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Hamid A. Toliyat, Senior Member, IEEE

Abstract—In this paper, two architectures of artificial neural net-
works (ANNs) are developed and used to correct the performance
of sensorless nonlinear control of induction motor systems. Feed-
forward multilayer perception, an Elman recurrent ANN, and a
two-layer feedforward ANN is used in the control process. The
method is based on the use of ANN to get an appropriate correction
for improving the estimated speed. Simulation and experimental
results were carried out for the proposed control system. An induc-
tion motor fed by voltage source inverter was used in the experi-
mental system. A digital signal processor and field-programmable
gate arrays were used to implement the control algorithm.

Index Terms—Artificial neural networks (ANNs), digital signal
processor (DSP), field-programmable gate arrays (FPGAs), induc-
tion motor, nonlinear control, observer system, sensorless control.

I. INTRODUCTION

THE application of artificial neural networks (ANNs)
attracts the attention of many scientists from all over the

world [1]. The reason for this trend is the many advantages
which the architectures of ANN have over traditional algo-
rithmic methods. Among the advantages of ANN are the ease
of training and generalization, simple architecture, possibility
of approximating nonlinear functions, insensitivity to the dis-
tortion of the network, and inexact input data. The use of ANN
is practical at present that technological progress is rapid and
the practical utilization of the system that mimics nature is
possible.

ANNs can be used to identify and control nonlinear dynamic
systems because they can approximate a wide range of nonlinear
functions to any desired degree of accuracy. Moreover, they can
be implemented in parallel and, therefore, shorter computational
time. Also, they have immunity from harmonic ripples and have
fault-tolerant capability.

Since the 1990s, several investigations into the applications
of neural networks in the field of electrical machines and power
electronics have appeared [2].
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In recent years, many papers have appeared which deal with
the use of ANN in modulation systems [3], [19], in breakdown
detection [4], in control [5]–[7], in the estimation of state vari-
ables [8], [9], and in the identification of induction motor pa-
rameters [20].

In many papers [5], [10]–[15], the use of ANN has been
tried for estimating the rotor angular speed. Among the methods
used, it is possible to note two types of ANN designs. One is
based on the machine model [10], and the other one uses stator
currents and voltages for direct speed estimation [12], [13]. The
input values to the neural speed observer presented in [12], [13]
are the actual currents and voltages or their values from previous
steps together with the magnitude of the stator current.

Several ANN architectures were implemented by the authors
in simulations and in experiments for a 1.1-kW induction motor.
Only two architectures are discussed in this paper due to their
easy implementation on the digital signal processor (DSP) and
short execution time for the sensorless induction motor drive.

In the proposed solution, the neural networks are used to
correct the estimated rotor speed in the nonlinear control of
induction motors [15], [21], [22]. The internal signals of the
speed observer system were used to correct the observer’s er-
rors at steady states and during transients. The developed con-
trol system based on the speed observer is stable and robust.

II. MATHEMATICAL MODEL AND NONLINEAR CONTROL

OF A SQUIRREL-CAGE INDUCTION MOTOR

The mathematical model of a squirrel-cage induction motor
expressed in terms of the stator currents and rotor flux vector
components in the stationary coordinate system are as follows:

(1)

(2)

(3)

(4)

(5)

where , , , , , and are the stator voltages,
stator currents, and rotor flux vectors components in the sta-
tionary coordinate system, is the angular speed of the
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Fig. 1. Control system for the induction motor with speed observer and ANN corrector.

rotor shaft, is the mutual inductance, is the moment of
inertia, is the load torque, and furthermore

where , , , , , and are the rotor
and stator resistances and inductances, respectively, and is the
time in per unit.

III. NONLINEAR LINEARIZATION OF INDUCTION MOTOR

FED BY VOLTAGE-SOURCE INVERTERS (VSIs)

In the case of using induction motor model fed by a
pulsewidth-modulated (PWM) voltage-source inverter (VSI),
the control signals are the voltage vector components.

Four novel state variables have been proposed for describing
the motor model [15], [21]. The multiscalar variables may be
interpreted as the rotor angular speed, scalar and vector prod-
ucts of the stator current and rotor flux linkages vectors, and the
square of the rotor flux linkages represented in an arbitrary co-
ordinate system as follows:

(6)

(7)

(8)

(9)

After taking into account the differential equations of new
state variables, the following model is obtained:

(10)

(11)

(12)

(13)

where and

(14)

(15)

The compensation of nonlinearities present in (11) and (13)
using the nonlinear feedback technique previously discussed
leads to defining the new input variables and as

(16)

(17)

The sensorless nonlinear control system of induction motors
with the speed observer system and ANN corrector described
in the following sections and partially designed on the basis of
previous equations is presented in Fig. 1.
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IV. ROTOR SPEED OBSERVER SYSTEM

A new speed observer system has been proposed for the first
time in [16]. The differential equations of the speed observer
modified in this paper are as follows:

(18)

(19)

(20)

(21)

(22)

(23)

(24)

where denotes estimated variables; and , , , and are
the observer gains and is the sign of speed. The values and

are the components of disturbance vector and is the control
signal obtained through experiments and is the filtered signal

.

V. CORRECTION OF SPEED OBSERVER USING ANN

The coefficients to in the speed observer system have
small values. Therefore, the operation of the observer system is
stable and maintains small transient errors. The values of the co-
efficients significantly affect the quality of the calculated speed
during transients. In [17], it is shown that the coefficient may
depend on the rotor speed

(25)

where and are constant coefficients and is the estimated
and filtered rotor speed.

The simulation and experimental tests showed that it is nec-
essary to choose different values of the coefficients for different
speeds, torques, and transients to minimize speed estimation er-
rors. Therefore, it seems advantageous to keep constant coef-
ficients , , and at the same time using ANN instead of
the expression . If the difference between the actual
and the estimated speed is used for network learning as a base
signal, then the expression (24) will have the following form:

(26)

where is the output of the ANN.
The speed observer may be used in different control systems

for rotor flux and speed estimation. The testing of the speed

observer system with ANN was primarily done on an open-loop
system with the V/f scalar control method.

The test was done for two structures of ANN, multilayer feed-
forward and recurrent, and with fuzzy logic. As an input to the
multilayer-percepton ANN (MLP), the estimated speed , the
change of speed in time , and two other variables and
filtered value were used. These two internal signals are de-
fined as follows:

(27)

(28)

In the case of speed estimation in an open-loop system, the
estimated multiscalar variable is used as an additional input
signal.

The basic criterion for the selection of ANN is the ability of
being tested on the microprocessor system. In this paper, the
main trend was not only to minimize the inputs to the network
but also to use a minimum number of layers and neurons in each
layer. Because of the speed change detection in time, a signal

was calculated every ten sampling periods. It means
that every 1.5 ms for the sampling period is equal to 150 s
(microseconds). At the same time, the calculation of ANN and
the addition of the corrector from the network output were
realized in each calculation step (every 150 s).

For the correction of rotor speed, a computer simulation
showed that it is sufficient to use double-layer ANN with a few
neurons in the hidden layer and one in the output layer. The
neurons in the hidden layer have sigmoid activation function
(hyperbolic tangent), and the output neuron has a linear func-
tion. For the determination of the neurons number in the hidden
layer of the feedforward network, an evolution programming
method was used.

As a result of studying the ANN architecture and the initial
weights, it is noted that for the feedforward multilayer network,
it is enough to use two layers with one output neuron and four
or five neurons in the hidden layer.

A. Training Process

Supervised neural networks applied to the speed observer
were trained to produce the desired output correction to the
estimated speed. Implementation of these supervised networks,
feedforward and recurrent, was carried out in two steps. In
the first step, four groups of 2500 input–output training data
were obtained from simulation of the complete drive system.
In the next step, the trained ANN was implemented in the
experimental sensorless drive. For proper operation with high
and low load, the neural networks had to be retrained in the
system with speed measured by an encoder.

Determination of the ANN weight to correct the rotor speed
is an iterative process, which consists of the following steps.

Step 1 ) First, data from the simulation and experiment
are selected. In the case of the computer simula-
tion of the drive system, four groups of training
signals, each containing 2500 training pairs, for
the open-loop system are selected. In the case
of the experiment, the process was the same but
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Fig. 2. MLP neural network for correction of estimated speed in an open-loop
control system.

each group contained 500 learning pairs. Each
pair consists of network inputs , ,

, , , and the desired output . The
network inputs , , and the desired
output were normalized.

Step 2 ) The architecture of the (5–5–1) feedforward
MLP neural network is presented in Fig. 2. The
network had been trained on the basis of the
simulation and experimental data. The initial
weights were determined using the evolution
programming method.

Step 3 ) To improve the learning process, the input data
to the ANN were the subject of polynomial in-
terpolation.

Step 4 ) The training of MLP ANN was performed by the
Luenberger–Marquardt (L–M) backpropagation
algorithm in the first step and standard gradient
descent with momentum backpropagation, and
adaptive learning rate in the second step [10].

If Elman ANN is used, the testing procedure
should be performed by the method described
above.

Step 5 ) The procedure repeats the third step for the en-
tire next learning data considering that each new
learning starts from the weights, which were de-
termined in the previous learning process.

Step 6 ) The last stage of checking the performance of
the speed corrector was testing using data that
are different than the learning ones. In both sim-
ulation and experimental cases, the reversal of

Fig. 3. Simulation waveforms during speed reversal (from 0.9 to �0.9 p.u.)
for V/f control method and MLP (5-5-1) ANN.

Fig. 4. Experimental waveforms during speed reversal (from 0.8 to�0.8 p.u.)
for V/f control method and MLP (5-5-1) ANN.

the machine speed was checked. The simulation
results are presented in Fig. 3 and the experi-
mental results are presented in Fig. 4. The ac-
tual rotor speed is , and the estimated and cor-
rected using ANN is .

Due to the use of an ANN speed corrector, the steady-state
error was decreased nearly to zero. After nearly zeroing the
error, small oscillations are observed. However, as a result of
using the ANN corrector, it does not exceed 2.5%.

The same oscillations observed during the simulation test
shown in Fig. 3 were also observed during the experiment de-
picted in Fig. 4. The experimental results prove the simulation
findings.

B. ANN Speed Corrector in a Closed-Loop System

In the case of a closed-loop system, the structure of the MLP
feedforward ANN could be simplified. The calculated variable
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Fig. 5. Recurrent Elman neural network for correction of estimated rotor speed in a closed-loop control system.

is not used. The simulation and experimental tests showed
that the significant effect on the speed estimation error has the
dynamic of the torque and not its value. The (5–5–1) architec-
ture of MLP feedforward ANN is shown in Fig. 2. All neurons
in the hidden and output layers have a bipolar sigmoid active
function. Many learning rules were checked and it was con-
cluded that the fastest that gives the least mean value is the L–M
method.

In addition to the feedforward ANN, the recurrent ANN is
used to correct the rotor speed. The architecture of the Elman
recurrent ANN is presented in Fig. 5. This contains four neurons
with sigmoid active function in the hidden layer and one output
neuron with linear limited active function. In the case of using
Elman networks, the recurrent loop is provided once again to all
neurons in the hidden layer by a delay D. This makes it possible
to detect and generate time-varying patterns in the Elman net-
work. The stored values from the previous step are used in the
current step in this ANN.

As a testing rule of the Elman network, a method with back-
propagation error algorithm was used. For the recurrent net-
work, the following training steps in each time period occurs.

Step 1) The entrance input sequence is provided to the
network, and its output is calculated and com-
pared with the target speed to generate an error.

Step 2) The error is backpropagated to find gradients of
errors for each weight and bias. This gradient
is actually an approximation since the contribu-
tions of weights and biases to the error, via the

delay recurrent connection, are ignored. This ap-
proximate gradient is then used to update the
weights with the standard gradient descent with
momentum method. The waveforms of the two
training methods are shown in Fig. 6. The errors
are in per unit.

The parameters used to train the network are learning rate
and error tolerance 0.1%. As in the case of the

open-loop system, the training parameters were changed and
the network was learned for different learning coefficients. The
learning data are presented in Table I. Less learning error is
obtained for the Elman network. The useful characteristics of
the Elman network make it possible to decrease the average
learning error to less than 0.01%, which is not possible when
using the feedforward ANN.

C. Simulation Results of the Nonlinear Closed-Loop Control
System With ANN Corrector

Properties of the presented system have been investigated
using the simulation method. All results are presented in the
per-unit system. The simulation was prepared using programs
written in C language. The simulation results were used to de-
scribe the characteristics of the drive system with the speed
observer and correction introduced with and without feedfor-
ward or recurrent ANN. The closed-loop control system was
presented in Fig. 1.

The results of simulated rotor speed reversal are presented
in Fig. 7. The variables calculated in the observer system are
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Fig. 6. L–M training method of feedforward ANN. (a) Error backpropagation of Elman ANN. (b) Based on the experimental data.

TABLE I
PARAMETERS OF THE IMPLEMENTED NEURAL NETWORKS

Fig. 7. Transients during motor speed reversal for system with MLP ANN
(4–5–1) speed corrector.

noted with . The error of estimated speed does not ex-
ceed 0.5% except for a short period during which fast torque
changing occurred. After zero crossing, oscillations with small
magnitude appear in the waveforms of variables , , and
in the error of the estimated speed. The oscillation does not af-
fect the values of the torque and speed. The results during zero
speed are presented in Fig. 8. The system maintains stability and
operates correctly at zero speed when the motor is loaded. The
observed torque oscillation denotes the speed oscillation close

Fig. 8. Transients during zero speed with MLP ANN (4-5-1) speed corrector.

to zero speed. This is caused by the necessity to detect a speed
sign in the observer system.

The network effect on the waveforms that are similar to the
testing data was checked by changing the controller’s parame-
ters and keeping the observer coefficients constant.

Speed estimation in the closed-loop system for big parame-
ters of speed and torque controllers when the feedforward ANN
is applied is shown in Fig. 9. The correction of the observer
system using ANN is very essential for small speeds. The cor-
rection value is nearly zero for high speed. This is proof that
the observer system estimates the rotor speed correctly at high
speed. During the transient, the speed error does not exceed 2%.

The operation of the Elman recurrent ANN while decreasing
the gains of speed, torque, and electromagnetic (EM) controllers
is presented in Fig. 10. The error of speed correction does not
exceed 1% of the rated speed. Limitation of the dynamic in the
control system corrects the characteristics of the speed observer
and ANN corrector.

VI. EXPERIMENTAL RESULTS OF THE NONLINEAR

CLOSED-LOOP CONTROL SYSTEM WITH ANN CORRECTOR

In practical implementation of electrical drives, an interesting
solution is to use a specialized microcontroller in the control
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Fig. 9. Simulation results during the speed variations: ! = 0:05;
0.6; 0.3 p.u.; (ANN MLP 4-5-1).

Fig. 10. Results of speed estimation with correction based on the use of
recurrent Elman (4-4-1) ANN in the nonlinear closed-loop system during speed
variations ! = 0:05; 0.7; 0.3 p.u.

board. Such circuits are equipped with all indispensable inter-
faces. They allow for reducing costs and size of the control
board. Smaller size of the digital circuits also decreases the sen-
sitivity to external disturbances.

The experimental setup consists of the following elements:

• machine unit, squirrel cage induction motor-dc generator;
• voltage inverter;
• input/output (I/O) board with analog-to-digital converter

and field-programmable gate-array (FPGA) system;
• signal processor board ADSP21065L;
• PC computer with programming for commanding param-

eters and viewing waveforms;
• the central element of the drive is a control system. It con-

sists of a SH1 v. 1 board with DSP ADSP21065L. The SH1
board is programmed to work as an individual controller.
It can be connected to an IBM PC via the serial interface
RS232.

The characteristics of the nonlinear control system of induc-
tion motors with a speed observer and ANN corrector were ex-
perimentally tested using the 1.1-kW induction motor used in
the simulations. The error of real speed estimation using the ob-
server system may be somewhat different from the simulation

Fig. 11. Experimental results for speed reversal without ANN.

Fig. 12. Experimental results of speed reversal for the control system with
speed correction when using Elman (4-4-1) ANN, the sampling period is
Timp=100 �s.

results shown in Figs. 11–14. This results from the measure-
ment error, which is added to the estimation error because of the
speed reversal in the system without ANN. The speed calculated
using (26) is plotted in Fig. 11. The error during speed reversal
is caused by the measurement error and is about 5% during tran-
sient around zero and is about 1% at the steady-state.

Speed reversal when using the (4–4–1) architecture of the
Elman network is shown in Fig. 12. Again, the effect of the mea-
surement error is seen when speed is crossing zero but the tran-
sient error does not exceed 2%. Such a small error not only re-
sults from the proper action of the ANN corrector but also from
more frequent correction and more exact voltage generation be-
cause of reducing the sampling period to 100 s. The decrease
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Fig. 13. Experimental results by using MLP feedforward ANN during speed
variations ! = 0:05; 0.6; 0.3 p.u. ( MLP 4-5-1); Timp =150 �s.

of the sampling period below such value in a closed-loop system
is not possible because the actual time of the closed-loop system
is equal to 88.4 s.

The experimental results obtained when using the (4–5–1)
structure of the MLP feedforward ANN are presented in Fig. 13.
The network was trained using four set of data from simulations,
and four from experiments. The error between the measured
speed and the estimated and corrected speed does not
exceed 2% at the steady-state and during the transients.

In the next experiment, the breaking mode of the motor was
checked and attempts were made to keep nearly zero speed op-
eration while applying active load on the shaft. The speed varia-
tions from 0.8 to 0.03 p.u. is shown in Fig. 14. The speed estima-
tion error oscillates around zero and does not exceed 1%
of the rated speed in the steady-state. The situation in transient
is not much worse. The speed corrector is based on the (4–4–1)
structure of the Elman network, which properly corrects the es-
timated speed in both steady-state and transients.

Comparative tests of the speed observer operation with and
without the ANN corrector were conducted. This was done to
check the correctness of our proposal of using the ANN cor-
rector instead of conventional constant coefficients in the speed
observer. Different operating points were checked. As a crite-
rion, the integral of the square error between the actual and
estimated speed has been chosen. The results of five different
speeds are shown in Table II.

VII. CONCLUSION

In this paper, two ANN architectures were developed to en-
hance the performance of sensorless control of the induction
motor in two ways.

A significant correction of speed estimation is provided espe-
cially during transients. The estimation error was significantly
reduced. The load changes almost do not affect the speed esti-
mation process. The speed is correctly estimated at zero speed

Fig. 14. Experimental results for braking under load when using Elman ANN:
! = 0:8; 0.03 p.u.

TABLE II
INTEGRALS OF SQUARE ERROR FOR DIFFERENT ROTOR SPEED

and the whole control system operates well near standstill al-
though the motor is loaded.

Because of using the Elman recurrent ANN or a two-layer
feedforward ANN, the speed estimation errors during transients
are reduced from 5% to 3% while at the steady-states are from
1% to 0.5% in experimental tests. The ANN was trained offline
to correct the performance of the speed observer system.
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