
Efficient Arabic Query Auto-Completion for Question Answering at a
University

Momin Abdelhafez, Ghaydaa Khateeb and Adnan Yahya
Computer Engineering Department

Birzeit University
Birzeit, Palestine
yahya.birzeit.edu

Abstract— In this paper we describe an implementation of
an Arabic query auto-completion system for student question-
answering at a University. University students make many
inquiries concerning academic life: about majors, concentra-
tions, dates, instructors, courses, rooms, exams and more. Auto-
completion (AC) has recently been part of many user interfaces,
such as search bars on web pages, social media sites and mobile
applications. We investigate multiple approaches to completion
candidate generation and ranking and the role Arabic NLP
may play in that. After experimenting with other options, we
collected the data used in our system directly from students at
the University. This data can be expanded to account for more
types of queries and ways to express information needs. We
describe our dataset, give an evaluation of individual system
components and of the system results in general. Our goal is
to improve the answer search experience by reducing the time
of entering the query and biasing the completed query towards
unambiguous and easily answerable questions. We divided the
implementation into different stages and came up with the
results for each stage separately. The results we got were very
good compared with other QAC systems and it can improve the
QAC used for the Arabic language in general. Finally, we give
an informal evaluation of overall results and the improvement
resulting from using QAC for our QA system.

I. INTRODUCTION

Auto-completion (AC) has recently been part of many
modern user interfaces [1], such as search bars on web pages,
social networking sites, numerous mobile applications and
many text editors and IDEs (e.g. VS code, sublime) [2].
Users are more likely to utilize search engines that grasp
their goal and save time and effort by anticipating their
information needs and helping formulate the queries that
truly reflect these needs. Users prefer search tools with such
characteristics because they eliminate the need to struggle
with crafting the query conveying the information required
and avoid typing difficulties especially on small devices. The
query completion benefit is not limited to recognizing the
user’s need, but may also assist in better answering his/her
questions by making it more specific to the issuing user or
time of issuance and biasing the query formulation so that it
is unambiguous and can be answered efficiently [3].

A. Query Auto-Completion (QAC)

Auto-completion works by taking what the user is typing
and anticipating his/her need and automatically completing

the task of issuing the query/question expressing the infor-
mation need. QAC is common in modern search engines, as
it can enhance the search experience by reducing the time it
takes to enter a query by significantly reducing the number
of characters typed by the user. It also reduces the number
of typing errors by simply offering the user to choose one
of the suggestions displayed [4]. Auto-replace is a concept
related to auto-completion in which specified abbreviations
are typed and the system automatically replaces them with
full-blown strings. The QAC feature is useful in many
domains, including web and eCommerce searches where
using this feature, users can select full searches based on
a prefix of a few characters. There are two steps in QAC:
starting with a prefix entered by the user, a number of
completions is generated to form the suggestion list [5]. In
the second step, the suggestions are ranked based on the
system assessment of their relevance to the user information
need and the top ones are displayed to the user.

B. Problem Description

University students make many inquiries concerning aca-
demic life: about majors, concentrations, dates, instructors,
courses, rooms, exams and more. A system that completes
student questions by mapping their partial queries to standard
ones that can be translated to executable structured query
language (such as SQL or SPARQL) can be of great help.

Students ask their questions on social media sites like
Facebook in a variety of ways.

QA is not straightforward especially if the user can ask
unrestricted questions in natural language. AC may be uti-
lized to limit user question variations by suggesting specific
completions for a given prefix. The adopted completion can
then be translated into a structured query language to get the
answer easily. Ideally, we need to take all possible ways a
user may issue a query and map them to the standard one:
only stanard queries are given as a suggestions.

A system that gives students direct answers to their
questions can be very useful and can be integrated into
the University portal. There are some important points that
should be present in such a system:

1) The queries in the suggestion list should be ranked
so that the intended question should be among the



top n (say 3) in the list.
2) The system should be adaptive, by learning from

correct (user adopted) and incorrect (user rejected)
suggestions.

3) Two stages are included in the QAC [6]: the gener-
ation stage, where we identify potential completions
for the partially entered query. Then the ranking
of the generated potential completions, based on
criteria like relevance to entered prefix, User Profile,
popularity or using learning-based approaches such
as Neural Language Modeling. We will talk about
the details in the Methodology section.

II. BACKGROUND AND RELATED WORK

In this section, we discuss aspects of QAC and QA
related to the system we are developing. First we dis-
cuss two approaches to QAC: traditional/heuristic then
learning/language-based approaches. We also talk about QA
and finally the datasets for QAC.

A. Heuristic Approaches to Query Auto-Completion (QAC)

1) Probabilistic QAC Approaches: These approaches try
to compute the probability P (qc|p, t, u) of generating a query
completion qc when the user types prefix p, taking into
account the time t and the user u [4].

2) General QAC Models: An ideal QAC system generates
candidates ordered according to their chance of matching the
user’s information need. The Maximum Likelihood Estima-
tion (MLE) is determined based on the past popularity (i.e.,
frequency as computed from logs) of queries. [7] refer to
this type of ranking as the most popular completion (MPC):

MPC(p) = arg max
q∈C(P )

w(q), where w(q) =
f(q)∑

qi∈Q f(qi)

Where f(q) is the frequency of query q in search log Q, and
C(p) is a collection of all query completions that begin with
the prefix p.

3) Time-sensitive QAC Models: The assumption in the
previous equation is that the population of queries does not
change over time. The ranks will be the same independent
of time and completions will be based only on historical
popularity. For our system, the time factor is important
because certain queries occur frequently at given times, like
the exam period, registration dates, and so on, as shown in
the following equation:

MPCt(p) = arg max
q∈C(P )

w(q), where w(q) =
αf(q)∑
qi∈Q f(qi)

were α is the timing factor that changes according to the
current period of time for query q: if the current period of
time matches the the query q, the value of α increases.

4) User-centered QAC Models: QAC techniques leverage
information about a user’s search history and interactions
with a search engine to rank the proposed completions. QAC
efficacy is boosted when the user’s specific context is taken
into account.

B. Learning/language-based QAC Approaches

1) Learning-based QAC Approaches: The learning-based
QAC techniques should take both time-related and user
interactions into consideration. Because there is a lot of
ambiguity in the semantic relations (more than one word has
the same meaning or the text may be read in many ways),
extracting characteristics from the Arabic text is not a simple
procedure. To do so, we may use:

• Arabic Ontology [8].
• Lexical syntactic patterns [9].
• Automatic extraction of relationships [10].

2) Neural Language Modeling: In neural language
models, the probability of a text sequence is measured,
for example, if we have a sequence of words, we can find
the predicted next word based on the embeddings of the
previous several words. For this purpose, the Recurrent
Neural Networks (RNN) [11] are used to summarize
sequence of words into different states and apply the RNN
at each state. The problem with neural language modeling
approaches is that they are time-consuming in the training
stage because they compute costly normalization terms
which demand iterating over all words in the computation
of word probability. To resolve this issue, un-normalized
language models may solve the problem by approximating
the normalization over the whole vocabulary in word
probability, so these language models are the efficient
language models for QAC ranking [12]. The Long Short
Term Memory (LSTM) is an enhanced version of RNN that
resolved the exploding and vanishing gradients problems of
the RNN [13].
We adopted LSTM deep learning approach as it worked
well for QAC, for example with the AOL dataset1 [13].

C. Arabic QAC

Despite the presence of Arabic QAC in search engines,
researches on Arabic QAC are few, so we are trying to
increase the efficiency of Arabic QAC, and hence the quality
of Arabic Question Answering (QA).

D. Question Answering (QA)

The massive expansion of online information necessitates
the development of Query Answering systems to bridge the
gap between end-users and the many data representations on
the Web. QA is the process of responding to users’ questions
and providing definitive and precise answers to their inquiries
rather than documents containing the answer. The following
are examples of questions that may be asked:

• Who were the 10 richest people in the world in the
year that Germany last won the Football World Cup?

• How many times did National University rank in the
top 2% in QS World University Rankings?

There are several types of QA:

1https://www.kaggle.com/datasets/dineshydv/aol-user-session-
collection-500k



• Free text only: the query is issued in natural language
and the answers are extracted from the text.

• Structured SQL query and data stored in a database.
• Un-structured (free) Query and data stored in a

database.
Clearly, answering queries from a database is most promis-

ing in terms of answer precision. The problem is that much of
the web data is not structured. A possible solution to answer
queries from free text is to use the methods of information
extraction (IE) to convert textual data into database tuples
that can be queried using database style queries. By translat-
ing free text queries to a structured language (such as SQL
or SPARQL) one is able to return exact responses from the
database.

The QA system we are developing here relies on database
queries formulated based on natural language questions
asked by the user using QAC.

General QA systems are complicated and demanding
especially when the language is challenging like the Arabic
language.

Difference Between Question Answering and Infor-
mation Retrieval: In IR, the system returns documents that
are related to the input query by measuring the distance
between the possibly modified query and the document.
In QA, the process can be done either by translating the
standard query into structured query language [3], to get the
answer from the database directly or using IE, to extract the
answer from some text [14]. This the approach we use here,
with the database being the University information system.
In the absence of a database, the QA must isolate the exact
components of the document that are the best candidates
for answers and return them as potential answers. Of course,
both QA and IR can benefit greatly from AC, and IR systems
utilize query expansion (reformulation) extensively.

Question Answering and Database Querying: In order
to return a specific answer for the asked question, the input
user query should be translated to an executable structured
query language [3]. Figure 1 shows the Arabic query and its
mapped SQL query.

Fig. 1: Arabic Question to SQL Query

E. Auto-completion Effect on Question Answering

With our type of AC, we guide the user to select one of
the suggested queries which can be easily translated to a
structured query language, allowing the system to quickly
return a specific answer. Without AC, the problem would
be more complicated because the large number of possible
natural language queries cannot be easily translated to struc-
tured query language. Our challenge is to find a mapping
from user entered partial queries to standard queries easily
translatable to SQL.

F. Datasets

1) General QAC Datasets: AOL dataset is the most
popular dataset used for QAC. This collection consists of
20M web queries collected from 650k users over three
months. The goal of this collection is to provide real query
log data from real users. It can be used for personalization,
query reformulation or other IR tasks.

2) Our QAC Dataset: For our system, the dataset should
contain the following:

• The standard questions that will be translated to
structured query language.

• Each standard query has variations of queries that
students usually ask.

• Each standard query should be combined with addi-
tional parameters: studying level of student asking the
question and the period of time the question usually
asked, that may be used for better ranking.

Figure 2 depicts several options for posing question express-
ing the following information need: ”What are the Operating
System (OS) course prerequisites?”

Fig. 2: Different Ways for Asking a Specific Question

We tried two approaches for collecting the dataset:
• Data scraping from social media sites.
• Google form that contains several standard and stu-

dents were asked to add variations reflecting ways
they may ask each standard question. We elaborate
on the details of dataset collection later in this paper.

III. METHODOLOGY

In this section, we describe the design, implementation
and testing for our QAC system depicted in Figure 3.

A. Design Flow

According to the diagram in Figure 3, the student starts
using the system by entering his/her information: student ID
and major/minor.

• Student ID: from the student ID, we can infer the
study Level. According to this information, we can
suggest relevant entities (courses, instructors, etc) be-
cause our data stores majors, instructors, and subjects
and the corresponding levels. We can extract the level
of the course from the course number, for example
ENCS332 indicates that this course is a third year
course (first digit is 3) and the number of credits (the



Fig. 3: QAC System Design

second digit). Figure 5 shows the type of data we may
have readily available (instructor and courses taught).

• Major/Minor: we can make suggestions related to
student major/minor according to the data in figure 5
and major/minor study plans.

Then the student starts entering the query, and the following
elements are activated:

1) Word-Level Completion: As the student enters a prefix
in the search bar, the system begins the word-level comple-
tion. Our word-level system generates the 10 most frequent
words that start with the entered prefix. The frequency is
based on the query variants we have, but may also be based
on that individual usage history.

2) NER: Each of the 10 possible completions, generated
for the current prefix, is processed using the NER model.
The model is activated with every new entered/predicted
word. So, if the student entered a new word, the entire
input prefix is processed by our NER model and the
same for the predicted word from the next-word prediction
model. These classifications are used for generating sug-
gestions/completions and ranking them, for example, if the
student entered an entity name like the instructor name, the
suggestions will be related to the entity name entered by the
student.

3) Next-word Prediction: We predict the next n words
for each one of our 10 completions. We’ll determine the
best value for n after experimentation, by setting n = 3 and
see the quality of our classification model (next section), n =
4, n = 5, and so on. If n = 5 and the entered prefix consists
of m words where m < n, we’ll predict the next 5 − m
words, and if the number of entered words more than 5, we’ll
predict the next word, because n = 5 is the best value of n to
classify the variant queries.The prediction will form a tree of
words, each path from the root node to leaf node will form
a variant query. The root is the entered prefix, that consists
of k words, where k is the number of the entered words

by the student. When the student tries to enter any word,
our word-level prediction model predicts its completion, and
the next-word prediction reformulate the prediction when the
word becomes ready. The prediction quality becomes better
when the number of previous words increases because the
model can detect the dependencies between the next word
and the previous words. The student’s entered query has
more priority than the predictions, and the suggestions will
become less each time the student adds more information
about the questions that he wants to ask (limiting his need).
The following example in figure 4 shows the expected tree
of the model when the student enters the word: 	á�
Ó.

Fig. 4: Arabic Question to SQL Query

4) Mapping variants to standard queries: We have 10
variants of queries, each of them consisting of n words,
where n is the best number of words for each variant in
which it’s possible for the system to map this variant to
its standard suggestion and each one of them is classified



Fig. 5: Major-related Data

to its standard query. Standard queries contain variables
representing entities like Instructor names, TAs and Courses.
These symbols are replaced with specific entities based on
the student study level. The process is repeated with changes
to the the entered prefix because student input is given high
priority in classification. For example, if the user rejects
suggestions and completes his word manually, next-word
prediction will be based on the manually completed word,
and if the word was an entity (Course, Instructor, etc) the
standard completions will be related to the entered entity.

5) Question Classification: Each of the standard queries
is manually classified to a class (exams-related, registration-
related, etc). The standard completions may be re-ranked
based on factors like the current time of the semester.

6) Translating Standard Queries to Structured Query
Language: Now, when the student chooses one of the
suggestions, our QA model maps the selection to a structured
query (e,g, SQL) to return the specific answer from our
database. The selection click is stored to calculate the Click
Through Rate (CTR) which is used for system evaluation
as elaborated later. Figure 6 shows the output for prefix:
ú



�
GYJ
Ó of the word: ÐQ�


�
KYJ
Ó entered by a final year computer

engineering student in the midterm exams period of the
semester.

Fig. 6: QAC System Output

B. Dataset Collection

For the dataset building, we tried two methods: data
scrapping of student queries from popular social media sites
and direct data collection from students by filling forms.

1) Data Scraping of Student Queries from Social Media
Sites: Social media sites recently have become the most
common communication platform for students. There are

several groups where students usually ask their questions
about majors, exams, instructors, etc. So, we tried to scrap
data from these sites as follows:

• A python script was written to scrap the content of
potentially relevant posts.

• The scrapped data were stored in an excel file.
• Although there are some posts with more than 50

words, we scrapped posts with a max of 20 words,
because we estimated that larger posts are probably
not related to questions about university matters.

We found that the scrapped data needed substantial pre-
processing, and we need to classify it between queries related
to our system, and those related to matters not within our
scope like elections, political matters, and administrative
matters. Also, the data on the scrapped sites is frequently
deleted, so its quantity is somewhat small. That’s why we
decided to use the direct approach to get a cleaner dataset.

2) Direct Data Collection from Students: In this approach,
we created a google form and shared with students. The
form contains standard queries in English to avoid biasing
student responses. Students were asked to express the English
question in Arabic, and in as many variations as they can.
Figure 7 shows samples of our collected data. So far, we
have received about 35 responses (from 30 students) with
45 standard queries and 25 variations for each, on average.

Fig. 7: Dataset Samples

So our dataset consists of standard queries (45), variants (25
per standard query) plus the following additional parameters:

• Variant queries have variables representing the en-
tities used like instructor name, year of studying,
subject name, etc.

• Student level as a parameter to represent at which
year the query is asked the most. Each standard query
has this parameter (assigned manually). The student
fills his personal data which includes his studying
level, as a result, the suggestions ranking will be
changed accordingly. For example, a student in his
final year is supposed to see some suggestions related
to graduation projects course (usually taken in the
final year of study).

• The asking time parameter represents the time of year
the query is asked the most. The time is assigned



manually for each standard query, and according
to the time that the student uses the system, the
suggestions ranking will be changed. For example,
if the student uses the system in June he is supposed
to see some suggestions related to exams.

C. QAC Word Prediction and Named Entity Recognition
(NER)

1) Word Completion: We used the Trie data structure2 for
completing words from its prefix (set of input characters).
The trie data structure is represented as a tree, each node
contains word prefix. According to the entered prefix, all
possible words will be formed by going through the tree to
its all possible nodes. We built a trie for all the vocabulary
(unique words) in our dataset. The frequency of each word
was used to rank the words so the word with highest fre-
quency will be ranked first. Figure 8 shows the construction
of the Trie data structure.

Fig. 8: Trie Data Dtructure

2) NER: The output queries have variables representing
entities. The reason for that is when the student starts
entering the query, our NER model starts classifying the
words to NEs like INSTRUCTOR, TA, COURSE, etc., and
each one of these entities is represented by a variable. This
variable will be replaced by the correct entity based on the
information of the issuing student (major, studying year, etc),
the current time of the semester (midterm/final exams dates,
registration, courses withdrawal and addition) as well as the
Instructors and their courses in the current semester. Table
I shows the entities and their mapped tags in the NER model.

TABLE I: NER Classes
Entity Tag
Instructor INSTRUCTOR
Teaching assistant TA
Subject COURSE
Evaluation (exams, projects) EVAL

We tested our dataset with two approaches: CAMeL

2https://iq.opengenus.org/ autocomplete-using-trie-data-structure/

Tools with rule-based and machine learning techniques, we
adopted the approach that achieved best results.

NER with CAMeL Tools: CAMeL tools are a collection
of open-source tools for Arabic Natural Language Processing
(NLP), for NER using ANERcorp [15] dataset.

CAMeL Tools with Rule-Based NER: As our system is
for universities, the number of entities is limited, so CAMeL
library with rules is a good solution. We have different sets
of instructors, teaching assistants, courses, etc. So we can
distinguish these entities easily once the CAMeL detects a
person’s name (PER) or overall entity (O). When CAMeL
detects person name (PER) it should be either instructor’s
name or TA name. Based on our lists of TAs and instructors
we can make that distinction easily. In addition to the
lists, we used the previous words to detect the entity, (e,g.
Pñ��


	
¯ðQK. ,Pñ

�
J»X for Instructor, ÕÎªÓ , Y«A�Ó ,

	
XA
�
J�


@ for TA,

and �Pñ» ,
�
�A�Ó ,

�
èXAÓ for COURSE). The same for overall

entities which should be either course or evaluation: we built
a list that stored all possible words used for courses and
evaluations, also we relied on the previous words. Out of 130
words, our model classified 125 correctly with a success rate
of 96%. Figure 9 shows a sample output of our NER model.
Table II shows the percentage of correct classifications for a

Fig. 9: NER Rule-based Output

set of random test cases from different students.
TABLE II: NER Classes

Entity Precision Recall F-mesure
INSTRUCTOR 94.6% 86.1% 90.1%
TA 96.6% 92.1% 94.3%
COURSE 94.5% 81.9% 87.7%
EVAL 91.9% 87.4% 89.6%

Machine Learning NER: In addition to Rule-Based
method, we trained a machine learning NER model using
some of Scikit-Learn’s libraries3. The data we used was an-
notated with POS tags to help the NER model to classify the
words correctly. We trained 6834 words with the following
NEs: INSTRUCTOR (460 words), COURSE (708) words,
TA (129 words) and EVAL (120 words), and the rest was

3https://scikit-learn.org/stable/



classified as O (others) and it has 5417 words. We used
the following classifiers: Perceptron, SGD, Naive Bayes and
Passive Agressive Classifier. 25% of the dataset is used for
testing. See table III which shows the results of our machine
learning model.

TABLE III: Machine Learning NER Results

Classifier Entity Tag Precision Recall F-
measure

Perceptron

INSTRUCTOR 98.0% 95.0% 97.0%
TA 91.0% 89.0% 90.0%
COURSE 93.0% 92.0% 93.0%
EVAL 94.0% 87.0% 91.0%
O 98.0% 99.0% 99.0%

SGD
INSTRUCTOR 98.0% 94.0% 96.0%
TA 95.0% 94.0% 95.0%
COURSE 98.0% 91.0% 94.0%
EVAL 97.0% 79.0% 87.0%
O 98.0% 97.0% 98.0%

Passive Agressive INSTRUCTOR 98.0% 95.0% 97.0%
TA 91.0% 82.0% 86.0%
COURSE 98.0% 89.0% 93.0%
EVAL 94.0% 85.0% 89.0%
O 97.0% 96.0% 97.0%

Naive Bayes INSTRUCTOR 75.0% 93.0% 83.0%
TA 82.0% 90.0% 86.0%
COURSE 79.0% 91.0% 84.0%
EVAL 73.0% 92.0% 82.0%
O 98.0% 94.0% 96.0%

3) Next-Word Prediction: We used LSTM for next word
prediction. We built a sequential model for next-word predic-
tion. An embedded layer was created to represent individual
words. We added another LSTM layer to the model, and we
gave it 100 units with all the units being specified true so as
to pass through another LSTM layer, another LSTM layer
was added to this model but with a specified value false
by default. After that, we started passing the model through
hidden layer with 100 node units using dense layer and ReLU
as the activation function. In order to ensure that we acquire
a range of probabilities for a single vocabulary size, the last
layer was then sent through an output layer with a specific
vocabulary size and Softmax activation function. See figure
10 which shows our model. We trained it on our dataset with

Fig. 10: LSTM Model

350 epochs which indicates the number of iterations of the
entire training dataset that the learning algorithm completed,

and with batch size equals to 32, where batch size refers to
the number of training examples utilized in one iteration. We
got an accuracy of 84.51% and loss value of 0.27, where the
loss value refers to how bad the model’s prediction was on
a single example (value between 0 and 1).

D. Classification

The goal of this step is to map the input (variant query
which is resulted from word-level and next word prediction
models) to its class (standard query). After pre-processing,
we tested classification using different machine learning and
deep learning models as follows:

1) Data Preprocessing: Data preprocessing may be an
important process to achieve better results in ML. Here, it
consists of the following steps:

1) Removing words duplicates.
2) Removing stop words

tÌ'@ . . , úÎ« , 	á« , úÍ@ , 	áÓ. We used NLTK python

library that contains all Arabic stop words 4.
3) Normalization: removing confusing letters

?! , ð


ð ,ø




ø ø ,

�
è è , @






@
�
@

4) Removing non-Arabic characters.
5) Removing Diacritics

ÕÎªÓ : Õ
�
Îª

�
Ó.

6) Removing tide in letters (duplicate letters):
ð : ðð

ø


: ù



K


@ : @ @

2) Deep Learning Classification (Multiclass-Keras-Neural
Networks): Keras is a powerful, free, open source Python
library for developing and evaluating deep learning models.
We used both ReLU (Rectified Linear Unit) and Sigmoid
as activation functions represented by equations 2 and 3,
respectively.

σ(z) =
1

1 + e−z
(1)

R(z) = max(0, z) (2)

Figure 11 shows the plot for those two functions.

Fig. 11: Sigmoid VS ReLU

The problem with ReLU is that any negative input given to
the activation function turns the value into zero, which affects
the results by not mapping the negative values appropriately.

4https://github.com/mohataher/arabic-stop-words/blob/master/list.txt



we used the multi-class neural networks model for our
classification and the precision was about 88%, recall was
87% and F-measure was 87.49% . Figure 12 shows sample
output of the classifications.

Fig. 12: Deep Learning Classification Output

3) Machine Learning Classification: We experimented
with different classifiers using Weka tool on our dataset. We
vectorized our queries using StringToWord Weka filter, then
we tested these vectors using several supervised machine
learning approaches and 10-Fold cross validation to test the
models5. Table IV shows the classification results.
TABLE IV: Machine Learning Classification Results of
Variants into Standard Queries

Classifier Precision Recall F-measure
Decision Tree 71.0% 70.6% 70.8%
Random Forest 81.9% 81.8% 81.1%
SVM 86.0% 84.7% 84.5%
NaiveBayes 87.4% 87.0% 86.8%

The deep learning and ML models are comparable,
but we adopted the deep learning model as it achieved
slightly better results. The mapping from variant to standard
is very important process for our QA system, it’s easy for us
to translate the standard queries rather than the the variants.

4) Time-Sensitivity and Personalization: Each standard
query has two parameters:

The studying year in which this question is usually
asked: This point is related to the subjects taught in different
years/semesters, each course in our data has the study year
as a parameter, and the names of the teachers who teach
this course. The ranking of the suggested list may change
depending on these parameters: for example if the student is
looking for an elective, courses beyond his current level will
be given lower priority.

In what period is the question usually asked: There are
questions related to exams, and there are questions related
to registration matters.

E. Questions Classification

We classified the standard queries manually as: exam-
related, registration-related, graduation projects-related, fi-
nancial matters as shown in Table V. This classification will
help us in the suggestions ranking stage, by changing the
rank according to the current period of the semester and the
student’s studying level.

5https://machinelearningmastery.com/k-fold-cross-validation/

TABLE V: Standard Questions Classification
Class Question
Exams ú



«A
	
J¢�B@ ZA¿

	
YË@

�
HA

	
KAj

�
JÓB

�
é
�
®K. A� h.

	
XAÖ

	
ß

Registration Èð


B@ É�

	
®ÊË ÉJ
j. �

�
�Ë @



@YJ. K. ú

�
æÓ

Graduation h. Q
	
j
�
JË @ ¨ðQå

�
�Ó È 	Q

	
K


@ 	áºÜØ ú

�
æÓ

Financial Èð


B@ É�

	
®ÊË ¡J
�

�
®
�
JË @



@YJ. K
 ú

�
æÓ

F. QAC Suggestions Ranking

The suggested queries should be ranked in a satisfying
way for the student who asks the question, with the shortest
entered prefix. The user is supposed to see the desired
completion that reflects the student’s need. For example, if
we are in the exam period, the student probably will ask
about exam dates, previous exam forms, and so on. If the
student is in his first year of studying, he will ask about first-
year subjects. Sometimes, students share the same questions,
for example, at the beginning of the semester, all students ask
about subject registration and lecture dates. So the frequency
of a question (number of times the question is being asked)
during a specific period of time (e.g. the first month of the
semester) is good to for ranking questions. There are several
criteria to rank our suggested completions as shown in the
following equation:

RScore(c) = α
f(c)

F
+ β

∑
qs∈Sp

cosSim(c, qs)

Np
+ γ

NE

NC

Suppose we are in the exams period. RScore(c) represents
the ranking score for completion c, f(c): the general fre-
quency of completion c over a period of time, F : the total
number of occurrences for all standard queries within the
considered time period, qs is a standard query from the set
of standard queries Sp that are related to exams period, Np

is the number of standard queries that are related to the exam
period. NE is the number of entities related to the studying
level of the student in the completion c, and NC is the total
number of words in the completion c. We selected the values
for α, β, γ to be 0.2, 0.4, and 0.4 respectively because the
student prefers to see suggestions that match his need, we
increased the values of β and γ compared to α.

G. QAC Evaluation

A good QAC system is one that returns the user’s need
with the shortest entered prefix p. The following specifies the
parameters that are taken into account for our QAC system
evaluation.

Score(p) = αCTR(qc) + β
1

Length(p)
, CTR(qc) =

NC

I

where p is the input prefix from the user and Length(p) is
the length of p; qc is the suggested completion and CTR(qc)
is its click-through rate defined through NC: the number of
clicks, and I: the impression which represents the number
of times the completion qc is shown to the user, every time
the query is suggested, its impression value will be increased.
For example, if the completion q̂c was shown as a suggestion



100 times and was chosen (clicked) by a student 10 times,
then CTR(q̂c) = 0.1. In our initial experiments, we set α to
0.6 and β to 0.4. We are working now on building the system
and testing it and we can add any valuable parameter for
evaluation. To adopt this evaluation for the entire system, we
can store the score for every prefix p entered from different
students during a specified period of time, then by calculating
the score average, we can evaluate the entire system.

IV. CONCLUSION AND FUTURE WORK

In this paper, we studied the problem of Arabic QAC for
QA and described all its aspects. In addition, we studied
the effect of QAC on QA and how it can improve the
efficiency of the QA by reducing the number of queries
and improving their quality, an important issue for many
applications for interaction with users. Our system dealt with
university students academic questions. However, we believe
that with the proper datasets and NLP tools, the approach
can be easily extended to other fields/applications. We will
improve our system to be used for other tasks, say in the legal
of finance fields. Also, we will try to expand our dataset and
make it available to researchers interested in Arabic QAC.

REFERENCES

[1] Y. Li, J. Amelot, X. Zhou, S. Bengio, and S. Si, “Auto completion of
user interface layout design using transformer-based tree decoders,”
2020.

[2] S. Abiteboul, Y. Amsterdamer, T. Milo, and P. Senellart, “Auto-
completion learning for xml,” 05 2012.

[3] K. Arkoudas and M. Yahya, “Auto-completion for question answering
systems at bloomberg,” in The 41st International ACM SIGIR Con-
ference on Research & Development in Information Retrieval, SIGIR
2018, Ann Arbor, MI, USA, July 08-12, 2018 (K. Collins-Thompson,
Q. Mei, B. D. Davison, Y. Liu, and E. Yilmaz, eds.), pp. 1351–1352,
ACM, 2018.

[4] F. Cai and M. de Rijke, “A survey of query auto completion in infor-
mation retrieval,” Foundations and Trends® in Information Retrieval,
vol. 10, no. 4, pp. 273–363, 2016.

[5] L. Li, H. Deng, A. Dong, Y. Chang, H. Zha, and R. Baeza-Yates,
“Analyzing user’s sequential behavior in query auto-completion via
markov processes,” in Proceedings of the 38th International ACM
SIGIR Conference on Research and Development in Information
Retrieval, SIGIR ’15, (New York, NY, USA), p. 123–132, Association
for Computing Machinery, 2015.

[6] S. Whiting and J. Jose, “Recent and robust query auto-completion,”
pp. 971–982, 04 2014.

[7] Z. Bar-Yossef and N. Kraus, “Context-sensitive query auto-
completion,” in Proceedings of the 20th International Conference on
World Wide Web, WWW ’11, (New York, NY, USA), p. 107–116,
Association for Computing Machinery, 2011.

[8] M. Jarrar, “The arabic ontology - an arabic wordnet with ontologically
clean content,” Applied Ontology Journal, vol. 16, no. 1, pp. 1–26,
2021.

[9] N. Loukil, K. Haddar, and A. Ben Hamadou, “A syntactic lexicon for
arabic verbs.,” 01 2010.

[10] M. G. Al Zamil and Q. Al-Radaideh, “Automatic extraction of
ontological relations from arabic text,” J. King Saud Univ. Comput.
Inf. Sci., vol. 26, p. 462–472, dec 2014.

[11] R. J. Williams and D. Zipser, “A learning algorithm for continually
running fully recurrent neural networks,” Neural Computation, vol. 1,
no. 2, pp. 270–280, 1989.

[12] A. Sethy, S. Chen, E. Arisoy, and B. Ramabhadran, “Unnormalized
exponential and neural network language models,” in 2015 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 5416–5420, 2015.

[13] A. R. A. Qureshi and M. A. Akcayol, “Long short-term memory
based query auto-completion,” in 2021 8th International Conference
on Electrical and Electronics Engineering (ICEEE), pp. 259–266,
2021.

[14] L. Qiu, H. Zhou, Y. Qu, W. Zhang, S. Li, S. Rong, D. Ru, L. Qian,
K. Tu, and Y. Yu, “QA4IE: A question answering based framework
for information extraction,” CoRR, vol. abs/1804.03396, 2018.

[15] O. Obeid, N. Zalmout, S. Khalifa, D. Taji, M. Oudah, B. Alhafni,
G. Inoue, F. Eryani, A. Erdmann, and N. Habash, “CAMeL tools: An
open source python toolkit for Arabic natural language processing,”
in Proceedings of the 12th Language Resources and Evaluation
Conference, (Marseille, France), pp. 7022–7032, European Language
Resources Association, May 2020.


	INTRODUCTION
	Query Auto-Completion (QAC)
	Problem Description

	BACKGROUND AND RELATED WORK
	Heuristic Approaches to Query Auto-Completion (QAC)
	Probabilistic QAC Approaches
	General QAC Models
	Time-sensitive QAC Models
	User-centered QAC Models

	Learning/language-based QAC Approaches
	Learning-based QAC Approaches
	Neural Language Modeling

	Arabic QAC
	Question Answering (QA)
	Auto-completion Effect on Question Answering
	Datasets
	General QAC Datasets
	Our QAC Dataset


	Methodology
	Design Flow
	Word-Level Completion
	NER
	Next-word Prediction
	Mapping variants to standard queries
	Question Classification
	Translating Standard Queries to Structured Query Language

	Dataset Collection
	Data Scraping of Student Queries from Social Media Sites
	Direct Data Collection from Students

	QAC Word Prediction and Named Entity Recognition (NER)
	Word Completion
	NER
	Next-Word Prediction

	Classification
	Data Preprocessing
	Deep Learning Classification (Multiclass-Keras-Neural Networks)
	Machine Learning Classification
	Time-Sensitivity and Personalization

	Questions Classification
	QAC Suggestions Ranking
	QAC Evaluation

	CONCLUSION AND FUTURE WORK
	References

