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ON LOCALLY DIVIDED RINGS

AND GOING-DOWN RINGS

Ayman Badawi1,* and David E. Dobbs2,{

1Department of Mathematics, Birzeit University,
P.O. Box 14, Birzeit, West Bank via Israel

2Department of Mathematics, The University of
Tennessee, Knoxville, Tennessee 37996-1300

1 INTRODUCTION

All rings considered below are commutative with 1. As in [B2], if R is a
ring, P 2 SpecðRÞ is a divided prime ideal in R if P is comparable under
inclusion to each ideal of R; and R is a divided ring if each P 2 SpecðRÞ is
divided in R. Divided rings generalize the divided domains introduced in
[D2]. Our main goal is to generalize another class of domains introduced in
[D2], the locally divided domains. We say that a ring R is a locally divided
ring if RP is a divided ring for each P 2 SpecðRÞ. Each divided ring is locally
divided [B2, Proposition 4]. Since the literature on locally divided domains
([D2], [D4], [DF]) is tied to studies of going-down domains (in the sense of
[D1]), it is natural to pursue connections between locally divided rings and
the recently introduced going-down rings [D5]. Section 3 develops several
such connections, some with the flavor of domain-theoretic studies and
others differing from such phenomena in the presence of zero-divisors. First,
Section 2 develops more information about divided rings and initiates the
theory of locally divided rings.
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A useful family of locally divided rings is given by the rings of (Krull)
dimension 0 (Corollary 2.2). In contrast to the situation for domains, neither
one-dimensional rings nor Prüfer rings (in the sense of [G]) need be locally
divided (Example 2.18). More domain-like behavior is present if we assume
a ring R satisfies ZðRÞ ¼ NilðRÞ, a hypothesis which has been useful in [D5,
Corollary 2.6]. (As usual, if R is a ring, then ZðRÞ denotes the set of zero-
divisors of R and NilðRÞ denotes the nilradical of R. As noted in [D5,
Proposition 2.3(a)], ZðRÞ ¼ NilðRÞ if and only if 0 is a primary ideal of R.)
Proposition 2.19(b) establishes that any Prüfer ring R satisfying ZðRÞ ¼
NilðRÞ must be locally divided. Moreover, Theorem 2.7 generalizes [D6,
Proposition 2.12] by characterizing, given ZðRÞ ¼ NilðRÞ, when a CPI-
extension (in the sense of [BS]) R þ PRP is locally divided. (As explained by
Proposition 2.5(c), the ‘‘ZðRÞ ¼ NilðRÞ’’ hypothesis allows us to study locally
divided rings via pullback-theoretic methods, such as [F, Theorem 1.4]).
Another noteworthy result in the presence of the ‘‘ZðRÞ ¼ NilðRÞ’’ hypo-
thesis is Theorem 2.10, generalizing the characterizations of locally divided
domains [D4, Theorem 2.4], including flatness of CPI-overrings.

Most of our non-domain examples of locally divided rings are pro-
vided by the idealization construction RðþÞE arising from an R-module E.
We assume familiarity with idealization, as in [H, Theorem 25.1, Corol-
lary 25.5(2)]. In Proposition 2.16, idealization is used to characterize locally
divided rings. The upshot for domains R is in Corollary 2.17(b): R is a
locally divided domain if and only if RðþÞE is a locally divided ring for each
(some) vector space E over the quotient field of R.

For the work leading up to corollary 2.17, when R is a quasilocal ring,
the role of ‘‘quotient field of R’’ is played by RNilðRÞ. This localization is
meaningful for the rings of interest, as they are divided, and hence, treed.
(Generalizing domain-theoretic usage [D1], we say a ring R is a treed ring if
SpecðRÞ, as a poset under inclusion, is a tree; that is, if P and Q are com-
parable under inclusion whenever P and Q are prime ideals of R which
are contained in a common maximal ideal of R). The point is that
NilðRÞ 2 SpecðRÞ whenever R is a quasilocal treed ring. A reference on
quasilocal treed rings is [B1]. Since any divided ring is quasilocal and treed
[B2, Proposition 1(a)], so is any pseudo-valuation ring. (PVRs were intro-
duced in [BAD] as a generalization of the PVDs in [HH]. More generally,
f-PVRs were introduced in [B3]; and f-PVR must be divided [B3, Propo-
sition 4] but need not be a PVR [B4, Theorem 2.6].) As described in Remark
2.4(b), [ABD, Example 3.16(c)] shows how dramatically ‘‘ZðRÞ ¼ NilðRÞ’’
condition can fail in a PVR. This explains why we occasionally assume that
some prime ideals being considered are regular ideals.

We devote part of Section 2 to studying overrings without the
‘‘ZðRÞ ¼ NilðRÞ’’ hypothesis. Attention is paid to the large and regular
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quotient rings, R½P� and RðPÞ, of Griffin [G]. Corollary 2.24(c) establishes that
if R is a ring, then R½P� is a divided ring for each P 2 SpecðRÞ if and only if
RðPÞ is a divided ring for each P 2 SpecðRÞ. Any such R must be locally
divided.

We turn to a summary of Section 3. The theory of going-down rings
is complicated by the fact that, in contrast to the situation for domains,
a going-down ring need not be treed [D5, Example 1]. However, Proposi-
tion 3.1 establishes that each locally divided ring is a treed going-down ring.
Corollary 3.5 obtains the converse if R is seminormal (in the sense of [S]).
More generally, Theorem 3.4 gives a result that is new even for domains:
a reduced ring R is a treed going-down ring if and only if the semi-
normalization of R (in the sense of [S]) is locally divided. Also, given the
‘‘ZðRÞ ¼ NilðRÞ’’ hypothesis, Theorem 3.3 generalizes the characterization
of quasilocal going-down domains [D2, Theorem 2.5] in terms of divi-
ded integral unibranched overrings. The proof of Theorem 3.3 uses
Theorem 2.7, the pullback-theoretic result on locally divided CPI-exten-
sions. New examples of going-down rings are available because of the
characterization in Propostion 3.8 of going-down rings in terms of ideali-
zation. The most striking consequence, in contrast to the situation for
domains (M2, Corollary 11], [D2, Corollary 2.8]) is Example 3.10, giving a
family of quasilocal integrally closed treed going-down rings which fail to
be (locally) divided.

We assume that all ring extensions and modules are unital. For a ring
A, we let SpecðAÞ denote the set of prime ideals of A; MaxðAÞ the set of
maximal ideals of A, Min(A) the set of minimal prime ideals of A; dimðAÞ the
Krull dimension of A; and tqðAÞ the total quotient ring of A. By an overring
of a ring A, we mean any ring B such that A � B � tqðAÞ. If E is an
R-module, then ZRðEÞ :¼ fe 2 E : there exists r 2 Rnf0g such that re ¼ 0g.

2 LOCALLY DIVIDED RINGS

It is known [B2, Proposition 4, Corollary 3] (cf. also [D5, Remark(c),
page 47]) that the class of divided rings is stable under the formation of rings
of fractions and homomorphic images. Proposition 2.1 extends several
similar facts about divided rings to the context of locally divided rings.

Proposition 2.1. ðaÞ The class of locally divided rings is stable under the
formation of rings of fractions and homomorphic images.

ðbÞ Let R1; . . . ;Rn be finitely many rings; and put A ¼ R1 � 
 
 
 � Rn.
Then A is a locally divided ring if and only if Ri is a locally divided ring for
each i ¼ 1; . . . ; n.
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ðcÞ A ring R is locally divided if and only if RM is ðlocallyÞ divided for
each M 2 MaxðRÞ.

ðdÞ Each locally divided ring is a treed ring.

Proof. (a) Let R be a locally divided ring. If S is a multiplicatively closed
subset of R and Q 2 SpecðRSÞ, write Q ¼ PRS , with P 2 SpecðRÞ such that
P \ S ¼ f. By [Bo, Proposition 11 (iii), page 70], ðRSÞQ ffi RP and, hence, is
divided. Thus, RS is locally divided.

It remains to show that if I is an ideal of (the locally divided ring) R
and P 2 SpecðRÞ contains I, then B ¼ ðR=IÞP=I is a divided ring. As [Bo,
Proposition 11(i), page 70] provides a ring-isomorphism RP=IRP ! B, the
assertion follows from the above remarks.

(b) The ‘‘only if ’’ assertion follows by applying the second assertion in
(a) to the canonical projection map R ! Ri. For the ‘‘if’’ assertion, we may
take n ¼ 2. As SpecðAÞ ffi SpecðR1Þ

‘
SpecðR2Þ, observe that if P 2 SpecðR1Þ

and Q ¼ P � R2 2 SpecðAÞ, then AQ ffi ðR1ÞP.
(c) If P 2 SpecðRÞ, pick M 2 MaxðRÞ such that P � M , and note that

RP ffi ðPRM Þ�1ðRM Þ is a ring of fractions of a divided ring.
(d) Let R be locally divided. It suffices to prove that if P;Q 2 SpecðRÞ

and M 2 MaxðRÞ contains both P and Q, then P and Q are comparable
under inclusion. As RM is divided, its prime ideals are linearly ordered by
inclusion [B2, Proposition 1(a)]. If PRM � QRM and t : R ! RM is the
canonical map, then P ¼ t�1ðPRM Þ � t�1ðQRM Þ ¼ Q. u

Corollary 2.2. Each zero-dimensional ring is locally divided.

Proof. Any zero-dimensional quasilocal ring is divided. u

We make three remarks about the preceding material. First, the ideas
underlying the proof of Proposition 2.1(d) show that a ring R is treed if and
only if RP is treed for each prime (resp., maximal) ideal P of R. Second, the
converse of Proposition 2.1(d) is false, even for domains; Example 3.10
presents a counterexample to that converse with a non-domain flavor.
Third, in contrast to the case of domains, Corollary 2.2 cannot be extended
to one-dimensional rings (Example 2.18 (b)).

Proposition 2.3 generalizes [B2, Lemma 8].

Proposition 2.3. Let R be a ring and P a regular prime ideal of R. If P is
comparable under inclusion to each prime ideal of R; then ZðRÞ � P.

Proof. Since RnZðRÞ is saturated, ZðRÞ ¼ [Pi for some set fPig � SpecðRÞ.
Since P is regular, P 6� Pi for each i. Hence, Pi 6� P for each i, and so
ZðRÞ ¼� P. u
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Remark 2.4. (a) Let R be a quasilocal treed ring (for instance, a divided
ring). Then ZðRÞ 2 SpecðRÞ and MinðRÞ ¼ fNilðRÞg (cf. [k, Theorem 9]).

(b) Consider non-negative integers i � n. Then [ABD, Example
3.16(c)] constructs a pseudo-valuation (divided) ring R such that dimðRÞ ¼ n

and the height of ZðRÞ is i. (By (a), ZðRÞ is a prime ideal of R, as is NilðRÞ).
If i > 0, then P ¼ NilðRÞ � ZðRÞ, and so we cannot delete the ‘‘regular’’
hypothesis in Proposition 2.3.

Recall from [G] that if R is a ring and P 2 SpecðRÞ, then the large
(resp., regular) quotient ring of R with respect to P is R½P� ¼ fu 2 tqðRÞ: there
exists s 2 RnP with su 2 Rg; resp., RðPÞ ¼ RS , where S ¼ ðRnPÞ \ ðRnZðRÞÞ.
In general, R � RðPÞ � R½P� � tqðRÞ.

Proposition 2.5. Let R be a ring. Then:

(a) Let P 2 SpecðRÞ such that ZðRÞ � P. Then the canonical R-algebra
homomorphisms R ! RP and RP ! RRnZðRÞ ¼ tqðRÞ are injections; and thus
permit RP to be identified with an overring of R. Under this identification,
RP ¼ R½P� ¼ RðPÞ.

(b) Let P � Q be prime ideals of R such that ZðRÞ � P. As in ðaÞ;
identify RP and RQ with overrings of R. Then RQ � RP.

(c) Let P 2 SpecðRÞ such that ZðRÞ � P. Identify RP with an overring of
R, as in ðaÞ. Then P is a divided prime ideal in R if and only if PRP ¼ P.

(d) ½D5;Proposition 2:3ðbÞ� Suppose ZðRÞ ¼ NilðRÞ. If P dentoes this
unique minimal prime of R; identify RP with an overring of R; as in ðaÞ. Then
RP ¼ tqðRÞ.

Theorem 2.7 generalizes a result ½D6;Proposition 2:12� on CPI-exten-
sion overrings of domains.

Lemma 2.6. Let R be a ring such that ZðRÞ ¼ NilðRÞ. Then each overring T
of R satisfies ZðTÞ ¼ NilðTÞ.

Proof. If u 2 ZðTÞ, then u ¼ r=s, for some r 2 ZðRÞ; s 2 RnZðRÞ. As r is
nilpotent, so is u. u

Theorem 2.7. Let R be a ring such that ZðRÞ ¼ NilðRÞ and let P 2 SpecðRÞ.
Then the following conditions are equivalent:

(1) Both R=P and RP are divided ðresp.; locally divided Þ rings;
(2) R þ PRP is divided ðresp:; locally divided Þ.

Proof. Viewing RP as an overring of R as in Proposition 2.5(a), we see that
A ¼ R þ PRP is the overring of R given by the pullback RP �k R=P arising
from the canonical surjection RP ! k ¼ RP=PRP and the canonical inclusion
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R=P ! k ¼ tqðR=PÞ. Put Q ¼ PRP. Localizing the vertices in the pullback
description A ¼ RP �k R=P at the multiplicative sets generated by AnQ leads,
by [F, Proposition 1.9], to AQ ¼ RP �k tqðR=PÞ. Thus, we have AQ ffi RP

canonically. (Cf. also [BS, Proposition 2.5, Theorem 2.4].) Identifying via
this isomorphism, we conclude that QAQ ¼ QRP ¼ Q. Since Lemma 2.6
ensures that ZðAÞ ¼ NilðAÞ, Proposition 2.5(c) yields that Q is a divided
prime of A. Moreover, A=Q ffi R=P. Thus, we may replace R and P with A
and Q, respectively, i.e., we may assume P is a divided prime of R.

We adapt the proof of [D6, Proposition 2.12]. By [B2, Corollary 3,
Proposition 4] (resp., Proposition 2.1(a)), (2) ) (1). Conversely, assume (1).
As in [D6, page 324, lines 6712], we see that the ‘‘locally divided’’ assertion
follows from the ‘‘divided’’ assertion. Thus, without loss of generality, R=P

and RP are divided rings and, by Proposition 2.5(c), we must show QRQ ¼ Q

for each Q 2 SpecðRÞ. There are two cases, according as to whether Q � P

or P � Q. The proofs for these cases, as given in [D6, page 324], carry over
verbatim (change ‘‘domain’’ to ‘‘ring’’), provided that their calculations are
interpreted with the aid of Proposition 2.5(b) (which applies as needed,
thanks to Lemma 2.6). u

Corollary 2.8. Let R be a locally divided ring such that ZðRÞ ¼ NilðRÞ. Then
R þ PRP is a locally divided ring for each P 2 SpecðRÞ.

Proof. Combine Theorem 2.7 and Proposition 2.1(a). u

Theorem 2.10 extends [D4, Theorem 2.4], which gave characteriza-
tions of locally divided domains, to rings R satisfying ZðRÞ ¼ NilðRÞ.
Adapting the approach in [D4], we first extend [D4, Proposition 2.3].

Proposition 2.9. Let R be a ring such that ZðRÞ ¼ NilðRÞ and let
P 2 SpecðRÞ. Then T ¼ R þ PRP is a flat R-module if and only if T is a ring of
fractions of R.

Proof. We only address the ‘‘only if ’’ assertion. Pullback-theoretic con-
siderations lead to MaxðTÞ ¼ fN 2 SpecðTÞ : P � N \ R and N \ R 2
MaxðRÞg. By globalization, T ¼ \fTN : N 2 MaxðTÞg. (This intersection is
interpreted via Proposition 2.5(a), which applies thanks to Lemma 2.6 and
also ensures that TN ¼ T½N � for each N 2 MaxðTÞ:) If T is R-flat, N 2 MaxðTÞ
and M ¼ N \ R, a characterization of flat overrings [G, Proposition 10] gives
T½N � ¼ R½M � and so, by Proposition 2.5(a), TN ¼ RM . If M 2 MaxðRÞ and
P � M , some N 2 MaxðTÞ satisfies N \ R ¼ M (reason via pullbacks). The
upshot is that T ¼ \fRM : M 2 MaxðRÞ; P � Mg. The rest of the proof
of [D4, Proposition 2.3] carries over verbatim (change ‘‘domain’’ to
‘‘ring’’). u
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Theorem 2.10. Let R be a ring such that ZðRÞ ¼ NilðRÞ. Then the following
conditions are equivalent:

(1) R þ PRP is R-flat for each P 2 SpecðRÞ;
(2) R þ PRP is a ring of fractions of R for each P 2 SpecðRÞ;
(3) R þ PRP � R þ QRQ for all comparable prime ideals P � Q of R;
(4) PRP � QRQ for all comparable primes P � Q of R;
(5) PRP � RQ for all comparable primes P � Q of R;
(6) R is a locally divided ring.

Proof. The ideals, rings and inclusions in (1)7(6) are interpreted via Pro-
position 2.5(a). Now, (1) () (2) by Proposition 2.9. With Proposition 2.5
in mind, one need only augment the proof of [D4, Theorem 2.4] with the
following observations. To prove (6) ) (1): if P � M and M 2 MaxðRÞ, then
TRnM ¼ RM þ PRP. To prove (5) ) (4), note that if P � Q are primes of R
and p=r ¼ a=s 2 tqðRÞ with p 2 P; r 2 RnP; a 2 P and s 2 RnQ, then
a 2 P. u

Remark 2.4(b) noted that ‘‘ZðRÞ ¼ NilðRÞ’’ may fail for a divided ring.
It is thus of interest that NilðRÞ plays a role in characterizing (locally)
divided rings.

Proposition 2.11. Let R be a ring. Then the following conditions are equiv-
alent:

(1) NilðRÞ is a divided prime ideal of R and R=P is a divided domain for
each P 2 SpecðRÞ;

(2) NilðRÞ is a divided prime ideal of R and R=NilðRÞ is a divided
domain;

(3) There is an ideal I of R such that I � NilðRÞ; I is comparable under
inclusion to each (resp., each principal) ideal of R and R=I is a divided ring;

(4) R is a divided ring.

Proof. (4) ) (1): Combine Remark 2.4(a) and [B2, Corollary 3].

(1) ) (2) ) (3): Trivial.
(3) ) (4): We use the following criterion [B2, Proposition 2]: a ring

A is divided if and only if for all ða; bÞ 2 A � A, either ajb or bjan for some
n � 1. Assume (3), and fix ða; bÞ 2 R � R. Without loss of generality, a =2 I ,
since bj0. By (3), I � Ra, and so we may assume that b =2 Iðlest ajbÞ. Put
B ¼ R=I , and consider a ¼ a þ I ; b ¼ b þ I 2 B. Since B is divided, either
ajb or bjan for some n � 1. Suppose first that ajb. Then b ¼ ac þ w for
some c 2 R; w 2 I . As I � Ra, we have w ¼ dc for some d 2 R. Then
b ¼ aðc þ dÞ; that is, ajb. Next, if bjan a similar argument, using I � Rb,
yields bjan. u
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Remark 2.12. (a) The hypothesis that NilðRÞ is divided cannot be deleted
from the conditions in Proposition 2.11. To see this, let D be a divided
domain which is not a field, and consider the idealization R ¼ D ðþÞD.
Observe that NilðRÞ ¼ 0 ðþÞD 2 SpecðRÞ since R=NilðRÞ ffi D. Moreover,
each P 2 SpecðRÞ takes the form P ¼ I ðþÞD for some I 2 SpecðDÞ, [H,
Theorem 25.1(3)], and R=P ffi D=I is a divided domain [D2, Lemma 2.2(c)].
Thus, R satisfies conditions (1), (2) and (3) in Proposition 2.11. However, R
does not satisfy condition (4): specifically, NilðRÞ is not divided in R. Indeed,
if we choose a nonzero nonunit d 2 D, then d ¼ ðd; 0Þ =2NilðRÞ and, since
Rd ¼ fðd1d; d2dÞ : d1; d2 2 Dg; ð0; 1Þ 2 NilðRÞnRd.

(b) Proposition 2.11 globalizes to yield the following result. A ring R
is locally divided if and only if NilðRÞRM is comparable under inclusion to
each (resp., each principal) ideal of RM for each M 2 MaxðRÞ and R=NilðRÞ is
a locally divided ring.

We next study (locally) divided idealizations.

Lemma 2.13. Let R be a ring and E an R-module. Suppose that A ¼ R ðþÞE

is a divided ring. Then:

(a) R is a divided ring.
(b) Suppose that r 2 RnNilðRÞ; e 2 E; re ¼ 0 implies e ¼ 0. Then; the

R-module structure on E is induced by an RNilðRÞ-module structure on E.
(c) Suppose that ZðRÞ ¼ NilðRÞ and E is a torsion-free R-module. Then

the R-module structure on E is induced by a tqðRÞ-module structure on E.

Proof. Since A=ð0 ðþÞEÞ ffi R, (a) follows from the fact that any homo-
morphic image of a divided ring is divided [B2, Corollary 3]. Also, (c)
follows from (b), for ZðRÞ ¼ NilðRÞ implies that RNilðRÞ ¼ tqðRÞ.

(b) Consider the ring homomorphism g : R ! Hom2ðE;EÞ embo-
dying the R-module structure of E. By (a) and Remark 2.4(a),
NilðRÞ 2 SpecðRÞ. It suffices to show that if r 2 RnNilðRÞ, then gðrÞ is a
bijection. The hypothesis in (b) ensures that gðrÞ is an injection. It therefore
suffices to prove that if e 2 E, then there exists f 2 E such that rf ¼ e.

Observe that Q ¼ NilðAÞ ¼ NilðRÞðþÞE 2 SpecðAÞ since A=Q ffi R=
NilðRÞ. Hence, Q is divided in A. As a ¼ ðr; 0Þ 2 AnQ, we have Q � Aa.
Thus, there exists b ¼ ðs; f Þ 2 A such that ð0; eÞ ¼ ba ¼ ðsr; rf Þ, whence
e ¼ rf . u

Proposition 2.14. Let R be a ring. Then the following conditions are equiv-
alent:

(1) NilðRÞ 2 SpecðRÞ and R ðþÞE is a divided ring for each RNilðRÞ-
module E;
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(2) NilðRÞ 2 SpecðRÞ and R ðþÞE is a divided ring for some RNilðRÞ-
module E;

(3) R is a divided ring.

Proof. ‘‘NilðRÞ 2 SpecðRÞ’’ is included in conditions (1) and (2) in order
that the localization RNilðRÞ be meaningful. Now, (1) ) (2) trivially; and
(2) ) (3) by Lemma 2.13(a). It remains to prove that (3) ) (1). Assume (3).
Then NilðRÞ 2 SpecðRÞ by Remark 2.4(a). Let E be an RNilðRÞ-module. We
show that A ¼ R ðþÞE is divided; that is, that each Q 2 SpecðAÞ is divided
in A. By [H, Theorem 25.1(3)], Q ¼ P ðþÞE for some P 2 SpecðRÞ. By (3),
P is divided in R. It suffices to show that if a ¼ ðr; eÞ 2 AnQ, then Q � Aa.
Consider q ¼ ðs; f Þ 2 Q. As s 2 P and r 2 RnP, the dividedness of P supplies
t 2 R such that s ¼ tr. Moreover, since r 2 RnP � RnNilðRÞ, we have
r�1 2 RNilðRÞ and so, the RNilðRÞ-module structure of E permits us to consider
h :¼ r�1ðf � teÞ 2 E. A calculation reveals that

q ¼ ðs; f Þ ¼ ðtr; teþ rhÞ ¼ ðt; hÞðr; eÞ 2 Aa :

We next give ‘‘locally divided’’ analogues of the preceding two results.

Lemma 2.15. Let R be a ring and E an R-module. Suppose that A ¼ R ðþÞE

is a locally divided ring. Then:

(a) R is a locally divided ring.
(b) Suppose that for each M 2 MaxðRÞ; s 2 RMnNilðRM Þ; f 2 EM ; sf ¼

0 implies f ¼ 0. Then for each M 2 MaxðRÞ, the RM -module structure on EM is
induced by a ðNilðRM ÞÞ�1ðRM Þ-module structure on EM .

Proof. (a) follows from the second assertion in Proposition 2.1(a). In view
of Proposition 2.1(c), the conclusion in (b) is a direct consequence of Lemma
2.13(b) and the following two facts. MaxðAÞ ¼ fM ðþÞE : M 2 MaxðRÞg,
[H, Theorem 25.1]; and if Q ¼ M ðþÞE 2 MaxðAÞ, then AQ ffi RM ðþÞEM

[H, Corollary 25.5(2)]. u

Proposition 2.16. LetRbe a ring. Then the following conditions are equivalent:

(1) Each maximal ideal of R contains only one minimal prime ideal of
R. Moreover; R ðþÞE is a locally divided ring for each R-module E satisfying
the following condition: for each M 2 MaxðRÞ; the RM -module structure on EM

is induced by a ðNilðRM ÞÞ�1ðRM Þ-module structure on EM ;
(2) Each maximal ideal of R contains only one minimal prime ideal of

R. Moreover; R ðþÞE is a locally divided ring for some R-module E satisfying
the following condition: for each M 2 MaxðRÞ; the RM -module structure on EM

is induced by a ðNilðRM ÞÞ�1ðRM Þ-module structure on EM ;
(3) R is a locally divided ring.
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Proof. The condition that each M 2 MaxðRÞ contains a unique element of
MinðRÞ is included in (1) and (2) to ensure that NilðRM Þ 2 SpecðRM Þ. In view
of Proposition 2.1(c), (d), the assertion follows from Proposition 2.14 and
the facts recalled in the proof of Lemma 2.15. u

The above results simplify over domains, leading to new examples of
(locally) divided rings.

Corollary 2.17. Let R be a domain; with quotient field K. Then:

(a) Let E be an R-module. Suppose that R ðþÞE is a divided ðresp.;
locally dividedÞ ring. Then R is also a divided ðresp.; locally dividedÞ ring. If;
in addition; E is a torsion-free R-module; then for each M 2 MaxðRÞ; the RM -
module structure on EM is induced by a K-vector space structure on EM .

(b) The following conditions are equivalent:

(1) R ðþÞE is a locally divided ðresp.; dividedÞ ring for each R-module
E satisfying the following condition: for each M 2 MaxðRÞ; the RM -
module structure on EM is induced by a K-vector space structure on
EM ;

(2) R ðþÞE is a locally divided ðresp.; dividedÞ ring for some R-module
E satisfying the following condition: for each M 2 MaxðRÞ, the RM -
module structure on is induced by a K-vector space structure on EM ;

(3) R ðþÞE is a locally divided ðresp.; dividedÞ ring for each K-vector
space E;

(4) R ðþÞE is a locally divided ðresp.; dividedÞ ring for some K-vector
space E;

(5) R is a locally divided ðresp.; dividedÞ domain.

One of the most important examples of a locally divided domain is a
Prüfer domain. A domain R is a Prüfer domain if and only if R is
an integrally closed locally divided finite conductor domain ([cf. [M1,
Theorem 1]). One may ask if the preceding assertion extends to rings.
(Recall [G1] that a ring A is called a finite conductor ring if Aa \ Ab

and AnnðcÞ are finitely generated ideals of A for all a; b; c 2 A.) Now,
any Prüfer ring is integrally closed [G, Theorem 13]. However, by part
(a) of the next example, the rest of the ‘‘only if ’’ assertion does not
extend to rings. Part (b) gives more non-domain-like behavior of ‘‘locally
divided’’.

Example 2.18. (a) There exists a Prüfer ring which is neither locally divided
nor a finite conductor ring.

(b) There exists a quasilocal ring R such that dimðRÞ ¼ 1 and R is not a
(locally) divided ring.
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Proof. (a) Let K be a field and let T ¼
Q

n�1 K½½X ��, the product of
denumerably many copies of K½½X ��. View K � T via the diagonal map.
Consider the ideal M :¼ �n�1K½½X �� of T. We show that R ¼ K þ M is as
asserted.

ðR;MÞ is quasilocal; and ZðRÞ ¼ M , whence R ¼ tqðRÞ. It follows that
R is a Prüfer ring (use the criterion [G, Theorem 13] that each of its overrings
is R-flat). To prove that R is not (locally) divided, use the criterion in [B2,
Proposition 2], noting that a ¼ ðX ; 0; 0; 0; . . .Þ; b ¼ ð0;X ; 0; 0; . . .Þ 2 R are
such that ajjb and bjjan for n � 1. Moreover, R is not a finite conductor ring,
since AnnðaÞ ¼ 0 � �n�2XK½½X �� is not finitely generated in R.

(b) Choose R to be any quasilocal domain such that dimðRÞ ¼ 1. Then
A :¼ R ðþÞR is quasilocal and one-dimensional by [H, Theorem 25.1(3)].
However, Corollary 2.17(a) ensures that A is not (locally) divided, since R is
not a vector space over its quotient field. u

Prüfer rings are known to exhibit additional pathology. For instance,
Lucas [L, Example 2.11] shows that the localization of a Prüfer ring at a
maximal ideal need not be Prüfer. Nevertheless, we next obtain domain-like
behavior for the ‘‘Prüfer ring’’ property in the presence of the ‘‘ZðRÞ ¼ NilðRÞ’’
hypothesis. Both parts of Proposition 2.19 fail without this hypothesis.

Proposition 2.19. Let R be a ring such that ZðRÞ ¼ NilðRÞ. Then:

(a) R is a Prüfer ring if and only if RM is a Prüfer ring for each
M 2 MaxðRÞ.

(b) If R is a Prüfer ring, then R is locally divided.

Proof. (a) The ‘‘if ’’ assertion is valid for arbitrary rings [L, Proposition
2.10]. Conversely, suppose that R is a Prüfer ring. We show that RQ is a
Prüfer ring for each Q 2 SpecðRÞ. Since ZðRÞ ¼ NilðRÞ, we may view
R � RQ � tqðRÞ by Proposition 2.5(a). So, each overring of RQ is an overring
of R. The conclusion follows from the criterion [G, Theorem 13] that a ring
is a Prüfer ring if and only if each overring is integrally closed.

(b) By Theorem 2.10, R is locally divided if and only if R þ PRP is
R-flat for each P 2 SpecðRÞ. Using Proposition 2.5(a), we may view each
R þ PRP as an overring of R. The conclusion follows since each overring of a
Prüfer ring is flat [G, Theorem 13]. u

Let R be a Prüfer domain and E a vector space over the quotient field
of R. Then A ¼ RðþÞE is a Prüfer ring by a result of Lucas [L, Proposition
3.1 (b)] (cf. [H, Theorem 25.11(2)]). Of course, ZðAÞ ¼ NilðAÞ; and A is not
an domain if E 6¼ 0. Corollary 2.17 and Proposition 2.19(b) each may be
used to show that A is a locally divided. By [H, Theorem 25.1(3)],
dimðAÞ ¼ dimðRÞ can be any preassigned value n; 0 � n � 1.
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We focus next on the large and regular quotient rings, R½P� and R½P�,
respectively, and the variants of the ‘‘locally divided’’ concept that they lead
to. They lead to the same variant, for Corollary 2.24(c) shows that a ring R
is such that R½P� is divided for each P 2 SpecðRÞ if and only if R½P� is divided
for each P 2 SpecðRÞ. Let us say that a ring R satisfies (*) if these equivalent
conditions hold. Examples of rings satisfying (*) are given in Example
2.20(b). As those examples suggest, (*) implies ‘‘locally divided’’ (Corollary
2.24(e)), but the converse is false (Example 2.20(a)).

Recall that a ring R is said to have few zero-divisors in case ZðRÞ
is expressible as the union of finitely many prime ideals of R. Thus, if
ZðRÞ 2 SpecðRÞ, then R has few zero-divisors. For our purposes, the most
important examples of rings R having few zero-divisors are the rings R such
that ZðRÞ ¼ NilðRÞ and the quasilocal treed rings (by Remark 2.4 (a)).
(Noetherian rings also have few zero-divisors: Cf. [H, Theorem 7.2].) We
often use the result of Griffin [G, Lemma 4] that R½P� ¼ R½P� if R is a ring with
few zero-divisors and P 2 SpecðRÞ.

Example 2.20. (a) There exists a Prüfer ring R such that R has few zero-
divisors, R is locally divided and for each P 2 SpecðRÞ, neither R½P� nor R½P� is
divided.

(b) If R is locally divided and ZðRÞ ¼ NilðRÞ, then R½P� and R½P� are
divided for each P 2 SpecðRÞ.

Proof. (a) Let n � 2 be a positive integer. For i ¼ 1; . . . ; n; let Ri be a zero-
dimensional ring and put R ¼ Ri � 
 
 
 � Rn. Since dimðRÞ ¼ maxfdimðRiÞg ¼
0;R ¼ tqðRÞ (cf. [K, Theorem 84]). Hence, R is a Prüfer ring [G, Theorem 2.13].
Moreover, R is locally divided by Corollary 2.2 (or Proposition 2.1 (b)). As
SpecðRÞ ¼

‘
SpecðRiÞ has cardinality n < 1, it follows that R has few zero-

divisors. Since R � R½P� � R½P� � tqðRÞ ¼ R for each P 2 SpecðRÞ, we see that
R½P� ¼ R½P� ¼ R, which is not divided since it has n � 2 maximal ideals.

(b) If P 2 SpecðRÞ, then Proposition 2.5(a) yields that R½P� ¼ RðPÞ
¼ R½P�, which is divided. u

Proposition 2.22 pursues the phenomena in Example 2.20. First, we
state a lemma used in Theorem 2.23.

Lemma 2.21. Let R be a ring and T an overring of R. Then:

(a) ZðTÞ 2 SpecðTÞ if and only if ZðRÞ 2 SpecðRÞ.
(b) NilðTÞ 2 SpecðTÞ if and only if NilðRÞ 2 SpecðRÞ.
(c) If T is a quasilocal treed ring; then ZðRÞ and NilðRÞ are prime ideals

of R.

Proposition 2.22. Let R be a locally divided ring. Then the following con-
ditions are equivalent:
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(1) R½P� is a divided ring for some P 2 SpecðRÞ;
(2) RðPÞ is a divided ring for some P 2 SpecðRÞ;
(3) There exists Q 2 SpecðRÞ such that ZðRÞ � Q;
(4) ZðRÞ 2 SpecðRÞ.

Proof. ð1Þ ) ð4Þ and ð2Þ ) ð4Þ: Any divided ring is quasilocal and treed.
Apply Lemma 2.21(c).

ð4Þ ) ð3Þ: Trivial.
ð3Þ ) ð1Þ, (2): Let Q be as in (3). Then Proposition 2.5(a) gives

R½Q� ¼ RðQÞ ¼ RQ, which is divided, by the hypothesis on R. Then (1) and (2)
follow, with P ¼ Q. u

Part (a) of the next result gives a new sufficient condition for a ring to
have few zero-divisors.

Theorem 2.23. Let R be a ring and P 2 SpecðRÞ such that either R½P� or RðPÞ
is a divided ring. Then:

(a) ZðRÞ and NilðRÞ are each prime ideals of R; and hence R has few
zero-divisors.

(b) R½Q� ¼ RðQÞ for each Q 2 SpecðRÞ:
(c) If P is a regular ideal of R, then ZðRÞ � P.
(d) Let Q 2 SpecðRÞ such that Q � P. Then RQ and R½Q� ¼ RðQÞ are

divided rings.

Proof. (a) The first assertion follows from Lemma 2.21(c); the final
assertion then follows since ZðRÞ 2 SpecðRÞ.

(b) Combine (a) with [G, Lemma 4].
(c) Deny. Thus, we can choose x 2 ZðRÞnP and a regular element y 2 P.

By (b) and the hypothesis, T :¼ R½P� is a divided ring. Since Q ¼ ½P�R½P� :¼
fu 2 tqðRÞ : there exists s 2 RnP such that su 2 Pg is a prime ideal of T, we
have that Q is divided in T. However, x =2Q (since x 2 RnP and P is a prime
ideal of R), and so P � Q � Tx. In particular, y 2 Tx � TZðRÞ � ZðTÞ. As
ZðBÞ \ R ¼ ZðRÞ for each overring B of R; y 2 ZðRÞ, a contradiction.

(d) There are two cases. Suppose first that Q is a regular ideal of R. We
claim that ZðRÞ � Q. To see this, note first, via (b) and the hypothesis, that
T ¼ R½P� is a divided ring. Consider W ¼ ½Q�R½P� ¼ fu 2 tqðRÞ : there exists
s 2 RnP such that su 2 Qg. Observe that W 2 SpecðTÞ and Q � W . In par-
ticular, W is a regular divided prime of T. So, by Proposition 2.3, ZðTÞ � W .
Hence, ZðRÞ ¼ ZðTÞ \ R � W \ R ¼ Q.

As ZðRÞ � Q � P, an application of Proposition 2.5(a) gives RP ¼
R½P� ¼ RðPÞ and RQ ¼ R½Q� ¼ RðQÞ. As RP is a divided ring, so is ðQRPÞ

�1

ðRPÞ ffi RQ.
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In the remaining case, Q � ZðRÞ. Then, by (b),

R½Q� ¼ RðQÞ :¼ RðRnQÞ\ðRnZðRÞÞ ¼ RRnzðRÞ ¼ tqðRÞ

is divided, since it is a ring of quotients of a divided ring (namely, R½P�). It
remains to show that RQ is divided. As in the preceding case, it suffices to prove
that RP is divided. If P � ZðRÞ, then [Bo, Proposition 7(i), page 65] shows that

RP :¼ RRnP ¼ RðRnPÞðRnZðRÞÞ ffi ðRRnZðRÞÞimðRnPÞ

is a ring of fractions of the divided ring tqðRÞ, and hence is divided.
Therefore, without loss of generality, P is a regular ideal of R. Then, by (c)
and Proposition 2.5(a), RP ¼ R½P� ¼ RðPÞ, which is divided. u

Parts (c) , (e) of the next result contain assertions regarding property
(*) which were promised earlier.

Corollary 2.24. Let R be a ring. Then:

(a) Let P 2 SpecðRÞ such that R½P� is a divided ring. Then RðPÞ is either
RP or tqðRÞ.

(b) Let P 2 SpecðRÞ such that RðPÞ is a divided ring. Then RðPÞ is either
RP or tqðRÞ.

(c) The following four conditions are equivalent:

(1) R½P� is a divided ring for each P 2 SpecðRÞ;
(2) RðPÞ is a divided ring for each P 2 SpecðRÞ;
(3) R½M � is a divided ring for each M 2 MaxðRÞ;
(4) RðMÞ is a divided ring for each M 2 MaxðRÞ.

(d) Let P be a regular prime ideal of R. Then the following three
conditions are equivalent:

(1) R½P� is a divided ring;
(2) RðPÞ is a divided ring;
(3) RP is a divided ring and ZðRÞ � P.

(e) If R½P� (resp., RðPÞ) is a divided ring for each P 2 SpecðRÞ, then R is
a locally divided ring.

Proof. (a), (b): By Theorem 2.23(b), R½P� ¼ RðPÞ. By the proof of Theorem
2.23(d), ifP is a regular (resp., nonregular) idealofR, then R½P� is RP (resp., tqðRÞ).

(c) Since every prime ideal can be enlarged to a maximal ideal, the
assertions follow from Theorem 2.23(b), (d).

(d) ð1Þ , ð2Þ by Theorem 2.23(b); ð1Þ ) ð3Þ by Theorem 2.23 (d) ,
(c) and ð3Þ ) ð1Þ; ð2Þ by Proposition 2.5(a).

(e) Apply Theorem 2.23(d). u
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3 GOING-DOWN RINGS

Recall [D1] that a domain R is called a going-down domain if R � T

satisfies the going-down property GD for each domain T containing R; and
from [D5], that a ring R is called a going-down ring if R/P is going-down
domain for each P 2 SpecðRÞ. A domain is a going-down ring if only if it is a
going-down domain [D5, Remark (a), page 4]; and a ring R is going-down ring
if and only if RM is going-down ring for each M 2 MaxðRÞ [D5, Proposition 2.1
(b)]. Since their introduction in [D2], divided prime ideals and (locally) divi-
ded domains have been linked to going-down studies on domains. This sec-
tion is devoted to developing such connections in the broader context of rings.

Proposition 3.1. Each locally divided ring is a treed going-down ring.

Proof. The ‘‘treed’’ assertion is immediate from Proposition 2.1(d). In view
of the above comments, it remains only to prove that each divided ring is a
going-down ring. As appeal to [D5, Remark (c), page 4] (cf. also [B2,
Corollary3]) completes the proof. u

Although each going-down domain is treed [D1, Theorem 2.2]), a
going-down ring need not be treed [D5, Example 1]. An example of a
quasilocal going-down domain which is not a divided domain ([D2,
Example 2.9]) shows that the converse of Proposition 3.1 is false. Never-
theless, Theorem 3.4 shows how to use the ‘‘locally divided’’ concept to
characterize the treed going-down rings within the universe of reduced rings.
First, Theorem 3.3 gives a characterization of quasilocal going-down rings
within a universe determined by hypotheses that have already proved useful
in Section 2.

For the next result, recall the following definition.
A ring extension A � B is unibranched (or: B is a unibranched extension

of A) if the canonical map SpecðBÞ ! SpecðAÞ is a bijection. Lemma 3.2
generalizes [D2, Lemma 2.3], the corresponding assertion for domains.

Lemma 3.2. Let R � T be an integral unibranched ring extension. Then R is
a going-down ring if and only if T is a going-down ring.

Proof. Since integral ring extensions satisfy lying-over [K, Theorem 44],
it suffices to prove the following statement. Let Q 2 SpecðTÞ and
P ¼ Q \ R 2 SpecðRÞ; then A ¼ R=P is going-down domain if and only if
B ¼ T=Q is a going-down domain. View A � B by means of the canonical
injective ring-homomorphism A ! B. As A � B inherits integrality from
R � T , it suffices by [D2, Lemma 2.3] to show A � B is unibranched; i.e., by
lying-over, that the canonical map SpecðBÞ ! SpecðAÞ is an injection. If
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Q1 2 SpecðTÞ and Q1 � Q, then ðQ1=QÞ \ A ¼ ðQ1 \ RÞ=P. Since R � T is
unibranched, the conclusion follows from a homomorphism theorem. u

The next result on divided-going-down interplay generalizes a result
on domains [D2, Theorem 2.5].

Theorem 3.3. Let R be a ring such that NilðRÞ ¼ ZðRÞ is divided prime ideal
of R. Then the following two conditions are equivalent:

(1) R has divided integral unibranched overring;
(2) R is a quasilocal going-down ring.

Moreover, when these conditions hold, R is treed.

Proof. Suppose (1) and (2) hold, with T an overring of R as in (1). Since
T is divided, SpecðTÞ is linearly ordered by inclusion [B2, Proposition 1(a)].
The same is true for SpecðRÞ, as integrality ensures that SpecðTÞ ! SpecðRÞ
is surjective. The ‘‘Moreover’’ assertion follows.

(1) ) (2): Assume (1). By integrality, R inherits the quasilocal property
from any divided integral overring. As (locally) divided rings are going-
down rings by Proposition 3.1, (2) follows via Lemma 3.2 and (1).

(2) ) (1): Assume (2). Since ZðRÞ ¼ NilðRÞ, [D5, Proposition 2.3]
yields that R has a unique minimal prime ideal, P, and tqðRÞ ¼ Rp. By
hypothesis, P ¼ NilðRÞ is a divided ideal of R, and so PRp ¼ P by Propo-
sition 2.5(c). With D ¼ R=P, we have the pullback description

R ¼ R þ PRP ¼ RP � �1
ðP RÞ=P D

arising from the surjection � : RP ! RP=PRP ¼ RP=P and the inclusion
D ! RP=P ¼ tqðDÞ.

Since D inherits from R the property of being a quasilocal going-down
ring [D5, Proposition 2.1 (b)], it follows from [D2, Theorem 2.5] that D has
a divided integral unibranched overring. Choose one such overring E of D;
put A ¼ P�1ðEÞ. As A is an overring of R, Lemma 2.6 ensures that
ZðAÞ ¼ NilðAÞ. Moreover, P ¼ PRP \ A 2 SpecðAÞ and A=P ffi E is divided.
In addition, AP ¼ RP is divided by Corollary 2.2, since the minimality of P

yields dimðRPÞ ¼ 0. So, by Theorem 2.7, A is divided.
It suffices to prove that A is an integral unibranched extension of R.

The integrality of R � A follows from the integrality of D ¼ R=P � A=P ¼ E:
this may be seen by applying [F, Corollary 1.5(5)] to the above pullback
description of R. Finally, the ‘‘unibranched’’ assertion follows from the
‘‘divided integral’’ assertion. Indeed, since T divided implies SpecðTÞ linearly
ordered by inclusion [B2, Proposition 1(a)], the ‘‘unibranched’’ conclusion
follows by using the lying-over and incomparable properties of integrality
[K, Theorem 44]. u
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Pursuing the subject of ‘‘integral unibranched’’ ring extensions, we
turn to arguably the most important such extensions: A � Aþ, where Aþ is
the seminormalization (in the sense of [S, page 218]) of a reduced ring A.
Theorem 3.4, which completes a thrust begun in [D2], is set in a context far
removed from that of Theorem 3.3, for any reduced ring R which satisfies
ZðRÞ ¼ NilðRÞ must be a domain. Note that while much of this project is
designed to generalize domain-theoretic studies, Theorem 3.4 is new even if
R is a domain see Corollary 3.6.

Theorem 3.4. Let R be a reduced ring. Then the following conditions are
equivalent:

(1) Rþ is a locally divided ring;
(2) Rþ is a treed going-down ring;
(3) R is a treed going-down ring.

Proof. (1) ) (3): The canonical continuous map SpecðRþÞ ! SpecðRÞ is
Zariski-closed [K, Theorem 44] and bijective, hence a homeomorphism, and
hence an order-isomorphism. In particular, since Rþ is treed by Proposition
2.1(d), R is also treed. As the property of being a going-down ring is a local
property, it suffices to show that RM is a going-down ring for each
M 2 MaxðRÞ.

RM inherits ‘‘reduced’’ from R, and so RM has a seminormalization.
Since RM � Rþ

M is integral and unibranched, Lemma 3.2 shows that it is
enough to prove that Rþ

M is a going-down ring. Hence, by Proposition 3.1,
it suffices to prove that Rþ

M is (locally) divided.
Now, if N is the unique prime ideal of Rþ such that N \ R ¼ M , it

follows from (1) that Rþ
N is locally divided. Thus, it suffices to prove

Rþ
M ffi Rþ

N . As [S, Corollary 4.6] ensures that Rþ
M ffi Rþ

RnM
, we need only show

that Rþ
RnM

ffi Rþ
N :¼ ðRþnNÞ�1ðRþÞ. Since RnM � RþnN , an appeal to [Bo,

Proposition 8, page 66] reduces our task to proving that if Q 2 SpecðRþÞ and
Q \ ðRþnNÞ 6¼ f, then Q \ ðRnMÞ 6¼ f. Put P ¼ Q \ R. As Q�=N , the order-
isomorphism SpecðRþÞ ! SpecðRÞ yields P�=M . Pick r 2 PnM . Then
Q\ ðRnMÞ contains r, and hence is nonempty.

(3) () (2): Use the order-isomorphism SpecðRþÞ ! SpecðRÞ and
Lemma 3.2 to transfer the ‘‘treed’’ and ‘‘going-down ring’’ properties
between R and Rþ.

(3) ) (1): We show that Rþ
N is a divided ring for each N 2 MaxðRþÞ.

Put M ¼ N \ R. By integrality, M 2 MaxðRÞ; and, by the above argument,
Rþ

N ffi Rþ
M . It suffices to prove that D ¼ Rþ

M is divided.
In view of (3) and the order-isomorphism SpecðDÞ ! SpecðRM Þ, D is

quasilocal and treed. Hence, NilðDÞ is the unique minimal prime ideal of D.
Moreover, being a seminormalization, D is seminormal (see [S, page 218,
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lines 172]) and hence reduced. Thus, 0 ¼ NilðDÞ 2 SpecðDÞ, and so D is a
domain. In fact, D is a going-down domain, by applying Lemma 3.2 to
RM � D. It remains only to note that any seminormal quasilocal going-down
domain is divided; and this is a consequence of [D2, Corollary 2.6] and the
‘‘x2; x3’’ criterion for seminormality of a domain [GH]. u

The above proof shows that any ring R satisfying the hypothesis and
conditions in Theorem 3.4 must be locally a going-down domain. However,
such R need not be a domain: consider R ¼ D1 � D2 � 
 
 
 � Dn, where each
Di is a going-down domain and 2 � n < 1.

Corollary 3.5. Let R be a seminormal ring. Then the following conditions are
equivalent:

(1) R is a locally divided ring;
(2) R is a treed going-down ring.

Proof. Since R is seminormal, R is reduced and Rþ ¼ R ([S, page 218, lines
1–2)]. Apply Theorem 3.4. u

Corollary 3.6. Let R be a domain. Then the following conditions are equi-
valent:

(1) Rþ is a locally divided domain;
(2) Rþ is a going-down domain;
(3) R is a going-down domain.

Proof. Any going-down domain is treed [D1, Theorem 2.2]; and any
domain is reduced. Apply Theorem 3.4. u

We next move beyond hypotheses like ‘‘ZðRÞ ¼ NilðRÞ’’ and ‘‘R is
reduced’’ to study arbitrary going-down rings. Proposition 3.7 generalizes a
result on domain [D3, Corollary 2.4] and is motivated by [B2, Proposition 21].

Proposition 3.7. Let R be a going-down ring. Then each ðnonzeroÞ principal
regular prime ideal of R is a maximal ideal of R.

Proof. Deny. Then there exists P 2 SpecðRÞ and M 2 MaxðRÞ such that P
is a principal ideal, P�= ZðRÞ and P � M . As P�= ZðRÞ, the height of P is
nonzero (cf. [H, Theorem 2.1]); hence, we can choose Q 2 SpecðRÞ such that
Q � P. Observe that D ¼ R=Q is a going-down domain [D5, Proposition 2.1
(b)] in which P=Q is a nonzero principal nonmaximal prime, contradicting
[D3, Corollary 2.4]. u

Example 3.9 shows that the ‘‘regular’’ hypothesis cannot be deleted
from Proposition 3.7. First, we need to develop a method for constructing
going-down rings with zero-divisors. Pullback methods have already been
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developed in [D5, Proposition 2.2] (which was a chief motivation for The-
orem 2.7). Motivated by the examples in Section 2, we turn to idealization
and give a going-down-theoretic analogue of Proposition 2.14.

Proposition 3.8. Let R be a ring. Then the following conditions are equiv-
alent:

(1) RðþÞE is a going-down ring for each R-module E;
(2) RðþÞE is a going-down ring for some R-module E;
(3) R is a going-down ring.

Proof. Let E be an R-module and put A ¼ RðþÞE. It suffices to show that
A is a going-down ring if and only if R is a going-down ring; i.e., that A=Q is
a going-down domain for each Q 2 SpecðAÞ if and only if R=P is a going-
down domain for each P 2 SpecðRÞ. Recall from [H, Theorem 25.1] that
SpecðAÞ ¼ fPðþÞE : P 2 SpecðRÞg. Consider Q ¼ PðþÞE 2 SpecðAÞ, with
P 2 SpecðRÞ. It suffices to observe that the surjective map R ! A=Q;
r 7! ðr; 0Þ þ Q, has kernel P, so that A=Q ffi R=P. u

Example 3.9. There exists a going-down ring with a nonzero principal
nonmaximal prime ideal.

Proof. Take R to be any going-down domain which is not a field and put
A ¼ RðþÞR. By Proposition 3.8, A is a going-down ring. Let a ¼ ð0; 1Þ 2 A

and P ¼ Aa ¼ 0ðþÞR. Since A=P ffi R, the nonzero principal ideal P of A is a
nonmaximal prime ideal of A. u

One motivation for [D2, Theorem 2.5] was to generalize the result of
McAdam [M2, Corollary 11] stating that a quasilocal integrally closed
domain is a going-down domain if and only if it is a divided domain. It thus
is natural to ask if Corollary 3.5 remains valid when its ‘‘seminormal’’
hypothesis is changed to ‘‘integrally closed.’’ Example 3.10 answers this
negatively.

Example 3.10. For each n; 1 � n � 1, there exists a quasilocal integrally
closed treed going-down ring which is not (locally) divided and which has
dimension n.

Proof. Choose an n-dimensional valuation domain R, and put
A ¼ RðþÞR=M . By [H, Theorem 25.1(3)], dimðAÞ ¼ dimðRÞ ¼ n. Since R is a
going-down domain (hence, a going-down ring), Proposition 3.8 yields that
A is also a going-down ring. As SpecðAÞ ¼ fPðþÞR=M : P 2 SpecðRÞg, A
inherits ‘‘quasilocal’’ and ‘‘treed’’ from R. Moreover, since R is integrally
closed and ZRðRnMÞ ¼ M , it follows from [H, Corollary 25.7] that the
integral closure of A is RðþÞðR=MÞRnM ¼ RðþÞR=M ¼ A; i.e., A is integrally
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closed. It remains to show that A is not divided. Observe that
Q ¼ 0ðþÞR=M 2 SpecðAÞ. Q is not divided in A, for if we choose a nonzero
element r 2 M , then a ¼ ðr; 1 þ MÞ 2 AnQ although Q�= fðr1r; r1þ
r2r þ MÞ : r1; r2 2 Rg ¼ Aa. u

Remark 3.11. It follows from the idealization construction that the ring A in
Example 3.10 satisfies ZðAÞ ¼ 0ðþÞR=M ¼ NilðAÞ. Moreover, A satisfies (2)
but fails to satisfy (1) in the statement of Theorem 3.3. Hence, one cannot
remove from Theorem 3.3 the hypothesis that the nilradical be a divided
(prime) ideal. (In fact, for the ring A in Example 3.10, NilðAÞ is the ideal Q
which was shown directly to be nondivided in Example 3.10. Thus, Theorem
3.3 leads to another proof that Q is nondivided.) In view of the uses to which
the ‘‘divided’’ hypothesis was put in the proof of Theorem 3.3, we would argue
for the appropriateness of the pullback-theoretic couching of that proof, of its
supporting result Theorem 2.7 and, more generally, of the approach in Section
2 to studying locally divided rings B satisfying ZðBÞ ¼ NilðBÞ. In closing,
we ask for an equally appropriate mechanism to illuminate and extend the
work in Section 2 on locally divided rings B for which ZðBÞ 6¼ NilðBÞ.
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