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Abstract: Because of the increase in renewable energy sources (RESs) share, new control strategies
of isolated power systems have been developed to improve the frequency and voltage stability of
inverter-interfaced RESs. A voltage source converter (VSC) with a virtual synchronous machine
(VSM) is among the most promising control schemes. This paper demonstrates how VSM control
of inverter-interfaced RES can be efficiently used to improve the dynamic stability in small isolated
power systems. In the proposed analysis, the RESs of a Mediterranean island are assumed interfaced
to the grid by VSCs with a swing controller and a vector-current controller (VCC) with two different
options for the reference current (RC) to regulate the voltage at the point of common coupling (PCC)
and the real power output. The system is modelled in a PSCAD environment, and the behavior of
the control is tested in the case of a phase-to-phase fault. The results of the simulations for different
scenarios and values for the control parameters show the effectiveness of the control in small isolated
grids. Finally, the level of grid power quality is verified via harmonic analysis of the PCC voltage.

Keywords: renewable energy sources; virtual synchronous machine; voltage source converter;
isolated power systems; power system stability

1. Introduction
1.1. Problem Statement

Worldwide, the higher cost of electricity from diesel and the targets for reducing
greenhouse gas emissions have led to incentivize using renewable energy sources (RES) on
small islands not supplied by the main transmission grid [1,2]. To achieve the same level of
performance as traditional synchronous generators (SG), grid control must be substantially
modified to accommodate this transformation of the small island generation system [3,4].

With recent advancements in the development of virtual synchronous machine (VSM)
technologies, VSM has gained prominence in isolated power systems because of its charac-
teristics of improving performance, flexibility, efficiency, stability, and reliability [2–6].

Nevertheless, voltage source converters (VSC) with VSM must be suitably controlled
to avoid this, in the presence of short-circuits, while keeping the power system stable,
as the electronic devices of the converter are subjected to currents capable of damaging
them. In this context, one of the most dangerous events for VSCs is a phase-to-phase fault,
as it produces to short-circuit currents that can rise to almost the 87% of the three-phase
short-circuit current at the point of common coupling (PCC).

1.2. Literature Review

VSM topologies and schemes have attracted the interest of many researchers and
several papers have been published on this promising topic [5–10]. The authors of [5]
presented a literature review on VSM. In addition, this review paper introduces a detailed
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discussion on modern control techniques for VSM. The authors of [6] provided a compre-
hensive review of the state-of-the-art VSM topologies along with a discussion on some of
the challenges that will stem from the integration of RES. The authors of [7] presented an
overview of different topologies to virtual inertia along with a detailed representation of the
VSM structure. In addition, this review explained VSM control, which defines active and
reactive power control and voltage and frequency control. U. Tamrakar et al. [8] presented a
review of the virtual inertia implementation techniques. The major virtual inertia strategies
are also compared and classified in this review paper. In [9], the authors discussed the
use of electric vehicle chargers for providing virtual inertia while being operated as VSM.
Finally, the authors of [10] proposed a VSM application for battery/supercapacitor hybrid
energy storage systems to handle the stochastic power output of photovoltaic (PV), based
on a new evolutionary algorithm called the backtracking search optimized algorithm for
real-time tuning of the VSM parameters.

In light of the above literature review, Table 1 summarizes the key features and
weaknesses of commonly used VSM control strategies.

Table 1. Features and concerns of different VSM control strategies (built starting from [8]).

Control Strategy Characteristics Issues

SG model-based

• Voltage-source implementation
• Accurate replication of SG dynamics • Numerical instability

• Frequency derivative not required • Need for a current limiter to protect the device
during short-circuits

• Need for a Phase locked loop (PLL) for
synchronization

• Black-start capability

Swing equation-based

• Governor is modeled as a first-order
lag element

• Numerical instability
• Power and frequency oscillations

• Frequency derivative not required
• Need for a current limiter to protect the device

during short-circuits
• Higher Rate of Change of Frequency

• Need for a PLL for synchronization

Frequency-power response-based

• Straightforward implementation • Instability due to PLL, particularly in weak grids

• Current-source implementation
• Inherent overcurrent protection

• Frequency derivative required, system susceptible
to noise

Droop-based

• Communication-less • Slow transient response

• Very common
• Classical droop control implementation

• Improper transient active power sharing
• Need for low pass filters for approximating the

behavior of virtualinertia systems
• Need for specific control logics for ensuring a

proper load sharing

Therefore, new control strategies have been developed to improve the frequency
and voltage stability of inverter-interfaced RES generators, considering both active and
reactive power generation [11–15]. Among the mentioned strategies, those implemented
for contrasting the natural reduction of the system inertia due to the increase in RES
share [14–18] have a crucial role in the secure management of isolated power systems. In
the technical literature, droop control coupled with virtual inertia is the most common
grid-supporting method, but other solutions have recently been proposed.

1.3. Proposed Solution

VSC with VSM control is one of the most promising control schemes for imitating the
dynamic response of a SG [19]. Through VSM control, it is possible to achieve a behavior
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similar to that of a SG, but the converter is not guarded against overcurrent. Thus, the
converter input current needs to be limited by a vector-current controller (VCC) [20,21].
In this paper, the VSM control combined with a vector-current controller is applied to the
converters that are assumed to be installed in the small island of Pantelleria.

Initially, the hourly generation and demand of the island (data provided by the local
utility SMEDE) are analyzed during typical winter and summer days. For both seasons,
hour-by-hour power system inertia is calculated, and the most critical situations based on
a reduced inertial response are identified. Subsequently, an equivalent single-bus model
of the power system is created in the PSCAD environment. RES plants are represented
as a unique VSC, and the conventional SGs is represented as a unique equivalent SG.
The internal control model of the equivalent VSC considers the grid impedance and two
different options for calculating the reference current, starting from a steady-state condition
and evaluating the effects due to a phase-to-phase short-circuit simulated at the PCC.
Simulations are done for different values of the control parameters, energy scenarios,
system inertia and provided virtual inertia, and for two values of the short circuit ratio
(SCR) to represent both a strong and a weak grid [22].

The rest of the paper is organized as follows: Section 2 presents the structure of the
system under study and the mathematical representation of VSM with VCC. Section 3
reports the initial data for the simulations. Section 4 provides the results of the simulations
and, finally, Section 5 reports the conclusions of the study.

2. Structure of the System and Proposed Converter Topology

The power system of a small island not supplied by the main transmission grid can be
represented, for the aim of this study, as shown in Figure 1. The island’s generation system
is characterized by a central diesel power plant, represented in Figure 1 as an equivalent SG
identified as a “GRID” and connected in series to the grid impedance denoted as “Grid-Z”.
All VSCs are represented by an equivalent VSC with an internal VSM-structure with VCC
and an RL filter.
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The details of the proposed topology for the VSC are described in this section, and
Table 2 reports a description of all of the symbols used in the following equations.
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Table 2. Nomenclatures employed in Equations (1)–(3).

Nomenclature Description

Tvsm The virtual inertia of the VSC [s]

ωo The rated angular frequency of the system [rad/s]
.

ωvsm The angular frequency at the VSC [p.u.]

Pre f The reference active power of the VSC [p.u.]

Pvsm The actual active power output of the VSC [p.u.]

Kd,vsm The virtual damping coefficient of the VSC

θvsm

The angle position of the converter voltage concerning a reference frame
synchronized with the grid and rotating at a constant frequency in

steady-state [rad]

δv
The angle between the grid voltage Vg at the PCC and the output voltage

of the VCS Vvsc [rad]

X f The VSC filter reactance [p.u.]

θvsm0 The steady-state virtual angle [rad]

Kp,vsm The synchronizing torque coefficient

ζ The damping ratio

ωn The natural frequency of the system [p.u.]

Based on the swing equation, the VSC model shows a power balance synchronization
mechanism [23]:

2Tvsm
d

.
ωvsm

dt
= Pre f − Pvsm − Kd,vsm

.
ωvsm (1)

dθvsm

dt
= ωo(

.
ωvsm − 1) (2)

Pvsm =
VvscVg

X f
sin(θvsm) (3)

Based on the aforementioned equations, a small-signal analysis of the system yields
the following expression.

2Tvsm·
d∆

.
ωvsm

dt
= ∆Pre f −

dPvsm

dθvsm
·∆θvsm − Kd,vsm·∆

.
ωvsm (4)

d∆θvsm

dt
= ωo·∆

.
ωvsm (5)

dPvsm

dθvsm
=

Vvsc·VPCC
X f

·cosθvsm0 = Kp,vsm (6)

Studying the controller response based on Equations (1) and (6) provides a relationship
between the variation in output power ∆Pvsm and the variation in reference power ∆Pre f .
Hence, the linear model of the system can be expressed as follows:

d
dt

[
∆

.
ωvsm

∆θvsm

]
=

[
−Kd,vsm/2Tvsm −Kp,vsm/2Tvsm

ωo 0

][
∆

.
ωvsm

∆θvsm

]
+

[
1/2Tvsm

0

]
∆Pre f (7)

Considering the Laplace Transform for Equations (3)–(7), the following equation is
obtained:

∆Pvsm

∆Pre f
=

ωoKp,vsm
2Tvsm

s2 +
ωoKd,vsm

2Tvsm
s + ωoKp,vsm

2Tvsm

=
ω2

n
(s2 + 2ζωns + ω2

n)
(8)
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Based on the aforementioned transfer function, the active power controller poles can
be determined as follows:

PLs1−2 = −ζ·ωn ± ωn·
√

ζ2 − 1 (9)

The VSM control guarantees the VSC has behavior similar to SG, but does not guaran-
tee the protection of the converter from overcurrent in the presence of a short-circuit in the
grid. A solution to this problem is to limit the converter current using the VCC. The VCC is
one of the most common methods used for VSCs because of its simple implementation and
robust performance in ideal-grid conditions. Figure 2 represents the block diagram of VSM
with VCC with the reference current (RC). Seven blocks are visible:

• A measurement block at the PCC, taking the measurements of Pg, Ig, and Vg, which
are the input of the RC block and the abc/dq block;

• The abc/dq and dq/abc blocks, using θvsm for the transformations of voltages and currents;
• A damping controller denominated as DC used to improve the response in the active

power of the VSC;
• A VCC used to protect the converter from overcurrent;
• An RC used to obtain the converter input of the current control and coordinate of the

abc/dq and dq/abc transformations; Pre f and Tvsm are the reference variables, while
L f and ω0 are the complementary variables.
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VCC is defined by Equation (10).

Vdq∗
vsc = Vdq

g + CC·Idq
f + PI·

(
Idq∗

f − Idq
f

)
(10)

In this paper, the input reference current Idq∗
f appearing in Equation (10) is calculated

using two different methods:

1. Option I (RC-1):

Idq∗
f =

Vdq∗
g − Vdq

g + (PI − CC)·Idq
f

PI

CL (11)
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In this method, by combining Equations (10) and (11), it is easy to notice that the
reference current is provided to the control system in order to obtain the reference value for
the VSC voltage equal to that of the grid voltage and, at the same time, to limit the current to
values not dangerous for the converter, thanks to the current limiter (transfer function CL).

2. Option II (RC-2):

Idq∗
f =

[
Vdq∗

g − Vdq
g

ωoLg
+ Idq

f

]
LP·CL (12)

In this method, the reference current is provided in a way that takes into account the
variation in the grid voltage and the consequent variations in the grid current. In addition,
in this case, the transfer function CL demonstrates the presence of a block limiting the
current to values that are not dangerous for the converter.

The list of symbols employed in Equations (10)–(12) is reported in Table 3.

Table 3. Nomenclatures employed in Equations (10)–(13).

Nomenclature Description

Vdq∗
vsc The reference signal for VSC voltage in dq coordinates

Vdq
g The grid voltage in dq coordinates

Idq
f

The current output of the VSC in dq coordinates

Idq∗
f

The reference current of the VSC in dq coordinates

PI The transfer function of the PI controller with proportional gain
kp = ∝cc Lt and integral gain kI =∝cc (Rt + Rv)

Lt
The sum of the VSC filter inductance L f and of the estimated grid

inductance Lg

Rt The sum of the filter resistance R f and of the estimated grid resistance Rg

Rv
The virtual resistance taking into account active damping for dealing with

system parameter variations and disturbances

∝cc The desired closed-loop bandwidth of the current controller

CC The transfer function of the dq cross-coupling

Vdq∗
g The reference grid voltage in dq coordinates

CL The transfer functions of the current limiter

LP The transfer function of the low-pass filter

It is worth mentioning that the CL is necessary for blocking the overcurrents during
the transients, and LP is required for avoiding spiky transients and miscalculations before
sending the calculated references to the current controller.

3. Case Study

The case study considers the 10 kV isolated power system of the island of Pantelleria
in the case of the high share of RES generation. The current central power plant of the
island consists of eight SGs for a total rated power of 24.5 MVA. The detailed specifications
for this system are described and documented in [24,25]. The system is modelled as in
Figure 1 using the control topology in Figure 2.

Based on the data provided by the local utility and considering a renewable energy
mix of 1 MW photovoltaic and 1 MW wind power, the daily power profiles in typical
summer and winter days are depicted in Figure 3.
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In particular, the dashed line is the daily power profile generated by the VSC, which
represents the energy mix composed of wind and photovoltaic plants. According to the
power profiles in Figure 3, the inertia TS of the isolated power system in each instant is
evaluated as follows [26]:

TS =
∑

Ng
1 Ti ·An,i

Pload
(13)

where Ti is the inertia and An,i is the rated apparent power of the i-th synchronous gen-
erator connected to the grid, and Pload is the total active power requested by the load
at each instant.

The worst case, defined as the working condition presenting the least inertia, is defined
in Table 4 for both summer (scenario A) and winter (scenario B).

Table 4. Parameters for the considered case study.

Description Summer Winter

TSG (s) 1.01 1.29
TS (s) 0.77 0.45
NSPL 24% 65%

Pload (MVA) 6.08 3.56
Hour 9 11

In Table 4, NSPL refers to the non-synchronous penetration level. VSPL can be defined
as the rate between the total power generated by RESs and the total power generated at
a given hour [27]. The load at the PCC is modelled as a fixed impedance, where the real
power Pload and the reactive power Qload are evaluated as follows:

Pload = Pload−0·
(

Vbase
Vn

)NP
·(1 + KPF·∆F) (14)

Qload = Qload−0·
(

Vbase
Vn

)NQ
·
(
1 + KQF·∆F

)
(15)

where ∆ is the frequency variation; Vn is the rated voltage, Pload−0 and Qload−0 are the
active and reactive power of the load at the rated voltage and frequency, respectively; and
NP, KPF, NQ, and KQF are the indexes expressing the dependence of active and reactive
power from the actual values of the voltage and frequency [20].

The grid has been simulated in the case of a phase-to-phase fault. The flowchart
in Figure 4 represents the methodology of the proposed control strategy. The proposed
methodology has the ability to deal with fault conditions and to check the VSM behavior in
normal and fault operations.
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4. Results and Discussion

In the simulations, the following parameters were considered: ζ = 0.707; ωn = 10;
∝cc< 0.1·2·π· fs; fs = 5 kHz. The system was simulated for two different Tvsm values equal
to 8 s and 0.01 s.

Four scenarios were considered: two for winter and two for summer.
For sake of simplicity, the scenarios were indicated as A1, A2, B1, and B2, where A

was used for winter, B for summer, 1 for option I of RC, and 2 for option II of RC.
The system was tested in the presence of a double-phase fault applied at t = 45 s.

To investigate the performance of the VSM control in two extreme fault conditions, two
different values of the short-circuit resistance Rsc were considered: 0.5 Ω and 0.5 kΩ.

Moreover, with the aim to allow for compensating for the delay introduced by PWM
using synchronous sampling [20], VCC was examined by considering two angle options
for the dq-frame transformation:

1. θvsm;
2. θcomp = θvsm + θ0, where θ0 = 1.5ωo/ ∝cc.

Finally, two values of SCR were considered: SCR = 10 and SCR = 3, representing the
hypotheses of a strong and weak grid, respectively.

4.1. Strong Grid: SCR = 10

The trends of the active power obtained in the simulation for this case are reported in
Appendix A Figure A1. The main results of the simulations are summarized below:
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• Throughout all of the simulations, a typical trend in grid stability was observed after
the fault, with a loss of load, depending on the unbalance between SG and RES.
However, because of the action of the speed regulators on the SG and of the internal
controllers of the VSC, the active power returned to the previous steady-state values
as soon as the fault was removed.

• When the contribution of RES was greater than 60% of the load (Scenarios B1 and B2),
and when Rsc assumed its lowest value, the active power showed more significant
oscillations. On the other hand, the grid stability improved when angle compensation
was used and Tvsm was raised.

• In Scenario A1, the system had a positive behavior; this feature was due to the
contribution of both SG and the control option chosen for the VSC (RC-1) during the
fault. These choices ensured that scenario A1 did not present unstable situations even
in the case of a low Tvsm and Rsc.

• In Scenario A2 with a low value of Rsc, the system became unstable when RC-2 was
chosen, regardless the value of Tvsm.

• In the steady-state operation, RC-2 showed a better performance than RC-1, and when
using this control option, the system stabilized quickly, as shown in the results for
scenarios A2 and B2. However, in the presence of faults, this control option was not
able to maintain the desired power.

4.2. Weak Grid: SCR = 3

The successful cases obtained for the strong grid (case with option RC-1) were also
examined for the case of a weak grid. The trends of the active power obtained in the
simulation for this case are reported in Appendix A Figure A2. The main results of the
simulations are summarized below:

• In Scenario A1, no alterations were seen in the power generation from the SG: tra-
ditional generators delivered the desired power to the load. On the other hand, in
Scenario B1, the power production was reduced to 66% and this created a deficit in
power generation.

• The lower the SCR (and so, the higher the grid reactance, Xg), the closer the power
contribution of VSC to that of SG. Mathematically, this could be seen by calculating
the SCR = Ssc/S, where S is the VSC rated power and Ssc = V2/Xg is the grid
short-circuit power;

• The behavior of VSC during the fault did not vary.

The PCC voltage was significantly affected by the SCR value, as shown in Figure 5, where:

• the voltage variation during the fault was shown for both the robust and the weak grid;
• there was a variation in the PCC voltage when the power system operated at different

transfer power conditions;
• Scenario A1 was less affected by the SCR value;
• Scenario B1 with SCR = 3 did not meet the minimum standard established for the

voltage value.

Finally, a harmonic analysis of the PCC voltage until the 15th harmonic was carried
out, as shown in Figure 6. The dominant harmonic components were found to be the 2nd
to the 4th. Figure 6 shows that correct sizing of the VSC filter permitted maintaining an
acceptable level of grid power quality. The THD of the PCC voltage did not exceed the
limit of 1%. The results of the simulations in Scenario B1 showed the 2nd, 3rd, 10th and
15th harmonics were more or less triple with respect to Scenario A1, and the harmonics
from the 4th to the 9th were double.
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5. Conclusions

Using VSC with a swing controller and VCC with two different options for the RC on
RES-based generators has been demonstrated to have mutual advantages in normal and
faulty operation for small isolated power systems. The proposed VSM model allows for
the implementation of virtual inertia and damping in the isolated grid, also improving grid
stability in the presence of extremely severe fault situations such as those represented by
the phase-to-phase fault. In the simulations performed for the Island of Pantelleria in the
Mediterranean Sea, the transients of the active power output of the VSC and of the voltage
at the PCC have been observed. The study shows how the value of the SCR can influence
the behavior of the VSC. Moreover, the acceptable level of grid power quality has been
ensured via harmonic analysis of the PCC voltage. The precise design of different stages
of the proposed model is required to maximize the benefits gained in both the static and
dynamic behavior of the isolated grids.

The performed study is useful for setting the parameters of the VSM control of VSCs
in small islands not supplied by the main power transmission grid; however, this is only a
first step of a more complex process for fostering the penetration of RESs in small islands.

Indeed, some other aspects must be considered before transformation towards a
100% RES-based generation system can be achieved. For example, there is still a lack of
research in the determination of the required amount of power from VSC with VSM control
that can be installed without creating a stability issue in the grid due to the interactions
between converters. This study has been already started and is partially presented in [11],
and will be the next important step in the current research on VSM application to small
island power systems.
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Appendix A

The graphs of Figure A1 represent the load and RES active power in the case of a
strong grid (SCR = 10).
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Figure A1. Cont.
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Figure A1. Load and RES active power with SCR = 10.

The graphs in Figure A2 represent the load and RES active power in the case of a weak
grid (SCR = 3).
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Figure A2. Load and RES active power with SCR = 3.
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