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Detecting transitions in protein dynamics
using a recurrence quantification analysis
based bootstrap method
Wael I. Karain

Abstract

Background: Proteins undergo conformational transitions over different time scales. These transitions are closely
intertwined with the protein’s function. Numerous standard techniques such as principal component analysis are
used to detect these transitions in molecular dynamics simulations. In this work, we add a new method that has
the ability to detect transitions in dynamics based on the recurrences in the dynamical system. It combines
bootstrapping and recurrence quantification analysis. We start from the assumption that a protein has a “baseline”
recurrence structure over a given period of time. Any statistically significant deviation from this recurrence structure,
as inferred from complexity measures provided by recurrence quantification analysis, is considered a transition in
the dynamics of the protein.

Results: We apply this technique to a 132 ns long molecular dynamics simulation of the β-Lactamase Inhibitory
Protein BLIP. We are able to detect conformational transitions in the nanosecond range in the recurrence dynamics
of the BLIP protein during the simulation. The results compare favorably to those extracted using the principal
component analysis technique.

Conclusions: The recurrence quantification analysis based bootstrap technique is able to detect transitions
between different dynamics states for a protein over different time scales. It is not limited to linear dynamics
regimes, and can be generalized to any time scale. It also has the potential to be used to cluster frames in
molecular dynamics trajectories according to the nature of their recurrence dynamics. One shortcoming for this
method is the need to have large enough time windows to insure good statistical quality for the recurrence
complexity measures needed to detect the transitions.

Keywords: Recurrence quantification analysis- principal component analysis - molecular dynamics

Background
Protein functional motions occur over a wide range of
time scales, and are usually accompanied by conform-
ational transitions in the protein [1]. Principal compo-
nent analysis PCA is a standard technique used to detect
conformational transitions based on molecular dynamics
MD simulations [2–9]. This is done by first removing
the overall rotations and translations for the protein
atoms by aligning each frame in the simulation to a ref-
erence frame. The covariance matrix for a set of atoms,
usually the Cα atoms, is then built up. It is given by

Cij ¼< Xi−Xi;a
� �

Xj−Xj;a
� �

> ð1Þ

where X are the x, y, z coordinates for the Cα atoms fluc-
tuating about their average positions Xa. Collective mo-
tion coordinates are prepared by diagonalizing this
covariance matrix. This provides a set of eigenvalues and
their corresponding eigenvectors. Each eigenvector cor-
responds to a collective motion direction in 3 N space,
where N is the number of protein residues. The corre-
sponding eigenvalue represents the total mean square
fluctuation of all the residues in that direction. The
projection of motion for the protein is then calculated
along any given eigenvector to show any conformational
transitions over time. A small set of eigenvectors is usu-
ally sufficient to provide the majority of the fluctuations.
In its standard form, this technique detects only linear
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correlations. Even though it has been extended to detect
nonlinear correlations, its ability in this field is still not
very satisfactory [2, 6], and while it is not limited to
harmonic motions, some nonlinear relationships might
be misinterpreted due to the neglecting of higher order
correlations [6]. In addition, PCA depends on the time
window length used to compute the eigenvalues and
eigenvectors [10]. Conformational transitions can also be
tracked by calculating the root mean square deviation
RMSD for a set of atoms, such as the backbone Cα

atoms, from a reference structure. Large changes in the
RMSD usually point to conformational transitions. How-
ever, intermediate values of RMSD are sometimes hard
to interpret [11].
In this work, we propose a different approach to

detecting conformational transitions. We start by assum-
ing that during any given time period, a protein has a
‘baseline’ recurrence structure. When it is undergoing a
conformational transition, it will deviate from this base-
line recurrence state. If this significant deviation is
detected, then one can point to a conformational transi-
tion taking place. To achieve this goal, we will use recur-
rence quantification analysis RQA, which has gained
popularity in studying dynamics, transitions, and
synchronization in dynamical systems [12–14]. RQA is a
quantitative version [15] of recurrence plots RP, which
visually highlight recurrences in dynamical systems [12].
It is used in many fields [14]. In particular, RPs and
RQA have been used extensively to study proteins over
the years [16–54].
The RP is a non-linear analysis method. It visualizes

graphically the recurrence Si to a former state Sj in
the phase space trajectory of the dynamical system. It
is most useful when the system is being investigated
experimentally, with an unknown theoretical time
evolution law. If a scalar time-series {Ui} is available
for one of the measurable quantities for this system,
then its trajectory can be reconstructed [55]. This re-
construction involves using the method of time de-
lays. In essence, the dynamics of the system are
assumed to be encapsulated in the time-series for the
single measurable quantity, with the time delays
approximating derivatives [56]. The m-dimensional
phase space orbit is re-constructed from the scalar
time series Ui, such that.

Si ¼ Ui;Uiþd; ::…Uiþ k−lð Þd
� �

k ¼ l; ::m ð2Þ

where d is the delay parameter between the time-
delayed versions, and mis the embedding dimension for
the reconstructed phase space. The embedding dimen-
sion m represents the degrees of freedom (or the num-
ber of dominant operating variables) in the dynamical

system of interest. It is estimated by the method of false
nearest neighbors [57]. The delay parameter d deter-
mines the number of points to be skipped in the scalar
time-series Ui between the numbers forming the m-di-
mensional vector S. It is set to a value that makes the
correlation between the points of the measured time-
series at a minimum, and is estimated by finding the first
minimum in the mutual information function [58]. This
m-dimensional vector in phase space, Si, represents the
state of the system at time i. The RP is prepared by
assigning a dot at each point (i, j) whenever a point Sj
lies within a ball of radius ε centered at Si. In other
words, if two vectors representing the state of the system
are within a certain tolerance from each other, then this
means that the system is in similar states at two different
time instances, i and j. The mathematical expression of
the RP matrix is:

Ri;j εð Þ ¼ Θ ε− Si−Sik kð Þ i; j ¼ 1; :………;N ð3Þ
where N is the number of states, ε is a threshold dis-
tance, Θ is the Heaviside function (Θ(x) = 0 if x < 0 and
1 otherwise), and ∥.∥ is chosen from one of the fre-
quently used norms: the L1-norm(Minimum norm), the
L2 norm (Euclidean norm), and the L∞ (Maximum
norm). The norm parameter determines the size and
shape of the neighborhood surrounding each reference
point. In this work the maximum norm is used. The ra-
tio of the number of dots to the total number of points
in the matrix gives the recurrence rate value RR. The
threshold or radius parameter ε is the limit that trans-
forms the distance matrix (DM) between the time points
into a recurrence matrix (RM). It plays a role similar to
that of the Heaviside function. Elements (i, j) in the DM
with distances between states at or below the radius cutoff
are included in the RM (Ri,j = 1). Elements above the cut-
off are excluded from RM (Ri,j = 0). This threshold can be
chosen using a number of different techniques. For
example, one rule of thumb is to choose a threshold that
gives a RR value of 1% [14]. However, the value of ε is usu-
ally chosen according to the application at hand [14].
In addition to RR, RQA provides other output parame-

ters. We will concentrate on two of these: determinism,
DET, and laminarity, LAM. DET is the fraction of recur-
rence points forming diagonal lines parallel to the cen-
tral diagonal. It is given by

DET ¼
XN

l¼lmin
lP lð Þ=

XN

l¼1
lP lð Þ ð4Þ

where lmin defines the minimal length for a diagonal line
and is usually taken to be 2 [14]. P(l) is the probability
distribution for the diagonal line lengths. The length of
diagonal lines depends on the dynamics of the system
[14]. A large number of long diagonal lines points to a
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high predictability of the system, and to the fact that it
evolves at a similar fashion at different points in time.
While the value of DET might point to a deterministic
nature of a system, this is not a sufficient condition [59].
LAM is the fraction of recurrence points forming ver-

tical structures, and is given by

LAM ¼
XN

l¼lmin
vP vð Þ=

XN

l¼1
vP vð Þ ð5Þ

where lmin defines the minimal length for a vertical line
and is usually taken to be 2 [14]. P(v) is the probability
distribution for the vertical line lengths. Vertical struc-
tures in the recurrence plot point to slowly changing
states, common during laminar phases [14].
Changes in complexity measures provided by RQA,

such as DET and LAM, are generally interpreted as
pointing to transitions in the dynamics. In some cases,
the relative values of RR and DET are used to detect
transitions in the dynamics [60]. However, this has usu-
ally been done without providing confidence intervals to
validate the significance of these changes. Recently, a
method based on bootstrapping has been proposed to rem-
edy this deficiency [61, 62]. It easily provides confidence
intervals for analysis within a single dynamical system.
The method starts by preparing the recurrence matrix

over a moving time window of length w, with the start-
ing point of the time window at the beginning of the
time series. This starting point is then shifted by a suit-
able number of time steps forward, and the process re-
peated, until the end of the time series is reached. For
each time window, the local distribution for the diagonal
line lengths is prepared. The distributions from all the
windows are then merged together to prepare one global
distribution of diagonal line lengths. This distribution is
consequently used to calculate the global complexity
measure of interest for the system, which will be DET in
our case. From this global distribution, a large number
of bootstrap distributions are drawn, and the value for
DET is calculated for each draw. The α quantiles are
subsequently calculated, and their corresponding confi-
dence levels prepared for the DET distribution [62]. It is
assumed that DET values above the high confidence
level, and those below the low confidence level, point to
a significant change in the dynamics of the system from
its assumed baseline recurrence dynamics state. A simi-
lar procedure is applied to the vertical line distributions
to prepare confidence levels for LAM [62].
In this work we will apply this RQA based boot-

strap approach to detect changes in dynamics over a
132 ns long molecular dynamics simulation, for the
165 residue β-Lactamase Inhibitory Protein BLIP at
310 K. This protein is secreted by the soil bacterium
Streptomyces clavuligerus. It inhibits β-lactam en-
zymes, which hydrolyze β-lactam antibiotics and

nullify their effect [63–65]. It consists of five alpha-
helices, and eight beta-sheets. It also has distinct con-
necting loops (Fig. 1).

Methods and calculations
The computer programs VMD [66], and NAMD [67], are
used to perform the molecular dynamics simulation, and
the associated analyses respectively. The CHARMM27
par_all27_prot_lipid.inp parameter file is used for the
force field. The starting BLIP protein structure is down-
loaded from the protein data bank (PDB entry 3gmu) [68].
Periodic boundary conditions are used in an 80 Å ×
80 Å × 80 Å box. The protein is neutralized using 20 Cl−

ions and 22 Na+ ions. The protein is solvated using 15,264
TIP3P waters (0.15 M/ NaCl). The Particle-Mesh-Ewald
method is used to do the electrostatic calculations [69]. A
switching function is used for non-bonded interactions
with a switch distance of 10 Å and a cutoff distance of
12 Å. A pair-list distance of 14 Å is used. The simulation
is performed at constant pressure of 1 atm with an inte-
gration step of 2 fs. Langevin dynamics are used to control
both temperature and pressure. A langevin temperature
damping coefficient of 10/ps is applied. A langevin piston
period of 200 fs and a langevin piston decay period of
100 fs, are used respectively. The protein is minimized
using the conjugate gradient method for 5000 steps
(10 ps) to relax any high energy areas in the system. This
is followed by a gradual heating protocol in small
temperature steps of 10 K to avoid thermal instability.
Starting from an initial temperature of 100 K, langevin
dynamics is used to increase the temperature by 10 K

Fig. 1 Schematic figure for BLIP protein. The figure shows the
secondary structure elements for the BLIP protein. It consists of five
alpha-helices, and eight beta-sheets. The connecting loops are also
shown in the figure. The figure is prepared using VMD [65]
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Fig. 2 The embedding dimension. The embedding dimension value of 6 is calculated using the false nearest neighbor method in the cross
recurrence CRP toolbox [69]

Fig. 3 The delay parameter. The delay parameter value of 24 is calculated using the mutual information method in the cross recurrence CRP
toolbox [69]. a This top graph shows the mutual information values for the lag range 0 to 30. b This bottom graph shows a magnified version of
the top graph in (a), exhibiting the first mutual information minimum at a lag of 24. This value is used for the delay parameter
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steps, and to control the temperature using a damping
coefficient of 10/ps. The simulation is run for 10 ps for
each 10 K temperature step. This is continued until reach-
ing the final simulation temperature of 310 K. The equili-
bration period is 5 ns long. To insure equilibration, a
number of parameters (potential energy, kinetic energy,
temperature, pressure, RMSD) are tested for convergence.
A 132 ns production run is consequently prepared with
an integration time step of 2 fs. A root mean square devi-
ation RMSD series is prepared using VMD for the carbon
alpha atoms in the protein. The time series is 13,200
points long, with a time spacing of 10 ps between time
points, for a total time length of 132 ns. The parameters
for the phase space trajectory reconstruction are prepared
using the CRP toolbox subroutines [70]. The maximum
norm is used. The embedding dimension is prepared
using the false nearest neighbor FNN subroutine and has
a value of 6 (Fig. 2).
The delay parameter is prepared using the mutual

information MI subroutine, and has a value of
24(Fig. 3).
The epsilon value for each time window is adap-

tively chosen to give a constant RR of 5%. The data
inside each window is normalized. The DET and
LAM parameters are subsequently calculated for a

time window that is 1000 points long (10 ns) using
the CRQA subroutine in the CRP toolbox [70]. The
time window is then shifted by 1 ns, and the DET/
LAM calculation repeated using the same procedure
above until we reach the end of the time series. The
diagonal line lengths and the vertical line lengths,
from all the time windows, are then binned into their
corresponding one global distribution. Each global
distribution is then bootstrapped 1000 times. For each
bootstrap copy, the number of recurrence structures
drawn is the mean number of recurrence structures
contained in the local distributions, and subsequently,
DET and LAM are calculated [62]. Once the DET
and LAM distributions are prepared, the 95% quan-
tiles are calculated, and the corresponding upper and
lower confidence levels are derived for both DET and
LAM respectively. The PCA analysis is performed
using the CARMA program [71].

Results and discussion
Figure 4 shows the results for the DET recurrence
parameter versus time over the 132 ns simulation.
The data points are spaced 1 ns apart. Each data
point gives the value of DET for a time window that
begins at that time instant, and extends 10 ns into

Fig. 4 The DET parameter versus time. For each data point, the vertical coordinate gives the value for DET calculated over a time window
starting at the horizontal time coordinate for the data point, and extending 10 ns into the “future”. The two horizontal dash-dot lines at 0.574 and
0.56 give the 95% upper and lower confidence levels, respectively
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the “future”. For example, the value for DET at 10 ns
represents the DET value for the time window start-
ing at 10 ns and ending at 20 ns. The starting point
for each window is shifted forward by 1 ns relative to
the previous window. Thus the DET value at 11 ns is
for the window starting at 11 ns and extending to
21 ns. The two dash-dot horizontal lines at 0.574 and
0.56 show the upper and lower 95% confidence levels
respectively. The time points where the value of DET
is above 0.574 or below 0.56, delineate regions with
significantly different recurrence dynamics than the
assumed baseline recurrence dynamic state. In other
words, a transition in dynamics occurs where the
DET value crosses these two horizontal dash-dot
lines. Both upper and lower confidence levels are
given since the exact nature of the dynamics is not
known [62]. Inspection of Fig. 4 shows three time
regions with a DET value larger than the upper confi-
dence level: 0 ns–27 ns, 55 ns–60 ns, and 72 ns–
91 ns. In addition, there are three regions with DET
values below the lower confidence level: 28 ns–55 ns,
60 ns–69 ns, and 108 ns–115 ns. Again, one needs to
emphasize here that each time point in these six
regions actually denotes a time window starting at
that point, and extending 10 ns into the ‘future’. We

recalculate DET with a constant RR of 1% within
each time window. This is done to insure that the
results are independent of the relatively high RR 5%
value chosen for this application. The calculated DET
values at 1% are shifted downwards relative to those
at 5%. The 95% confidence levels are also shifted
downwards. However, the time regions above and
below the corresponding confidence intervals are es-
sentially the same for both 5% and 1%. Thus the
choice of 5% is justified since it has the added advan-
tage of improving the statistical reliability of the
calculations by increasing the number of recurrence
structures in each time window. We also repeat the
bootstrap analysis with a constant recurrence thresh-
old value in each time window, instead of a constant
RR value. This results in large fluctuations in the
number of recurrence structures -diagonal and verti-
cal lines- within each time window, and strongly
limits the use of this bootstrap technique, which de-
pends on having a constant statistical sample within
each time window.
In these six regions, the dynamics of the protein is

significantly different than the “baseline” state which
is assumed to fall between the two confidence level
lines. The regions with a DET value larger than the

Fig. 5 The LAM parameter versus time. For each data point, the vertical coordinate gives the value for LAM calculated over a time window
starting at the horizontal time coordinate for the data point, and extending 10 ns into the “future”. The two horizontal dash-dot lines at 0.713 and
0.702 give the 95% upper and lower confidence levels, respectively
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upper limit hint at an increased regularity and auto-
correlation in the system, while those below the lower
limit point to more irregularity and stochastic vari-
ability in the system dynamics [62]. One needs to
point out that while this method detects transitions
in dynamics, it does not provide a clear picture for
the nature of the dynamics; only that the system has
deviated from its baseline recurrence state. Another
point to keep in mind is that the exact time point
where the transition takes place is not well defined
because each DET value is calculated over long over-
lapping time windows.
Figure 5 shows the results from the analysis on LAM.

It is clear that both DET and LAM give very similar out-
comes in terms of the time windows with LAM values
above and below the 95% confidence levels respectively.
We will therefore only use the results we get from DET
for the rest of the paper.

Representative recurrence plots from the six regions
are shown in Fig. 6. Each recurrence plot represents a
time window 1000 points long(10 ns). The plots in
(a), (c), and (e) are each extracted from one of the
three regions with DET values above the 95% confi-
dence level, and have the maximum DET values
within their corresponding regions. The plots in (b),
(d), and (f ) are each extracted from one of the re-
gions with DET values below the 95% confidence
level, and have the minimum DET values within their
corresponding regions. While it is difficult to draw
clear and objective conclusions based only on visual
inspection of these recurrence plots, it can be seen
that the plots from the three regions with large DET
values have a large proportion of their recurrence
structures near the main diagonal. On the other hand,
the plots with the small DET values are spread out
over the entire plot.
To gain a better picture of where these six regions lie

in the conformational space, we resort to PCA. We limit
our analysis to the first three principal components PCs,
which constitute 46% of the total fluctuations in our
simulation(Fig. 7).
Figure 8 gives the two dimensional projection of the

132 ns simulation on principal component 1 PC1 and
principal comonent 2 PC2, as the horizontal axis and
vertical axis respectively. K-means clustering and the
‘elbow’ technique [72] are used to cluster the data. Four
distinct regions emerge: cluster I, II, III, and IV,
respectively.
In Fig. 9 we project the same six 10 ns time win-

dows shown as recurrence plots in Fig. 5, along PC1
and PC2(projections in black color). In (a), the
14 ns–24 ns window falls inside the red cluster III. In
(b), the 36 ns–46 ns window lies mainly inside the
blue cluster I. In (c), the 57 ns–67 ns window strad-
dles the blue cluster I and the green cluster II, and
dips slightly into the violet cluster IV. In (d), the
65 ns–75 ns window falls mainly inside the green
cluster II. In (e), the 83 ns–93 ns window also falls
mainly within the green cluster II. Finally in (f ), the
111 ns–121 ns window is situated inside the violet
cluster IV. We notice that with the exception of the
57 ns–67 ns window, the windows fall mainly within
a single cluster each. It is also interesting to note that
time windows with large and small DET values fall
within the same cluster(Fig. 9d and e). This shows
that while PCA lumps regions with distinct dynamics
within the same cluster, while the RQA-bootstrap
method is able to resolve them apart.
Figure 10 gives the two dimensional projection of the

132 ns simulation on principal component 1 PC1 and
principal comonent 3 PC3, as the horizontal axis and
vertical axis respectively. K-means clustering and the

Fig. 6 Recurrence plots. Each recurrence plots represents a 1000
points long time window(10 ns). The six time windows chosen are
the ones that have the maximum and minimum DET values in the
six time regions with DET values larger or smaller than the
confidence levels respectively. a 14 ns–24 ns, (b)36 ns–46 ns, (c)
57 ns–67 ns, (d) 65 ns–75 ns, (e) 83 ns–93 ns, and (f) 111 ns–121 ns
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Fig. 7 Positional fluctuations for principal component modes. The first three principal components constitute 46% of the total positional fluctuations

Fig. 8 gives the two dimensional projection of the 132 ns simulation on principal component 1 PC1 and principal comonent 2 PC2, as the
horizontal axis and vertical axis respectively. K-means clustering and the ‘elbow’ technique [72] are used to cluster the data. Four distinct regions
emerge: cluster I, II, III, and IV, respectively
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‘elbow’ technique [72] are used to cluster the data
points. Five distinct regions emerge: cluster I, II, III, IV,
and V, respectively.
In Fig. 11 we project the same six 10 ns time windows

shown as recurrence plots in Fig. 6, along PC1 and
PC3(projections in black color). In (a), the 14 ns–24 ns
time window falls mainly inside the blue cluster III. In
(b), the 36 ns–46 ns time window lies mainly inside the
red cluster I. In (c), the 57 ns–67 ns time window is

inside the yellow cluster V. In (d), the 65 ns–75 ns time
window also falls inside the yellow cluster V. In (e), the
83 ns–93 ns time window also falls mainly within the
green cluster IV. Finally in (f ), the 111 ns–121 ns win-
dow is situated inside the brown cluster II. Again, we
notice that the 57 ns–67 ns(large DET) and 65 ns–
75 ns(small DET) time windows fall within the yellow
cluster V, while the other four time windows fall mainly
within a single cluster each. This again shows that while

Fig. 9 The projection of time windows over a plane defined by PC1 and PC2. The time window projections are in black: (a)14 ns–24 ns(large
DET), (b) 36 ns–46 ns(small DET), (c) 57 ns–67 ns(large DET), (d) 65 ns–75 ns(small DET), (e)83 ns–93 ns(large DET), (f) 111 ns–121 ns(small DET)

Fig. 10 The projection of the 132 ns simulation over PC1 and PC3. The five clusters I, II, III, IV, and V are grouped using k-means clustering and
the ‘elbow’ technique
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PCA lumps regions with distinct dynamics within the
same cluster, the RQA-bootstrap method is able to
resolve them apart.
To gain some insight into the conformational

structural nature of these transitions, we project two
10 ns long time windows over the principal compo-
nents with the three largest eigenvalues, and show
where the collective domain motion amplitudes are
the largest. The first time window is from 14 ns to
24 ns (Fig. 12), and has a DET value larger than the
upper 95% confidence level. The second time win-
dow is from 36 ns to 46 ns (Fig. 13), and has a DET
value smaller than the lower 95% confidence level. It
is clear that for both of these time windows, the col-
lective domain motions are taking place mainly
within the loop regions between the secondary struc-
tures of the protein. In Figs 12 and 13, there are five
regions with clear collective loop domain motions.
In region a, the loop lies between beta-sheets 6 and
7. In region b, the loop lies between beta-sheets 2
and 3. In region c, the loop lies between the short
alpha-helix 3 and beta-sheet 2. In region d, the loop
lies between beta-sheets 3 and 4. In region e, the
loop lies between beta-sheets 5 and 6. Such loop

structural conformations can play an important role
in protein docking and active site stabilization [73–80].
For BLIP in particular, residue Asp-49 which lies within
region b in the loop between beta-sheets 2 and 3,
and residue Phe-142 which lies within region a in
the loop between beta-sheets 6 and 7, play an
important role in the inhibition behavior for the
protein [81].
.

Conclusions
We have introduced a RQA based bootstrap method
to differentiate between different recurrence dynamics
regions in a protein molecular dynamics simulation.
The nature of the dynamics is specifically related to
the recurrence characteristics of the dynamical sys-
tem. The method compares well with PCA. In
addition, while PCA shows that certain time regions
fall within a single cluster in conformational space,
they actually have different recurrence qualities. This
method can thus be used in unison with PCA to
clarify the degree of correlation and predictability
during a certain time window. It can also be used to
cluster molecular dynamics trajectory data based on

Fig. 11 The projection of time windows over a plane defined by PC1 and PC3. The time window projections are in black: (a)14 ns–24 ns(large
DET), (b) 36 ns–46 ns(small DET), (c) 57 ns–67 ns(large DET), (d) 65 ns–75 ns(small DET), (e)83 ns–93 ns(large DET), (f) 111 ns–121 ns(small DET)
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recurrence properties, in an effort to remove redun-
dant data within the same dynamics region [82]. This
method, based on the recurrence properties of the
protein dynamics system, can be an added tool in the
search for understanding of the relation between
dynamics and function for a protein.
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