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Abstract: Molecular Dynamics (MD) based computational co-solvent mapping methods involve the 

generation of an ensemble of MD-sampled target protein conformations and using selected small mole-

cule fragments to identify and characterize binding sites on the surface of a target protein. This ap-

proach incorporates atomic-level solvation effects and protein mobility. It has shown great promise in 

the identification of conventional competitive and allosteric binding sites. It is also currently emerging 

as a useful tool in the early stages of drug discovery. This review summarizes efforts as well as dis-

cusses some methodological advances and challenges in binding site identification process through 

these co-solvent mapping methods. 

Keywords: Binding site identification, Co-solvents, fragment-based, Probe-based, Hotspots, Structure-based drug design. 

1. INTRODUCTION 

Identification of ligand binding sites on the surface of a 
target protein is a key step in Structure-based Drug Discov-
ery (SBDD) [1-4]. This can be realized by multiple experi-
mental and computational techniques. Examples of experi-
mental SBDD techniques are ligand-based NMR spectros-
copy [5], fragment-based NMR spectroscopy [6-8] and 
multi-solvent crystallography [9-11]. These techniques are 
robust and readily sample the dynamical nature of protein 
structures. However, they are time-consuming and expensive 
when a large number of ligands/fragments are considered for 
screening. Conversely, computational SBDD techniques 
offer a cost effective mean that complement the aforemen-
tioned experimental techniques by efficiently predicting pu-
tative ligand binding sites based on a large number of frag-
ments or ligands. These computational predictions guide 
subsequent efforts and allow to experimentally focus on the 
most relevant binding sites, fragments or ligands. Examples 
of computational SBDD methods include blind docking [12-
15], SEED [16], FTMAP [17, 18], LIBSA [19] and SiteMap 
[20]. These methods are usually utilized to detect binding 
sites throughout the entire surface of the target protein. 
However, they rely on static-average of experimental struc-
tures for which important binding sites might be buried. In 
the absence of experimental target structures, ligand-based 
drug design methods such as structure activity relationship 
analysis [21-24] or pharmacophore modeling [25-27] are 
alternatively used.  
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 While, molecular dynamics (MD)-based computational 
methods are used to overcome the limitation of using a 
static-structure in addressing flexibility of binding sites [28] 
and accounting for other interactions that are stabilized by 
explicit water molecules. Examples of these MD methods 
include relaxed complex scheme(RCS) [29-31], probe-based  
molecular dynamics (pMD) [32-37], accelerated [38] MD 
simulations, high throughput MD simulations [39, 40], Wrap 
‘n’ Shake (WnS) [41] and MDpocket [42]. In RCS, MD 
simulations are used to generate an ensemble of target con-
formations that are afterward used in blind dockings to iden-
tify binding sites on the surface of each conformer [43]. 
Wrap ‘n’ Shake method use a modified-blind docking step to 
wrap a monolayer of ligand around the target surface, fol-
lowed by a short MD simulation to shake off ligands that are 
loosely bound. MDpocket also uses MD generated ensemble 
of conformers to identify binding sites and surface grooves 
that might be transiently formed in the protein based on 
geometrical analysis. pMD simulation methods are the sub-
ject of this review, a detailed description of these methods 
and their application is presented in subsequent paragraphs 
and sections. We will also briefly discuss both accelerated 
and high throughput MD simulations in the conclusions sec-
tion. 

Earlier MD simulations of proteins in the presence of co-
solvent molecules were focused on the thermodynamics and 
global interaction of the co-solvents with the protein [44-47]. 
In this review, we focus on more recent MD simulations of 
the target protein in the presence of small organic molecules 
to identify and characterize ligand binding sites. In the latter 
studies, the small molecules are usually chosen from frag-
mentation of drug leads into smaller pieces containing dis-
crete functional groups. These small molecules are then used 
as probes in MD simulations along with a targeted protein to 

 1873-4294/18 $58.00+.00 © 2018 Bentham Science Publishers  
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delineate ligand binding sites on its surface. The identifica-
tion of a binding site and its druggability are then linked to 
the probability of contact between probe and protein atoms. 
Furthermore, different probe-surface contact profiles can be 
subsequently incorporated to assemble ligands with higher 
binding affinities. These computational solvent mapping 
methods incorporate atomic-level solvation effects and pro-
tein mobility and have been described in the literature under 
various names including probe-based MD (pMD) [32, 48, 
49], mixed-solvent MD (MixMD) [50-53], solvent competi-
tion [54], co-solvent MD [55-57] and ligand competitive 
saturation [35, 58-60]. A major advantage of these methods 
is that they rely on physics-based simulations and not on a 
knowledge-based scoring function. Throughout this review, 
we will refer to all atom explicit solvent MD simulations of a 
protein in the presence of small organic molecules (also 
called alternatively co-solvents, fragments or probes) as 
pMD methods. 

2. IDENTIFICATION OF LIGAND BINDING SITES 
FOR SOLUBLE PROTEINS 

A large number of pMD studies have been already re-
ported in the literature [32-37, 48-55, 57-64]. These studies 
have mostly focused on reproducing known active and allos-
teric binding sites of many pharmaceutically important solu-
ble protein targets. In the following, we summarize some of 
the key studies. 

 Seco et al [34] reported for the first time a method that 
incorporates co-solvents in an all-atom explicit solvent MD 
simulation to identify ligand binding sites and their drugga-
bility. The advantage of this method is that it depends on 
first-principles simulations and not trained on a data set. 
They have demonstrated that pMD simulation in the pres-
ence of isopropanol capture the allosteric/active binding sites 
of important pharmaceutical targets such as MDM2, LFA1, 
Protein phosphatase 1B (PTP-1B), P38 and androgen recep-
tor (AR). Guvench and MacKerell [35] similarly reported a 
similar method that took the advantage of using small or-
ganic molecules in an all-atom explicit solvent MD simula-
tion to map out binding sites on a surface of a target protein. 
They termed it SILCS (Site Identification by Ligand Com-
petitive Saturation) method which was demonstrated on the 
BCL-6 protein by reproducing its biologically relevant con-
formational changes and interactions in the binding pocket of 
the non-homologous SMRT and BCOR peptides. Yang and 
Wang [57] showed that MD simulations of either the apo- or 
holo-crystal structures of the Bcl-xL in pure water did not 
yield conformations found in the crystal structures of Bcl-xL 
in complex with its binding partners due to hydrophobic col-
lapse of the binding site. On the other hand, pMD simula-
tions of either the apo- or holo-crystal structure of the Bcl-xL 
in the presence of isopropanol as a co-solvent yielded bind-
ing-site conformations similar to that found in the co-crystal 
structures of Bcl-xL. Other hydrophobic binding hot spots 
identified using the conformations from the co-solvent simu-
lations of the inactive apo-Bcl-xL conformation were consis-
tent with experimental structural data of known inhibitors. 
Ung and coworkers [50] used pMD simulations to study hu-
man immunodeficiency virus type�1 protease (HIVp) in the 
presence of acetonitrile, isopropanol and pyrimidine at low 
and high concentrations. Remarkably, significant probe oc-

cupancies were observed in the catalytic site and potential 
allosteric sites leading to a more robust identification of ex-
perimentally confirmed ligand binding sites, especially in the 
lower concentration simulations. In particular, a putative 
allosteric binding site underneath the flap of HIVp, has been 
confirmed by the presence of a 5�nitroindole fragment in a 
crystal structure. Bakan and colleagues [36] carried out sev-
eral extensive pMD simulations of murine double mutant-2, 
protein tyrosine phosphatase 1B (PTP1B), lymphocyte func-
tion-associated antigen 1, vertebrate kinesin-5 (Eg5), and 
p38 mitogen-activated protein kinase, in the presence of a 
acetamide, isopropylamine and acetic acid. The choice of 
these small organic molecules was based on water solubility 
and their frequency of occurrence as substructures in FDA-
approved and experimental drug molecules. To reduce the 
noise due to observed spurious probe hotspots, they com-
bined proximal interaction spots of different probe to predict 
maximal achievable ligand binding affinities. Their analysis 
of pMD-derived probe interaction spots of known drugs for a 
variety of targets, captured known active/allosteric ligand 
binding sites and affinities. Their analysis of pMD-derived 
hotspots suggested additional novel druggable binding sites 
along with their induced structural changes upon ligand 
binding. Ghanakota and Carlson [51] demonstrated in a 
study of different target proteins (ABL kinase, Androgen 
receptor, CHK1 kinase, Glucokinase, PDK1 kinase, Farnesyl 
Pyrophosphate Synthase and Protein Tyrosine Phosphate 1B) 
in the presence of the acetonitrile, isopropanol and 
pyrimidine as probes that pMD not only can map competi-
tive binding sites, but also can map allosteric ones. They also 
demonstrated the need for using the charged probes methyl-
ammonium and acetate to capture charged binding sites and 
other reactive surfaces especially in Protein Tyrosine Phos-
phate 1B. Prakash and coworkers [32] studied the isolated 
catalytic domain of G12D K-Ras in the presence of isopro-
panol as co-solvent in all-atom explicit solvent MD simula-
tions. They have shown that the analysis of these pMD simu-
lations was able to identify all known allosteric pockets of 
K-Ras.  

3. PROBE AGGREGATION AND PROTEIN STABIL-
ITY PROBLEMS 

Probes used in pMD simulations usually have low mo-
lecular weight (below 100 Da). They represent a large subset 
of functional groups of larger FDA-approved and experi-
mental drugs. They are also fast diffusers, allowing for effi-
cient sampling of the protein surface in short timescales 
comparable to that of water molecule diffusion. In practice, 
binding of small low-affinity molecules requires effective 
concentration of 1M or higher. This is a major problem in 
pMD simulations as it leads to the aggregation of some co-
solvents when used at such high concentration sufficient to 
saturate binding sites. Furthermore, this aggregation process 
considerably reduces the effective concentration of the co-
solvent, making it more challenging to sample whole protein 
surface. The aggregation phenomena has been observed pre-
viously in pure co-solvent simulations [65] and pMD simula-
tions [35, 49]. Therefore, most of probe molecules used in 
pMD simulations are chosen to be water soluble. However, 
using completely hydrophobic probes such as isobutane or 
benzene could assist in detecting hydrophobic pockets that 
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might not be exposed in a pure aqueous environment. The 
modification of Lennard-Jones interactions among probe 
molecules is demonstrated to overcome this aggregation 
problem and extend pMD simulations to use aggregation 
prone molecules [35, 48, 49]. 

Another issue that is well-known that protein stability is 
effected by the presence of co-solvents [66-68]. To avoid 
such protein stability or even denaturation problems, it has 
been suggested that pMD should be relatively short [33] or 
harmonic restrains should be added to the protein backbone 
[61]. However, unrestrained longer pMD simulations have 
been reported for which no stability issues has been observed 
[32, 48, 49]. Ultimately, monitoring of protein structure in 
pMD simulations should always be done to avoid detecting 
ghost binding sites that only appeared in a partially dena-
tured protein. 

4. IDENTIFICATION OF LIGAND BINDING SITES 
FOR MEMBRANE PROTEINS 

Many important drug targets require membrane binding 
for their biological activity [69-71]. However, it is found that 
small organic molecules such as the ones used in pMD simu-
lations partition into the hydrophobic core of membranes and 
lipid aggregates [72-75]. Hence, the presence of small or-
ganic molecules appreciably alters the interactions and dy-
namics of membrane-bound proteins. This seriously limited 
the usage of conventional pMD methods in studying mem-
brane bound protein targets. Prakash and coworkers con-
firmed the drastic effects of co-solvent on the structure and 
dynamics of both the protein and membrane for the mem-
brane-bound K-Ras proteins. They addressed this shortcom-
ing of pMD methods by extending their applicability to 
membrane-bound drug targets in a way that reduce possible 
effects of the probe molecules on membrane structure and 
dynamics [48]. In their method, termed pMD-membrane, 
isopropanol probe molecules are prevented from membrane 
partitioning through the modification of selected vdW inter-
actions between the probe and lipid molecules. This ap-
proach enabled known allosteric ligand binding site identifi-
cation on the membrane-bound K-Ras proteins without alter-
ing the structure and dynamics of the lipid bilayer and pro-
tein. Importantly, pMD-membrane was demonstrated to cap-
ture variations in probe molecule surface accessibility as a 
result of conformational changes due to mutation or mem-
brane binding. Prakash and coworkers also observed that the 
active site of G12D and G13D K-Ras are different, while 
G12D and wild K-Ras are similar.  Namely, in G13D K-Ras 
switch I is open and key residues such as Tyr32 have re-
oriented. They also found differences in probe accessibility 
to helices 2, 3, and 4 of the two mutants. Despite the fact that 
these regions are far away from the site of the mutation. 
They observed that part of the surface of helix 2 where 
known ligand binding pocket is located was more probe-
accessible in G13D than G12D. Similarly, the shallow 
groove between helices 3 and 4 was also found to be more 
probe-accessible in G12D than G13D, suggesting that it 
might be involved in some other important protein-protein 
interactions. 

 

5. PROBE DENSITY MAPPING TECHNIQUES 

Spatial grid-based probe occupancy mappings have been 
used to quantify probe densities derived from pMD simula-
tions [35]. Hotspot regions are then captured by visualizing 
iso-surfaces corresponding to high probe occupancy. In other 
analysis approaches, probe densities are reprocessed and 
lumped into spheres that are color coded according to corre-
sponding probe-protein estimated local binding free energies 
[32, 36]. However, these analysis techniques produce spuri-
ous probe occupancy regions that are challenging to deter-
mine if they represent pocket–like sites without prior knowl-
edge of binding sites of the protein. In general, a binding site 
occupancy can be affected by simulation time, probe affinity 
to a binding site and its bulk concentration. Its saturation 
curve will depend on whether multiple different probes or 
single probe is used. Furthermore, high bulk probe concen-
tration not only leads to saturation of the whole surface of 
the protein, but also increases the signal to noise ratio mak-
ing it difficult to discriminate among hotspots. Graham and 
coworkers [52] developed MixMD Probeview as a plugin for 
PyMOL to overcome manual inspection needed to identify 
relevant binding sites. They reported that Probeview robustly 
captured known active and allosteric sites by identifying and 
ranking all binding site total probe occupancy and local 
probe occupancy maxima for each probe type as derived 
from a pMD trajectory of a target and probe molecules. 
Sayyed-Ahmad and Gorfe [49] developed an approach that 
combines information obtained from a two-dimensional pro-
jection technique for globally quantifying probe densities on 
protein surface and protein surface topology maps derived 
from probe-binding propensities to protein surface residues. 
These maps are constructed using a projection technique for 
globally quantifying probe densities on the protein surface. 
In addition, surface topography map was shown to reveal 
protein surface patterns and specific geometrical features. 
The combined information of both maps is also shown to 
filter out high probe density hot spots with no pocket-like 
geometrical characteristics located on flat surface regions or 
protrusions. This approach was demonstrated to filter out 
spurious hotspots and discriminates between known K-Ras 
ligand binding sites and other reactive surfaces. 

6. BINDING SITE PHYSICO-CHEMICAL CHARAC-
TERIZATION 

To fully characterize a binding site using pMD methods, 
multiple simulations with one or more of a number of 
chemically diverse small organic molecules are required. 
These molecules should have a range of hydrophobic, 
charged, polar and other chemical characteristics due to the 
presence of methyl, amide, sulfinyl, carboxyl, hydroxyl and 
other crucial functional groups. It has been shown that the 
physico-chemical properties of co-solvents used for pMD 
simulations affect the detection of ligand binding sites [61]. 
Therefore, a diverse selection of probe types improves the 
detectability of ligand binding sites and helps to characterize 
the local chemical signature by determining the specific in-
teractions and functional groups involved in each probe-
protein interaction region. Generally, in the absence of 
uniquely charged binding sites, both single probe and mixed  
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probe pMD simulations capture the majority of known pock-
ets [49]. By contrast, using multiple probes including 
charged ones is needed when charged binding sites are con-
sidered, as have been demonstrated for example in the 
charged probes methyl-ammonium and acetate to capture 
charged binding sites and other reactive surfaces in Protein 
Tyrosine Phosphate 1B [51].  

7. MAPPING OTHER REACTIVE SURFACES 

Hotspot probe regions captured by pMD simulations are 
not limited to ligand binding site identification. In addition, 
binding sites that may be involved in protein-protein or 
protein–membrane interaction can be predicted. It has been 
demonstrated that pMD simulations can capture dimeriza-
tion, lipid reactive and crystal packing interfaces. Prakash et 
al [76] suggested that solvent-exposed probe densities ob-
served on the K-Ras surfaces and did not overlap with 
known ligand binding sites might represent potential dimeri-
zation interfaces or as has been suggested later by Sarkar-
Banerjee and coworkers as higher order oligomerization in-
terfaces [77].  Similarly, Ung and coworkers [50] showed 
that pMD simulations can be used to map additional impor-
tant regions on a protein surface. In particular, these used 
pMD simulations to map two additional hot spots on the sur-
face of HIV protease (HIVp): the Exo site (between the 
Gly16�Gly17 and Cys67�Gly68 loops) and the Face site (be-
tween Glu21�Ala22 and Val84�Ile85 loops). The Exo site 
was observed to overlap with crystallographic additives such 
as acetate and dimethyl sulfoxide that are present in different 
crystal structures of the protein. Analysis of crystal struc-
tures of HIVp in different symmetry groups has shown that 
some surface sites are interfaces for crystal contacts. 

CONCLUSION AND FUTURE OUTLOOK 

The utility of pMD methods has been demonstrated to 
robustly capture known active and allosteric ligand binding 
sites as well as other reactive surfaces in numerous soluble 
protein targets. In addition, recent advances in these methods 
allowed their usage for membrane proteins. They also have 
the advantage of using physics first principles and incorpo-
rate atomic-level solvation effects and protein mobility. 
Therefore, they are emerging as the method of choice in the 
identification of ligand binding sites.  

A notable drawback of  pMD studies reported in the lit-
erature is the usage of all-atom additive force fields that in-
adequately account for electrostatic interactions and molecu-
lar polarizabilities. This might lead to inaccuracies in the 
quantification of probe-target propensities, and hence identi-
fication of binding sites. It remains to be shown whether the 
usage of the more general polarizable force fields can yield 
different insights. Another problem in most MD simulations 
is the use of only water soluble probe molecules at high con-
centrations. This limits the identification of binding sites that 
are sampled at significantly slower time scales as longer 
simulations increase the risk of denaturation of the target 
protein due to interactions with probes.  An attractive alter-
native to overcome this hurdle is using accelerated or high 
throughput MD simulation with drastically lower probe mole 
concentrations. 

Finally, pMD methods have been applied to a limited 
number of targets, therefore there is a great opportunity of 
utilizing it to discovering novel binding sites for many other 
targets. Furthermore, they have a great promise in the 
quantification of changes in potential druggability of binding 
sites of closely related target protein mutations that are 
linked to different diseases. They  also have great proten-
tional in investigating protein-membrane binding poses and 
protein oligomerization interfaces. 
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