011)

1 4 638 0.0 638 0.2 99 –
2 5 151 0.0 151 0.4 140 50
3 8 801 0.0 801 2.10 185 –

8-H 2324.5 0.0 2324.5 2.07 223 383
4 9 2469.5 0.0 2469.5 1.2 274 –

9-H 4695.5 0.0 4695.5 1.43 421
5 10 2781.5 0.0 2781.5 1.65 526 918
6 11-S 6933.5 0.0 6933.5 1.86 866 1096

11-LW 6933.5 0.0 6933.5 1.81 905 –
7 15 6305 0.0 6305 16.30 1028 –
8 20 15,552 2.1 15,549 22.25 4230 4034
9 30 44,968 3.4 44,965 64.22 10,230 10,576

†OFV = Objective function value; ‡found by GA of Datta et al., PSO Samarghandi, Taabayan and Jahantigh (2010) and LP of Amaral (2009).

Table 2. The best permutations obtained by the proposed SA
method for SRLP.

Problem
number

Number
of

machines
Optimal
OFV Permutations of machines

1 4 638 3–4–1–2
2 5 151 3–4–5–1–2
3 8 801 6–8–3–5–1–2–7

8-H 2324.5 7–8–1–5–4–6–3–2
4 9 2469.5 2–3–6–9–1–5–7–4–8

9-H 4695.5 5–9–2–1–7–3–6–4–8
5 10 2781.5 8–6–2–4–10–5–7–1–3–9
6 11-S 6933.5 7–2–1–10–4–3–6–5–8–11

11–LW 6933.5 11–10–3–8–2–7–5–1–9–4–6
7 15 6305 1–2–13–9–11–8–7–12–14–4–

3–5–6–15–10
8 20 15,549 17–13–5–6–7–20–8–12–11–4–

16–15–2–14–19–10–18–3–9
9 30 44,965 28–4–14–20–29–8–19–30–16–

27–25–11–3–7–21–9–10–
13–23–22–1–18–15–17–6–
24–12–26–5–2
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performance of his proposed algorithms. The above pro-
blems are solved in this paper in order to compare the
proposed SA-DRL with previous approaches developed
for the DRLP. It can be observed from Table 5 that the
proposed SA-DRL was able to attain identical solutions
obtained by the CAP approach. Furthermore, the previous
tests on DRLP show a significant discrepancy in computa-
tional time among the three approaches with the SA-DRL
being significantly faster, especially for the large test pro-
blems. For instance, the SA-DRL requires an average com-
putational time of about 70 s to solve problems with 30
machines, while the best CAP heuristic requires more than
2 h. This advantage will be confirmed in solving large-sized
problems for the MRLP as illustrated later in this section.

It should be pointed out that Amaral (2012) presented
two neighbourhood search-based heuristics to find the opti-
mal solutions for large problems adapting the well-known
2-opt and 3-opt algorithms to swap machines positions. He
also used a variable denoted t in order to split the layout in
two rows (i.e. t = number of machines in row 1). Unlike

Amaral’s approach, this paper generates machine permuta-
tion randomly; the number of machines to swap can be
specified by the user and this number could be reduced in
each stage by using the same criteria applied for reducing
the temperature of the SA algorithm. Furthermore, the
number of machines in each row is defined by the length
of the row, which is more reasonable from practical point of
view than choosing the number of machines in each row.

A recent work by Ahnon et al. (2014) implemented a
TS and a SA algorithms for the CAP. The performance of
both algorithms were tested using the instances considered
by Amaral (2012). The authors pointed out that both
algorithms were able to obtain the best-known optimal
solutions for the benchmark problems; however, the SA
presented the optimal solution in a less computational
time. Table 6 compares the results obtained by the pro-
posed SA-DRL algorithm and those obtained by TS and
SA implemented by Ahnon et al. (2014). It can be
observed that the proposed algorithm was able to obtain
the optimal solutions achieved by the SA and TS algo-
rithms of Ahonen et al. (2014).

The multi-row layout approach was analysed by sol-
ving FMSs of 30 machines, and the performance of both
the SA and ACO approaches is displayed in Tables 7 and
8, respectively. The average OFV of each problem is
calculated for 50 runs. In order to prove the effectiveness
of the proposed method, the MRLP was solved using the
same problems originally handled as SRLP. Both algo-
rithms have obtained the same objective value as can be
shown in Tables 7 and 8. As for the SRLP, the ACO
exhibited a better performance regarding the computa-
tional time required to solve the MRLP.

Figure 7(a) describes the placement procedure for a row
length of 25 m at which the algorithm was capable to place
all machines in three rows. In the third row, machines are

Table 3. Performance of the proposed ACO method for traditional SRLP.

Problem
number

Number of
machines

Proposed ACO
method

Best-known
OFV

Average
time (s) Permutations of machines

Average
OFV

Standard
deviation

1 4 638 0.0 638 0.18 3–4–1–2
2 5 151 0.0 151 0.3 3–4–5–1–2
3 8 801 0.0 801 1.40 6–8–3–5–1–2–7

8-H 2324.5 0.0 2324.5 1.87 7–8–1–5–4–6–3–2
4 9 2469.5 0.0 2469.5 0.9 2–3–6–9–1–5–7–4–8

9-H 4695.5 0.0 4695.5 1.3 5–9–2–1–7–3–6–4–8
5 10 2781.5 0.0 2781.5 1. 5 8–6–2–4–10–5–7–1–3–9
6 11-S 6933.5 0.5 6933.5 1.66 7–2–1–10–4–3–6–5–8–11

11-LW 6933.5 1.5 6933.5 1.72 11–10–3–8–2–7–5–1–9–4–6
7 15 6305 2.1 6305 8.30 1–2–13–9–11–8–7–12–14–4–3–5–6–15–10
8 20 16,415 2.4 15,549 12.5 5–6–17–13–7–20–10–12–11–4–16–15–2–14–19–8–18–3–9
9 30 45,054 3.7 44,965 14.9 21–25–11–20–15–17–19–30–10–28–4–14–3–7–21–9–16–

13–1–22–23–18–29–8–6–24–12–26–5–2

Table 4. Comparisons of material transportation cost of the SA-
DRL with Spline-Layout of Das (1993).

Problem
number

Number of
machines

OFV

SA/Spline
benefit

SA-
DRL

Das-
Spline†

1 4 819 676 Ϯ
2 6 1890.5 2351.2 24.3%
3 8 7099.5 7877.5 10.9%
4 10 13,498 17,365 28.6%
5 12 37,018 44,876.7 21.2%

†Spline objective is calculated after excluding the offset distance o.
ϮThe objective of Spline method is better than SA-DRL.
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located above the path of the AGV, as explained in the
previous discussion. By reducing the width to 22 m, the
layout configuration changes to four rows as shown in
Figure 7(b). The assignment of machine starts on the lower
side of the second path. When the third row is completely
filled, machines are placed on top of the second path (fourth
row) starting from the left side.

Figure 8 shows an efficient multi-row layouts of large-
scale problems of 20 and 30 machines, problems 6 and 7

in Table 7. Obviously, Figure 8 shows how efficient is the
present approach to develop layouts applicable to FMS
served by AGV as a material-handling system. A zero
clearance distance has been considered between machines
in all the problems solved in this paper. Since, the pro-
blems reported in Table 7 were taken from SRLP bench-
mark data, the vertical dimension of machines (vi) are not
available in literature devoted to solve this type of pro-
blems. Hence, in order to assign machines in multi-row

Table 5. Comparison of material flow cost of the proposed SA-DRL with DRLP of Amaral (2012).

Optimal OFV Time (s)

Problem number Number of machines SA-DRL CAP MIP SA-DRL CAP† MIP

1 9 1181.5 1181.5 1181.5 1.5 1.3 18.2
9H 2294.5 2294.5 2294.5 2.7 1.33 1145.94

2 10 1374.5 1374.5 1374.5 2.5 2.11 62.75
3 11 3439.5 3439.5 3439.5 6.1 3.0 496.2
4 12a 1529.0 1529.0 1529.0 9.3 4.99 1869.3
5 15 3195 – – 14.5 – –

30-1 4155.0 4155.0 – 44.2 6070.5 –
6 30-2 10,779.5 10,779.5 – 60.9 7412.6 –

30-3 22,702.0 22,702.0 – 102.4 7902.4 –

†Solutions obtained by heuristic-2 with 2-opt.

Table 6. Comparison of results obtained by SA-DRL with those obtained by SA and TS of Ahonen et al. (2014).

SA-DRL Ahnon et al. (2014)

Problem number Number of machines OFV Time (s) SA Time (s) TS Time (s)

1 9 1181.5 1.5 1181.5 4.05 1181.5 1.14
9H 2294.5 2.7 2294.5 3.46 2294.5 1.15

2 10 1374.5 2.5 1374.5 4.88 1374.5 1.58
3 11 3439.5 6.1 3439.5 5.97 3439.5 2.02
4 12a 1529.0 9.3 1529.0 7.36 1529.0 2.43
5 15 3195 14.5 3195 12.2 3195 4.7

30-1 4155.0 44.2 4155.0 4.41 4155.0 26.51
6 30-2 10,779.5 60.9 10,779.5 4.40 10,779.5 37.68

30-3 22,702.0 102.4 22,702.0 4.45 22,702.0 35.33

Table 7. Performance of the proposed SA based approach for multi-row layout.

Problem
number

Number of
machines

Optimal
value

SA objective value

Average
time (s)

Average number of
iterations

Max. row
width

Number of
rowsAverage

Standard
deviation

1 8 418 418 0.0 3.07 544 17 2
8 569 569 0.0 2.04 420 10 4

2 9 1597.5 1597.5 0.0 2.67 845 20 3
3 10 1706.5 1706.5 0.0 2.86 1420 20 4
4 11 4206.5 4206.5 0.0 28.6 2892 25 3

11 4980.5 4980.5 0.0 29.3 2863 22 4
5 15 4170 4171.8 3.5 36.9 5953 27 4
6 20 9119 9122.2 4.3 45.8 10,536 35 4
7 30 23,032 23,036.1 7.2 129.2 18,364 45 4
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layout, the width of the machines must be known. The
vertical dimension of machines for the corresponding pro-
blems were assumed by the author and they are displayed
in Table 9. Finally, Table 10 presents the optimum permu-
tations of machines obtained for the multi-row layouts
shown in Tables 7 and 8.

6. Conclusions

This paper presented a method to solve the machine layout
problem in FMS which involves locating machines in
rows along straight corridors such that the sum of material
transportation cost between each pair of machines is mini-
mised. A simple constructive approach is proposed to
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Figure 7. Layout configuration change according to the length of rows.
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Figure 8. Layout of 20 and 30 machines.

Table 8. Performance of the proposed ACO based approach for multi-row layout.

Problem
number

Number of
machines

Optimal
value

ACO objective value

Average
time (s)

Average number of
iterations

Max. row
width

Number of
rowsAverage

Standard
deviation

1 8 418 418 0.0 1.42 55 17 2
8 569 569 0.0 1.88 56 10 4

2 9 1597.5 1597.5 0.0 2.17 88 20 3
3 10 1706.5 1706.5 0.0 2.46 97 20 4
4 11 4206.5 4206.5 0.8 16.5 105 25 3

11 4980.5 4980.5 1.8 19.2 110 22 4
5 15 4170 4171.8 2.5 26.7 123 27 4
6 20 9119 9122.2 3.8 33.5 200 35 4
7 30 23,032 23,036.1 6.4 86.4 200 45 4
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generate permutations of machines locations in straight
rows. Using this technique, it was possible to treat the
layout problem as unconstrained optimisation problem.
Accordingly, the search for optimal solution is obtained
by implementing a SA and AC algorithms, which have
proven effective in solving similar problems of combina-
torial nature. The proposed approach has the flexibility to
solve single-row, double-row and multi-row layouts which
are commonly implemented in recent FMSs. The numer-
ical examples presented in this paper favourably compared
to the best solutions found in literature for SRLP and
DRLP. The proposed approach was able to obtain the
optimum solutions reported by previous works for bench-
mark SRLP. For the DRLPs, the proposed method was
also capable to produce the best-known solution obtained
by previous works. Computational tests showed that both
SA and ACO algorithms have been proven to be efficient
in solving SRLPs, DRLPs and MRLPs, since both algo-
rithms produced identical layouts for all tested problems.
Unlike other methods that addressed the layout problem
with a predetermined number of rows and a fixed distance

between rows, the method presented in this paper was able
to find the optimal number of rows and the distance
between rows for a specific layout requirements.

In future work, the model may be extended to
consider the row length in the objective function in
order to obtain an optimum length of each row.
Furthermore, the pick-up and drop-off points may be
separated or located on different sides of machines,
which will affect the layout configuration and the cost
function. One of the most important issues that has not
received attention in literature is the kinematical con-
straints of the material-handling device. In future
research, the performance characteristics of the mate-
rial-handling system should be considered in the early
stages of the layout design.
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