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INTRODUCTION

If A is a closed subset of the normed linear space X, then A4 is said to be
“proximinal” in X if, for each x € X, there is y,€ 4 such that

[x—yoll=d(x, A)=inf{|x—yl; yeA}.

In this case y, is called a “best approximation” for x from A. If B is a sub-
set of X, then

5(B, A)=sup{d(x, A); xe B},
is the deviation of B from A4, and
d,(B, X)=inf{8(B, N); N is an n-dimensional subspace of X}

is the Kolmogrov n-width of B in X.

If X and Y are normed linear spaces, then L(X, Y) denotes the set of all
bounded linear operators from X to Y, K(X, Y) the set of all compact
operators in L(X, Y) and K,(X, Y) the set of all operators in L(X, Y) of
rank <n.

The first serous study of the proximinality of K,(X, Y) in K(X, Y) and
L(X, Y) appeared in the paper of Deutsch, Mach, and Saatkamp [27]. This
paper was followed by two others, Kamal [4] and Kamal [5], in which
several results concerning the proximinality of of K,(X, Y) in K(X, Y) and
L(X, Y) were proved. In their paper [2], Deutsch et al. proved that for
each integer n> 0, the set K,,(c,, ¢o) is proximinal in L(c,, ¢o), while in the
present paper the following result is proved: Let Q and S be locally com-
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pact Hausdorff spaces, and assume that S contains an infinite convergent
sequence of distinct elements. Then, for each n=1, K, (Co(Q), Co(S)) is
proximinal in K(Cy(Q), Co(S)) if and only if Q is finite.

Deutsch et al. asked whether or not it is true that the set K, (¢, ¢y) is
proximinal in L{c, ¢,). In this paper the author continues the study of the
proximinality of the set K,(K, Y) in K(X, Y) and L(X, Y).

In Section 1, it is shown that for cach positive integer n> 1, the set
K.(c, cy) is not proximinal in L(c, ¢,), this gives a negative solution to part
(a) of Problem 5.2.2 of Deutsch et al. [2]. In Section 2, it is shown that if
E=c or ¢, then for each positive integer n= 1, the set K (E, ¢} is not
proximinal in K(E, c¢). Since by Mach [6], the set K(cg, ¢) is proximinal in
L{cy, ¢), it follows that there are Banach spaces X and Y, such that the set
K,(X,Y) is not proximinal in K(X,Y), whereas the set K(X, Y} is
proximinal in L(X, Y). The resuits of Sections 1 and 2 will be used in Sec-
tion 3 to obtain the main result of this paper which can be stated as
follows: if Q and S are two locally compact Hausdorff spaces, such that §
contains an infinite convergent sequence of distinct elements, then for cach
positive integer n > 1, the set K,(Cy(Q), Co(S)) is proximinal in K(Cy(Q),
Co(8)) il and only if Q is finite. This result is not generally true if S fails to
contain an infinite convergent sequence of distinct elements, Deutsch et al.
[2] proved that for any normed linear space X, the set K (X, ¢y) is
proximinal in K(X, ¢,). The set that contains an infinite convergent
sequence of distinct elements was introduced in Kamal [5] and it was
called a set that “Contains Q,.” It is shown also in Scction 3 that if the
locally compact Hausdorff space Q contains Q,, then for each positive
integer n > 1, the set K, (Co(Q), ¢,y) is not proximinal in L(Cy(Q), ¢;). This
might help in finding a general solution to part (b) of Problem 5.2.2 of
Deutsch et al. [2]. The rest of the Introduction will be used to cover the
basic definitions and notations that will be used later in this paper.

If 0 is 2 Hausdorff topological space, X is a normed linear space and t is
a topology defined on X, then C(Q, (X, 1)) denotcs the set of all bounded
function from Q to X, which are continuous with respect to 7. If 7= |-
then Co(Q, X)={fe C(Q, (X, |-)); Ve>0 the set {geQ; ! flg)|=¢e) is
compact }. If X = R, the set of real numbers, then Co(Q, R) is denoted by
Co(©). If Q is the set of all positive integers, then C,(Q, X) consists of all
bounded scquences in X that converges to zero, and will be denoted by
cofX). If @ is the one point compactification of the set of positive integers,
then Cy(Q, X) consists of all bounded convergent sequences in X, and will
be denoted by c(X). If X* is the dual of X, then

Co(Q.(X*, w¥)) = {fe C(Q, (X*, w*)); £ fe Co(Q) Vxe X7},

where % is the image of x under the canonical injection of X in X**.
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The proof of the following lemma can be found in Kamal [4].

0.1. LeMMA. Let X be a Banach space, Q a locally compact Hausdorff
space, and for each nonnegative integer n, let

C,={/eCy(@, X*}; /(@) < N for some n-dimensional subspace N of X*}.

Then K (X, Cy(Q)) is proximinal in L(X, Co(Q)) [resp. K(X, Co(Q))] if and
only if C, is proximinal in Co(Q, (X*, w*)) [resp. Co(Q, X*)]

0.2. DerviTiON.  Let X be a Banach space, Q a locally compact
Hausdorff space, and C, be as in Lemma 0.1,

(a) For each fe Co(Q, (X*, ®*)), let a,(f) denotes d(f, C,).
(b) For each T'e L(X, C(Q)), let a,(T) denotes d(T, K, (X, Co(Q))).

It is obvious from Lemma 0.1 that there is no problem in introducing the
same symbol “a,” in both cases of Definition 0.2, since a,(f) is attained for
each f'e Co(Q, (X*, w*)) [resp. Cy(Q, X*)] if and only if a,(T) is attained
for each Te L(X, Co(Q)) [resp. K(X, Co(Q))].

1. A (¢ cg) Is NoT PROXIMINAL IN L(c, ¢g)

In this section it will be shown that for each positive integer n > 1, the set
K. (c, ¢} is not proximinal in L(c, ¢y). By Lemma 0.1 it is enough to show
that for each positive integer n > 1, there is a bounded sequence {x;}® | in
c*, that converges to zero with respect to the w*-topology on ¢*, and
a,{{x;}* ;) is not attained, that is there is no bounded sequence {z;}* | in
any n-dimensional subspace of ¢* such that 7,—0 and }{x,}® 6 —
{tii2 il =a{x 12 ).

The first step in the proof is to find an n-dimensional subspace N, of [,
and finite subset D of /,, such that N, is the unique extremal subspace for
d(D, 1)), that is, d,(D, [,)= (D, N,), and for any n-dimensional subspace
N#Ny in [, (D, N)>d,(D,[,). This will be done in Lemma 1.5. The
second step is to find a bounded sequence { y;} | in /, that satisfies certain
conditions, and such that d{ y,}2 . Cy(Ny)) is not attained. This will be
done in Lemma 1.6. In Lemma 1.7, the set D and the sequence { y;} , will
be used together to obtain the required result.

t.1. DErmTION.  The c-topology on /; is the topology for which a boun-
ded sequence {x*}_, in /; converges to zero, iff for each y =(y,, ¥, )€€
lim; _, o, [x*lim y,+> %, x*y,_]1=0, where x* = (x*, x%,...,).
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1.2. PROPOSITION.  For each x=(x(, X,,...,})€l,, define the Ilinear
Junctional ye C* by y(y)=x,limy,+3%,%;p;_1, Y={(Y1, V2] EC.
Under this identification 1, is isometric to c*, and the c-topology on I,
corresponds to the w*-topology on c*.

1.3. PROPOSITION (Brown [1]). Let B be an (n+ 1)-dimensional normed
linear space and let L be an n-dimensional subspace of B. There is a subset A
of B consisting of (n+ 1) points, such that d (A, BY>0 and L is the unique
extremal n-dimensional subspace of B for d (A, B).

1.4.
Let {e;}7*} be the standard basis in I} _,, that is ¢;=(0, 0,..., 0, 1, 0,..., 0),

=
and let N, be the subspace generated by {e;}7_,. By Proposition 1.3, there
is a subset 4 of /!, consisting of a finite number of elements, such that
d(A, I}, )=2, and Nj is the unique extremal n-dimensional subspace for
d (A, 1L, ). Let x;=4dej+2e,,,=(0,.,0,4,0,.0,2)ell |, i=1,2,.., 5
Then d(x;, Ny) =2, and for each i>1, the element y,=4e} is the unique

element in Nj such that jjx,—y,| =d(x;, Ny). Let 4A'= A4 U {x,.., x,}, then
(1) A’ consists of a finite number of elements,
(2) 44, L, )=0(4", No)=2,

(3) Nj is the unique extremal subspace for d,(4', I} ), and

(4) for each i=1, 2,.., n the clement y,=4e, is the unique element in
Nj such that fx, —y,il <2.

L5, Lemva. Let {e;}®, be the standard basis in [, that is
¢;=(0,0,..,0,1,0,.,). Let yo=>22, ., a;e; be an element in I, let i, be a
positive integer such that, 1 <i,<n and let Ny be the n-dimensional subspace
of 1, generated by

{15 €l 15 €t 705 €10 10 € }-
There is a subset D of 1, consisting of a finite number of elements, such that
(1) d(D,1,)=3(D, No)=2,
(2) Ny is the unique extremal subspace of 1, for d (D, ).
Proof. Let A', Ny, {x,}7 ., and {¢}}7!! be as in 1.4 For x'=Y"*1g¢]

in 4’ onc can choosc y'=3>"_, i.eie Ny, such that | x’ —y'l| <2. Define
Y(x)=3741 oe;+ 4,70€!;. Then

5! n !
: , _— . i
!| Y(x')— ( Z /vie,-+/,,vo(e,-0+“/0) X <2.
N i1 A

Let D= {(x'); x'€ A}, then D consists of a finite number of elements and

640/47/2-5
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0(D, Ny)=2. To complete the proof it will be shown that if N is an »-
dimensional subspace of /; and 6(D, N)<2 then N=N,. Let P:/, -1},
be defined by

P((x)72 )= (x;)7 2]

Clearly P(D)= A’, and since 6(D, N) <2 then 6(A4’, P(N))<2. Thus by 14
P(N)= Ny, therefore N has a basis of the form

[o0]
di=e;+ Y fie,, i=12..n
k=n+2

Also by 1.4 for each i=1,2,.., n, x,=4e;+ 2e, €1}, is contained in A4’

and 4e] is the unique element in Nj that approximates x;, so
Vix;y=4e;+2e,,, for i # i,
and
Y(x,)=4e,+4y,+2e,, ;.
Using the fact that p(N)= Ny, if z,e N approximates /(x;), then
z;=4e,; for i+,
and
z,=4e, +4y,.
Therefore Ny € N, and since dim Ny =dim N =r, it follows that Ny=N. ||

1.6. LeMMA. Let {e;} 2, be the standard basis in I,. Let

© e;
Vo= Z E:ﬁz (ana"-_,()) %’ %9 %5"-7)611

P42 (rn+ 1)times

and let N, be the n-dimensional subspace of 1, generated by

{—'81 + yO'; eZa 63’"" en}-
There is a bounded sequence { y;}> , in I, with the following properties:

(1) {y;}2, converges to zero with respect to the c-topology on I,
(2) d({y:i}i2 1, co(No))=2, and
(3) d({y:}2 1, co(Ny)) is not atrained.

Proof. Let ag=—e, +>2,¢,/2" '=(—1,41%,..,)€l,, and let M be
the one-dimensional subspace generated by «,.
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For each k=1 let

{k — 2)times

o e;
\//k:‘— — €y -+ Z Wz(—l, 0,0,...,0, jlri, %,...,).
i=k <

It will be shown that for k>3 the point x, is the unique best
approximation to ¥, from M. Assume that d(y,, M) =" o, — |, then

—1 i

I o — lPki’—lf—1|+2 A 1

21 l Z I_Z_-z_]—zz k+1

ik

=|;,—1|+|;,|<1—2k14>+‘

The only local minimum points for this equation occur when i=1, A=0
and A=252% I i=1 then [Awg—yY,ll=1-2"%"241-2 * 2=
227513 4f =0 then ||Jag— ¥, ll=¢,=2, and if i=2% 2 then
[Adg—thpl| =272 =1 42472 —1=2F"1-2 So for k=3, min,_,
Ao =Wyl = |lotg— W |, that is a, is the unique best approximation to
from M. For each positive integer k>3, let a,=2/|a,—¥,[. Since
loao—¥ <2 and fag—y | —2, it follows that a,>1 and a, —1. Let
¢ = a .. Then since ||y, || =2, it follows that | ¢, | > 2, d(¢,, M) =2 and
a, %, is the unique best approximation to ¢, from M when k > 3. Further-
more

2k 27

2k~2

(a) Since {Y,}_ 5 converges to zero with respect to the c-topology
on [, it follows that {¢,}® , converges to zero with respect to the same
topology.

(b) 1t will be shown that d({¢,}.;, co(M)) is not attained.
Let £ >0 be given, and let &k, be so that for all k> k,

el <2+

Define {1, }_, in M as follows:
_farao ifk<k,
=0 if k> k,

Then {1} seco(M) and || {g} ¥ 5— {te )3l <2+¢ Thus d({(ﬁk},‘fﬁ,
co(M))< 2. But the only sequence {t,}_, in M for which || {¢;}7_;—
{ttrsli=21s {te}rs= {akoco}k 3, and since a, — 1, it follows that
T 7 0. So d({, } 3, co(M)) is not attained. Define P:/, — [, by

P(x,)=x,e;+ z xien . =(x1,0,0,.,0,x,, X3,...,).

i=2 n— times
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Then P is an isometry from /, into /, and P(x,)= —e;+1v,. Let y,, y, be
any two elements in Ny, and for k>3, let y, = P(¢,). Then the sequence
{ye}_, converges to zero with respect to the c-topology on I;. Further-
more if k=3 and x=c(—e; +7,) +>7_, c;e; in N, then

n

[ ye—xl= Z [e;l+ 1| ye—ci(—ey+ 7o)l
Z | ye—ci(—er +70)ll
= || P(¢s) — c1 Plao) |
= ¢r—cio]l-

Therefore for k>3, the element a.(—e, +7,) is the unique best
approximation to y, from N,. Thus as in (b) one can show that
d({ yi} 215 co(Ny)) =2, and it is not attained. ||

1.7. LEMMA. For each positive integer n > 1, there is a bounded sequence
{xe}oo, in 1y, such that {x, }_, converges to zero with respect to the c-
topology on 1, and a,({x,}g_, is not attained.

Proof. Let Ny and y, be as in Lemma 1.6. By Lemma 1.5 “taking i,=1
and replace y, by —7,” there is a subset D of /; consisting of finite number
of elements, such that d,(D,/)=4d(D, Ny)=2, and N, is the unique
extremal n-dimensional subspace for d,(D, /;). Without loss of generality let
D={zy,.,2,}, and let { y,} | be as in Lemma 1.6. Define the sequence
{x,}_, in I, as follows:

Zy fork=1,1,..m
X, =
v fork=m+1,m+2,..

Then {x, }_, converges to zero with respect to the c-topology on /,, and
a({x 32 ) <d({x, 321 co(No))=2. Assume that there is an n-dimen-
sional subspace N of /;, and a sequence {7}, in N such that
I{xe 32— {ti b 1 < 2, then §(D, N)<2 so by lemma 1.5, N=N,, and
thus by Lemma 1.6 7, » 0. So a,({x;}_, is not attained. [

1.8. THEOREM. For each positive integer n= 1 the set K,(c, cy) is not
proximinal in L(c, cg).

Proof. Follows from Lemma 0.1, Proposition 1.2, and Lemma 1.7. |

Theorem 1.8 gives a negative solution to Problem 5.2.2 in Deutsch, Mach
and Saatkamp [2] when X =c.
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2. K,(E, ¢) Is NoT PROXIMINAL IN K(E, ¢) FOR E=¢q AND ¢

In this section it will be shown that for E= ¢, and ¢ and for each positive
integer n > 1, the set K,(E, ¢) is not proximinal in K(E, ¢). The argument of
the proof is similar to that one in Section1 and the main step is
Lemma 2.1.

2.1. LeMMa.  Let {e;} | be the standard basis in 1, let

1

a0=el+€3+ k +22k62/\73

[ 3]

T8

1
_ 1111
_(1’07 ]9 2% 9 4> Zy"w)Ell

and let M be the one-dimensional subspace of I, generated by u,. There is a
bounded sequence {P;}™ | in I, satisfying the following properties:

(1) {B.}, converges with respect to the norm-topology on [,
(2) d({p;}=. s c(M))=2, and
(3) d({B;}=. ., c(M)) is not attained.

Proof.
Let

Bo=(1/2e;) — (1/2e5) + Z (]/2kﬂ)32k+2_ Z (1/2/H 1)82k~+3
k=1 k-1
z(‘lb 0, ”%7 ?li»_i’ 'é‘a—‘é%""’)Ell
and let {y,} , be the sequence in /;, defined as follows:

lp,- 1—ﬂ0 07”;,l~—123

Ya=Po— ezmz«’“—123

Clearly ;- Bo. It will be shown that for each i1 the clement la, is the
unique best approximation for ,; ; from M, and —1ix, is the unique best
approximation for ¥,, from M. Let i> 1 be a fixed positive integer. For any
real number 4

A%y — Yoy |

!l[ (e +e;3)+ Z ’ (ezk+2+€2k-3)]
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1 © i [{
“[’2‘ (6’1*63)+k§1‘§1§’ﬁ (ezk+2"ezk+3)+§i 62i+3]

oo do b (£ 2

2 2 2
YERNREET)
(ZTH 7
k#7

roalerz) 3l ()

It follows from this that | A — ;|| is minimum only when A =1, In the
same way one can show that

1 1 1
| Adeg — t//2,|f-]/1——-—i(2-——2~i>+1l+§;(2+?>,
which is minimum only when A= —1 Thus for each positive integer i> 1,
‘ 1 1
AW, M) =51 —5% | =2~5<2,
i 2 2
A M) = 2y =21 <2
2 _J‘ 2¢ 2 Oa - 2[ 5

and
My =Ml =2

For each positive integer k> 1, let A, =2/d(y,, M), then 2, >1 and 1, — 1.
Let ﬂk=ikl//k’ then

(1) Since ¥, — B, and A, — 1, it follows that g, — B,.

(2) Tt is obvious that |8, | — 2, and for each positive integer k> 1,
Bl >2, so let £ >0 be given, and let i, = 1 be such that for i> i, | §;] <
2+e

Define the sequence {r, }_, in M as follows:

. the unique best approximination for g, from M, ifk<igy
10 if k> .

Then {7} €c(M), and [[{B}2 — {ts}7, | €2+ Thus
d({Petior, (M) €2.
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(3) The only sequence {1,}_, in M satisfies the inequality

1B — {Tk}‘;:;1 <2,

is the following sequence:

=1 P
Ty 1 =1%h2 1%, i=1,2,.,
- _1 _
‘C2i_ —‘2“)»21'“0, 1= 1, 2,...,
which is not in c(M). |}

2.2. LEMMA. For each positive integer nz1, there is a convergent
sequence {x;}* | in 1, such that a,({x;}* ) is not attained.

Proof. Let {e,}°,, 2o and {f;}* , be as in Lemma 2.1, lot
1

oe fve]
Yo=C€py2t Z ?en+2kFl+ Z ?en+2k L2
k-1 k=1

— 1111
= (0,..., 0, I, 35 5s 4s 4‘,...,)611,

(n+ 1)times

and let N, be the n-dimensional subspace of [, generated by
{e1, €30s €, 1s€,+ 70} Define T: 1, -1, by

T(()C,)l%: 1) = Z XiCpyj—1= (( 07-1')’1_07 X1 x27"'7)'
i=1 o 1mes

T is an isometry from [, into /;, and T(ay)=e,+7,. Let
yi=T(B;)i=1,2,.. Then {y;}, is a convergent sequence in /,, and
d({y;}* 1, c(Ny))=2. The only sequence {¥,}*, in N, satisfying
I{y:1,— {¥,: 12,1l =2 is the image under the isometry T of the unique
sequence {1,}°, in M satisfying |{f;}=,—{7;}*,|=2. But by
Lemma 2.1 this sequence docs not converge. So d({ y,}Z, ¢(Ny)) is not
attained. By Lemma 1.5 “taking i, =n,” there is a subset D of /, consisting
of finite number of elements, such that d,(D, ;) =48(D, Ny)=2, and N, is
the unique extremal n-dimensional subspace for d(D,[;). Let
D={z,..,z,} and definc the sequence {x,}* , in /, as follows:

z; fori=1,2,.,m
X, =
Y yiim  fori=m4+1,m+2.,.
One can easily show that {x,}?, is a convergent sequence in /; and

i=1
a,({x;}= ) is not attained. |

2.3. COROLLARY. If E=c or ¢, then for each positive integer n =1 the set
K, (E, ¢) is not proximinal in K(E, ¢).

Proof. Follows from Lemmas 0.1 and 2.2.
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3. THE PROXIMINALITY OF K,(Co(Q), Co(S)) IN K(Co(Q), Co(S))

In this section the proximinality of K,(Co(Q), Co(S)) in K(Co(Q), Co(S))
and in L(Cy(Q), Co(S)) will be studied in detail. It will be shown that if O
and S are locally compact Hausdorff spaces, and S contains Q,, then
K, (Co(Q), Cy(S)) is proximinal in K(Cy(Q), Co(S)) iff Q is finite. It will be
shown also that if Q is a locally compact Hausdorff space, that contains Q,
then K,(Co(Q), ¢,) is not proximinal in L(Cy(Q), ¢;). The first step in the
proof is to show that if X is a Banach space, and Q is a locally compact
Hausdorff space that contains Q,, then the proximinality of K,(X, ¢) in
K(X, ¢) [resp. L(X, ¢)] is a necessary condition for the proximinality of
K, (X, Co(Q)) in K(X, Co(Q)) [resp. L(X, Co(Q))]- This will be established
in Lemma 3.4. The second step is to show that if Q is a locally compact
Hausdorff space, Y is a closed subset of Q and X is a Banach space then
the proximinality of K,,(Co(Y), X) in K(Cy(Y), X) [resp. L(Cy(Y), X)], is a
necessary condition for the proximinality of K, (Co(Q), X) in K(Co(0), X)
[resp. L(Co(Q), X)]. This will be established in Lemma 3.5. Finally the
results of Sections 1 and 2 will be used in Theorems 3.6 and 3.8., to obtain
the main results.

The closed subspace Y of the Banach space X is called a norm-one-com-
plemented subspace of X if there is a linear projection P: X — Y such that
| 2| = 1. The proof of the following proposition depends on this property:

3.1. ProPOSITION. Let Q be a locally compact Hausdorff space, E a
Banach space and F a norm-one-complemented subspace of E. If a,(f) is
attained in E for each fe Cy(Q, E), then a,(g) is attained in F for each

g€ Co(Q, F).

The proof of the following lemma is straight forward:

3.2.LeMMA. Let Q be a locally compact Hausdorff space and let
X=Cy(Q). If O is infinite then there is a subspace Y of X* satisfying the
Sfollowing properties:
(1) Y is isometrically isomorphic to l,.

(2) Y is a norm-one-complemented subspace of X*.

Lemma 3.3 is similar to the Extension of Tietze’s Theorem due to Dugundji

[3].

3.3. LeMMA. Let X be a Banach space, Q a locally compact Hausdorff
space that contains Q, and let {b;}  be an infinite sequence of distinct
elements in Q, that converges to by in Q. There is a sequence {¢;}* , of real-
valued functions on Q with the following properties:
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(a) Fori=1,2,3,.., the function ¢, is continuous.

by 0<dlg)<, forallqeQ and i=0,1,2,...

(c) ¢Lby=0,fori=1,2,3,., and j=1,2,3,..

(d) @o(b)y=0fori=1,2,3,..

(e) 2lo9dqg)<1 forall ge Q.

(f) There is a compact subset Y of Q, such that 37 , ¢, =0 outside Y.

(&) If {x;}, is a bounded sequence in X that converges to x,, then
the function f- Q — X defined by f(q)=37,¢.q) x;, is an element in
Co(Q, X).

(h) If X is a dual space and {x,}¥ | is a bounded sequence in X, that
is, w*-convergent to x, then the function f> Q — X defined by f{q)=3%,
¢{q) x;, is an element in Co(Q, (X, 0*)).

Proof. Since b;— b, one can show that therc is a relatively compact
open subset U of Q, such that {b,}* ;< U. Let Y=U, and let g: Q0 — R be
a continuous function with the following properties:

(1) g(g)=0forg¢ U, and | g} =1,
(2) g(b))=1for i=1,2,.., and g(q) >0 for all g€ Q.

Let {V/,, U,} be an open cover for Q that satisfies the properties that ¥, n
{b;} 2 o=1{by}, and b, ¢ U,. Let {4}, g1} be a partition of unity
corresponding to { V|, U, }. Then ¢ (b,)=1, ¢,(b;,)=0for i #1, gi(b,) =0,
and gi(b)=1for i#1 lect ¢,=¢)-gand let g, =g} g, then ¢, +g,=g.
By the same method, for each n> 1, “by taking g, _; in place of g,” one can
show that there are itwo nonnegative continuous functions ¢, and g, with
the properties that ¢,(b,)=1, ¢,(b;)=0 for i#n and ¢,+g,=g, |, that
is, 37, ¢,+g,=g Since {¢,}7_, and g, are nonnegative, it follows that
foreach ge @, 7. | ¢{q) < g(q). Thus by induction there are two bounded
sequences {¢,}* ; and { g}, of nonnegative continuous functions on Q,
satisfying that ¢(b;) =0, 0<4(g) <1 for each g€ @, ¢,=0 outside ¥, and
27 1¢i+g.,=g Clearlly X%, 4{q)<glq) for each qeQ, so let
Po=g—2.2 , $;. Then 0< ¢o(g) <1 for cach ge 0, ¢,=0 outside ¥, and
$o(b;)=0 for i=1, 2,.... Thus the conditions (a} (f} are satisfied.

(g) Assume that x; — x, in X, and let f: Q — X be defined by
f@)=0ug) X0+ ) $dq)x;  forgeQ.
i1

Then
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(e 9]

f(q)=[¢o(q)+ 5 ¢,-(q)]-xo+ S $49)- [xi—xo]
i=1 i=1

i=

—5@) %0+ . 49) [xi— %]

i=

Since for each i =1 the function ¢, is continuous, and since || x;,— x,] = 0,
it follows that the function 3> *, ¢{q)- [x;,— x,] is continuous. Thus the
function f is continuous, and since /=0 outside y then fe Cy(Q, X).

The proof of (h) is similar to that of (g). |}

34. LeMMA. Let X be a Banach space, and let Q be a locally compact
Hausdor[f space that contains Q.. If K,(X, ¢) is not proximinal in K(X, c)
[resp. L(X, ¢)], then K, (X, Co(Q)) is not proximinal in K(X, Co(Q))
[resp. L(X, Co(Q)]-

Proof. Assume that K,(X,c) is not proximinal in K(X,c)
[resp. L(X, ¢)]. Then by Lemma 0.1 there is a convergent [resp. w*-con-
vergent] sequence {x;} , in X* such that

a,({x;}72 ) =inf{d({x,} {2, c(N)); dim N<n, N X*}

is not attained.

Since Q contains Q,, it follows that there is an infinite sequence {b;}
of distinct elements in @, that converges to some point b, in Q. As in
Lemma 3.3, let {#;} = , be a sequence of nonnegative fuctions defined on Q,
corresponding to {b,;}* ;. Define f: Q — X* by f(¢) =3, #{q) x;. Then
by Lemma 3.3, f'e Co(Q, X*) [resp. fe Co(Q, X*, w*))], and f(b;)=x; for
each i=1, 2,... It will be shown that a,(f)=a,({x;}* ;). Let g: Q - X* be
a continuous function with g(Q) < N for some n-dimensional N of X*, and
let y,=g(b;). Since b,— b,, then the sequence {y;}>, converges to

Yo=2g(by), and
Hx 32 —{yid= sup I f(b;) g < f—gl.

Therefore a,({x;}® ,)<a,(f). Second, let {y,}2, be a convergent
sequence in an n-dimensional subspace N of X*, and define g: Q — N by
8(q)=27206.9) y;- By Lemma 3.3, ge Co(Q, N), and for each ge Q

-l =] 3 ¢i(q)(xi—yi)’{ <3 da) -l
i=0

i=0
<3111_p ;= yill =1 {x: )72 = { v}z, -

Thus [ f—gl <l {x:}72:—{»:}72.], therefore a,(f)<a,({x;}2,). It is
clear from the first part of the proof, that if a4,(f) is attained then
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a,({x;} ) is attained. But a,({x;} ) is not attained, so a,(f) is not
attained. ||

3.5. LeMMA. Let Q be a locally compact Hausdorff space, Y a closed
subset of @ and let X be a Banach space. If K, (Cy(Y), X) is not proximinal
in K(Cy(Y), X) [resp. L(Co(Y), X)] then K, (Co(Q), X) is not proximinal in
K(Co(Q), X) [resp. L(Co(Q), X)].

Proof. Let P: Cyo(Q)— Cy(Y) be defined by

P(fy=/iv» f€ Co(Q).

P is a linear and onto mapping with || P(f)| < f| for each fe Co(Q). Let
T be an operator in K(Cy(Y), X) [resp. L(Co(Y), X)], then T'=T ¢« P is
an operator in K(Co(Q), X) [resp. L(Cy(Q), X)]. It will be shown that
a(T)=a,(T"), and if a,(T) is not attained then 4,(7") is not attained. If
K:Cy(Y)— X is a bounded linear operator of rank less than or equal to n,
then K’ = K+ P is an operator in K,(Cy(Q), X). Furthermore

|7 =KI<|PIIT-K|=|T-K].

Thus a,(T") < a,(T).
Second, let K’ € K,(Co(Q), X), then there are {u,}7_, in (Co(Q))*, and
{x¢}2_, in X, such that for each fe Co(Q)

K(f)= 3 wdf) X
k=1
For each k=1, 2,..., n, let g = iy y, and let K: Cy(Y) — X be defined by
K(f)= 2 wlf) xe.  feCy(Y).
k=1

Clearly Ke K,(Cy(Y), X). It will be shown that for each fe Cy(Y) with
[ flI <1, there is a net {f, },., in the unit ball of Cy(Q) such that

T~ KY€ (T =KW Sacrn

If this is true then |T— K| < || T~ K|, and therefore a,(T)=a, (7). Let
{U,} e, be the family of all open sets in Q that contain Y. For each a €,
there is a continuous function g,: Q — R with the following properties:

1 forge Y,

ga(q)——-{0 for g¢ U,
and

0<g.(g)<1l forallge Q.
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On the other hand by Tietze’s Extension Theorem, there is a function
FeCy(Q), such that |F| <] f| and F,=/. Let f,=F-g,. Then the net
{f,}xes is contained in the unit ball of Cy(Q). Furthermore for each a e,
T(f)=T(f), and since Q is a Hausdorff space, it follows that
Nuer Uy =7, thus for each k=1, 2,..., n, pr(f) € {pi(f,) } o, Hence

T —=K) ) e {IT = KV aer

It is clear from the proof that if 4,(T") is attained then a,(7) is attained. |J

3.6. THEOREM. [If Q is a locally compact Hausdorff space, that contains
Qo then for each positive integer nz1, the set K, (Cy(Q), co) is not
proximinal in L(Cy(Q), ¢o)-

Proof. By Theorem 1.8, the set K, (¢, ¢,) is not proximinal in L(c, ¢,).
Since Q contains Q,, it contains an infinite convergent sequence {b;}* , of

distinct elements, but then c¢=C({b;}>,). So by Lemma 3.5, the set
K (Cy(Q), co) is not proximinal in L(Cy(Q), ¢5). 1

Note. Theorem 3.6 is not generally true if Q fails to contain Q,, indeed
by Deutsch ef al. [2], the set K,(cq, ¢o) is proximinal in L{cy, ¢y).

3.7. LeMMA, Let Q be a locally compact Hausdorff space. If Q is infinite
then for each positive integer n 2 1, the set K,(Co(Q), c) is not proximinal in

K(CO(Q)o C)'

Proof. By Corollary 2.3, the set K,(c, ¢) is not proximinal in K{(c, c¢).
Thus by Lemma 0.1, there is a convergent sequence {x;}  in /;, such that
a,({x;} ) is not attained. By Lemma 3.2, /, is isometric to a norm-one-
complemented subspace of (Cy(Q))*, thus by Proposition 3.1, there is a
convergent sequence {y,}2, in (Co(Q))* such that a,({y;},) is not
attained. Therefore by Lemma 0.1, the set K,(Cy(Q), ¢) is not proximinal in

K(Co(@), ). I

3.8. THEOREM. Let Q and S be two locally compact Hausdorff spaces, and
assume that S contains Q,. Then for any positive integer n>1, the set
K, (Co(0), Cy(S)) is proximinal in K(Co(Q), Co(S)) iff Q is finite.

Proof. Assume that Q is infinite. By Lemma 3.7, the set K,(Co(Q), ¢) is
not proximinal in K(Co(Q),c), thus by Lemma34, the set
K, (Co(Q), Cy(S)) is not proximinal in K(Cy(Q), Co(S)).

Second, assume that @ is finite. Then there is a positive integer m > 1,
such that Co(Q)=/®. By Brown [1] the metric projection from (/2)* =1},
onto any of its subspaces has a continuous selection. Thus by Deutsch et al.
[2] the set K,(Co(Q), Co(S)) is proximinal in K(Co(Q), Co(S)). |
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Note. Theorem 3.8 is not generally true if S fails to contain Q,. By
Deutsch et al. [2], the set K, (X, ¢,) is proximinal in K(X, ¢,) for any nor-
med linear space X, and the set K,(X, /) is proximinal in I(X, [) for any
normed linear space X.
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