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Abstract This paper presents, evaluates, and validates a
genetic algorithm procedure with parallel-populations for
the obtaining of minimum time trajectories for robot manip-
ulators. The aim of the algorithm is to construct smooth joint
trajectories for robot manipulators using cubic polynomial
functions, where the sequence of the robot configurations is
already given. Three different types of constraints are con-
sidered in this work: (1) Kinematics: these include the limits
of joint velocities, accelerations, and jerk. (2) Dynamic:
which include limits of torque, power, and energy. (3)

Payload constraints. A complete statistical analysis using
ANOVA test is introduced in order to evaluate the efficiency
of the proposed algorithm. In addition, a comparison analy-
sis between the results of the proposed algorithm and other
different techniques found in the literature is described in
the experimental section of this paper.

Keywords Industrial robots · Minimum-time trajectory
planning · Obstacle avoidance

The authors thank the Ministerio de Economı́ a y Competitividad
for financing this work under project RTC-2014-3070-5.

� Fares J. Abu-Dakka
fares.abudakka@gmail.com

1 Department of Systems Engineering and Automation,
Carlos III University of Madrid, Av. de la Universidad,
30, 28911 Leganés, Spain

2 Computer Center, Birzeit University, Ramallah, Palestine

1 Introduction

Over the last few decades, industrial manipulators have
become a commonly used element in automated produc-
tion lines. They are highly nonlinear multivariable coupled
systems, which are often subjected to complex nonlin-
ear constraints. Due to the mentioned complexity, indirect
methods (decoupled approaches) for trajectory planning are
frequently used. Indirect methods solve the planning prob-
lem in two steps: planning the path and then adjusting
the trajectory. The path planning step is about finding a
collision-free sequence of configurations between an ini-
tial and a final configurations of a manipulator, taking into
account some aspects such as geometric and kinematic con-
straints. In the subsequent step, the trajectory is adjusted by
optimizing the time along the given path. In the latter step,
the optimization problem considers the manipulator dynam-
ics and its actuators’ constraints. This type of planning is
done offline.

Numerous techniques for optimal offline trajectory plan-
ning have been developed in the last decades by different
researchers in the field. These techniques can be classi-
fied according to the cost function to be minimized, which
is often related to the execution time, energy consump-
tion, or jerk. Thus, why offline planning? Many industrial
processes are repetitive, e.g., welding, inspection, assem-
bling, painting and even moving objects, etc. which justify
the offline trajectory planning of an industrial manipulator.
Moreover, the productivity in industry is directly propor-
tional to the speed of operation [34]. In order to maximize
the productivity of a robotized operation, it is necessary to
maximize the operation speed which implies a minimization
of the robot’s travelling time. In general, offline planning
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provides a globally optimized trajectory, smoothness by
anticipating sharp corners, and a second-order continuity
along the whole trajectory [20]. In addition, if the manipula-
tor workspace and the objective task are completely known,
offline planning is more desirable to ensure the minimiza-
tion of the execution time. Important research work has
been done with the objective of achieving minimum time
trajectories [37–41].

In order to improve the tracking accuracy and permit
the system to reach higher speeds during the execution of
tasks, it is important to generate trajectories with a bounded
amount of jerk. This definitely entails reducing the robot
resonant frequencies excitation and, ultimately reduces the
mechanical wear of the whole system [9, 15, 31, 33]. In
the literature, the minimum jerk in point-to-point ballistic
motion was used as a control variable [54]. In this case, the
duration of the motion and initial and final positions are
given, while the jerk is the control signal.

In general, every procedure found in the literature that
deals with trajectory planning problem has focused on a
specific objective function or some parameters for the opti-
mization problem. The most significant among them are
(1) minimum execution time, (2) minimum energy, and (3)

minimum jerk.

1.1 Minimum time trajectory planning

Minimum time trajectory planning algorithms were the
first techniques presented in the literature. The reason for
that was their direct relation to increasing the productivity
of industrial automation with robots. However, consider-
ing the nonlinearity of the systems and joint coupling in
robot dynamics, exists the possibility to obtain approximate
solutions [21, 22]. Other authors in this scope developed
interesting techniques in the position-velocity phase plane
[6, 46]. Alternatively, dynamic programming techniques
were employed to solve this problem [4]. However, these
algorithms suffer a discontinuity in the torque and acceler-
ation profiles, and this is due to the assumption that robot
links were perfectly rigid and neglecting of the actuator
dynamics. Later, the authors in [8] overcame these kinds
of drawbacks by introducing limits on the actuator jerks.
Although, their technique could not be exactly time optimal,
but the generated trajectories could be employed in more
advanced control strategies. After this short review in such
a problem, it can be concluded that to overcome the dis-
continuity in acceleration of the generated trajectories it is
necessary to use smooth functions to interpolate the trajec-
tories such as spline functions. As well as the aim of this
paper is to solve minimum time trajectory planning prob-
lem using cubic splines, a detailed discussion about splines
functions and their use in trajectory generation is presented
in Section 1.4.

1.2 Minimum energy trajectory planning

In numerous robotics applications, like those in space or
submarine exploration, it is more beneficial to minimize the
energy consumption than minimizing the execution time. In
such applications, the robotic systems have a limited energy
source, which is worth optimizing its use. In scientific lit-
erature, reader can find numerous publications in this field.
Cubic B-splines functions have been employed to generate
trajectories with minimum energy consumptions [45]. How-
ever, their algorithm could not achieve smooth accelerations
and joint torques. Fourier series expansion is used also with
genetic algorithms to search for minimum energy trajec-
tories [19]. Other scientists used fifth order B-splines for
minimum energy trajectory generation [16]. Point-to-point
trajectory based on minimum absolute input energy is pro-
posed in [13] for an LCD glass-handing robot. Lagrange
interpolation method was used too to perform trajectory plan-
ning for energy minimization of industrial manipulators [29].

1.3 Minimum jerk trajectory planning

Jerk is the third derivative of the displacement and indicates
how rapidly the actuators change their forces. As mentioned
in [24], decreasing the jerk leads to decreasing the joint
position errors. Moreover, low jerk in joint trajectories is
desirable to limit the manipulator vibration which in turn
extends the manipulator life-span. However, minimum jerk
techniques depend only on the kinematics of the task. In this
paper, instead of minimizing the jerk, we have constrained
it to some limits given in the literature. In Section 1.4,
some approaches to deal with minimum jerk algorithms are
discussed.

1.4 State of the art

Earlier trajectory planning models employed nonlinear pro-
gramming approaches to generate the trajectory, in either
gripper [28] or joint [25] space. However, these models do
not consider the manipulator dynamics. In this paper, the
construction/generation of joint trajectories for industrial
manipulators is based on cubic spline functions. Algebraic
splines are widely used in path planning, e.g., cubic splines
[25] (the focus in this paper), quartic splines [49], quintic
splines [16], trigonometric splines [47], and synchronized
trigonometric S-curves [30]. In literature, readers can find
different types of minimum time joint trajectory planning
based on cubic splines. They vary in:

– Types of constraints (kinematics or dynamics),
– The algorithm used in the optimization,
– The optimization problem that can be extended to be

more general.
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The first case is the most important one which allows mak-
ing a difference between kinematic and dynamic trajectory
planning. Applying kinematic constraints only results a sim-
plified computational model that gives rise to an under
capacity utilization of the manipulator, but still produces
good solutions. On the other hand, considering dynamic
constraints provides better solution because the problem is
more defined. However, their computational model is more
complex since they deal with some issues such as dynamic
identification [14].

Lin et al. work [25] was among the firsts to address the
computation of optimal joint trajectories through the inter-
polation of a sequence of nodes in the joint space. The nodes
that form the sequence are obtained from a set of discrete
positions of the end-effector of the manipulator. Four years
later, Thompson and Patel proposed a quartic B-splines for-
mulation for joint trajectories planning for industrial robots
[49]. However, their algorithm could not achieve better exe-
cution time than Lin et al.’s algorithm for the same case
study. Lin et al.’s algorithm was employed by Wang and
Horng [53], where the trajectories are expressed as cubic
B-splines. However, their procedure did not produce bet-
ter execution time than the Lin et al.’s one, but it is faster
in terms of computational time cost. The authors in [20]
developed an improved version of the optimization algo-
rithm proposed in [25] to include dynamic constraints in
the calculations, while others used the interval analysis to
solve a minimum time trajectory problem subject to kine-
matic constraints [32]. On the other hand, Tse and Wang
[50] resolved the Lin et al.’s algorithm [25] using genetic
algorithms. A detailed comparison of results, between their
algorithm and the proposed one in this paper, is shown in
Section 4.1. In [10], hybrid optimization procedure is pre-
sented to calculate time optimal path-constrained subject
to kinematic constraints. However, the resulting trajecto-
ries were optimal in terms of time but not smoothness.
Gasparetto and Zanotto [16] proposed a minimum jerk
trajectory planning technique, which assumes that the geo-
metric path is formed by a sequence of via points in the
operating space of the manipulator. However, their work
considered only kinematic constrains. Their algorithm uses
fifth order B-splines for the trajectory generation. One year
later, the same authors resolved the same objective func-
tion using a cubic polynomial for trajectory construction
[17]. Their results are compared with the proposed algo-
rithm’s results in Section 4.4. Readers are advised to refer
to [11, 23, 48, 51] for further reading about algorithms that
solve minimum time trajectories subject to kinematic con-
straints. Recently, a minimum jerk joint trajectory using
particle swarm optimization (PSO) was proposed in [26]. To
enhance the computational performance, the authors inte-
grated the K-means clustering with PSO algorithm to select
a possible particle with the least fitness value.

Robot dynamics were considered in the work presented
by Chettibi et al. [7], where they developed a sequential
quadratic programming (SQP) method for optimal motion
planning for a PUMA560 robot manipulator. Among later
methods considering dynamics, the authors in [35, 36] used
harmonic functions to interpolate a sequence of configura-
tions in order to construct manipulator trajectories.

The methods used in the literatures such as sequential
unconstrained minimization technique (SUMT) [37–41],
SQP [7, 17], interval analysis [33], harmony search [48],
and numerical iterative procedure [12] to deal with the com-
plex instances (obstacles environment) have some notable
drawbacks: (1) they may fail to find the optimal path, (2)

they have limited capabilities when handling cases where
the limits of maximum acceleration and maximum decel-
eration along the solution curve are no longer met, and
(3) singular points or critical points of robot configura-
tion may exist. Evolutionary algorithms offer an interesting
alternative to overcome the above mentioned drawbacks [3].
Among the advantages of evolutionary techniques are:

– Population based search, and therefore it is more likely
to avoid local minima,

– No auxiliary information such as gradients or deriva-
tives is required for the algorithm itself,

– Over iterations and random selection, complex and mul-
timodal problems can converge for global optimality,
and

– Suitable to any kind of problem due to their problem
independent nature [42].

To take advantage of these benefits, Saravanan et al. pro-
posed a direct method called non-dominated sorting genetic
algorithm to solve the minimum time trajectory with pay-
load constraints for industrial robots in the presence of
obstacles. They used cubic splines for the interpolation [42,
44]. Hang et al. proposed a genetic algorithm procedure
to solve point-to-point minimum jerk problem with fixed
execution time [18]. In [5, 27], a genetic algorithm proce-
dure combined with a deterministic one based on interval
analysis is used for global minimum time optimization.

Due to the important demand in maximizing the pro-
ductivity of robotized operations, planning a minimum time
trajectory a priori is a must. For such goal, this paper
proposes a new evolutionary approach to solve the tra-
jectory planning problem for industrial robots. The main
contributions of this paper are:

– An evolutionary approach to solve the trajectory plan-
ning problem. This approach uses multiple populations
genetic algorithm to obtain minimum time trajecto-
ries clamped with cubic splines. The use of multiple
populations has been proved to be advantageous in
other application and in our paper we extend it to the



392 Int J Adv Manuf Technol (2017) 89:389–406

field of indirect robot trajectory planning. Moreover,
the algorithm is independent of the degree of free-
dom (Dof) of the robot and of the robot type, and can
work with different types (and combinations) of con-
straints including obstacle avoidance, kinematics, and
dynamics constraints.

– An extensive statistical evaluation to show the effective-
ness of the proposed approach as well as to show the
improvement achieved by the proposed algorithm over
the existing ones is performed. In addition, this evalua-
tion validates the efficiency of GA algorithms in solving
such problems.

This evolutionary approach is composed of two parallel
populations genetic algorithms (PPGA). These algorithms
are distinguished by means of boundary conditions applied
to the system as shown in Section 2. The first algorithm,
PPGA1, resolves the cubic polynomial joint trajectory for-
mulation introduced by Lin et al. [25], where only kinematic
constraints are considered. To illustrate the advantages of
the PPGA1, a comparison is made with the results obtained
from the application of an earlier version of a genetic
algorithm procedure reported in [50]. Moreover, our first
proposed procedure is extended to cater for dynamic con-
straints, such as, torques, power, and energy consumptions.
In addition, a complete statistical evaluation have been
established to evaluate the effectiveness of the proposed
evolutionary algorithm. The second improved algorithm
PPGA2 resolves the clamped cubic spline algorithm, where
only velocities are nil at the initial and final configuration of
the robot manipulator. The algorithm takes in consideration
both kinematic and dynamic constraints.

2 Formulation of cubic polynomial joint trajectory

The philosophy of splining is to use low order polynomials
to interpolate from grid point to grid point. This is ideally
suited when one has control of the grid locations and the
values of data being interpolated. As this control is domi-
nated, the relative accuracy can be controlled by changing
the overall space between the grid points.

Cubic splines are the lowest order polynomial endowed
with inflection points. If one would think about interpolat-
ing a set of data points using parabolic functions without
inflection points, the interpolation would be meaningless.

The path is given as a sequence of via-points in the oper-
ative space representing the position and the orientation of
the robot end effector, and it is then transformed into a
sequence of via-points in the joint space, by means of a
kinematic inversion. The considered algorithm find an opti-
mal trade-off execution time and, unlike most minimum
time trajectory planning techniques found in the literature,

it does not require to impose the execution time a priori.
Constraints on the robot joints, such as upper bounds on
velocity, acceleration, and jerk, are taken into account while
executing the algorithms.

The formulation of the cubic spline is based on the n joint
vectors (n configurations) that construct the joint trajectory.
Joint vectors are denoted as q

j
i which represents the posi-

tion of the joint i with respect to configuration j . The cubic
polynomial trajectory is then constructed for each joint to
fit the joint sequence q0

i , q1
i , · · · , qn

i . Let t0 < t1 < · · ·
< tn−2 < tn−1 < tn be an ordered time sequence, at time
t = tj the joint position will be q

j
i . Let Q

j
i (t) be a cubic

polynomial function defined on the time interval [tj , t(j+1)];
0 ≤ j ≤ n − 1. The problem of trajectory interpolation is
to spline Qi(t), for i = 1, 2, · · · , n − 1, together such that
the required displacement, velocity, and acceleration are sat-
isfied; and the displacement, velocity, and acceleration are
continuous on the entire time interval [t1, tn]. Given that
Qi(t) is cubic and represents the joint position, let Q′

i (t)

and Q′′
i (t) be the joint velocity and acceleration between qi

and qi+1.

2.1 PPGA1 formulation

In this formulation, boundary conditions are defined for
both the velocity and acceleration at the initial and final
points. The boundary conditions in this case are q̇1 = q̇n =
q̈1 = q̈n = 0. Unlike common boundary conditions for
cubic splines where either velocity (clamped boundary con-
ditions) or acceleration (natural boundary conditions) are
defined at end points, with constraints on both, constructing
a spline requires extra Dof. To achieve this, two of the knots
are not fixed. Thus, in this formulation, the n knots corre-
spond to (n - 2) fixed input knots and 2 extra knots added to
solve the spline system and their positions are solved as part
of the linear system [25].

Qi(t) = Q′′
i (ti )

6hi
(ti+1 − t)3 + Q′′

i (ti+1)

6hi
(t − ti )

3

+
[

qi+1
hi

− hiQ
′′
i (ti+1)

6

]
(t − ti )

+
[

qi

hi
− hiQ

′′
i (ti )

6

]
(ti+1 − t)

(1)

where i = 1, 2, · · · , n − 1, hi = ti+1 − ti

Q′
i (t) = −Q′′

i (ti )

2hi
(ti+1 − t)2 + Q′′

i (ti+1)

2hi
(t − ti )

2

+
(

qi+1
hi

− hiQ
′′
i (ti+1)

6

)
−

(
qi

hi
− hiQ

′′
i (ti )

6

) (2)

Q′′
i (t) = ti+1 − t

hi

Q′′
i (ti ) + (t − ti )

hi

Q′′
i (ti−1) (3)

The two extra knots q2 and qi−1 are not fixed and are used
to add two new equations to the system in such a way that it
can be solved. The joint positions of these two knots are

q2 = q1 + h1q̇1 + h2
1

3
q̈1 + h2

1

6
Q′′

1(t2) (4)
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qn−1 = qn − hn−1q̇n + h2
n−1

3
q̈n + h2

n−1

6
Q′′

n−2(tn−1) (5)

Using a continuity conditions on velocities and acceler-
ations, a system of n − 2 linear equations solving for
unknowns Q′′

i (ti )’s is derived as [25]:

A

⎡
⎢⎢⎢⎣

Q′′
2(t2)

Q′′
3(t3)
...

Q′′
n−1(tn−1)

⎤
⎥⎥⎥⎦ = Y (6)

where matrices A and Y are given by:

A =

⎡
⎢⎢⎢⎢⎢⎣

a11 a12
a21 a22 a23

a32 a33 a34
...

an−3,n−4 an−3,n−3 an−3,n−2
an−2,n−3 an−2,n−2

⎤
⎥⎥⎥⎥⎥⎦

,

Y =

⎡
⎢⎢⎢⎢⎢⎣

y1
y2
yi

...
yn−3
yn−2

⎤
⎥⎥⎥⎥⎥⎦

(7)

The values of aij and yi are given in the Appendix. A unique
solution is guaranteed once matrix A is nonsingular

2.2 PPGA2 formulation

In the clamped cubic spline, the border conditions are q̇1 =
q̇n = 0.

Qi(t) = ai + bi(t − ti ) + ci(t − ti )
2 + di(t − ti )

3, (8)

Q′
i (t) = bi + 2ci(t − ti ) + 3di(t − ti )

2, (9)

Q′′
i (t) = 2ci + 6di(t − ti ) (10)

where i = 1, 2, · · · , n−1, hi = ti+1 − ti . A system of n−2
linear equations will be solved as following:

A

⎡
⎢⎢⎢⎣

c1

c2
...

cn−1

⎤
⎥⎥⎥⎦ = Y (11)

where

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

3h1 h1

h1 2(h1 + h2) h1 0
h2 2(h2 + h3) h3

...

0 hn−2 2(hn−2 + hn − 1) hn−1

hn−1 2hn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (12)

and, matrix Y is given by:

Y =

⎡
⎢⎢⎢⎢⎢⎢⎣

3
h1

(a2 − a1) − 3q̇1
3
h2

(a3 − a2) − 3
h1

(a2 − a1)

...
3

hn−2
(an−1 − an−2) − 3

hn−3
(an−2 − an−3)

3q̇n−1 − 3
hn−1

(an − an−1)

⎤
⎥⎥⎥⎥⎥⎥⎦

(13)

3 Optimization technique using GA

The objective of this optimization procedure is to determine
a set of optimum values of time intervals t1, t2, · · · , tn−1. A
genetic algorithm procedure with parallel populations with
migration technique has been implemented to optimize the
time intervals needed to move the robot through a sequence
of configurations [1]. This GA has multiple, independent
populations. Each population evolves using steady-state

genetic algorithm, but at each generation, some individu-
als migrate from one population to another. The migration
algorithm is deterministic stepping-stone, where each pop-
ulation migrates a fixed number of its best individuals to its
neighbor. The master population is updated each generation
with the best individual from each population. The steady
state genetic algorithm (SSGA) uses overlapping popula-
tions which gives the ability to specify how much of the
population should be replaced in each generation. Newly
generated offspring are added to the population, and then
the worst individuals are destroyed.

Objective function

Minimize
n−1∑
i=1

hi (14)

subject to
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(a)

(b)

Fig. 1 1st, 2nd, and 3rd joints: q = Positions [rad], v = Velocities [rad/s], a = Accelerations [rad/s2], and J = Jerks [rad/s3]

1. Kinematic constraints⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Joint positions:
∣∣∣qj

i (t)

∣∣∣ ≤ qmax
i

Joint velocities:
∣∣∣q̇j

i (t)

∣∣∣ ≤ q̇max
i

Joint accelerations:
∣∣∣q̈j

i (t)

∣∣∣ ≤ q̈max
i

Joint jerks:
∣∣∣...q j

i (t)

∣∣∣ ≤ ...
q max

i

(15)

2. Dynamic constraints
⎧⎨
⎩

Joint torques: |τi(t)| ≤ τmax
i

Joint power: |Pi(t)| ≤ P max
i

Joint energy: |Ei(t)| ≤ Emax
i

(16)

3. Payload constraints

Fgmin ≤ Fk ≤ Fgmax k = 1, 2 (17)

where: i = 1, · · · , DoF of the robot, j takes the values from
1 to the number of nodes in the trajectory, Fk is the grasping
force needed for a suitable static equilibrium during a grasp-
ing with two fingers gripper, Fgmin = 0 and Fgmax = 60 N
are the minimum and maximum grasping forces used in the
industrial application example, as explained in Section 4.3.

This payload constraints was adopted earlier in [39, 43].
The grasped object mass (payload) used in the illustration is
1 kg.

For industrial applications, the speed of operation affects
the productivity. In order to maximize the speed of opera-
tion, the traveling time for the robot should be minimized.
Thus, the optimization problem is to adjust the time inter-
vals between each pair of adjacent configurations such that
the total traveling time is minimal.

Chromosome consists of set of genes. Each gene contains
a real number that represents the time interval. The number
of genes depends on the fed path.

The value of each gene is selected randomly from[
tmin
j , tmax

j

]
. The value of tmax

j will change in each genera-

tion depending on the new generated offsprings.

Selection A roulette-wheel selection method is applied.

Crossover The crossover operator defines the procedure
for generating a child from two selected parents. The new

Table 1 Minimum time when
pc = 0.95 with different
values of pm

Execution time (s) Avg. Comp. time (s)

Mutation pm Results Min in Avg. in PPGA2

in [50] PPGA1 PPGA1

0.001 20.156 17.657 18.716 18.091 0.355

0.01 19.880 17.223 17.824 17.726 0.402

0.05 18.211 17.145 17.617 17.706 0.836

0.1 18.226 17.138 17.522 17.971 1.401

0.2 18.929 17.221 17.622 17.896 1.732

0.3 18.957 17.339 17.689 17.897 2.062

0.4 19.062 17.362 17.846 17.931 2.562
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Fig. 2 Trajectory evolution for the first three joint solved by PPGA2 with kinematics and dynamics constraints

child will be calculated as follows:

ai = (momi + dadi)/2, (18)

broi = ai · dadi + (1 − ai) · momi, (19)

sisi = ai · momi + (1 − ai) · dadi (20)

Mutation In this procedure, an offspring will be selected
randomly then the algorithm will select a random set of
genes in each chromosome for the mutation.

genej = genej + RV
(
tmin
j , tmax

j

)

×[RV (tmin
j , tmax

j ) − RV (tmin
j , tmax

j )] (21)

where RV
(
tmin
j , tmax

j

)
means Random Value between tmin

j

and tmax
j .

4 Application examples

The PPGA1 and PPGA2 described in this paper have been
implemented using an Object Oriented C++ and tested in
simulation for 6 DoF robot. The algorithms have been exe-
cuted in a computer with Intel Core i5 − 2400 CPU 3.10
GHz, 4 GB of RAM. For the GA, the MIT GA Library [52]
is used and adapted to the problem. In the following subsec-
tion, four different experiments are described to evaluate the
efficiency of the proposed algorithms.

4.1 Experimenting with kinematic constraints

In this experiment, in order to compare the proposed pro-
cedure with previously reported results in literature, a

PUMA560 robot is used. For more details about the exam-
ple characteristics and data set, please refer to [25] and
[50]. In this first experiment, only kinematic constraints are
considered and resolved using PPGA1 & PPGA2. Many
combinations of crossover and mutation probabilities are
experimented to find the best combination that gives the
best combination of minimum execution time and better
computational time.

In Fig. 1, the smoothness of the joint position and veloc-
ity curves can be noticed. Moreover, the motion does not
violate the kinematic limits. In this scope, multi runs of the
algorithm are tested by changing the mutation probability
and fixing the crossover probability to 0.95, see Table 1.
The combination of pc = 0.95 and pm = 0.05 is chosen
to do the rest of experiments as it produced the best combi-
nation of execution time and computational time. However,
the combination pc = 0.95 and pm = 0.1 gives better
execution time, but worse computation time. Observing the
results in Table 1, the minimum time found using PPGA1
is 17.145 s, and for PPGA2 is 17.706 s at pc = 0.95 and
pm = 0.05, while the minimum time obtained by [50] is
18.211 s, and by [25] is 18.451 s. Besides, the rest of results
in Table 1 are better than the results reported in [50]. In
addition, the results obtained when pc = 0.35, 0.65 and
pm = 0.01 and 0.05 are 18.112 and 18.191 s for PPGA1,

Table 2 Initial Ci and Final Cf configurations for the industrial
application example

1 2 3 4 5 6

Ci −7.50 −174.80 46.40 4.30 16.50 −6.50

Cf −95.10 −101.20 15.59 0.00 0.00 0.00
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Table 3 Obstacles locations and characteristics where C
Cyl,1
i and C

Cyl,2
i are the centers of cylinder i with radius r

Cyl
i

1st Cylindrical obstacle 2nd Cylindrical obstacle 3rd Cylindrical obstacle 4th Cylindrical obstacle

C
Cyl,1
1 = (−0.7, 0.5, 0.0) C

Cyl,1
2 = (−0.7, 0.0, 0.0) C

Cyl,1
3 = (−0.7, −0.15, 0.7) C

Cyl,1
4 = (−0.7, −0.15, 0.15)

C
Cyl,2
1 = (−0.7, 0.5, 0.8) C

Cyl,2
2 = (−0.7, 0.0, 0.8) C

Cyl,2
3 = (−0.7, 0.65, 0.7) C

Cyl,2
4 = (−0.7, 0.65, 0.15)

r
Cyl

1 = 0.15 r
Cyl

2 = 0.15 r
Cyl

3 = 0.15 r
Cyl

4 = 0.15

1st Prismatic obstacle 2nd Prismatic obstacle 3rd Prismatic obstacle 4th Prismatic obstacle

P11 = (0.31, 0.79, 1.42) P21 = (0.31, 0.79, 1.42) P31 = (−0.03, 0.79, 1.42) P41 = (−0.03, 0.79, 0.97)

P12 = (0.31, 0.99, 1.42) P22 = (0.31, 0.99, 1.42) P32 = (−0.03, 0.99, 1.42) P42 = (−0.03, 0.99, 0.97)

P13 = (0.31, 0.79, 0.97) P23 = (−0.03, 0.99, 1.42) P33 = (−0.03, 0.99, 0.97) P43 = (0.31, 0.99, 0.97)

P14 = (0.31, 0.99, 0.97) P24 = (−0.03, 0.79, 1.42) P34 = (−0.03, 0.79, 0.97) P44 = (0.31, 0.79, 0.97)

18.087 and 18.009 s for PPGA2 respectively, which are
better than Tse and Wang’s [50] results which are 18.356
and 18.258 s.

4.2 Experimenting with kinematic and dynamic
constraints

In this example, kinematics and dynamic constraints are
considered and solved using PPGA2 with crossover prob-
ability pc = 0.95 and mutation probability pm = 0.05.
The sequence of configurations used is the same as the one
used in the previous example (Section 4.1). The recursive
Newton-Euler formulations are used to solve the inverse
dynamic problem [9]. The robot parameters and dynamic
limits are extracted from [7]. The minimum time is found to
be 5.2187 s.

Observing Fig. 2, the motion does not violate the con-
straints. Moreover, the generated trajectories are smooth
and the required torques for the motion approximate the set
limits without violating them.

4.3 Industrial application with payload

This experiment represents a simulation of a general config-
uration of a pick and place operation in complex industrial
environment. The initial and final configurations (Ci and
Cf ) and obstacles dimensions and their positions are tab-
ulated in Tables 2 and 3, respectively. In this example, the
path-planning problem has been solved first by Abu-Dakka
et al [2], and then the trajectory has been adjusted using
PPGA2. In this case, the optimization problem is to move
the robot with its payload from an initial configuration to
a final one while optimizing the time considering the robot
physical constraints, dynamic constraints, and the payload
itself. The payload influence on the dynamic model of the
manipulator is considered by adding the grasped object
mass and the effect of its inertial moment to the last link,
in addition to the fact that the payload grasping force is
constrained according to Eq. 17. This constraint is responsi-
ble for maintaining the object firmly grasped. This indirect
method of obtaining the trajectory has been compared with

Fig. 3 The path and trajectory
evolution for the industrial
application example [2]. a and f
represent the robot
configurations at the pick and
place positions of the object
respectively. b to e represent
intermediate configurations of
the pick and place operation

(b)(a)

(e)

(c)

(f)(d)
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Table 4 Performance comparison of the PPGA2

Rubio’s results [36] Paper’s

A* UC G results

ds (m) 5.82 5.41 5.43 4.32

de (m) 1.79

tc (s) 17,049 16,233 2674 17.78

te (s) 35.61 29.23 45.70 1.63

the direct method developed in [36] where three differ-
ent algorithms were used (A*, UC = Uniform Cost, G =
Gready).

The illustrative manipulator task consists in transport-
ing a payload from an initial to a final configuration. Four
control parameters are used for comparison: ds which is
the distance between significant points, de is the distance
between the initial and final positions of the end-effector,
tc is the computational time, and te is the time needed to
execute the trajectory. The evolution of the trajectory is
illustrated in Fig. 3. Table 4 illustrates clearly that the pre-
sented algorithm; with even more constraints, provides an
improvement over the results of the algorithms described in
[36].

4.4 Statistical evaluation of the PPGA1

In this section, two sets of experiments have been imple-
mented in order to statistically evaluate the proposed algo-
rithms. In the first set, the problem data is extracted from

pm runs Mean[sec] Std. Dev. min [sec] max [sec]

0.01 500 17.8236 0.32557 17.2230 19.2111

0.02 500 17.7547 0.33487 17.2043 19.4473

0.03 500 17.6834 0.30199 17.1872 18.9649

0.04 500 17.6301 0.28891 17.1665 18.8618

0.05 500 17.6165 0.27730 17.1450 19.1023

0.06 500 17.5614 0.24647 17.1474 18.8853

0.07 500 17.5875 0.29012 17.1709 19.0486

0.08 500 17.5401 0.26350 17.1422 18.9334

0.09 500 17.5325 0.24452 17.1470 18.4570

0.1 500 17.5217 0.23793 17.1376 18.6074

Pooled 5000 17.6251 0.28292

Bartlett’s statistic 127.561

9

0

Degrees of freedom

p-value

Fig. 4 Execution time statistics when pc = 0.95 and pm varies from
0.01 to 0.1 with an interval of 0.01

pm runs Mean[sec] Std. Dev. min [sec] max [sec]

0.01 500 17.8458 0.35512 17.2227 19.4337

0.02 500 17.7387 0.33933 17.1780 19.3286

0.03 500 17.6912 0.30735 17.1582 19.7326

0.04 500 17.6622 0.29470 17.1618 18.7567

0.05 500 17.6181 0.28230 17.1521 18.6213

0.06 500 17.5983 0.27079 17.1784 18.7170

0.07 500 17.5900 0.28219 17.1537 18.7479

0.08 500 17.5795 0.26075 17.1720 18.8147

0.09 500 17.5505 0.26261 17.1414 18.7081

0.1 500 17.5405 0.25593 17.1324 18.6719

Pooled 5000 17.6415 0.29286

Bartlett’s statistic 117.248

9

0

Degrees of freedom

p-value

Fig. 5 Execution time statistics when pc = 0.90 and pm varies from
0.01 to 0.1 with an interval of 0.01

[25] and [50], and already mentioned in Section 4.1. This
statistical evaluation is based on 50,000 runs of the algo-
rithm. The setup of this experiment consists of 500 repli-
cates for each different combination between pc and pm.
Figures 4, 5, 6, 7, 8, 9, 10, 11, 12, and 13 show the graphical
representation of the variance test for these runs. For each
pc, 5000 runs are executed divided in groups of 500 runs
which correspond to different pm. From tables in Figs 4,

pm runs Mean[sec] Std. Dev. min [sec] max [sec]

0.01 500 17.8673 0.36153 17.2447 19.4907

0.02 500 17.7426 0.33527 17.1831 19.3294

0.03 500 17.6854 0.30418 17.1737 19.3010

0.04 500 17.6492 0.28489 17.1407 19.4507

0.05 500 17.6426 0.28897 17.1518 18.7619

0.06 500 17.5958 0.27635 17.1440 18.6283

0.07 500 17.6032 0.28086 17.1619 19.3292

0.08 500 17.5656 0.25750 17.1547 18.6705

0.09 500 17.5535 0.25620 17.1330 18.6573

0.1 500 17.5360 0.24848 17.1515 18.5329

Pooled 5000 17.6441

Bartlett’s statistic 134.017

9

0

Degrees of freedom

p-value

Fig. 6 Execution time statistics when pc = 0.85 and pm varies from
0.01 to 0.1 with an interval of 0.01
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pm runs Mean[sec] Std. Dev. min [sec] max [sec]

0.01 500 17.8900 0.37812 17.2238 19.4408

0.02 500 17.8063 0.35182 17.1729 19.3802

0.03 500 17.7411 0.33410 17.1716 19.5695

0.04 500 17.6804 0.30129 17.1762 19.0460

0.05 500 17.6406 0.26702 17.1793 18.8210

0.06 500 17.6381 0.30512 17.1653 19.2588

0.07 500 17.6319 0.29231 17.1415 19.5051

0.08 500 17.6194 0.29086 17.1512 18.7139

0.09 500 17.5824 0.27130 17.1486 18.8674

0.1 500 17.5646 0.27970 17.1618 18.7954

Pooled 5000 17.6795 0.30910

Bartlett’s statistic 122.836

9

0

Degrees of freedom

p-value

Fig. 7 Execution time statistics when pc = 0.80 and pm varies from
0.01 to 0.1 with an interval of 0.01

5, 6, 7, 8, 9, 10, 11, 12, and 13, it can be observed that
the execution time is normally distributed (p-value < 0.05).
The best value of the execution time obtained is 17.1316 s
with computational cost 1.585 s, when pc = 0.75 and
pm = 0.09.

In order to compare the performance of pc and pm, the
statistical of test for the equality of means (analysis of vari-
ance ANOVA) is used. The null-hypothesis in ANOVA test

pm runs Mean[sec] Std. Dev. min [sec] max [sec]

0.01 500 17.9330 0.39452 17.2995 20.0360

0.02 500 17.7805 0.33647 17.2015 19.3169

0.03 500 17.7325 0.33489 17.1765 19.2183

0.04 500 17.7020 0.33214 17.1742 18.8941

0.05 500 17.6603 0.30744 17.1506 18.9301

0.06 500 17.6593 0.31162 17.1949 19.0071

0.07 500 17.6171 0.30644 17.1534 18.9054

0.08 500 17.5978 0.26957 17.1467 18.7649

0.09 500 17.5882 0.27739 17.1316 19.3729

0.1 500 17.5800 0.26297 17.1452 18.8368

Pooled 5000 17.6851 0.31554

Bartlett’s statistic 137.408

9

0

Degrees of freedom

p-value

Fig. 8 Execution time statistics when pc = 0.75 and pm varies from
0.01 to 0.1 with an interval of 0.01

pm runs Mean[sec] Std. Dev. min [sec] max [sec]

0.01 500 17.9518 0.38090 17.2766 19.3087

0.02 500 17.8293 0.35104 17.1949 19.3509

0.03 500 17.7656 0.35880 17.1536 19.4455

0.04 500 17.7357 0.32246 17.1793 19.3081

0.05 500 17.7114 0.34753 17.1676 19.0280

0.06 500 17.6918 0.31851 17.1977 19.4188

0.07 500 17.6602 0.31556 17.1767 19.2945

0.08 500 17.6097 0.28689 17.1368 19.2409

0.09 500 17.6095 0.29950 17.1519 18.6143

0.1 500 17.5887 0.28149 17.1489 18.6808

Pooled 5000 17.7154 0.32773

Bartlett’s statistic 89.362

9

0

Degrees of freedom

p-value

Fig. 9 Execution time statistics when pc = 0.70 and pm varies from
0.01 to 0.1 with an interval of 0.01

states that the means of different levels of a parameter are
equal, while they are not equal in the alternative hypothesis.
Thus, it can be concluded that the parameter has an effect
upon the response variable. In this experiment, the main
effect involves the independent variables (pc and pm) one
at a time. The effect of one factor on the other is called the
interaction effect. For each hypothesis, there is a F value

pm runs Mean[sec] Std. Dev. min [sec] max [sec]

0.01 500 17.9708 0.40476 17.2690 19.5408

0.02 500 17.8468 0.35249 17.1772 19.1666

0.03 500 17.8054 0.37302 17.1594 19.3977

0.04 500 17.7407 0.34113 17.1608 19.2040

0.05 500 17.7473 0.36679 17.1686 19.5904

0.06 500 17.6922 0.33083 17.1707 19.2146

0.07 500 17.6745 0.32852 17.1740 19.0308

0.08 500 17.6537 0.29835 17.1392 18.9570

0.09 500 17.6071 0.30277 17.1610 18.8086

0.1 500 17.5863 0.27436 17.1510 19.2050

Pooled 5000 17.7325 0.33933

Bartlett’s statistic 120.547

9

0

Degrees of freedom

p-value

Fig. 10 Execution time statistics when pc = 0.65 and pm varies from
0.01 to 0.1 with an interval of 0.01
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pm runs Mean[sec] Std. Dev. min [sec] max [sec]

0.01 500 17.9969 0.39304 17.3106 19.4802

0.02 500 17.8873 0.39817 17.2242 19.5172

0.03 500 17.7748 0.34664 17.2238 20.7859

0.04 500 17.7711 0.34815 17.1778 19.7525

0.05 500 17.7500 0.33486 17.1554 19.1288

0.06 500 17.7014 0.30602 17.1702 19.0913

0.07 500 17.6720 0.30315 17.1409 18.9516

0.08 500 17.6657 0.32711 17.1641 19.3763

0.09 500 17.6557 0.30552 17.1353 18.8862

0.1 500 17.6266 0.29650 17.1405 18.9736

Pooled 5000 17.7502 0.33769

Bartlett’s statistic 103.233

9

0

Degrees of freedom

p-value

Fig. 11 Execution time statistics when pc = 0.60 and pm varies from
0.01 to 0.1 with an interval of 0.01

which is the mean square for each main effect and the inter-
action one divided by the within variance. The p-value is
the probability to observe F value as large as we did under
the null-hypothesis. These p-values in ANOVA test are only
valid if the responses (execution time or computational time:
the case of this paper) are normally distributed, which are
already improved in Figs. 4, 5, 6, 7, 8, 9, 10, 11, 12, and 13
and 14, 15, 16, 17, 18, 19, 20, 21, 22, and 23. The decision

pm runs Mean[sec] Std. Dev. min [sec] max [sec]

0.01 500 18.0386 0.45081 17.2460 20.0629

0.02 500 17.8991 0.40378 17.2034 19.3554

0.03 500 17.8140 0.36323 17.1911 19.2162

0.04 500 17.7798 0.35070 17.1728 19.1399

0.05 500 17.7714 0.33565 17.1960 19.0603

0.06 500 17.7112 0.33089 17.1588 19.3400

0.07 500 17.6994 0.31249 17.1449 19.0088

0.08 500 17.6801 0.32170 17.1481 18.7556

0.09 500 17.6509 0.31512 17.1419 19.1426

0.1 500 17.6293 0.27998 17.1542 18.7563

Pooled 5000 17.7674 0.34960

Bartlett’s statistic 176.691

9

0

Degrees of freedom

p-value

Fig. 12 Execution time statistics when pc = 0.55 and pm varies from
0.01 to 0.1 with an interval of 0.01

pm runs Mean[sec] Std. Dev. min [sec] max [sec]

0.01 500 18.0706 0.43716 17.2359 19.5537

0.02 500 17.9613 0.43266 17.1639 19.7019

0.03 500 17.8686 0.40120 17.1895 19.5250

0.04 500 17.8422 0.37250 17.2112 19.5115

0.05 500 17.7780 0.37575 17.1625 19.5001

0.06 500 17.7506 0.34449 17.1687 19.1491

0.07 500 17.6943 0.33533 17.1625 19.0914

0.08 500 17.6902 0.32123 17.1472 18.9049

0.09 500 17.6652 0.31825 17.1485 19.3304

0.1 500 17.6672 0.29336 17.1479 18.7389

Pooled 5000 17.7988 0.36618

Bartlett’s statistic 163.29

9

0

Degrees of freedom

p-value

Fig. 13 Execution time statistics when pc = 0.50 and pm varies from
0.01 to 0.1 with an interval of 0.01

that the parameter has an effect upon the response variable
depends on the p-value if it is equal or less than a chosen
level of significance. This level of significance in this paper
is 0.05. The results of the ANOVA test of 500 replicates for
50,000 runs are tabulated in Tables 5 and 6 for both exe-
cution and computational time. In Table 5, crossover and
mutation are both highly statistically significant on the exe-
cution time as the interaction between them with p-value =

pm runs Mean[sec] Std. Dev. min [sec] max [sec]

0.01 500 0.35981 0.05197 0.250 0.697

0.02 500 0.47444 0.08007 0.307 0.901

0.03 500 0.58534 0.09026 0.384 0.961

0.04 500 0.70247 0.10833 0.442 1.214

0.05 500 0.82230 0.12995 0.426 1.382

0.06 500 0.95537 0.14430 0.648 1.565

0.07 500 1.05173 0.15916 0.710 1.939

0.08 500 1.17901 0.16573 0.739 1.791

0.09 500 1.30280 0.19302 0.734 1.940

0.1 500 1.43729 0.19310 0.980 2.198

Pooled 5000 0.88705 0.13930

Bartlett’s statistic 1296.01

9

0

Degrees of freedom

p-value

Fig. 14 Computational time statistics when pc = 0.50 and pm varies
from 0.01 to 0.1 with an interval of 0.01
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pm runs Mean[sec] Std. Dev. min [sec] max [sec]

0.01 500 0.36619 0.05669 0.261 0.667

0.02 500 0.47183 0.06805 0.320 0.764

0.03 500 0.58763 0.08769 0.393 0.865

0.04 500 0.70458 0.11074 0.472 1.129

0.05 500 0.82827 0.12133 0.533 1.255

0.06 500 0.94539 0.15055 0.594 1.578

0.07 500 1.06193 0.16519 0.615 1.743

0.08 500 1.17887 0.16512 0.773 2.021

0.09 500 1.28713 0.17183 0.815 1.903

0.1 500 1.41695 0.19825 0.828 2.251

Pooled 5000 0.88488 0.13732

Bartlett’s statistic 1317.97

9

0

Degrees of freedom

p-value

Fig. 15 Computational time statistics when pc = 0.55 and pm varies
from 0.01 to 0.1 with an interval of 0.01

0.0004. Table 6 also shows that crossover and mutation are
both highly statistically significant on computational time
as the interaction between them with p-value = 0.0113.

Figure 24 represents the average execution and com-
putational time for each combination of pc and pm. The
computational time values have been shifted in y-axis by
17 s to overlap with the execution time values, so it will be
easy to study the results. Observing the figure leads us to use

pm runs Mean[sec] Std. Dev. min [sec] max [sec]

0.01 500 0.36720 0.04713 0.274 0.599

0.02 500 0.47714 0.06590 0.290 0.715

0.03 500 0.58625 0.09161 0.381 1.270

0.04 500 0.70926 0.10604 0.489 1.125

0.05 500 0.82658 0.12884 0.504 1.398

0.06 500 0.93836 0.14268 0.559 1.575

0.07 500 1.05634 0.15462 0.686 1.642

0.08 500 1.18046 0.16647 0.792 1.786

0.09 500 1.28871 0.17126 0.843 1.822

0.1 500 1.42174 0.20494 0.878 2.315

Pooled 5000 0.88520 0.13642

Bartlett’s statistic 1490.28

9

0

Degrees of freedom

p-value

Fig. 16 Computational time statistics when pc = 0.60 and pm varies
from 0.01 to 0.1 with an interval of 0.01

pm runs Mean[sec] Std. Dev. min [sec] max [sec]

0.01 500 0.37312 0.04940 0.273 0.594

0.02 500 0.48128 0.07346 0.311 0.767

0.03 500 0.59596 0.08809 0.394 0.998

0.04 500 0.72044 0.10656 0.462 1.059

0.05 500 0.83098 0.12848 0.553 1.217

0.06 500 0.94384 0.14904 0.543 2.018

0.07 500 1.05056 0.15348 0.690 1.624

0.08 500 1.17425 0.16543 0.754 1.774

0.09 500 1.28041 0.16850 0.883 1.904

0.1 500 1.41005 0.19952 0.922 2.854

Pooled 5000 0.88606 0.13598

Bartlett’s statistic 1350.47

9

0

Degrees of freedom

p-value

Fig. 17 Computational time statistics when pc = 0.65 and pm varies
from 0.01 to 0.1 with an interval of 0.01

pc = 0.95 and pm = 0.05 to obtain the best combination
of execution and computational time.

On the other hand, a set of data introduced by Gasparetto
and Zanotto [17], is used for a comparative analysis between
the proposed PPGA1 and five different techniques. These
techniques are:

i the sequential quadratic program (SQP) using cubic
spline [17],

pm runs Mean[sec] Std. Dev. min [sec] max [sec]

0.01 500 0.37609 0.04893 0.292 0.589

0.02 500 0.48777 0.07556 0.339 0.828

0.03 500 0.59432 0.08402 0.410 0.892

0.04 500 0.70807 0.10260 0.468 1.059

0.05 500 0.83834 0.12319 0.523 1.206

0.06 500 0.94907 0.13736 0.610 1.459

0.07 500 1.06473 0.15044 0.682 1.573

0.08 500 1.17348 0.16805 0.712 1.957

0.09 500 1.29911 0.18001 0.903 2.070

0.1 500 1.39899 0.19592 0.959 2.627

Pooled 5000 0.88900 0.13468

Bartlett’s statistic 1403.15

9

0

Degrees of freedom

p-value

Fig. 18 Computational time statistics when pc = 0.70 and pm varies
from 0.01 to 0.1 with an interval of 0.01
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pm runs Mean[sec] Std. Dev. min [sec] max [sec]

0.01 500 0.38614 0.05239 0.283 0.767

0.02 500 0.49551 0.06797 0.340 0.796

0.03 500 0.59715 0.08497 0.413 0.896

0.04 500 0.71718 0.10222 0.465 1.084

0.05 500 0.82457 0.11717 0.509 1.213

0.06 500 0.94905 0.13701 0.626 1.371

0.07 500 1.05663 0.14947 0.664 1.773

0.08 500 1.16016 0.15562 0.796 1.750

0.09 500 1.29016 0.1802 0.862 1.891

0.1 500 1.40349 0.19361 0.923 2.154

Pooled 5000 0.88800 0.13193

Bartlett’s statistic 1373.4

9

0

Degrees of freedom

p-value

Fig. 19 Computational time statistics when pc = 0.75 and pm varies
from 0.01 to 0.1 with an interval of 0.01

Table 5 ANOVA test of 500 replicates (execution time)

Source Sum of
squares

df Mean squares F -value p-value

Mutation
probability

553.72 9 61.5245 592.31 0

Crossover
probability

153.76 9 17.0842 164.47 0

Interaction 13.54 81 0.1672 1.61 0.0004

Error 5183.27 49,900 0.1039

Total 5904.29 49,999

Table 6 ANOVA test of 500 replicates (computational time)

Source Sum of
squares

df Mean squares F -value p-value

Mutation
probability

5387.7 9 598.633 33754.09 0

Crossover
probability

0.38 9 0.042 2.37 0.0113

Interaction 3.99 81 0.049 2.78 0

Error 884.98 49,900 0.018

Total 6277.05 49,999

Table 7 Kinematic limits of the joints

Joint no. 1 2 3 4 5 6

Initial configuration (◦) −10 20 15 150 30 120

Virtual configuration — — — — — —

Via config. 1 60 50 100 100 110 60

Via config. 2 20 120 −10 40 90 100

Virtual configuration — — — — — —

Final configuration 55 35 30 10 70 25

Velocity (◦/s) 100 95 100 150 130 110

Acceleration (◦/s2) 60 60 75 70 90 80

Jerk (◦/s3) 60 66 85 70 75 70

Table 8 PPGA1 parameters

Parameter Value

Population size 30

Number of populations 3

Number of migrations 15

Number of generations 80

Crossover probability 0.95

Mutation probability 0.05

% of solutions replaced by new generation 30 %

ii the harmony search algorithm (HS) [48],

Table 9 Execution time comparison for the proposed PPGA1

Trajectory Execution

generation time (sec)

scheme

Gasparetto and Cubic spline 8.5726

Zanotto [17]

Tangpattanakul, and Cubic spline 8.5577

Artrit [48]

Simon and Isik [47] Trigonometric spline 9.1

Piazzi, and Cubic spline 9.1

Visioli [33]

Perumaal, and Synchronized 7.5398

Jawahar [30] trigonometric

S-curve

Proposed PPGA1 Cubic spline 6.97259
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iii interval analysis using cubic spline [33],
iv trigonometric spline [47], and
v synchronized trigonometric S-curve [30].

The data used for this evaluation are detailed in Table 7, and
extracted from [17].

Gasparetto and Zanotto’s algorithm [17] determined the
initial interval time value and used SQP technique (the
MATLAB function fmincon) for minimum time trajectory
(kT = 1, kJ = 0). However, they adjusted kT and kJ

so that the execution time is 9.1 s and the maximum jerk
is 46.85◦/s3 which is better than the jerk value in [33].
The HS simulation [48] gave a minimum time trajectory
of 8.5718 s for 10,000 iterations and 8.5577 s for 200,000
iterations with maximum jerk close to 60◦/s3 (plot informa-
tion). Simon and Isik [47] achieved 9.1 s with maximum jerk
80.84◦/s3 for the same set of data and using trigonometric
spline, while 7.5398 s is obtained using S-curve [30] with
maximum jerk 16.4178◦/s3. However, no via points are used
in [30], the planning was directly between the initial and
final configurations. The PPGA1, in this paper, is achiev-
ing an average of 7.19 s execution time and maximum jerk
80.2◦/s3. The PPGA1 is using the following GA parameters
in Table 8:

A detailed analysis of results for this comparison is
tabulated in Table 9:

In general, each run of genetic algorithms produces a
different solution because of the random nature of the cal-
culation involved. In Section 4.1, it can be seen clearly that
the results change by modifying the mutation probability,
see Table 1. In this section, the genetic algorithm (PPGA1)
uses the fixed set of parameters listed in Table 8. However,
to statistically evaluate the proposed algorithm, 100 runs
have been performed with different seed values to enrich the
randomness. The statistical summary of these runs shows
that even for the worst value of a trajectory execution time
of 7.4413 s, this is still less than the results reported in
other works cited earlier in this section. The minimum value
achieved is 6.9726 s, while the average is 7.198 s. Figure 25
illustrates the statistical evaluation, where the upper graph
shows the trajectories execution time with its average, stan-
dard deviation, etc., and the lower one shows the procedure
computational time for each run and its average.

5 Conclusion

This paper proposes an evolutionary approach to solve
the trajectory planning problem. This approach uses multi-
ple populations genetic algorithm with migration technique
to obtain minimum time trajectories clamped with cubic
splines. The use of multiple populations has been proved to
be advantageous in other application and in our paper we

extend it to the field of indirect robot trajectory planning.
This approach has the ability to combine different types of
constraints; obstacle avoidance, kinematics, and dynamics.
Moreover, it can be adapted to different manipulators since
the model is independent of the type and number of DoF of
the robot.

A considerably large number of experiments (more than
50,000) have been done based on benchmark paths extracted
from the literature. The results of these experiments are
used in an extensive statistical evaluation to show the effec-
tiveness of the proposed approach as well as to show the
improvement achieved by the proposed algorithm over the
existing ones.

The computational cost of the procedure itself is not a
concern and is out of the scope of this work, as in industrial
manipulators applications, the optimal trajectory planning is
often done offline.

In further work, it would be interesting to apply the pre-
sented parallel-populations genetic algorithm procedure to
trajectories with different interpolation functions, such as:
fifth-order B-splines, harmonic, etc.

Appendix A

The values of aij and yi in Eq. 7.

a11 = 3h1 + 2h2 + h2
1

h2
, a12 = h2, a21 = h2 − h2

1

h2
,

a22 = 2(h2 + h3), a23 = h3, a32 = h3,

a33 = 2(h3 + h4), a34 = h4, an−3,n−4 = hn−3,

an−3,n−3 = 2(hn−3 + hn − 2),

an−3,n−2 = hn−2 − h2
n−1

hn−2
,

an−2,n−3 = hn−2

an−2,n−2 = 3hn−1 + 2hn−2 + h2
n−1

hn−2
,

yi = 6

(
qi+1 − qi

hi

− qi − qi−1

hi−1

)
,

y1 = 6
(

q3
h2

+ q1
h1

)

−6
(

1
h1

+ 1
h2

) (
q1 + h1q̇1 + h2

1
3 q̈1

)
− h1q̈1,

y2 = 6

h2

(
q1 + h1q̇1 + h2

1

3
q̈1

)
+ 6q4

h3
− 6

(
1

h2
+ 1

h3

)
q3,

yn−3 = 6
hn−2

(
qn − hn−1q̇n + h2

n−1
3 q̈n

)

−6
(

1
hn−2

+ 1
hn−3

)
qn−2 + 6qn−3

hn−3
,

yn−2 = −6
(

1
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+ 1
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)(
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3 q̈n

)

+6
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qn
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hn−2

)
− hn−1q̈n.
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pm runs Mean[sec] Std. Dev. min [sec] max [sec]

0.01 500 0.38444 0.04444 0.285 0.573

0.02 500 0.49464 0.06620 0.353 0.738

0.03 500 0.60045 0.08788 0.387 1.149

0.04 500 0.72060 0.09823 0.458 1.122

0.05 500 0.82918 0.11849 0.517 1.245

0.06 500 0.93388 0.12474 0.619 1.388

0.07 500 1.05808 0.15011 0.708 1.682

0.08 500 1.18140 0.16706 0.787 1.794

0.09 500 1.27970 0.16783 0.841 1.897

0.1 500 1.39759 0.19249 0.952 2.167

Pooled 5000 0.88800 0.13000

Bartlett’s statistic 1507.06

9

0

Degrees of freedom

p-value

Fig. 20 Computational time statistics when pc = 0.80 and pm varies
from 0.01 to 0.1 with an interval of 0.01

pm runs Mean[sec] Std. Dev. min [sec] max [sec]

0.01 500 0.39068 0.04762 0.286 0.676

0.02 500 0.49806 0.06557 0.337 0.777

0.03 500 0.60814 0.08357 0.390 1.145

0.04 500 0.71697 0.10325 0.481 1.191

0.05 500 0.83525 0.11131 0.556 1.295

0.06 500 0.93652 0.13365 0.574 1.442

0.07 500 1.05184 0.14769 0.676 1.559

0.08 500 1.17318 0.16909 0.799 1.969

0.09 500 1.28131 0.18366 0.907 2.056

0.1 500 1.41074 0.18538 0.973 2.085

Pooled 5000 0.89027 0.13151

Bartlett’s statistic 1509.21

9

0

Degrees of freedom

p-value

Fig. 21 Computational time statistics when pc = 0.85 and pm varies
from 0.01 to 0.1 with an interval of 0.01

pm runs Mean[sec] Std. Dev. min [sec] max [sec]

0.01 500 0.39812 0.04868 0.288 0.763

0.02 500 0.50492 0.06910 0.357 0.761

0.03 500 0.60953 0.08540 0.418 0.972

0.04 500 0.71912 0.10093 0.480 1.132

0.05 500 0.83304 0.10740 0.536 1.235

0.06 500 0.93705 0.12843 0.610 1.454

0.07 500 1.05438 0.14616 0.704 1.925

0.08 500 1.17712 0.15364 0.822 1.762

0.09 500 1.27779 0.17547 0.881 1.923

0.1 500 1.38810 0.18558 0.998 2.529

Pooled 5000 0.88992 0.12761

Bartlett’s statistic 1361.55

9

0

Degrees of freedom

p-value

Fig. 22 Computational time statistics when pc = 0.90 and pm varies
from 0.01 to 0.1 with an interval of 0.01

pm runs Mean[sec] Std. Dev. min [sec] max [sec]

0.01 500 0.40200 0.05066 0.287 0.784

0.02 500 0.50800 0.06606 0.374 0.957

0.03 500 0.61884 0.08490 0.424 0.928

0.04 500 0.72966 0.10749 0.516 1.487

0.05 500 0.83582 0.11068 0.574 1.294

0.06 500 0.94852 0.11799 0.559 1.353

0.07 500 1.04761 0.13876 0.653 1.701

0.08 500 1.17235 0.15284 0.824 1.787

0.09 500 1.28251 0.17789 0.942 2.574

0.1 500 1.40142 0.18312 0.987 2.260

Pooled 5000 0.89467 0.12635

Bartlett’s statistic 1322.04

9

0

Degrees of freedom

p-value

Fig. 23 Computational time statistics when pc = 0.95 and pm varies
from 0.01 to 0.1 with an interval of 0.01
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Fig. 24 Average Execution
time and Computational time for
all combinations between pc

and pm

Fig. 25 Statistical analysis of the trajectory execution time and the computational cost of the PPGA1
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