
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/320596358

Static Analysis of Android Apps for Lifecycle Conformance

Conference Paper · October 2017

DOI: 10.1109/ICITECH.2017.8079982

CITATIONS

4
READS

429

3 authors:

Some of the authors of this publication are also working on these related projects:

Process-centred software engineering environments View project

Software Engineering Tools and Software Engineering Environments View project

Samer Zein

Birzeit University

27 PUBLICATIONS 225 CITATIONS

SEE PROFILE

Norsaremah Salleh

International Islamic University Malaysia

74 PUBLICATIONS 1,783 CITATIONS

SEE PROFILE

John Grundy

Monash University (Australia)

753 PUBLICATIONS 11,615 CITATIONS

SEE PROFILE

All content following this page was uploaded by Samer Zein on 25 October 2017.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/320596358_Static_Analysis_of_Android_Apps_for_Lifecycle_Conformance?enrichId=rgreq-a686dd41e6faa04e2a4cb65ecf7fe038-XXX&enrichSource=Y292ZXJQYWdlOzMyMDU5NjM1ODtBUzo1NTMzNTI5NTk5OTE4MDhAMTUwODk0MTAzNDAyMw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/320596358_Static_Analysis_of_Android_Apps_for_Lifecycle_Conformance?enrichId=rgreq-a686dd41e6faa04e2a4cb65ecf7fe038-XXX&enrichSource=Y292ZXJQYWdlOzMyMDU5NjM1ODtBUzo1NTMzNTI5NTk5OTE4MDhAMTUwODk0MTAzNDAyMw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Process-centred-software-engineering-environments?enrichId=rgreq-a686dd41e6faa04e2a4cb65ecf7fe038-XXX&enrichSource=Y292ZXJQYWdlOzMyMDU5NjM1ODtBUzo1NTMzNTI5NTk5OTE4MDhAMTUwODk0MTAzNDAyMw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Software-Engineering-Tools-and-Software-Engineering-Environments?enrichId=rgreq-a686dd41e6faa04e2a4cb65ecf7fe038-XXX&enrichSource=Y292ZXJQYWdlOzMyMDU5NjM1ODtBUzo1NTMzNTI5NTk5OTE4MDhAMTUwODk0MTAzNDAyMw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-a686dd41e6faa04e2a4cb65ecf7fe038-XXX&enrichSource=Y292ZXJQYWdlOzMyMDU5NjM1ODtBUzo1NTMzNTI5NTk5OTE4MDhAMTUwODk0MTAzNDAyMw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Samer-Zein-2?enrichId=rgreq-a686dd41e6faa04e2a4cb65ecf7fe038-XXX&enrichSource=Y292ZXJQYWdlOzMyMDU5NjM1ODtBUzo1NTMzNTI5NTk5OTE4MDhAMTUwODk0MTAzNDAyMw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Samer-Zein-2?enrichId=rgreq-a686dd41e6faa04e2a4cb65ecf7fe038-XXX&enrichSource=Y292ZXJQYWdlOzMyMDU5NjM1ODtBUzo1NTMzNTI5NTk5OTE4MDhAMTUwODk0MTAzNDAyMw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Birzeit_University?enrichId=rgreq-a686dd41e6faa04e2a4cb65ecf7fe038-XXX&enrichSource=Y292ZXJQYWdlOzMyMDU5NjM1ODtBUzo1NTMzNTI5NTk5OTE4MDhAMTUwODk0MTAzNDAyMw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Samer-Zein-2?enrichId=rgreq-a686dd41e6faa04e2a4cb65ecf7fe038-XXX&enrichSource=Y292ZXJQYWdlOzMyMDU5NjM1ODtBUzo1NTMzNTI5NTk5OTE4MDhAMTUwODk0MTAzNDAyMw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Norsaremah-Salleh?enrichId=rgreq-a686dd41e6faa04e2a4cb65ecf7fe038-XXX&enrichSource=Y292ZXJQYWdlOzMyMDU5NjM1ODtBUzo1NTMzNTI5NTk5OTE4MDhAMTUwODk0MTAzNDAyMw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Norsaremah-Salleh?enrichId=rgreq-a686dd41e6faa04e2a4cb65ecf7fe038-XXX&enrichSource=Y292ZXJQYWdlOzMyMDU5NjM1ODtBUzo1NTMzNTI5NTk5OTE4MDhAMTUwODk0MTAzNDAyMw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/International-Islamic-University-Malaysia?enrichId=rgreq-a686dd41e6faa04e2a4cb65ecf7fe038-XXX&enrichSource=Y292ZXJQYWdlOzMyMDU5NjM1ODtBUzo1NTMzNTI5NTk5OTE4MDhAMTUwODk0MTAzNDAyMw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Norsaremah-Salleh?enrichId=rgreq-a686dd41e6faa04e2a4cb65ecf7fe038-XXX&enrichSource=Y292ZXJQYWdlOzMyMDU5NjM1ODtBUzo1NTMzNTI5NTk5OTE4MDhAMTUwODk0MTAzNDAyMw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/John-Grundy-4?enrichId=rgreq-a686dd41e6faa04e2a4cb65ecf7fe038-XXX&enrichSource=Y292ZXJQYWdlOzMyMDU5NjM1ODtBUzo1NTMzNTI5NTk5OTE4MDhAMTUwODk0MTAzNDAyMw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/John-Grundy-4?enrichId=rgreq-a686dd41e6faa04e2a4cb65ecf7fe038-XXX&enrichSource=Y292ZXJQYWdlOzMyMDU5NjM1ODtBUzo1NTMzNTI5NTk5OTE4MDhAMTUwODk0MTAzNDAyMw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Monash_University_Australia?enrichId=rgreq-a686dd41e6faa04e2a4cb65ecf7fe038-XXX&enrichSource=Y292ZXJQYWdlOzMyMDU5NjM1ODtBUzo1NTMzNTI5NTk5OTE4MDhAMTUwODk0MTAzNDAyMw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/John-Grundy-4?enrichId=rgreq-a686dd41e6faa04e2a4cb65ecf7fe038-XXX&enrichSource=Y292ZXJQYWdlOzMyMDU5NjM1ODtBUzo1NTMzNTI5NTk5OTE4MDhAMTUwODk0MTAzNDAyMw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Samer-Zein-2?enrichId=rgreq-a686dd41e6faa04e2a4cb65ecf7fe038-XXX&enrichSource=Y292ZXJQYWdlOzMyMDU5NjM1ODtBUzo1NTMzNTI5NTk5OTE4MDhAMTUwODk0MTAzNDAyMw%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Static Analysis of Android Apps for Lifecycle Conformance

Samer Zein Norsaremah Salleh John Grundy

Department of Computer Science

Faculty of Engineering and

Technology

Birzeit University, Palstine

szain@birzeit.edu

Department of Computer Science

Kulliyyah of Information & Communication

Technology

International Islamic University Malaysia

norsaremah@iium.edu.my

School of Information

Technology

Deakin University, Geelong,

Australia

J.Grundy@deakin.edu.au

Abstract— Building robust and reliable mobile applications

requires the developer to be fully aware of the lifecycle models

for mobile applications. During different states of the mobile

application lifecycle, such as start-up, running, background

etc., various system resources need to be acquired for use and

released so that other applications can use them. However,

novice and amateur developers, who are a growing fraction in

the mobile development community, often find such a task to

be non-trivial and complex and limited in support for by

existing tools. This paper presents an automated approach

based on static code analysis to aid novice developers in

managing system resources during different stages of a mobile

application’s lifecycle. In order to achieve this, we present a

software model to encapsulate lifecycle rules for system

resources and then create a repository for these resources. In

addition, a novel code analysis algorithm is presented to show

how Android application source code can be analyzed in order

to verify that system resources have been correctly initiated

and released. A proof-of-concept software tool known as

ALCI has been developed to evaluate our approach. We used

ALCI to analyze 10 Android applications and our initial

results show that ALCI is effective and successful.

Keywords-component; lifecycle conformance; static code

analysis; automation.

I. INTRODUCTION

Mobile and smart phone adoption is expanding and

growing rapidly and millions of mobile applications are

available at online stores [1]. This is largely due to the

advancement in the hardware industry as modern

smartphone devices have faster processors, larger

memories, more accurate sensors and faster internet

connections. There are several mobile platforms such as

iPhone and Windows Phone, and Android platform is one

of the most successful [2, 3, 4]. However, novice Android

developers and developers who come from different

background technologies, such as web and desktop

development, face difficulties in developing high quality

and reliable Android mobile applications. This is due to

Android application development being a nontrivial task

and is very different than traditional web and desktop

applications[5]. Mobile applications usually have to be

developed and deployed in a short time to meet market

competition with limited attention being made to testing

activities [4, 6].

Although much research in recent years has focused

on mobile application testing in areas such as user interface

testing, usability and context-awareness (e.g. [3, 7, 8, 9, 10,

11]), little attention has been made to testing mobile

application lifecycle conformance[12]. One of the key

challenges novice Android developers face is building

applications that conform to lifecycle rules [13]. Mobile

application development imposes new challenges on novice

developers in terms of managing the application lifecycle

events correctly to ensure that their applications are reliable

[13, 14]. For instance, developers need to have sufficient

knowledge about application lifecycle states, conditions

and transitions to guarantee their applications do not loose

data and manage to free system resources when their

application is sent to background or paused. It has been

reported that a considerable portion of software bugs in

Android applications are related to lifecycle conformance

errors [7]. A key to the problem is the ability to correctly

manage various system resources as the application goes

through different states in its lifecycle. More specifically

we are concerned with system resources that when they are

not released correctly they can cause other applications to

encounter runtime errors [13]. Examples include but are not

limited to: cameras, GPS, video, sensors, and network

connections.

The Google official web site for Android development

[15] is considered to be one of the main resources for

Android developers. The website contains information

about the lifecycle model and briefly discusses guidelines

(lifecycle rules) for developers so as to be aware of when

developing Android applications. These guidelines specify

how developers should manage system resources during

different states of the application lifecycle. However, not

only are these lifecycle rules brief and provided in a

narrative format, recent studies have shown that the

mailto:szain@birzeit.edu
mailto:norsaremah@iium.edu.my
mailto:J.Grundy@deakin.edu.au

lifecycle model documented is actually inaccurate and

incomplete [13, 16].

This paper presents a novel approach and a toolset

that aims to aid novice Android application developers

(though it could aid experienced developers too) in building

mobile applications that conform to complex and poorly

documented application lifecycle rules. Our approach is

based on using static analysis of source code to determine

whether developers have released system resources

correctly or not. We present a new model used to abstract

and describe lifecycle rules for different Android

application resource utilization, as well as an algorithm of

how to check Android source code against compliance with

these rules. To validate our method, we developed a

software tool as a proof of concept that incorporates both

UML model and algorithm. The software tool, we call

ALCI (Android Lifecycle Inspector), has been tested

against a range of sample Android application source code.

Our initial results suggest that our tool can successfully

detect if several critical system resources are not being

released correctly by developers.

Section 2 provides a review of the problem and motivation

for this research. Section 3 describes some of the related

work followed by explanation of our approach in Section 4.

Section 5 reports the evaluation of our testing tool and

section 6 presents discussion of our work. Section 7

presents conclusions from our research

II. BACKGROUND AND MOTIVATION

The mobile application lifecycle represents the

different states that an application can go through at

runtime i.e., when application process is running [17].

When developing applications for traditional desktop

operating systems, the application lifecycle is totally

transparent to the developer. The operating system takes

care of the states of lifecycle to ensure the correct behavior

of applications under all cases [13]. By contrast, modern

mobile device operating systems such as Android, J2ME

and iOS require mobile application developers to be fully

aware of specific lifecycle models. Such lifecycle models

ensure that mobile application developers build reliable and

robust applications with the correct functionality and data

integrity over exceptional behaviour, such as the swapping

between applications [17, 18, 19, 20].

Operating systems of mobile applications do not save

the complete state of an application whenever a state

changes in the lifecycle [13]. This is due to the fact that

resources are scarce and there is a critical need for

efficiency. Developers thus need to have a deep

understanding of lifecycle models and build their

applications to react correctly to lifecycle events triggered

by the operating systems [13, 17, 20]. Thus, developing

mobile applications that conform to lifecycle rules using

Android platform is generally a complex task that usually

can only be managed and assured by experienced platform

developers.

Figure 1 depicts the lifecycle model for Android

applications available in Android Developer website [15]. It

is important to note that the lifecycle is associated with

each graphical user interface (GUI) component that

compromises Android application. Such GUI component in

Android is known as an Activity [18]. In Android

development, an activity is responsible for presenting a

visual user interface for each focused task [4] and an

Android application normally consists of one or more

activities. Additionally, and unlike other programming

paradigms, Android applications are not launched by

invoking the main method. Instead, every activity can be

treated as independent starting point for the application and

has specific sequence of callback methods to start an

activity, and another sequence of callback methods to shut

it down [21].

Referring to Figure 1, and according to Android

Developer’s website[15], an activity (at any time) can be in

one of the following three states:

 Resumed: in this state the activity is in

foreground and user can interact with it.

 Paused: the activity is partially obscured by

another activity, such as dialog. In this state

the activity is paused and cannot execute

code.

 Stopped: the activity is completely hidden by

another activity and sent to the background.

An example is when user swaps to another

application or when user receives a phone

call.

Fig1. Illustration of lifecycle model for Android activities [15].

The other states, such as Created and Started, are not

considered as “real” states because an activity moves very

quickly through them.

When an activity is started, first the onCreate() callback

method is called followed by onStart() then onResume()

[19]. After that the activity is in the foreground (resumed

state) and available to user. When another activity is

started, the former activity moves to background by calling

onPause() then onStop(). If the Android OS decides to kill

inactive background activities, onDestroy() is the last

callback method to be called.

However, recent studies [13, 16] showed that the mobile

application lifecycle models suggested by the Android

developer website are inaccurate, and in some cases

incomplete. More specifically, these studies prove through

experiments that at certain circumstances such as extreme

low system resources, onStop() and onDestroy() callback

methods are not guaranteed to be called by Android OS

before activity is destroyed. This totally contradicts with

lifecycle models at Android developer website which

suggests that Android developers should use onStop() and

onDestroy() to release system resource, commit changes to

database and release running threads [19]. Android

applications developed by novice developers who refer to

Android developer site would eventually suffer from

memory leaks especially if a developer writes code to

release system resources in these callback methods [13].

Put simply, and in contrast with Android Developer

guidelines, developers should release all resources and save

important data using onPause() method, as the other

methods of onStop() and onDestroy() are not guaranteed to

be called. In this study, we are aware of such problems and

our proposed inspection algorithm makes sure that targeted

system resources are released at the correct callback

method of onPause().

III. RELATED WORK

There is some existing research on test automation tools

that are relevant to our present study. Payet et al. [2]

realizes the fact that Android programming language

features an extended event based-library with dynamic

inflation of graphical views from XML layout documents;

and that a static analyzer for Android application should

realize such features. In their study, they extended the Julia

static analyzer to perform formally correct analyses of

Android programs. The analysis of Android programs

included classcasts, dead code, nullness, and termination

analysis. Their tool is based on semantical approach with

artificial intelligence through which bugs are found when

the tool analysis mechanism has not been able to prove that

the analyzed code does not contain bugs.

In a study conducted by Fuchs et al. [8], a tool named

SCanDroid is proposed to detect illegal acquisition of

security privileges by performing information flow analysis

of Android applications and tracking intent (inter-

component communication). The tool is also based on

constraint-based analysis of source code.

In another study by Lu & Mukhopadhyay [22], a

framework for detecting security threats is presented and is

based on static analysis techniques that are combined with

model-based deductive verification using SMT

(Satisfiability Modulo Theories) solvers. The framework

can automatically generate an analyzer which is capable of

inferring security information about the code. Resulting

security information can help developers detect

programming errors and permission violation statically.

Almorsy et al. [23] describe a tool that uses formalized

signatures defining code patterns for security vulnerability

detection. They use static analysis over abstract syntax trees

to locate code fragments conforming to these signatures

that highlight potential code anti-patterns and thus

vulnerability to SQL injection, excessive privilege, poor

isolation, inappropriate use of APIs etc. However, their

analysis technique does not directly support temporal code

relationships e.g. call release() method after allocate()

method across methods.
Franke et al. [13] presents a unit-based test approach for

testing conformance of lifecycle dependent properties of
mobile applications based on assertions. In their testing
approach, the developer has to manually extract lifecycle
dependent properties from requirements specification. Then
the callback methods are used to test such properties using
assertions. Thus having a detailed requirements specification
is a centerpiece in this testing approach. This can be
problematic because with the rapid nature of mobile
application development, detailed specifications are not
always available. Another weakness in this testing approach
is that the developers have to manually identify callback
methods and insert the code for assertions.

IV. ALCI ARCHITECTURE AND IMPLEMENTATION

Developing a mobile application that conforms to the

Android lifecycle model is a major challenge, particularly

for a novice developer [13, 24]. We want to aid novice

Android developers in building mobile applications that

conform to lifecycle rules by automating the process of

inspecting source code against lifecycle rules. If an

application reacts correctly to state changes, does not loose

data and releases system resources appropriately, then the

application is said to conform to the lifecycle rules [13].

More particularly, we focus on system resources that are

shared between mobile applications such as Camera, Video,

GPS, Microphone, network connections etc. Such resources

should be released at certain points (callback methods)

when the application is paused or sent to background to

make them available to other applications. The importance

of correctly managing system resources stems from the fact

that failing to do so will cause run time errors and consume

other system resources such as battery, CPU and memory

space[25].

We first need a formal model to represent the lifecycle

rules knowledge base. This is because the current format of

Android application lifecycle rules is represented as

informal narratives, which cannot be well incorporated into

an automated software testing tool. Such a software model

should be constructed to represent all lifecycle simple and

complex rules. Secondly, lifecycle rules can change over

time: New versions of Android OS are produced regularly

[21]. Such versions normally contain changes to old

libraries as well as introducing new ones (APIs). Thus the

model must incorporate platform versioning. Thirdly,

inspecting source code against these rules is necessary: an

automated testing tool must be able to automatically detect

resource API calls that may be affected by lifecycle rules

and match these calls with appropriate lifecycle rules to

check if they are being released correctly. Further – as our

approach is based on static analysis of source code - a

major challenge is imposed because developers can write

their code using many different patterns and coding styles.

Thus, the tool should be smart enough to recognize such a

variety of coding patterns. Finally, current source code

analysis tools for Android applications (e.g. [2, 8, 26]) do

not inspect their lifecycle conformance.

The main steps of our testing approach are: 1) we define

a UML-based model to represent Android system resources

along with their lifecycle rules and make them available in

a repository; 2) we use a software tool to analyze and

inspect Android source code against these formalized

lifecycle rules; and 3) the tool produces a report to the

developer of notifications of incorrect management of

system resources. Figure 2 depicts our proposed testing

approach.

Fig. 2 Structure diagram of ALCI

First, the client side of the tool loads system resources

and their associated lifecycle rules from repository using

the LCLoader component. Second, the analyzer uses

JavaParser to parse Android source code. Then using the

object model produces by JavaParser, the Analyzer applies

handling algorithms that inspects source code against

system resources’ rules and produces results report. Figure

3 presents our UML model for lifecycle resources and their

associated lifecycle rules.

Fig. 3. UML class diagram for lifecycle rules

In our lifecycle rules model:

 The Resource class represents the system resources

that should be managed by developer which consists of

the following attributes and methods:

o Packagename: name of package for the resource

o API level: the Android OS level version

o Class name: the name of class that developer uses

to create object in order to use the resource

o initMethod: the method that initializes the resource

o releaseMethod: the method that the developer has

to call in order to release the resource

o Type: used to differentiate between various types

of resources e.g. Camera, GPS, Microphone, etc.

 LCRule is an abstract class that contains the

notification message which will be displayed to

developer if he/she did not release a specific resource.

 MultiRule is a subtype of LCRule and it is used when a

system resource has to be managed in more than one

callback method.

 CallbackMethod represents a single callback method

from the Android lifecycle model (e.g. onPause,

onStop, onResume).

 SingleRule is used when a resource has to be called at

one callback method.

 Action is a class to represent the mode of resource

management, mainly initializing (started) and releasing

(ended).

A. Code Inspection Algorithm

Source code analysis is the process of analyzing source

code to generate useful information for programmers to

coordinate their efforts and improve overall productivity

[27]. Source code is any static, fully executable description

of a software program that can be compiled into an

executable form. Static code analysis analyzed the program

source code and looks for error patterns without executing

the source code [28]. The static code analysis tools would

help compare the actual with the expected results.

In our study, our testing tool is based on parsing, analyzing

and inspecting Android source code to check whether or

not the developer has correctly released system resources.

Since the developers can write their code in different styles

(patterns), our inspection algorithm should be able to

analyze some common coding patterns. Based on our

previous experience, we identify two main coding patterns

that are commonly used by developers:

i. First coding pattern is used when a developer calls

the release method directly inside callback method

as in Figure 4 (a).

ii. Second coding pattern is used when a callback

method calls another method which in turn calls

the release method as in Figure 4 (b).

Fig. 4 Two common coding patterns

The proposed algorithm for source code analysis can be

described in pseudo-code as shown in as follows:

 Algorithm Input: application source code, list of

system resources and their associated lifecycle

rules.

 Algorithm Output: a list of notifications

containing warnings about certain system

resources that have not been acquired/ released

correctly.

Algorithm basic steps:

1. Load all system resources information from

repository. This includes all resources and their

associated lifecycle rules, i.e., when they should

be acquired and when they should be released.

2. Load and parse all “Activities” of the target

mobile application. For each Activity, create a list

of all system resources it uses such as Camera,

GPS, Thermometer, etc.

3. For each system resource, analyze source code to

verify that this resource has been acquired and

released correctly based on the resource rules

loaded from repository.

4. If a system resource has been acquired or released

at incorrect lifecycle callback methods, produce a warning

message. The warning message should contain the resource

name, the exact error in acquiring, releasing, or both, and

the correct callback method name for acquiring, releasing

or both.

V. EVALUATION

We adopted the evaluation approach applied by

Morgado, Paiva and Faria [1] and based our evaluation of

ALCI on the principle of seeding bugs into real Android

open source applications. This is because there were no

other lifecycle testing tools that we could compare our tool

against. The evaluation of our Android application lifecycle

testing tool was based upon two factors: the ability to

successfully detect incorrect and correct releasing of system

resources, and performance.

ALCI was evaluated against 10 real open-source

Android apps of different sizes and domains, summarized

in Table 1. The evaluation process to evaluate the ability of

the tool to detect correct and incorrect releasing of system

resources consisted of the following three phases:

Phase 1: In this phase, the source code of all

applications under test (AUT) was manually checked to

make sure they did not contain errors related to lifecycle

resources. During this phase, the lists of imports were

checked to record which system resources are imported.

Then for each of the imported system resource the

initialization and release methods are inspected to see if

they were called within correct callback methods.

Phase 2: This phase was set to evaluate incorrect release of

system resources. During this phase, the source code of

applications under test was modified, one by one, by

seeding bugs into the main activities and then verifying if

the testing tool can successfully detect these errors. Since

the tool was based on Camera, GPS and Sensor system

resources lifecycle rules, we included THREE (3)

incremental testing scenarios for each of the AUT:

1. First testing scenario: an error was introduced

to represent incorrect release of Camera

resource and then check whether the tool can

correctly detect that error.

2. In second testing scenario: an additional error

was introduced to represent incorrect release

for GPS, and then run the tool to see if it can

detect both errors (Camera and GPS

resources).

3. Third testing scenario: and additional error

was introduced to represent incorrect release

of Sensor system resource, and then run the

tool to see if it can detect all three errors

(Camera, GPS, and Sensor).

In this phase, the mechanism of bug seeding was based on

manually modifying the source code to import and initiate

system resource allocation but not releasing it correctly.

Incorrect release of each of the three system resources was

done by using a combination of common mistakes observed

in novice Android mobile applications: (i) completely

omitting the release method (release()) from activity ; and

by (ii) inserting the release method but at the incorrect

callback methods such as onStop() and onDestroy(). The

tool successfully reported incorrect releasing in all cases. A

sample notification message showing results for analyzing

one of the AUTs can be seen in Figure 5. The notification

message shows that the Camera resource has been used but

the release command was not found where it should be, in

this case, at onPause() callback method according to the

rule. Additionally, the notification message shows no errors

for the other two resources GPS and Sensor as they have

not been used yet at that moment. In some cases it would be

possible to automatically add source code lines to correct

the error, but we have left this for future work.

TABLE 1. 10 open source apps evaluated.

App Name Type Description # lines

code

main

Activity

Cozy DVR Multimedia DVR software kit designed for

in-car use.

337

Open

Camera

Multimedia A feature-rich camera

application.

2559

OSMTracker Navigation Journey tracking and mark-up

of significant way points.

485

Compass Navigation A compass application with a

realistic look.

364

FooCam

Beta

Multimedia Takes multiple successive shots

with different exposure settings

264

Location

Map Viewer

Navigation Displays geographic

information in a map with

support for GPX and KML

1002

Music Multimedia Plays streams and audio files

from the file manager.

144

New Pipe Multimedia Lightweight YouTube frontend

without the proprietary
YouTube-API

356

Sound

Recorder

Multimedia Sound recorder from the

MiCode project.

105

Simple

Workout

Journal

Sports and

Health

SWJ is designed for those who

know what they want and who

are concentrated on results.

923

Phase 3: The objective of the third phase was to

evaluate if the tool can detect correct release of system

resources. During this phase the idea was to verify if the

testing tool can successfully locate the release method and

consequently not displaying any error. The tool

successfully detected incorrect resource release faults for

all of the seeded faults coding patterns.

Fig. 5 Sample notification message

In order to evaluate the performance of the tool [2],

execution time was measured in milliseconds. Figure 6

shows the actual execution time required by the testing tool

by running it against all AUT.

Fig. 6 A bar graph showing execution time in milliseconds and number of

lines of code for AUT

It can be seen from Figure 6 that the time needed for the

ALCI to analyze a relatively large mobile application such

as Open Camera (AUT2) is very small (about 500

milliseconds).

VI. DISCUSSION

Most studies published in the field of mobile application

testing focus on testing areas such as GUI, usability,

context awareness, security and compatibility testing (e.g.

[4, 7, 12, 29, 30, 31, 32, 33]). Based on the findings from

our systematic mapping study [12], we found that there are

very few studies that address the importance of lifecycle

conformance testing. Furthermore, and to the best of our

knowledge, none of the available mobile application testing

tools addresses testing of lifecycle conformance. Testing

lifecycle conformance of mobile applications is very

important to ensure functional correctness of applications

as well as data integrity over exceptional behaviors such as

swapping-out from one application to another [13, 15].

Our testing approach represents the first attempt to

automatically analyze Android application source code to

check for errors regarding system resource management

during Android mobile application lifecycle transitions.

Instead of having lifecycle rules and guidelines being

available to developers as narratives; our approach builds a

software repository of such rules. The repository can grow

over time incorporating new rules and can be available to

developers’ community as a server side component. In this

study, we had proposed ALCI, a client-side, light-weight

and expandable software tool that can load lifecycle rules

and analyze source code against those rules. ALCI runs as a

separate API tool and can be used to analyze mobile

applications in relatively small amount of time. In addition,

and since that a large portion of mobile application

developers are novice [34, 35], ALCI can aid such

developers by automatically inspecting their applications.

Further, ALCI can identify two common coding patters as

discussed in section 5.2. In general, we believe that our

proposed testing approach can be generalized and applied

to other mobile platforms such as iOS and Windows Phone.

This is due to the fact that these two platforms have

lifecycle models that are similar to Android OS [36].

However, system resources are only one family of errors

that are related to lifecycle conformance in Android

applications. There are still other families of errors that

ALCI at this stage are unable to detect such as background

processes and threads management as well as heavy data

persistence management (e.g. writing data to SQLite). Such

additional resources should be carefully managed during

lifecycle states. Additionally, ALCI produces output as

notification messages that are displayed to developers,

which, to certain extent can be less practical. It would be

potentially more helpful to developers if ALCI could

automatically insert corrective code, or at least comments

and TODO notifications in the source code. Further

limitation of ALCI relates to the coding patterns. At

present, ALCI is unable to identify other coding patterns

such as when the developers manage system resources in

methods that are not part of the Activity class (i.e., classes

other than the Activity class itself). Finally, we believe that

ALCI can be extended to address other domains of code

analysis such as mining Android applications and looking

for certain coding patterns of special interest.

A. Threats to Validity

ALCI has been tested on ten real-world Android

applications. However, and in order to obtain more accurate

results, ALCI has to be tested on other open-sourced

Android applications of other domains such as critical

applications. Examples of critical applications are but not

limited to health, m-government and banking mobile

applications. Such diversity in application domains may

potentially reveal other coding patterns than those

discussed in section 5.2. Further, and since ALCI is

currently targeting Android applications, further research

could be done on how to generalize approach on other

platforms such as iOS and Windows Phone.

VII. CONCLUSION

In this paper an approach for automatically testing lifecycle

conformance for Android mobile applications has been

proposed. The testing approach aims at aiding novice

Android developers in building mobile applications that

conform to lifecycle models when dealing with correctly

releasing of system resources such as camera, GPS and

sensors. The novelty of our testing approach is that it is the

first approach to address mobile apps lifecycle

conformance using static code analysis. In this approach,

we propose a software model to represent system resources

and their associated lifecycle rules and make them available

in a repository, an algorithm to analyze source code and

detect incorrect releasing cases, and a sample tool as a

proof of concept to demonstrate the whole approach. The

testing tool known as ALCI is developed as a separate API

that can be easily used by novice developers and can

efficiently analyze large scale Android applications. The

analysis algorithm is capable of detecting two coding

patterns applied by most developers. Further, special design

patterns such as Factory Method and Strategy were applied

to make the tool extensible and loosely coupled for future

expansion. We have tested ALCI tool using ten (10) free

and open source Android apps available at Fossdroid.com

to evaluate the algorithm we used in our testing tool. The

results from our experimental evaluation indicate the ALCI

tool is able to detect correct and incorrect releasing of

system resources. In terms of performance, ALCI is

sufficiently efficient to analyze considerably wide range of

Android applications in relatively small amount of time.

At the moment, we have not considered other coding

patterns that can be used by developers such as having the

release commands written in another classes outside the

Activity itself as well as other families of lifecycle related

errors such as threads management. In future work we

intend to extend our analysis algorithm to incorporate such

coding patterns. Further, we also intend to enhance the tool

itself allowing it to modify source code to correctly release

system resources instead of only displaying notifications

for developers.

ACKNOWLEDGMENT

This research was funded by the Ministry of Higher

Education Malaysia under FRGS research grant

(FRGS14125-0366).

REFERENCES

[1] Morgado, I.C., A.C. Paiva, and J.P. Faria. Automated Pattern-

Based Testing of Mobile Applications. in 2014 9th
International Conference on the Quality of Information and

Communications Technology (QUATIC). 2014. IEEE.

[2] Payet, É. and F. Spoto, Static analysis of Android programs.
Information and Software Technology, 2012. 54(11): p. 1192-

1201.

[3] Costa, P., A.C. Paiva, and M. Nabuco. Pattern Based GUI
testing for Mobile Applications. in 2014 9th International

Conference on the Quality of Information and Communications

Technology (QUATIC). 2014. IEEE.
[4] Amalfitano, D., A.R. Fasolino, and P. Tramontana. A GUI

Crawling-Based Technique for Android Mobile Application

Testing. in Software Testing, Verification and Validation
Workshops (ICSTW), 2011 IEEE Fourth International

Conference on. 2011.

[5] Muccini, H., A. Di Francesco, and P. Esposito. Software testing
of mobile applications: Challenges and future research

directions. in Automation of Software Test (AST), 2012 7th

International Workshop on. 2012.
[6] Heejin, K., C. Byoungju, and W.E. Wong. Performance

Testing of Mobile Applications at the Unit Test Level. in Secure

Software Integration and Reliability Improvement, 2009. SSIRI

2009. Third IEEE International Conference on. 2009.

[7] Amalfitano, D., A.R. Fasolino, P. Tramontana, S. De Carmine,

and A.M. Memon. Using GUI ripping for automated testing of
Android applications. in Automated Software Engineering

(ASE), 2012 Proceedings of the 27th IEEE/ACM International

Conference on. 2012.
[8] Fuchs, A.P., A. Chaudhuri, and J.S. Foster, Scandroid:

Automated security certification of android applications.
Manuscript, Univ. of Maryland, http://www. cs. umd.

edu/avik/projects/scandroidascaa, 2009. 2(3).

[9] Wen, H.-L., C.-H. Lin, T.-H. Hsieh, and C.-Z. Yang. PATS: A
Parallel GUI Testing Framework for Android Applications. in

Computer Software and Applications Conference (COMPSAC),

2015 IEEE 39th Annual. 2015. IEEE.
[10] Yu, L., W.T. Tsai, Y. Jiang, and J. Gao. Generating test cases

for context-aware applications using bigraphs. in Software

Security and Reliability (SERE), 2014 Eighth International
Conference on. 2014. IEEE.

[11] Kronbauer, A.H., C.A.S. Santos, and V. Vieira, Smartphone

applications usability evaluation: a hybrid model and its
implementation, in Proceedings of the 4th international

conference on Human-Centered Software Engineering. 2012,

Springer-Verlag: Toulouse, France. p. 146-163.
[12] Zein, S., N. Salleh, and J. Grundy, A Systematic Mapping Study

of Mobile Application Testing Techniques. Journal of Systems

and Software: Under review 2015.
[13] Franke, D., S. Kowalewski, C. Weise, and N. Prakobkosol.

Testing Conformance of Life Cycle Dependent Properties of

Mobile Applications. in Software Testing, Verification and
Validation (ICST), 2012 IEEE Fifth International Conference

on. 2012.

[14] Zein, S., N. Salleh, and J. Grundy, Mobile Application Testing
in Industrial Contexts: An Exploratory Multiple Case-Study, in

Intelligent Software Methodologies, Tools and Techniques, H.

Fujita and G. Guizzi, Editors. 2015, Springer International
Publishing. p. 30-41.

[15] Managing the Activity Life Cycle. 2017 [cited 2016 May

2016]; Available from:
http://developer.android.com/training/basics/activity-

lifecycle/index.html.

[16] Franke, D., C. Elsemann, and S. Kowalewski. Reverse
Engineering and Testing Service Life Cycles of Mobile

Platforms. in Database and Expert Systems Applications

(DEXA), 2012 23rd International Workshop on. 2012.
[17] Lee, W.-M., Beginning Android 4 application development.

2012: Wiley. com.

[18] Murphy, M., Beginning Android 3. 2011: Apress.
[19] Processes and Application Life Cycle. 2017 [cited 2016

March]; Available from:

http://developer.android.com/guide/topics/processes/process-
lifecycle.html#.

[20] Haseman, C., Creating Android Applications: Develop and
Design. 2011: Peachpit Press.

[21] Introduction to Android. 2015 [cited 2015 20/7/2015];

Available from: http://developer.android.com/guide/index.html.
[22] Lu, Z. and S. Mukhopadhyay. Model-based static source code

analysis of java programs with applications to android

security. in Computer Software and Applications Conference
(COMPSAC), 2012 IEEE 36th Annual. 2012. IEEE.

[23] Almorsy, M., J. Grundy, and A.S. Ibrahim. Automated software

architecture security risk analysis using formalized signatures.
in Proceedings of the 2013 International Conference on

Software Engineering. 2013. IEEE Press.

[24] Amalfitano, D., A. Fasolino, P. Tramontana, B. Ta, and A.
Memon, MobiGUITAR--A Tool for Automated Model-Based

Testing of Mobile Apps. 2014.

[25] Android Sensors Overview. 2015 25/5/2015]; Available from:
http://developer.android.com/guide/topics/sensors/sensors_over

view.html.

[26] klocwork. Available from: http://www.klocwork.com/.

[27] Binkley, D. Source code analysis: A road map. in 2007 Future

of Software Engineering. 2007. IEEE Computer Society.

[28] Louridas, P., Static code analysis. Software, IEEE, 2006. 23(4):
p. 58-61.

[29] Jiang, B., X. Long, and X. Gao. MobileTest: A Tool Supporting

Automatic Black Box Test for Software on Smart Mobile
Devices. in Automation of Software Test , 2007. AST '07.

Second International Workshop on. 2007.
[30] Borys, M. and M. Milosz. Mobile application usability testing

in quasi-real conditions. in Human System Interactions (HSI),

2015 8th International Conference on. 2015. IEEE.
[31] Amalfitano, D., A.R. Fasolino, P. Tramontana, and N.

Amatucci. Considering Context Events in Event-Based Testing

of Mobile Applications. in Software Testing, Verification and
Validation Workshops (ICSTW), 2013 IEEE Sixth International

Conference on. 2013.

[32] Amalfitano, D., A.R. Fasolino, P. Tramontana, B.D. Ta, and
A.M. Memon, MobiGUITAR: Automated Model-Based Testing

of Mobile Apps. IEEE Software, 2015. 32(5): p. 53-59.

[33] Avancini, A. and M. Ceccato. Security testing of the
communication among Android applications. in Proceedings of

the 8th International Workshop on Automation of Software

Test. 2013. IEEE Press.
[34] Guo, C., J. Xu, H. Yang, Y. Zeng, and S. Xing. An automated

testing approach for inter-application security in Android. in

Proceedings of the 9th International Workshop on Automation
of Software Test. 2014. ACM.

[35] Imparato, G. A combined technique of GUI ripping and input

perturbation testing for Android apps. in Proceedings of the
37th International Conference on Software Engineering-

Volume 2. 2015. IEEE Press.

[36] Starov, O., S. Vilkomir, A. Gorbenko, and V. Kharchenko,
Testing-as-a-Service for Mobile Applications: State-of-the-Art

Survey, in Dependability Problems of Complex Information

Systems. 2015, Springer. p. 55-71.

View publication stats

http://www/
http://developer.android.com/training/basics/activity-lifecycle/index.html
http://developer.android.com/training/basics/activity-lifecycle/index.html
http://developer.android.com/guide/topics/processes/process-lifecycle.html
http://developer.android.com/guide/topics/processes/process-lifecycle.html
http://developer.android.com/guide/index.html
http://developer.android.com/guide/topics/sensors/sensors_overview.html
http://developer.android.com/guide/topics/sensors/sensors_overview.html
http://www.klocwork.com/
https://www.researchgate.net/publication/320596358

