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COMMUNICATIONS IN ALGEBRA, 29(7), 2805-2825 (2001)

ON LOCALLY DIVIDED RINGS
AND GOING-DOWN RINGS

Ayman Badawi'* and David E. Dobbs>'

"Department of Mathematics, Birzeit University,
P.O. Box 14, Birzeit, West Bank via Israel
’Department of Mathematics, The University of
Tennessee, Knoxville, Tennessee 37996-1300

1 INTRODUCTION

All rings considered below are commutative with 1. Asin [B2],if Risa
ring, P € Spec(R) is a divided prime ideal in R if P is comparable under
inclusion to each ideal of R; and R is a divided ring if each P € Spec(R) is
divided in R. Divided rings generalize the divided domains introduced in
[D2]. Our main goal is to generalize another class of domains introduced in
[D2], the locally divided domains. We say that a ring R is a locally divided
ring if Rp is a divided ring for each P € Spec(R). Each divided ring is locally
divided [B2, Proposition 4]. Since the literature on locally divided domains
([D2], [D4], [DF])) is tied to studies of going-down domains (in the sense of
[D1]), it is natural to pursue connections between locally divided rings and
the recently introduced going-down rings [DS5]. Section 3 develops several
such connections, some with the flavor of domain-theoretic studies and
others differing from such phenomena in the presence of zero-divisors. First,
Section 2 develops more information about divided rings and initiates the
theory of locally divided rings.

*Corresponding author. E-mail: abring@math.birzeit.edu
TE-mail: dobbs@math.utk.edu

2805

Copyright © 2001 by Marcel Dekker, Inc. www.dekker.com



2806 BADAWI AND DOBBS

A useful family of locally divided rings is given by the rings of (Krull)
dimension 0 (Corollary 2.2). In contrast to the situation for domains, neither
one-dimensional rings nor Priifer rings (in the sense of [G]) need be locally
divided (Example 2.18). More domain-like behavior is present if we assume
a ring R satisfies Z(R) = Nil(R), a hypothesis which has been useful in [D5,
Corollary 2.6]. (As usual, if R is a ring, then Z(R) denotes the set of zero-
divisors of R and Nil(R) denotes the nilradical of R. As noted in [DS3,
Proposition 2.3(a)], Z(R) = Nil(R) if and only if 0 is a primary ideal of R.)
Proposition 2.19(b) establishes that any Priifer ring R satisfying Z(R) =
Nil(R) must be locally divided. Moreover, Theorem 2.7 generalizes [D6,
Proposition 2.12] by characterizing, given Z(R) = Nil(R), when a CPI-
extension (in the sense of [BS]) R + PR is locally divided. (As explained by
Proposition 2.5(c), the “Z(R) = Nil(R)” hypothesis allows us to study locally
divided rings via pullback-theoretic methods, such as [F, Theorem 1.4]).
Another noteworthy result in the presence of the “Z(R) = Nil(R)” hypo-
thesis is Theorem 2.10, generalizing the characterizations of locally divided
domains [D4, Theorem 2.4], including flatness of CPI-overrings.

Most of our non-domain examples of locally divided rings are pro-
vided by the idealization construction R(+)E arising from an R-module E.
We assume familiarity with idealization, as in [H, Theorem 25.1, Corol-
lary 25.5(2)]. In Proposition 2.16, idealization is used to characterize locally
divided rings. The upshot for domains R is in Corollary 2.17(b): R is a
locally divided domain if and only if R(+)E is a locally divided ring for each
(some) vector space E over the quotient field of R.

For the work leading up to corollary 2.17, when R is a quasilocal ring,
the role of “quotient field of R” is played by Ryjg). This localization is
meaningful for the rings of interest, as they are divided, and hence, treed.
(Generalizing domain-theoretic usage [D1], we say a ring R is a treed ring if
Spec(R), as a poset under inclusion, is a tree; that is, if P and Q are com-
parable under inclusion whenever P and Q are prime ideals of R which
are contained in a common maximal ideal of R). The point is that
Nil(R) € Spec(R) whenever R is a quasilocal treed ring. A reference on
quasilocal treed rings is [B1]. Since any divided ring is quasilocal and treed
[B2, Proposition 1(a)], so is any pseudo-valuation ring. (PVRs were intro-
duced in [BAD] as a generalization of the PVDs in [HH]. More generally,
¢-PVRs were introduced in [B3]; and ¢-PVR must be divided [B3, Propo-
sition 4] but need not be a PVR [B4, Theorem 2.6].) As described in Remark
2.4(b), [ABD, Example 3.16(c)] shows how dramatically “Z(R) = Nil(R)”
condition can fail in a PVR. This explains why we occasionally assume that
some prime ideals being considered are regular ideals.

We devote part of Section 2 to studying overrings without the
“Z(R) = Nil(R)” hypothesis. Attention is paid to the large and regular
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quotient rings, Rjp and Rp), of Griffin [G]. Corollary 2.24(c) establishes that
if R is a ring, then Ryp is a divided ring for each P € Spec(R) if and only if
Rp) is a divided ring for each P € Spec(R). Any such R must be locally
divided.

We turn to a summary of Section 3. The theory of going-down rings
is complicated by the fact that, in contrast to the situation for domains,
a going-down ring need not be treed [D5, Example 1]. However, Proposi-
tion 3.1 establishes that each locally divided ring is a treed going-down ring.
Corollary 3.5 obtains the converse if R is seminormal (in the sense of [S]).
More generally, Theorem 3.4 gives a result that is new even for domains:
a reduced ring R is a treed going-down ring if and only if the semi-
normalization of R (in the sense of [S]) is locally divided. Also, given the
“Z(R) = Nil(R)” hypothesis, Theorem 3.3 generalizes the characterization
of quasilocal going-down domains [D2, Theorem 2.5] in terms of divi-
ded integral unibranched overrings. The proof of Theorem 3.3 uses
Theorem 2.7, the pullback-theoretic result on locally divided CPI-exten-
sions. New examples of going-down rings are available because of the
characterization in Propostion 3.8 of going-down rings in terms of ideali-
zation. The most striking consequence, in contrast to the situation for
domains (M2, Corollary 11], [D2, Corollary 2.8]) is Example 3.10, giving a
family of quasilocal integrally closed treed going-down rings which fail to
be (locally) divided.

We assume that all ring extensions and modules are unital. For a ring
A, we let Spec(4) denote the set of prime ideals of A4; Max(4) the set of
maximal ideals of 4, Min(A) the set of minimal prime ideals of 4; dim(A4) the
Krull dimension of 4; and tq(4) the total quotient ring of 4. By an overring
of a ring 4, we mean any ring B such that 4 C B Ctq(4). If E is an
R-module, then Zz(E) := {e € E : there exists » € R\{0} such that re = 0}.

2 LOCALLY DIVIDED RINGS

It is known [B2, Proposition 4, Corollary 3] (cf. also [D5, Remark(c),
page 47]) that the class of divided rings is stable under the formation of rings
of fractions and homomorphic images. Proposition 2.1 extends several
similar facts about divided rings to the context of locally divided rings.

Proposition 2.1. (a) The class of locally divided rings is stable under the
formation of rings of fractions and homomorphic images.

(b) Let Ry,...,R, be finitely many rings, and put A=R; X --- X R,,.
Then A is a locally divided ring if and only if R; is a locally divided ring for
eachi=1,... n.
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(c) A ring R is locally divided if and only if Ry, is (locally) divided for
each M € Max(R).
(d) Each locally divided ring is a treed ring.

Proof. (a) Let R be a locally divided ring. If S is a multiplicatively closed
subset of R and Q € Spec(Ry), write Q = PRy, with P € Spec(R) such that
P NS = ¢. By [Bo, Proposition 11 (iii), page 70], (Rs), = Rp and, hence, is
divided. Thus, Ry is locally divided.

It remains to show that if 7 is an ideal of (the locally divided ring) R
and P € Spec(R) contains /, then B = (R/I)p;, is a divided ring. As [Bo,
Proposition 11(i), page 70] provides a ring-isomorphism Rp/IRp, — B, the
assertion follows from the above remarks.

(b) The ““only if ”” assertion follows by applying the second assertion in
(a) to the canonical projection map R — R;. For the “if”” assertion, we may
take n = 2. As Spec(4) = Spec(R;) [ [ Spec(R,), observe that if P € Spec(R,)
and Q = P x R, € Spec(4), then 4, = (R, )p.

(c) If P € Spec(R), pick M € Max(R) such that P C M, and note that
Rp = (PR,,) "' (Ry,) is a ring of fractions of a divided ring.

(d) Let R be locally divided. It suffices to prove that if P, Q € Spec(R)
and M € Max(R) contains both P and Q, then P and Q are comparable
under inclusion. As Rj, is divided, its prime ideals are linearly ordered by
inclusion [B2, Proposition 1(a)]. If PRy, C QR,;, and t:R — Ry, is the
canonical map, then P =t~ !(PRy,) C t ' (QRy,) = O. O

Corollary 2.2. Each zero-dimensional ring is locally divided.

Proof. Any zero-dimensional quasilocal ring is divided. Il

We make three remarks about the preceding material. First, the ideas
underlying the proof of Proposition 2.1(d) show that a ring R is treed if and
only if Rp is treed for each prime (resp., maximal) ideal P of R. Second, the
converse of Proposition 2.1(d) is false, even for domains; Example 3.10
presents a counterexample to that converse with a non-domain flavor.
Third, in contrast to the case of domains, Corollary 2.2 cannot be extended
to one-dimensional rings (Example 2.18 (b)).

Proposition 2.3 generalizes [B2, Lemma §].

Proposition 2.3. Let R be a ring and P a regular prime ideal of R. If P is
comparable under inclusion to each prime ideal of R, then Z(R) C P.

Proof. Since R\Z(R) is saturated, Z(R) = U P; for some set {P;} C Spec(R).
Since P is regular, P Z P; for each i. Hence, P; £ P for each i, and so
Z(R) =C P. O
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Remark 2.4. (a) Let R be a quasilocal treed ring (for instance, a divided
ring). Then Z(R) € Spec(R) and Min(R) = {Nil(R)} (cf. [k, Theorem 9]).

(b) Consider non-negative integers i < n. Then [ABD, Example
3.16(c)] constructs a pseudo-valuation (divided) ring R such that dim(R) = n
and the height of Z(R) is i. (By (a), Z(R) is a prime ideal of R, as is Nil(R)).
If i >0, then P=Nil(R) C Z(R), and so we cannot delete the “regular”
hypothesis in Proposition 2.3.

Recall from [G] that if R is a ring and P € Spec(R), then the large
(resp., regular) quotient ring of R with respect to P is Rjp) = {u € tq(R): there
exists s € R\P with su € R}; resp., Rp) = Rg, where S = (R\P) N (R\Z(R)).
In general, R C Ripy CRp C tq(R).

Proposition 2.5. Let R be a ring. Then:

(a) Let P € Spec(R) such that Z(R) C P. Then the canonical R-algebra
homomorphisms R — Rp and Rp — Rp\zg) = 1q(R) are injections, and thus
permit Rp to be identified with an overring of R. Under this identification,
Rp = Ripy = Rip).

(b) Let P C Q be prime ideals of R such that Z(R) C P. As in (a),
identify Rp and Ry with overrings of R. Then Ry C Rp.

(c) Let P € Spec(R) such that Z(R) C P. Identify Rp with an overring of
R, as in (a). Then P is a divided prime ideal in R if and only if PRp = P.

(d) [D5, Proposition 2.3(b)] Suppose Z(R) = Nil(R). If P dentoes this
unique minimal prime of R, identify Rp with an overring of R, as in (a). Then

Theorem 2.7 generalizes a result [D6, Proposition 2.12] on CPI-exten-
sion overrings of domains.

Lemma 2.6. Let R be a ring such that Z(R) = Nil(R). Then each overring T
of R satisfies Z(T) = Nil(T).

Proof. 1f u € Z(T), then u =r/s, for some r € Z(R), s € R\Z(R). As r is
nilpotent, so is u. O

Theorem 2.7. Let R be a ring such that Z(R) = Nil(R) and let P € Spec(R).
Then the following conditions are equivalent:

(1) Both R/P and Rp are divided (resp., locally divided) rings;
(2) R+ PRy is divided (resp., locally divided).
Proof. Viewing Rp as an overring of R as in Proposition 2.5(a), we see that

A =R+ PRp is the overring of R given by the pullback R, X, R/P arising
from the canonical surjection Rp — k = Rp/PRp and the canonical inclusion
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R/P — k =1q(R/P). Put Q = PRp. Localizing the vertices in the pullback
description 4 = Rp x; R/P at the multiplicative sets generated by 4\Q leads,
by [F, Proposition 1.9], to 4y = Rp X, tq(R/P). Thus, we have A4, = R,
canonically. (Cf. also [BS, Proposition 2.5, Theorem 2.4].) Identifying via
this isomorphism, we conclude that 04, = ORp = Q. Since Lemma 2.6
ensures that Z(4) = Nil(4), Proposition 2.5(c) yields that Q is a divided
prime of A. Moreover, A/Q = R/P. Thus, we may replace R and P with A4
and Q, respectively, i.e., we may assume P is a divided prime of R.

We adapt the proof of [D6, Proposition 2.12]. By [B2, Corollary 3,
Proposition 4] (resp., Proposition 2.1(a)), (2) = (1). Conversely, assume (1).
As in [D6, page 324, lines 6—12], we see that the “locally divided” assertion
follows from the ““divided” assertion. Thus, without loss of generality, R/P
and Rp are divided rings and, by Proposition 2.5(c), we must show OR, = O
for each Q € Spec(R). There are two cases, according as to whether Q C P
or P C Q. The proofs for these cases, as given in [D6, page 324], carry over
verbatim (change “domain” to “ring”’), provided that their calculations are
interpreted with the aid of Proposition 2.5(b) (which applies as needed,
thanks to Lemma 2.6). O

Corollary 2.8. Let R be a locally divided ring such that Z(R) = Nil(R). Then
R+ PRy is a locally divided ring for each P € Spec(R).

Proof. Combine Theorem 2.7 and Proposition 2.1(a). O

Theorem 2.10 extends [D4, Theorem 2.4], which gave characteriza-
tions of locally divided domains, to rings R satisfying Z(R) = Nil(R).
Adapting the approach in [D4], we first extend [D4, Proposition 2.3].

Proposition 2.9. Let R be a ring such that Z(R) =Nil(R) and let
P € Spec(R). Then T = R + PRp is a flat R-module if and only if T is a ring of
fractions of R.

Proof. We only address the “only if ” assertion. Pullback-theoretic con-
siderations lead to Max(7T) = {N € Spec(T): PCNNR and NNRE¢€
Max(R)}. By globalization, T = N{7Ty : N € Max(7T)}. (This intersection is
interpreted via Proposition 2.5(a), which applies thanks to Lemma 2.6 and
also ensures that Ty = Tjy for each N € Max(T).) If T'is R-flat, N € Max(T)
and M = N N R, a characterization of flat overrings [G, Proposition 10] gives
Tiy) = Ry and so, by Proposition 2.5(a), Ty = Ry, If M € Max(R) and
P C M, some N € Max(T) satisfies NN R = M (reason via pullbacks). The
upshot is that 7 =nN{Ry, : M € Max(R), P C M}. The rest of the proof
of [D4, Proposition 2.3] carries over verbatim (change ‘“domain” to
“ring”). O
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Theorem 2.10. Let R be a ring such that Z(R) = Nil(R). Then the following
conditions are equivalent:

(1) R+ PRp is R-flat for each P € Spec(R);

(2) R+ PRp is a ring of fractions of R for each P € Spec(R);

(3) R+ PRp C R+ ORy for all comparable prime ideals P C O of R;
(4) PRp C ORy, for all comparable primes P C O of R;

(5) PRp C Ry for all comparable primes P C Q of R;

(6) R is a locally divided ring.

Proof. The ideals, rings and inclusions in (1)—(6) are interpreted via Pro-
position 2.5(a). Now, (1) <= (2) by Proposition 2.9. With Proposition 2.5
in mind, one need only augment the proof of [D4, Theorem 2.4] with the
following observations. To prove (6) = (1): if P C M and M € Max(R), then
Tp\y = Ry + PRp. To prove (5) = (4), note that if P C Q are primes of R
and p/r=a/s €tg(R) with pe P, r€ R\P, a€ P and s € R\Q, then
a€P. ]

Remark 2.4(b) noted that “Z(R) = Nil(R)”” may fail for a divided ring.
It is thus of interest that Nil(R) plays a role in characterizing (locally)
divided rings.

Proposition 2.11. Let R be a ring. Then the following conditions are equiv-
alent:

(1) Nil(R) is a divided prime ideal of R and R/P is a divided domain for
each P € Spec(R);

(2) Nil(R) is a divided prime ideal of R and R/Nil(R) is a divided
domain;

(3) There is an ideal I of R such that I C Nil(R), I is comparable under
inclusion to each (resp., each principal) ideal of R and R/I is a divided ring;

(4) R is a divided ring.

Proof. (4) = (1): Combine Remark 2.4(a) and [B2, Corollary 3].

(1) = (2) = (3): Trivial.

(3) = (4): We use the following criterion [B2, Proposition 2]: a ring
A is divided if and only if for all (a,b) € 4 x A, either a|b or bla" for some
n > 1. Assume (3), and fix (a,b) € R x R. Without loss of generality, a¢ I,
since b|0. By (3), / C Ra, and so we may assume that b¢ [(lesta|b). Put
B=R/I, and consider « =a+1, f =b+1 € B. Since B is divided, either
o|f or Blo" for some n > 1. Suppose first that «|f. Then b = ac+ w for
some c€ R, wel. As I C Ra, we have w=dc for some d € R. Then
b =a(c+d); that is, a|b. Next, if ff|o” a similar argument, using I C Rb,
yields b|a". O
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Remark 2.12. (a) The hypothesis that Nil(R) is divided cannot be deleted
from the conditions in Proposition 2.11. To see this, let D be a divided
domain which is not a field, and consider the idealization R = D (+) D.
Observe that Nil(R) = 0(+) D € Spec(R) since R/Nil(R) = D. Moreover,
each P € Spec(R) takes the form P =1(4)D for some I € Spec(D), [H,
Theorem 25.1(3)], and R/P = D/I is a divided domain [D2, Lemma 2.2(c)].
Thus, R satisfies conditions (1), (2) and (3) in Proposition 2.11. However, R
does not satisfy condition (4): specifically, Nil(R) is not divided in R. Indeed,
if we choose a nonzero nonunit d € D, then ¢ = (d,0)¢ Nil(R) and, since
R6 ={(d\d,d,d) : d|,d, € D}, (0,1) € Nil(R)\Ro.

(b) Proposition 2.11 globalizes to yield the following result. A ring R
is locally divided if and only if Nil(R)R,, is comparable under inclusion to
each (resp., each principal) ideal of R, for each M € Max(R) and R/Nil(R) is
a locally divided ring.

We next study (locally) divided idealizations.

Lemma 2.13. Let R be a ring and E an R-module. Suppose that A =R (+)E
is a divided ring. Then:

(a) R is a divided ring.

(b) Suppose that r € R\Nil(R), e € E, re = 0 implies e = 0. Then, the
R-module structure on E is induced by an Ry g-module structure on E.

(c) Suppose that Z(R) = Nil(R) and E is a torsion-free R-module. Then
the R-module structure on E is induced by a tq(R)-module structure on E.

Proof. Since 4/(0(+)E) = R, (a) follows from the fact that any homo-
morphic image of a divided ring is divided [B2, Corollary 3]. Also, (c)
follows from (b), for Z(R) = Nil(R) implies that Ryjz) = 1q(R).

(b) Consider the ring homomorphism g: R — Hom,(E,E) embo-
dying the R-module structure of E. By (a) and Remark 2.4(a),
Nil(R) € Spec(R). It suffices to show that if » € R\Nil(R), then g(r) is a
bijection. The hypothesis in (b) ensures that g(r) is an injection. It therefore
suffices to prove that if e € E, then there exists f € E such that rf = e.

Observe that QO = Nil(4) = Nil(R)(+)E € Spec(4) since 4/Q =R/
Nil(R). Hence, Q is divided in 4. As a = (r,0) € A\Q, we have O C Aa.
Thus, there exists b = (s,f) € 4 such that (0,e) = ba = (sr,rf), whence
e=rf. (|

Proposition 2.14. Let R be a ring. Then the following conditions are equiv-

alent:

(1) Nil(R) € Spec(R) and R(+)E is a divided ring for each Ryg)-
module E;
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(2) Nil(R) € Spec(R) and R (+)E is a divided ring for some Ryg-
module E;
(3) R is a divided ring.

Proof. “Nil(R) € Spec(R)” is included in conditions (1) and (2) in order
that the localization Ry ) be meaningful. Now, (1) = (2) trivially; and
(2) = (3) by Lemma 2.13(a). It remains to prove that (3) = (1). Assume (3).
Then Nil(R) € Spec(R) by Remark 2.4(a). Let E be an Ry -module. We
show that 4 = R(+) E is divided; that is, that each Q € Spec(4) is divided
in A. By [H, Theorem 25.1(3)], 0 = P (+) E for some P € Spec(R). By (3),
P is divided in R. Tt suffices to show that if a = (r,e) € 4\Q, then O C Aa.
Consider ¢ = (s,f) € Q. Ass € P and r € R\P, the dividedness of P supplies
t € R such that s =#. Moreover, since r € R\P C R\Nil(R), we have
rle Ryii(r) and so, the Ry;z)-module structure of £ permits us to consider
h:=r"'(f — te) € E. A calculation reveals that

q=(s.f) = (tr;te+rh) = (1,h)(r,e) € Aa
We next give “locally divided” analogues of the preceding two results.

Lemma 2.15. Let R be a ring and E an R-module. Suppose that A = R (+)E
is a locally divided ring. Then:

(a) R is a locally divided ring.

(b) Suppose that for each M € Max(R), s € Ry \Nil(Ry,), f € Eyy,sf =
0 implies /' = 0. Then for each M € Max(R), the R,,-module structure on E,; is
induced by a (Nil(R,,)) " (Ry,)-module structure on Ey,.

Proof. (a) follows from the second assertion in Proposition 2.1(a). In view
of Proposition 2.1(c), the conclusion in (b) is a direct consequence of Lemma
2.13(b) and the following two facts. Max(4) = {M (+)E : M € Max(R)},
[H, Theorem 25.1]; and if Q =M (+) E € Max(4), then Ay, = Ry, (+) Ey
[H, Corollary 25.5(2)]. ]

Proposition 2.16.  Let R be aring. Then the following conditions are equivalent:

(1)  Each maximal ideal of R contains only one minimal prime ideal of
R. Moreover, R (+) E is a locally divided ring for each R-module E satisfying
the following condition: for each M € Max(R), the Ry,-module structure on E,;
is induced by a (Nil(R,,)) " (Ry)-module structure on E,y;

(2) Each maximal ideal of R contains only one minimal prime ideal of
R. Moreover, R (+) E is a locally divided ring for some R-module E satisfying
the following condition: for each M € Max(R), the Ry,-module structure on E\;
is induced by a (Nil(Ry,)) ™" (Ryy)-module structure on E,;;

(3) R is a locally divided ring.
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Proof. The condition that each M € Max(R) contains a unique element of
Min(R) is included in (1) and (2) to ensure that Nil(R,,) € Spec(R),). In view
of Proposition 2.1(c), (d), the assertion follows from Proposition 2.14 and
the facts recalled in the proof of Lemma 2.15. O

The above results simplify over domains, leading to new examples of
(locally) divided rings.

Corollary 2.17. Let R be a domain, with quotient field K. Then:

(a) Let E be an R-module. Suppose that R(+)E is a divided (resp.,
locally divided) ring. Then R is also a divided (resp., locally divided) ring. If,
in addition, E is a torsion-free R-module, then for each M € Max(R), the Ry,-
module structure on E,; is induced by a K-vector space structure on E,;.

(b) The following conditions are equivalent:

(1) R(+)E is alocally divided (resp., divided) ring for each R-module
E satisfying the following condition: for each M € Max(R), the Ry,-
module structure on E,; is induced by a K-vector space structure on
Ey;

(2) R(+)E is alocally divided (resp., divided) ring for some R-module
E satisfying the following condition: for each M € Max(R), the R,,-
module structure on is induced by a K-vector space structure on E;;

(3) R(+)E is a locally divided (resp., divided) ring for each K-vector
space E;

(4) R(+)E is a locally divided (resp., divided) ring for some K-vector
space E;

(5) R is a locally divided (resp., divided) domain.

One of the most important examples of a locally divided domain is a
Priifer domain. A domain R is a Priifer domain if and only if R is
an integrally closed locally divided finite conductor domain ([cf. [MI,
Theorem 1]). One may ask if the preceding assertion extends to rings.
(Recall [G1] that a ring A4 is called a finite conductor ring if Aan Ab
and Ann(c) are finitely generated ideals of A for all a,b,c € 4.) Now,
any Priifer ring is integrally closed [G, Theorem 13]. However, by part
(a) of the next example, the rest of the “‘only if” assertion does not
extend to rings. Part (b) gives more non-domain-like behavior of “‘locally
divided”.

Example 2.18. (a) There exists a Priifer ring which is neither locally divided
nor a finite conductor ring.

(b) There exists a quasilocal ring R such that dim(R) = 1 and Risnota
(locally) divided ring.
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Proof. (a) Let K be a field and let 7 =], K[X]], the product of
denumerably many copies of K[[X]]. View K C T via the diagonal map.
Consider the ideal M := @, K[[X]] of T. We show that R =K + M is as
asserted. -

(R, M) is quasilocal; and Z(R) = M, whence R = tq(R). It follows that
R is a Priifer ring (use the criterion [G, Theorem 13] that each of its overrings
is R-flat). To prove that R is not (locally) divided, use the criterion in [B2,
Proposition 2], noting that a = (X,0,0,0,...), 56 =(0,X,0,0,...) € R are
such that a[b and b]a" for n > 1. Moreover, R is not a finite conductor ring,
since Ann(a) = 0® @,-,XK[[X]] is not finitely generated in R.

(b) Choose R to be any quasilocal domain such that dim(R) = 1. Then
A:=R(+)R is quasilocal and one-dimensional by [H, Theorem 25.1(3)].
However, Corollary 2.17(a) ensures that A is not (locally) divided, since R is
not a vector space over its quotient field. O

Priifer rings are known to exhibit additional pathology. For instance,
Lucas [L, Example 2.11] shows that the localization of a Priifer ring at a
maximal ideal need not be Priifer. Nevertheless, we next obtain domain-like
behavior for the “Priifer ring” property in the presence of the “Z(R) = Nil(R)”
hypothesis. Both parts of Proposition 2.19 fail without this hypothesis.

Proposition 2.19. Let R be a ring such that Z(R) = Nil(R). Then:

(@) R is a Priifer ring if and only if Ry, is a Priifer ring for each
M € Max(R).
(b) If R is a Priifer ring, then R is locally divided.

Proof. (a) The “if” assertion is valid for arbitrary rings [L, Proposition
2.10]. Conversely, suppose that R is a Prifer ring. We show that Ry is a
Priifer ring for each Q € Spec(R). Since Z(R) =Nil(R), we may view
R C Ry C tq(R) by Proposition 2.5(a). So, each overring of Ry, is an overring
of R. The conclusion follows from the criterion [G, Theorem 13] that a ring
is a Priifer ring if and only if each overring is integrally closed.

(b) By Theorem 2.10, R is locally divided if and only if R+ PR is
R-flat for each P € Spec(R). Using Proposition 2.5(a), we may view each
R + PRp as an overring of R. The conclusion follows since each overring of a
Priifer ring is flat [G, Theorem 13]. O

Let R be a Priifer domain and E a vector space over the quotient field
of R. Then 4 = R(+4)E is a Priifer ring by a result of Lucas [L, Proposition
3.1 (b)] (cf. [H, Theorem 25.11(2)]). Of course, Z(4) = Nil(4); and 4 is not
an domain if £ # 0. Corollary 2.17 and Proposition 2.19(b) each may be
used to show that A is a locally divided. By [H, Theorem 25.1(3)],
dim(4) = dim(R) can be any preassigned value n, 0 < n < oco.
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We focus next on the large and regular quotient rings, Rjp and Rp,
respectively, and the variants of the “locally divided” concept that they lead
to. They lead to the same variant, for Corollary 2.24(c) shows that a ring R
is such that Ryp is divided for each P € Spec(R) if and only if Rjp is divided
for each P € Spec(R). Let us say that a ring R satisfies (¥) if these equivalent
conditions hold. Examples of rings satisfying (*) are given in Example
2.20(b). As those examples suggest, (*) implies “locally divided” (Corollary
2.24(e)), but the converse is false (Example 2.20(a)).

Recall that a ring R is said to have few zero-divisors in case Z(R)
is expressible as the union of finitely many prime ideals of R. Thus, if
Z(R) € Spec(R), then R has few zero-divisors. For our purposes, the most
important examples of rings R having few zero-divisors are the rings R such
that Z(R) = Nil(R) and the quasilocal treed rings (by Remark 2.4 (a)).
(Noetherian rings also have few zero-divisors: Cf. [H, Theorem 7.2].) We
often use the result of Griffin [G, Lemma 4] that Rip = Rjp if R is a ring with
few zero-divisors and P € Spec(R).

Example 2.20. (a) There exists a Priifer ring R such that R has few zero-
divisors, R is locally divided and for each P € Spec(R), neither Rip nor Ryp is
divided.

(b) If R is locally divided and Z(R) = Nil(R), then Rjp and Rp are
divided for each P € Spec(R).

Proof. (a) Let n > 2 be a positive integer. Fori = 1,...,n, let R; be a zero-
dimensional ringand putR = R; x - -- x R,,. Since dim(R) = max{dim(R,)} =
0,R = tq(R) (cf. [K, Theorem 84]). Hence, R is a Priifer ring [G, Theorem 2.13].
Moreover, R is locally divided by Corollary 2.2 (or Proposition 2.1 (b)). As
Spec(R) = || Spec(R;) has cardinality n < oo, it follows that R has few zero-
divisors. Since R C Rjp] C Rjp C tq(R) = R for each P € Spec(R), we see that
Rjp) = Rp) = R, which is not divided since it has n > 2 maximal ideals.

(b) If P € Spec(R), then Proposition 2.5(a) yields that Ry = Rp
= Ryp|, which is divided. O

Proposition 2.22 pursues the phenomena in Example 2.20. First, we
state a lemma used in Theorem 2.23.

Lemma 2.21. Let R be a ring and T an overring of R. Then:

(a) Z(T) € Spec(T) if and only if Z(R) € Spec(R).

(b) Nil(T') € Spec(T) if and only if Nil(R) € Spec(R).

(¢) If T is a quasilocal treed ring, then Z(R) and Nil(R) are prime ideals
of R.
Proposition 2.22. Let R be a locally divided ring. Then the following con-
ditions are equivalent:
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(1) Ryp is a divided ring for some P € Spec(R);
(2) Rp) is a divided ring for some P € Spec(R);
(3) There exists Q € Spec(R) such that Z(R) C Q;
(4) Z(R) € Spec(R).

Proof. (1) = (4) and (2) = (4): Any divided ring is quasilocal and treed.
Apply Lemma 2.21(c).

(4) = (3): Trivial.

(3) = (1), (2): Let Q be as in (3). Then Proposition 2.5(a) gives
Rig = R(g) = Ry, which is divided, by the hypothesis on R. Then (1) and (2)
follow, with P = Q. O

Part (a) of the next result gives a new sufficient condition for a ring to
have few zero-divisors.

Theorem 2.23.  Let R be a ring and P € Spec(R) such that either Rip or Rp,
is a divided ring. Then:

(a) Z(R) and Nil(R) are each prime ideals of R, and hence R has few
zero-divisors.

(b) Rig = Ryg) for each Q € Spec(R).

(c) If P is a regular ideal of R, then Z(R) C P.

(d) Let Q € Spec(R) such that Q C P. Then Ry and Rig) = R are
divided rings.

Proof. (a) The first assertion follows from Lemma 2.21(c); the final
assertion then follows since Z(R) € Spec(R).

(b) Combine (a) with [G, Lemma 4].

(c) Deny. Thus, we can choose x € Z(R)\P and a regular element y € P.
By (b) and the hypothesis, T := Rjp is a divided ring. Since Q = [P|Rjp :=
{u € tq(R) : there exists s € R\P such that su € P} is a prime ideal of T, we
have that Q is divided in 7. However, x¢ Q (since x € R\P and P is a prime
ideal of R), and so P C Q C Tx. In particular, y € Tx C TZ(R) C Z(T). As
Z(B) NR = Z(R) for each overring B of R,y € Z(R), a contradiction.

(d) There are two cases. Suppose first that Q is a regular ideal of R. We
claim that Z(R) C Q. To see this, note first, via (b) and the hypothesis, that
T = Ryp is a divided ring. Consider W = [Q|Rjp = {u € tq(R) : there exists
s € R\P such that su € Q}. Observe that W € Spec(T) and Q C W. In par-
ticular, W is a regular divided prime of 7. So, by Proposition 2.3, Z(T) C W.
Hence, Z(R) =Z(T)NRC WNR=Q.

As Z(R) C Q C P, an application of Proposition 2.5(a) gives Rp
Ripy = Rpy and Ry = Rjg) = Rp)- As Rp is a divided ring, so is (ORp)
(Rp) = Ry.

—1
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In the remaining case, O C Z(R). Then, by (b),

Rig) = Rg) := Rir\g)n(r\z(r)) = Rr\2(r) = 14(R)

is divided, since it is a ring of quotients of a divided ring (namely, Ry). It
remains to show that R, is divided. Asin the preceding case, it suffices to prove
that R, is divided. If P C Z(R), then [Bo, Proposition 7(i), page 65] shows that

Rp = RR\p = R(R\P)(R\Z(R)) = (RR\Z(R))DH(R\P)

is a ring of fractions of the divided ring 7g(R), and hence is divided.
Therefore, without loss of generality, P is a regular ideal of R. Then, by (c)
and Proposition 2.5(a), Rp = Rjp) = R(p), which is divided. ]

Parts (c) , (e) of the next result contain assertions regarding property
(*) which were promised carlier.

Corollary 2.24. Let R be a ring. Then:

(@) Let P € Spec(R) such that Rip) is a divided ring. Then R p) is either
Rp or tg(R).

(b) Let P € Spec(R) such that Rp is a divided ring. Then R p, is either
Rp or tq(R).

(c) The following four conditions are equivalent:

Rip is a divided ring for each P € Spec(R);
(1) Ry divided S h S
R py is a divided ring for each P € Spec(R);
(2) R divided S h S
(3) Ry is a divided ring for each M € Max(R);
Ry is a divided ring for each M € Max(R).
4 R divided S h

(d) Let P be a regular prime ideal of R. Then the following three
conditions are equivalent:

(1) Ryp is a divided ring;
(2) Rpy is a divided ring;
(3) Rp is a divided ring and Z(R) C P.

(€) If Rp (resp., R(p) is a divided ring for each P € Spec(R), then R is
a locally divided ring.

Proof. (a), (b): By Theorem 2.23(b), Rp) = R(p). By the proof of Theorem
2.23(d),if Pisaregular (resp., nonregular) ideal of R, then Ryp; is Rp (resp., tq(R)).

(c) Since every prime ideal can be enlarged to a maximal ideal, the
assertions follow from Theorem 2.23(b), (d).

(d) (1) < (2) by Theorem 2.23(b); (1) = (3) by Theorem 2.23 (d) ,
(c) and (3) = (1), (2) by Proposition 2.5(a).

(e) Apply Theorem 2.23(d). O
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3 GOING-DOWN RINGS

Recall [D1] that a domain R is called a going-down domain if RC T
satisfies the going-down property GD for each domain 7 containing R; and
from [DS3], that a ring R is called a going-down ring if R/P is going-down
domain for each P € Spec(R). A domain is a going-down ring if only if it is a
going-down domain [D5, Remark (a), page 4]; and aring R is going-down ring
ifand only if R), is going-down ring for each M € Max(R) [D5, Proposition 2.1
(b)]. Since their introduction in [D2], divided prime ideals and (locally) divi-
ded domains have been linked to going-down studies on domains. This sec-
tion is devoted to developing such connections in the broader context of rings.

Proposition 3.1. Each locally divided ring is a treed going-down ring.

Proof. The “treed’ assertion is immediate from Proposition 2.1(d). In view
of the above comments, it remains only to prove that each divided ring is a
going-down ring. As appeal to [D5, Remark (c), page 4] (cf. also [B2,
Corollary3]) completes the proof. O

Although each going-down domain is treed [D1, Theorem 2.2]), a
going-down ring need not be treed [D5, Example 1]. An example of a
quasilocal going-down domain which is not a divided domain ([D2,
Example 2.9]) shows that the converse of Proposition 3.1 is false. Never-
theless, Theorem 3.4 shows how to use the “locally divided” concept to
characterize the treed going-down rings within the universe of reduced rings.
First, Theorem 3.3 gives a characterization of quasilocal going-down rings
within a universe determined by hypotheses that have already proved useful
in Section 2.

For the next result, recall the following definition.

A ring extension 4 C B is unibranched (or: B is a unibranched extension
of A) if the canonical map Spec(B) — Spec(4) is a bijection. Lemma 3.2
generalizes [D2, Lemma 2.3], the corresponding assertion for domains.

Lemma 3.2. Let R C T be an integral unibranched ring extension. Then R is
a going-down ring if and only if T is a going-down ring.

Proof. Since integral ring extensions satisfy lying-over [K, Theorem 44],
it suffices to prove the following statement. Let Q € Spec(T) and
P =0nNR e Spec(R); then 4 = R/P is going-down domain if and only if
B=T/Q is a going-down domain. View 4 C B by means of the canonical
injective ring-homomorphism 4 — B. As A C B inherits integrality from
R C T, it suffices by [D2, Lemma 2.3] to show 4 C B is unibranched; i.e., by
lying-over, that the canonical map Spec(B) — Spec(4) is an injection. If
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0, € Spec(T) and Q, 2 Q, then (Q,/0)NA=(Q;NR)/P. Since RC T is
unibranched, the conclusion follows from a homomorphism theorem. [

The next result on divided-going-down interplay generalizes a result
on domains [D2, Theorem 2.5].

Theorem 3.3. Let R be a ring such that Nil(R) = Z(R) is divided prime ideal
of R. Then the following two conditions are equivalent:

(1) R has divided integral unibranched overring;
(2) R is a quasilocal going-down ring.

Moreover, when these conditions hold, R is treed.

Proof. Suppose (1) and (2) hold, with T an overring of R as in (1). Since
T is divided, Spec(T) is linearly ordered by inclusion [B2, Proposition 1(a)].
The same is true for Spec(R), as integrality ensures that Spec(7T) — Spec(R)
is surjective. The “Moreover’ assertion follows.

(1) = (2): Assume (1). By integrality, R inherits the quasilocal property
from any divided integral overring. As (locally) divided rings are going-
down rings by Proposition 3.1, (2) follows via Lemma 3.2 and (1).

(2) = (1): Assume (2). Since Z(R) = Nil(R), [D5, Proposition 2.3]
yields that R has a unique minimal prime ideal, P, and #q(R) = R,. By
hypothesis, P = Nil(R) is a divided ideal of R, and so PR, = P by Propo-
sition 2.5(c). With D = R/P, we have the pullback description

R=R+PRp=RpX(ppypD

arising from the surjection Il : R, — Rp/PRp = Rp/P and the inclusion
D — Rp/P = tq(D).

Since D inherits from R the property of being a quasilocal going-down
ring [D3, Proposition 2.1 (b)], it follows from [D2, Theorem 2.5] that D has
a divided integral unibranched overring. Choose one such overring E of D;
put A=TII""(E). As 4 is an overring of R, Lemma 2.6 ensures that
Z(A) = Nil(4). Moreover, P = PR, N A4 € Spec(4) and 4/P = E is divided.
In addition, Ap = Rp is divided by Corollary 2.2, since the minimality of P
yields dim(Rp) = 0. So, by Theorem 2.7, A is divided.

It suffices to prove that 4 is an integral unibranched extension of R.
The integrality of R C A4 follows from the integrality of D = R/P C A/P = E:
this may be seen by applying [F, Corollary 1.5(5)] to the above pullback
description of R. Finally, the ‘“unibranched” assertion follows from the
“divided integral” assertion. Indeed, since T divided implies Spec(7) linearly
ordered by inclusion [B2, Proposition 1(a)], the “unibranched” conclusion
follows by using the lying-over and incomparable properties of integrality
[K, Theorem 44]. O
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Pursuing the subject of “integral unibranched” ring extensions, we
turn to arguably the most important such extensions: 4 C A", where A7 is
the seminormalization (in the sense of [S, page 218]) of a reduced ring A.
Theorem 3.4, which completes a thrust begun in [D2], is set in a context far
removed from that of Theorem 3.3, for any reduced ring R which satisfies
Z(R) = Nil(R) must be a domain. Note that while much of this project is
designed to generalize domain-theoretic studies, Theorem 3.4 is new even if
R is a domain see Corollary 3.6.

Theorem 3.4. Let R be a reduced ring. Then the following conditions are
equivalent:

(1) R is a locally divided ring;
(2) R' is a treed going-down ring;
(3) R is a treed going-down ring.

Proof. (1) = (3): The canonical continuous map Spec(R") — Spec(R) is
Zariski-closed [K, Theorem 44] and bijective, hence a homeomorphism, and
hence an order-isomorphism. In particular, since R™ is treed by Proposition
2.1(d), R is also treed. As the property of being a going-down ring is a local
property, it suffices to show that R,, is a going-down ring for each
M € Max(R).

R, inherits “reduced” from R, and so R,, has a seminormalization.
Since R, C RL is integral and unibranched, Lemma 3.2 shows that it is
enough to prove that R, is a going-down ring. Hence, by Proposition 3.1,
it suffices to prove that R}, is (locally) divided.

Now, if N is the unique prime ideal of Rt such that NN R = M, it
follows from (1) that Rj; is locally divided. Thus, it suffices to prove
Ri; = Ry. As [S, Corollary 4.6] ensures that Rf, = R}, ., we need only show

that Ry, = Ry = (R"\N)"'(R"). Since R\M C RJBQ%, an appeal to [Bo,
Proposition 8, page 66] reduces our task to proving that if O € Spec(R") and
ON(RT\N) # ¢, then QN (R\M) # ¢. Put P = QN R. As QI N, the order-
isomorphism Spec(R") — Spec(R) yields PZM. Pick r € P\M. Then
ON (R\M) contains r, and hence is nonempty.

(3) < (2): Use the order-isomorphism Spec(R") — Spec(R) and
Lemma 3.2 to transfer the “treed” and ‘“‘going-down ring” properties
between R and R™.

(3) = (1): We show that R is a divided ring for each N € Max(R").
Put M = N NR. By integrality, M € Max(R); and, by the above argument,
RY; = R;,. Tt suffices to prove that D = R}, is divided.

In view of (3) and the order-isomorphism Spec(D) — Spec(R,,), D is
quasilocal and treed. Hence, Nil(D) is the unique minimal prime ideal of D.
Moreover, being a seminormalization, D is seminormal (see [S, page 218,
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lines 1-2]) and hence reduced. Thus, 0 = Nil(D) € Spec(D), and so D is a
domain. In fact, D is a going-down domain, by applying Lemma 3.2 to
R, C D. It remains only to note that any seminormal quasilocal going-down
domain is divided; and this is a consequence of [D2, Corollary 2.6] and the
“x2,x>” criterion for seminormality of a domain [GH]. O

The above proof shows that any ring R satisfying the hypothesis and
conditions in Theorem 3.4 must be locally a going-down domain. However,
such R need not be a domain: consider R = D, x D, X --- x D,, where each
D; is a going-down domain and 2 < n < oo.

Corollary 3.5. Let R be a seminormal ring. Then the following conditions are
equivalent:

(1) R is a locally divided ring;

(2) R is a treed going-down ring.

Proof. Since R is seminormal, R is reduced and R™ = R ([S, page 218, lines
1-2)]. Apply Theorem 3.4. O

Corollary 3.6. Let R be a domain. Then the following conditions are equi-
valent:

(1) R* is a locally divided domain;

(2) R is a going-down domain;

(3) R is a going-down domain.

Proof. Any going-down domain is treed [D1, Theorem 2.2]; and any
domain is reduced. Apply Theorem 3.4. O

We next move beyond hypotheses like “Z(R) = Nil(R)” and “R is
reduced” to study arbitrary going-down rings. Proposition 3.7 generalizes a
result on domain [D3, Corollary 2.4] and is motivated by [B2, Proposition 21].

Proposition 3.7. Let R be a going-down ring. Then each (nonzero) principal
regular prime ideal of R is a maximal ideal of R.

Proof. Deny. Then there exists P € Spec(R) and M € Max(R) such that P
is a principal ideal, PZZ(R) and P C M. As P Z(R), the height of P is
nonzero (cf. [H, Theorem 2.1]); hence, we can choose Q € Spec(R) such that
QO C P. Observe that D = R/Q is a going-down domain [D5, Proposition 2.1
(b)] in which P/Q is a nonzero principal nonmaximal prime, contradicting
[D3, Corollary 2.4]. O

Example 3.9 shows that the “regular” hypothesis cannot be deleted
from Proposition 3.7. First, we need to develop a method for constructing
going-down rings with zero-divisors. Pullback methods have already been
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developed in [D5, Proposition 2.2] (which was a chief motivation for The-
orem 2.7). Motivated by the examples in Section 2, we turn to idealization
and give a going-down-theoretic analogue of Proposition 2.14.

Proposition 3.8. Let R be a ring. Then the following conditions are equiv-
alent:

(1) R(+)E is a going-down ring for each R-module E,

(2) R(+)E is a going-down ring for some R-module E;

(3) R is a going-down ring.

Proof. Let E be an R-module and put 4 = R(+)E. It suffices to show that
A is a going-down ring if and only if R is a going-down ring; i.e., that 4/Q is
a going-down domain for each Q € Spec(4) if and only if R/P is a going-
down domain for each P € Spec(R). Recall from [H, Theorem 25.1] that
Spec(4) = {P(+)E : P € Spec(R)}. Consider Q = P(+)E € Spec(4), with
P € Spec(R). It suffices to observe that the surjective map R — A4/Q,
r— (r,0) + O, has kernel P, so that 4/Q = R/P. O

Example 3.9. There exists a going-down ring with a nonzero principal
nonmaximal prime ideal.

Proof. Take R to be any going-down domain which is not a field and put
A = R(+)R. By Proposition 3.8, 4 is a going-down ring. Let a = (0,1) € 4
and P = Aa = 0(+)R. Since A/P = R, the nonzero principal ideal P of 4 is a
nonmaximal prime ideal of A4. O

One motivation for [D2, Theorem 2.5] was to generalize the result of
McAdam [M2, Corollary 11] stating that a quasilocal integrally closed
domain is a going-down domain if and only if it is a divided domain. It thus
is natural to ask if Corollary 3.5 remains valid when its “seminormal”
hypothesis is changed to ‘“‘integrally closed.” Example 3.10 answers this
negatively.

Example 3.10. For each n,1 < n < oo, there exists a quasilocal integrally
closed treed going-down ring which is not (locally) divided and which has
dimension .

Proof. Choose an n-dimensional valuation domain R, and put
A = R(+)R/M. By [H, Theorem 25.1(3)], dim(4) = dim(R) = n. Since R is a
going-down domain (hence, a going-down ring), Proposition 3.8 yields that
A is also a going-down ring. As Spec(4) = {P(+)R/M : P € Spec(R)}, A4
inherits “‘quasilocal”” and “treed” from R. Moreover, since R is integrally
closed and Z(R\M) = M, it follows from [H, Corollary 25.7] that the
integral closure of 4 is R(+)(R/M)p,, = R(+)R/M = 4; i.e., A is integrally
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closed. It remains to show that A4 is not divided. Observe that
O = 0(+)R/M € Spec(4). Q is not divided in A4, for if we choose a nonzero
element re€ M, then a=(r,1+M)eA\Q although QZ{(ryr,r+
ror+M) 1,5, € R} = Aa. O

Remark 3.11. It follows from the idealization construction that the ring 4 in
Example 3.10 satisfies Z(4) = 0(+)R/M = Nil(4). Moreover, A satisfies (2)
but fails to satisfy (1) in the statement of Theorem 3.3. Hence, one cannot
remove from Theorem 3.3 the hypothesis that the nilradical be a divided
(prime) ideal. (In fact, for the ring 4 in Example 3.10, Nil(4) is the ideal Q
which was shown directly to be nondivided in Example 3.10. Thus, Theorem
3.3 leads to another proof that Q is nondivided.) In view of the uses to which
the ““divided”” hypothesis was put in the proof of Theorem 3.3, we would argue
for the appropriateness of the pullback-theoretic couching of that proof, of its
supporting result Theorem 2.7 and, more generally, of the approach in Section
2 to studying locally divided rings B satisfying Z(B) = Nil(B). In closing,
we ask for an equally appropriate mechanism to illuminate and extend the
work in Section 2 on locally divided rings B for which Z(B) # Nil(B).
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