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Simplified Exhaustive Search Approach for Estimating the
Nonhomogeneous Transition Probabilities for
Infrastructure Asset Management

Khaled A. Abaza, Ph.D., P.E."

Abstract: A simplified exhaustive search approach is proposed to estimate the nonhomogeneous transition probabilities for a particular
infrastructure element. The yearly nonhomogeneous transition probabilities associated with discrete-time Markovian chains can be estimated
for a given analysis period mainly using observed performance ratings. The proposed approach is applicable to Markov chains comprised of
only two state transitions, namely remaining in the same current state or transiting to the next worse one. The exhaustive search aims at
finding two optimal deterioration exponents that would yield the optimal initial and terminal transition probabilities subject to a minimal
difference between the predicted and observed performance ratings for each transition. Therefore, the exhaustive optimization is mainly
carried out with respect to two parameters only. A limited number of annual infrastructure performance ratings spanned over an analysis
period is required to estimate the corresponding initial and terminal transition probabilities. In contrast, the intermediate transition prob-
abilities for each transition can be estimated using either linear or quadratic approximation. The sample results presented for both hypothetical
and actual performance data indicated the simplicity and efficiency of the proposed approach in yielding reliable optimal solutions. In par-
ticular, the results indicated that there is more than one compatible solution, and that a Markov chain with a smaller size is required when
the deterioration rates are higher considering only two state transitions. DOI: 10.1061/(ASCE)IS.1943-555X.0000660. © 2021 American
Society of Civil Engineers.
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Introduction

Infrastructure asset management has gained wide publicity in the
last 3 decades, forcing public agencies to exercise special efforts to
improve the effectiveness of their decision-making procedures. The
main objective of infrastructure asset management is finding reliable
and cost-effective solutions for maintaining and rehabilitating the
nation’s infrastructure systems that are subject to deterioration over
time. The main researched systems have included road networks,
bridge networks, airport systems, and sewer networks (Li et al.
2006; Marzouk and Omar 2013; O’Connor et al. 2013; Altarabsheh
etal. 2016; Li et al. 2016; Thomas and Sobanjo 2016; Pérez-Acebo
et al. 2019; Ansarilari and Golroo 2020). As a tool to solve the
infrastructure management problem, specialized management sys-
tems have been developed such as the pavement management
system (PMS), bridge management system (BMS), and airport
management system (AMS) (Li et al. 2006; Thomas and Sobanjo
2016; Ansarilari and Golroo 2020). The main component of any
management system is a performance prediction model that can ac-
curately predict the future conditions of a particular system element.
A system is typically broken into heterogeneous elements with dif-
ferent deterioration mechanisms. Examples of system elements in-
clude roadway pavement, airport pavements, concrete bridge decks,
and sewer pipelines.
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The prediction of future infrastructure conditions is essential for
specifying appropriate remedy actions for a timely scheduled pro-
gram. Deterioration prediction of a particular system element has
been extensively investigated using stochastic models such as the
Markovian-based models (Wang et al. 1994; Amin 2015; Abed
et al. 2019). Different forms of the Markov model have been used
to investigate infrastructure deterioration over time (Thomas and
Sobanjo 2016; Fuentes et al. 2021; Yamany et al. 2021). In particu-
lar, the discrete-time Markov model with homogeneous, semiho-
mogenous, and nonhomogeneous chains has widely been used to
forecast the deterioration of different infrastructure elements as re-
lated to roads, airports, bridges, and sewer pipelines (Li et al. 2006;
Marzouk and Omar 2013; O’Connor et al. 2013; Altarabsheh et al.
2016; Li et al. 2016; Ansarilari and Golroo 2020). The two main
elements of the discrete-time Markov model are the discrete states
representing specified infrastructure conditions, and the transition
probabilities denoting the infrastructure deterioration rates from
one condition state to another in a discrete-time interval called tran-
sition (Abaza 2021; Yamany et al. 2021). Much emphasis has been
placed on the estimation of the transition probabilities as described
next.

Generally, the transition probabilities are estimated from histori-
cal records of infrastructure performance typically collected on an
annual basis. Several researchers have investigated different ap-
proaches to estimate the transition probabilities associated with in-
frastructure deterioration. For example, Ortiz-Garcia et al. (2006)
deployed the minimization of sum of squared errors to propose three
different approaches to estimate the transition probabilities associ-
ated with pavement deterioration. The three approaches involved
original pavement records, a regression curve derived from original
pavement records, and yearly distributions of pavement records.
Kobayashi et al. (2010) estimated the deterioration transition prob-
abilities from exponential hazard models defined using condition
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states with nonuniform intervals among the inspection time points.
Costello et al. (2016) proposed an analytical tool that utilizes deter-
ministic deterioration models coupled with an estimate of scatter to
estimate the transition matrix using an optimization procedure that
minimizes the difference between the condition distributions ob-
tained from the deterministic model and the transition matrix itself.

Abaza (2017a) estimated the nonhomogeneous transition prob-
abilities using an empirical model that took into consideration
the impact of both increased traffic loading and decreased pave-
ment structural capacity over time. Abu Dabous (2017) applied the
Dempster-Shafer theory of evidence to estimate the transition prob-
abilities associated with bridge deterioration. The evidence theory
was proposed as a scientific expert judgement elicitation technique
in lieu of the traditional probability theory for bridge deterioration
modeling. Lethanh et al. (2017) applied the restricted least-squares
optimization approach to estimate the transition probabilities for
bridge management using proportional data obtained from the
mechanistic-empirical deterioration models considering mainly re-
inforced concrete bridge element exposed to chloride-induced cor-
rosion. Abaza (2021) applied the minimization of sum of squared
errors to obtain both the homogeneous and nonhomogeneous tran-
sition probabilities using a transition probability matrix with three
state transitions.

Research Objectives

This paper proposes a simplified exhaustive search approach that
can effectively estimate the nonhomogeneous transition probabil-
ities for a given infrastructure element mainly as a function of the
annual performance ratings associated with an analysis period of n
years. The exhaustive search approach deploys only two simple
parameters in the search for the optimal transition probabilities,
namely a deterioration rate factor that relates the terminal transition
probabilities to the initial ones, and a deterioration rate exponent
used to estimate the nonhomogeneous transition probabilities for a
given year based on the corresponding values associated with the
previous year. The main advantages of the proposed approach com-
pared with other outlined approaches are its simplicity, efficacy, and
minimal need for performance records. However, the use of the pro-
posed approach is restricted to discrete-time Markov chains with
only two state transitions, namely remaining in the same current
state or transiting to the next worse one. The Markov chain size is
to be selected depending on the infrastructure deterioration trend.

Compared with the approach presented by Abaza (2021), the
new approach proposed here provides a much simpler, but yet ef-
fective, procedure to estimate the nonhomogeneous transition prob-
abilities. The approach proposed in the former publication is based
on the minimization of sum of squared errors (SSE) over a specified
analysis period while considering a minimum of three state tran-
sitions. It had investigated both homogeneous and nonhomogene-
ous Markov chains. The mathematical modeling and computation
efforts associated with the former publication are much more ex-
tensive. The simplicity of the new proposed approach stems from
the fact that it is applicable to nonhomogeneous Markov chains
with only two state transitions. This has led to the derivation of a
closed-form formula [Eq. (7)], which can estimate the initial tran-
sition probability associated with the first transition, and the cor-
responding terminal transition probability is estimated using an
appropriate deterioration rate factor.

Then, a new effective technique is proposed to estimate the tran-
sition probabilities for the subsequent duty cycles (i.e., transitions)
as a function of the transitional deterioration rates defined using
the observed condition ratings. The explicit use of deterioration
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rates and deterioration rate factors presents a new contribution in
Markovian prediction modeling. Of course, Markovian modeling
with only two state transitions had been extensively used by several
researchers considering both pavements and bridges (Butt et al.
1987; Hatami and Morcous 2012; Wellalage et al. 2015; Abaza
2016; Abed et al. 2019; Galvis Arce and Zhang 2021).

Literature Review

Yamany et al. (2021) indicated that there are five methods reported
in the literature to estimate the pavement transition probabilities,
namely the expected-value, percentage transition, simulation-based,
econometric models, and duration models. Yamany et al. (2021)
also reported that the most popular one is the percentage transition
method as defined in Eq. (1). Eq. (1) simply represents the basic
logic associated with the Markov chain transitioning process. The
transition probability P;;, represents the probability of pavement
condition transiting from state i to state j wherein N, represents
the number of pavement sections that had been in state i and moved
to state j during one duty cycle (i.e., transition interval), and
N, ;_pc is the number of pavement sections that exited in state i at
time ¢ minus one duty cycle
N,

M Nipe M)

Typically, pavement condition surveys require dividing the
pavement network into small sections, which are then individually
assessed. It was reported that better estimates of the transition prob-
abilities can be obtained when using pavement sections with
smaller length (Abaza 2016). Pavement assessment is normally
conducted based on annual or biennial basis, which essentially im-
plies that application of Eq. (1) requires a minimum of two con-
secutive cycles of pavement distress assessment separated by one
duty cycle in order to estimate one set of transition probabilities.
Application of the Markov model requires that the transition prob-
abilities be estimated using the same transition interval (i.e., duty
cycle). Unfortunately, many highway authorities are often unable to
conduct regular pavement condition assessments. However, ad-
equate numbers of pavement sections must transit to the various
deployed condition states during one duty cycle in order to obtain
reliable estimates of the corresponding transition probabilities us-
ing Eq. (1). Consequently, some of the transition probabilities may
not be estimated because either none or inadequate pavement sec-
tions have transited to the various deployed condition states during
one duty cycle. In addition, this essentially requires surveying a very
large number of small pavement sections so that reliable estimates of
the transition probabilities can be obtained.

Conducting regular and reliable condition assessment surveys
has been a major challenge for developing and implementing an ef-
fective infrastructure management system. The simplified approach
proposed in this paper requires much less effort in conducting the
assessment surveys while ensuring the estimation of reliable transi-
tion probabilities for all involved condition states. Essentially, the
main data requirement for applying the proposed approach is a
few data points that represent the values of an appropriate condition
indicator spanned over an analysis period. In essence, the data points
need not be collected on a regular time basis. A best-fit performance
curve is typically generated from the data points and used as the
main requirement for applying the proposed approach. A single data
point represents the average condition rating associated with a ran-
dom sample of pavement sections surveyed at a specified service
time, thus making it less susceptible to variability in section con-
dition ratings. Therefore, the proposed approach can effectively be
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applied at the project level because the data requirement is minimal
and affordable, and can lead to conclusive and reliable estimates of
project-based transition probabilities. This would definitely make a
positive impact in infrastructure management applications using
Markovian-based performance prediction models.

Other recent research has applied a backward approach to esti-
mate the transition probabilities (Abaza 2016; Yamany and Abraham
2021). This backward approach requires estimating the state prob-
abilities at two consecutive transitions (i and i + 1), which are then
used to estimate the corresponding transition probabilities using the
discrete-time Markov model in what is known as a backward sol-
ution. Abaza (2016) used this approach to derive closed-form for-
mulas to compute the transition probabilities for a Markov chain
with only two state transitions. Yamany and Abraham (2021) also
used this approach wherein the state probability vector for the i + 1
year is divided by the state probability vector for ith year to yield
the corresponding transition probability matrix as per definition of
the discrete-time Markov model. However, the involved computa-
tions are not simple depending on the number of elements incor-
porated in the transition matrix.

The new approach proposed in this paper is expected to be much
simpler because the optimization is mainly carried out with respect
to two parameters only. Moreover, extensive historical performance
records are required to estimate the relevant state probabilities using
the backward approach with state probabilities representing worst
conditions cannot generally be estimated for infrastructures with
low to moderate service lives, which results in some of the transition
probabilities not being estimated. The proposed approach guaran-
tees to estimate all transition probabilities for a particular transition
just using two consecutive annual performance ratings.

Also, Yamany and Abraham (2021) incorporated the improve-
ment rates into the transition matrix; however, the improvement
rates can alternatively be applied to the state probabilities so that
the transition matrix can only represent the pavement deterioration
mechanism (Abaza and Murad 2007). Therefore, there are two via-
ble options available for incorporating pavement improvement rates
into Markovian modeling.

Overview of Markovian-Based Prediction Models

Several forms of the Markovian-based models have been used
to study the long-term infrastructure deterioration mechanisms;
however, the most popularly used ones are the discrete-time homo-
geneous and nonhomogeneous Markov models (Abed et al. 2019;
Abaza 2021; Yamany et al. 2021). The main difference between the

[P(K) 1 P(k)1, 0
0 P(k)s, P(k), 5
0 0 P(k)s 5
P(k) =
i 0o 0

The nonhomogeneous deterioration transition probabilities,
P(k); ;1 are expected to increase over time due to the progressive
increase in traffic loading and progressive decrease in pavement
structural capacity (Abaza 2017a). Therefore, the deterioration
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two types is that a varied transition probability matrix is used in the
discrete-time nonhomogeneous Markov model, an indication of var-
iable transition probabilities (i.e., deterioration rates) for each tran-
sition. Eq. (2) defines the discrete-time nonhomogeneous Markov
model, which can incorporate a different transition probability ma-
trix, P(k), for every transition (i.e., time interval).

The main outcome of Eq. (2) is the estimation of the state prob-
abilities after n transitions, Q(n), as a row vector obtained from
multiplying the initial state probability vector, Q(0), by the multi-
plication product of n transition probability matrices. The state
probabilities represent the infrastructure proportions that are ex-
pected to exist in the various deployed condition states after n tran-
sitions. The discrete-time Markov model requires that both the
transition length and number of condition states m to be integers.
The transition length is the equal time interval between successive
transitions, which is typically considered to be 1 year. The sum of
state probabilities after n transitions must add up to one. It is typ-
ically assumed that all infrastructure elements are assigned to the
best condition state when considering a new infrastructure, thus the

initial state probabilities are equal to (1,0,0, ...,0)
Q(n) = Q(0) [ P(k) (2)
k=1

Eq. (3) provides a typical transition probability matrix with only
two state transition outcomes. The two transition outcomes are
either remaining in the same current state (i) with probability of
P(k); ; or transiting to the next worse state (i -+ 1) with probability
of P(k); ;. Therefore, all other matrix entries above the main di-
agonal are assigned a zero value. This matrix form can only predict
the infrastructure deterioration in the absence of any maintenance
and rehabilitation works because all entries below the main diago-
nal are also assigned zero value.

The transition matrix form indicated by Eq. (3) has been used by
several researchers to model infrastructure deterioration mainly be-
cause of its minimal requirement for historical performance records
(Butt et al. 1987; Hatami and Morcous 2012; Wellalage et al. 2015;
Abaza 2016; Abed et al. 2019; Galvis Arce and Zhang 2021). How-
ever, there are certain requirements to be met for this model to be
effective in predicting infrastructure deterioration, among which
are the deterioration rate magnitudes, transition length, and number
of deployed condition states m. One set of deterioration transition
probabilities, P(k); ;. ,, is typically determined from historical per-
formance records collected over two consecutive cycles of in situ
assessment. The sum of any row in the transition matrix must be
equal to one

m—1.m

P(k)m—l,m—l P(k)
0 - 0 1.0

transition probabilities for the k + 1 transition are expected to be
higher than the corresponding values associated with the k transi-
tion. Two key deterioration transition probabilities were found to
have a major impact on the pavement deterioration mechanism,
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namely the initial transition probability, P(k), ,, and the terminal
transition probability, P(k),,_; ,, (Abaza 2017a, 2021). The other
intermediate transition probabilities for a given transition can be
estimated from the corresponding initial and terminal transition
probabilities using either linear or quadratic approximation as out-
lined subsequently.

Generally, the infrastructure performance rating at any given
transition can be estimated from the corresponding state probabil-
ities. This estimation can either be based on the observed state
probabilities or the predicted values as derived from the nonhomo-
geneous Markov model presented in Eq. (2). Eq. (4) can be used to
estimate the predicted performance rating R, (k) for the k transition
as a function of the state mean performance ratings (R;) and cor-
responding state probabilities Q,(k). The R, (k) is essentially the
expected value of m uniform probability density functions

Rp(k):iR[xQ,-(k) (k=1.2.....m i=12....m) (4)
i=1

where R; = (LR; 4 UR;)/2.

Typically, the condition states are defined using a continuous
performance indicator with equal ranges so that LR; and UR; in-
dicate the lower and upper range limits, respectively. The state
mean performance rating (R;) is the average of the lower and upper
range ratings. For example, if the performance indicator is defined
using a scale of 100 points, the R; values for a Markov chain of
10 condition states are (95, 85, 75, ..., 5) when equal ranges of
(100-90, 90-80, 80-70, ..., 10-0) are used. Similarly, the R; val-
ues become (90, 70, 50, 30, 10) for a Markov chain with five con-
dition states using equal ranges of (100-80, 80-60, ..., 20-0).

Although Markovian-based models have gained popular usage
in predicting infrastructure future conditions, there has been a main
critic of these models, which is the underlying assumption that the
infrastructure condition state at a given time is independent of its
past improvement history. Therefore, several researchers have pro-
posed different probabilistic approaches to overcome this limitation
while considering infrastructure intervention history (Abaza and
Murad 2007; Saeed et al. 2017; Yamany and Abraham 2021). In
particular, Saeed et al. (2017) proposed a novel probabilistic ap-
proach that can enhance the infrastructure condition prediction while
accounting for improvement effectiveness. This approach requires
defining and quantifying the intervention types while incorporating
newly introduced explanatory variables to account for future de-
terioration of bridge components. The deployed dependent variable
defines the probability of a bridge component being in a given con-
dition state at a specified age. The new approach proposed in this
paper can estimate the nonhomogeneous transition probabilities for
an original infrastructure without any improvement history, and
also an infrastructure with intervention history. In both cases, the
main data requirement is a number of average annual condition rat-
ings spanned over its past service life.

Research Methodology

A sequential exhaustive search approach for estimating the nonho-
mogeneous transition probabilities is presented in this section. The
approach mainly requires the average annual performance ratings
associated with a particular infrastructure element for a specified
analysis period. The deterioration of an infrastructure element is
defined using key parameters, namely a deterioration rate factor that
relates the terminal nonhomogeneous transition probabilities to the
corresponding initial transition probabilities, and two deterioration
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exponents that depict the impact of deterioration rates on the
estimation of the nonhomogeneous transition probabilities.

First-Transition Initial Transition Probability

The proposed sequential exhaustive search approach seeks to esti-
mate the nonhomogeneous deterioration transition probabilities
associated with n transitions. However, the initial transition prob-
ability, P(1),,, associated with the first transition (k = 1) can
directly be derived in a closed form when considering a new infra-
structure. The predicted performance rating for the first transition
is computed using Eq. (4) and is set equal to the observed perfor-
mance rating as indicated by Eq. (5)

Ry = R1) = 3 Rix (1) 5)

The state probabilities Q;(1) associated with the first transition
(k = 1) are obtained from Eq. (2) by multiplying the transition ma-
trix defined in Eq. (3) by the initial state probability row vector for
a new infrastructure, namely (1,0,0, ...,0). The outcome of this
multiplication is a row vector with only the first and second state
probabilities being assigned nonzero values, as indicated by Eq. (6).
These state probabilities are mainly the two entries of the first row in
the transition matrix

QM = [P(l)l,l’P(l)l,Z’O’ 0, ..., 0] (6)

where P(1), , + P(1),, = 1.0.

Now, substituting the state probabilities associated with the first
transition into Eq. (5) and solving for the initial transition proba-
bility P(1), , of the first transition (k = 1) yields Eq. (7). Therefore,
the estimation of the first-transition initial transition probability
mainly depends on the mean performance ratings associated with
Condition states 1 and 2, namely R, and R,. As outlined previously,
the values of these two-state mean performance ratings depend on
the number of deployed condition states m. For example, their val-
ues are 95 and 85 for a Markov chain with 10 condition states, and
90 and 70 for a Markov chain with five states if equal ranges of
performance ratings are used to define condition states

p(1),, = B=R) (7)
’ Ry — R,
where R, > R,(1), Ry > R,, and R,(1) > R,.

Therefore, the selection of the appropriate Markov chain size m
depends on the magnitude of change in the observed first-transition
performance rating R, (1). This is achieved by requiring the value of
first-transition initial transition probability P(1), ,, to be less than or
equal to one according to Eq. (7). Otherwise, a smaller Markov
chain size is required. For example, the observed first-transition
rating R, (1) has to be greater than or equal to R, = 85 to be able
to use a Markov chain of size 10. However, if the drop in the ob-
served first-transition performance rating is below 85 but above or
equal to 70, then a Markov chain of size five is required. Generally, a
10 x 10 transition matrix is used when the drop in the performance
rating is less than 10 points per transition, whereas a 5 X 5 matrix is
required if the drop reaches 20 points per transition. This is under
the assumption of using a 100-point scale indicator, with lower rat-
ings representing inferior conditions.

The estimation of the other initial transition probabilities will be
based on the corresponding value associated with the first transition
and the deterioration rates associated with subsequent transitions as
outlined in Eq. (8). The transitional deterioration rates are defined
in terms of the observed performance ratings associated with two
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consecutive transitions, namely R,(k) and R,(k + 1) with their
ratio is being raised to the power A(k) named as the deterioration
rate exponent. These deterioration exponents are to be estimated
from the sequential exhaustive search approach outlined in the next
section

P(k+1)1,2:P(k),_2<%)A(k) (k=1.2....n) (8)

The terminal transition probabilities, P(k),,_,,,, can be esti-
mated, as an option, from the multiplication of the initial transition
probabilities and deterioration rate factors F,(k) as indicated by
Eq. (9). The deterioration factor can be assumed constant over an
analysis period of n transitions or it can be variable to be estimated
from the exhaustive search approach outlined next
P(k)m—l.m = Fd(k) X P(k)12 <10 (k =12, ',I’l) (9)

The deterioration rate factor F,(k) is typically associated with a
value in the range of about 2—4 for a performance trend with pro-
gressively increasing deterioration rates, and in the range of about
0.2-0.4 for a performance trend with progressively decreasing de-
terioration rates. These factor ranges are generally estimated based
on research results obtained from the new approach proposed in
this paper. Project A shown in Fig. 1 is an example of deterioration
trend with progressively increasing deterioration rates, whereas
Projects B and C represent examples of deterioration trend with
progressively decreasing deterioration rates.

Sequential Exhaustive Search Approach

Estimation of the nonhomogeneous initial and terminal transition
probabilities P(k);; , and P(k),,,, for a specified number of
transitions n is performed using a sequential exhaustive search ap-
proach. The proposed approach aims at minimizing the transitional
difference D(k) between the predicted and observed performance
ratings. Therefore, it seeks to find a set of initial and terminal tran-
sition probabilities that would yield a predicted performance rating
that differs from the corresponding observed value by less than or
equal to a specified tolerable value D, as indicated by Eq. (10)

Minimize: D(k) = R, (k) — R,(k) £ D, (10)

Two optimization options are proposed to accomplish the se-
quential exhaustive approach in the search of the optimal nonho-
mogeneous initial and terminal transition probabilities P’(k), ;,
and P’(k),, 1, for an analysis period comprised of » transitions,
as outlined next.

Optimization Option I: One Deterioration Exponent

The first proposed optimization option only involves one deterio-
ration exponent A(k) applied to the nonhomogeneous initial tran-
sition probabilities as indicated by Eq. (8). The nonhomogeneous
terminal transition probabilities are computed using Eq. (9) as a
multiplication of the corresponding initial transition probabilities
and constant deterioration factor F ;. The corresponding optimiza-
tion model is summarized by Eq. (11)

Minimize: D(k) = R, (k) —=R,(k) <D, (k=1,2,...,n) (11)
Subject to o) \AK)

L Plk+1),= P(Hla(ﬁ%)

2. P(k)y—yw = Fax P(k);, 1.0

A sequential trial-and-error approach will be used to find the op-
timal deterioration rate exponent A’(k), that will yield the minimum
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performance difference D’ (k) that satisfies Eq. (11). For each trial
solution, the intermediate nonhomogeneous transition probabilities
will be estimated using linear/nonlinear approximation as outlined
subsequently. The transition matrix as indicated by Eq. (3) is now
completely defined and can be used to estimate the corresponding
predicted performance rating R, (k) using Egs. (2) and (4). The ob-
served performance ratings should be available from historical
records.

Optimization Option Il: Two Deterioration Exponents

In the second optimization approach outlined in Eq. (12), two
deterioration rate exponents are proposed. The first exponent, A(k),
is applied to the deterioration rates associated with the initial tran-
sition probabilities, and the second one, B(k), is similarly applied
to the terminal transition probabilities. A simultaneous trial-and-
error approach involving the two deterioration exponents will be
executed in the search for the optimal exponent values A’(k) and
B’(k). The optimal solution will yield the optimal initial and termi-
nal transition probabilities associated with the minimal difference,
D’(k), between the predicted and observed performance ratings for
each transition within the analysis period

Minimize: D(k) = R,(k) =R, (k) <D, (k=1,2,...,n) (12)

Subject to ) VAR
1P+ Dia = PR) o (755)

B(k

2. P(k + l)m—],m = P(k)m—l.m (J()T%) .
Therefore, the dependency between the initial and terminal tran-
sition probabilities is removed, and thus a different deterioration
factor, F4(k), can result in each transition, as indicated by Eq. (13)

P(k) m—1.m
P, "

Generally, the initial and terminal transition probabilities asso-
ciated with a particular transition are estimated from the initial and
terminal transition probabilities associated with the preceding tran-
sition, and two deterioration rates defined based on the ratio of the
observed distress ratings associated with the two involved transi-
tions (k and k + 1) as outlined by Constraints 1 and 2.

Fy(k) =

Intermediate Nonhomogeneous Transition Probabilities

The presented sequential search approach has mainly focused on
the estimation of the initial and terminal transition probabilities
for a number of transitions. The other intermediate transition prob-
abilities [i.e., P(k), 3. P(k)34. ... ,P(k), 5,11 shall be estimated
so that the transition matrix indicated by Eq. (3) will be totally de-
fined. This can be achieved by simply applying linear interpola-
tion, which assumes all nonhomogeneous transition probabilities
P(k); ;. fall on a straight line. Thus, the slope of the corresponding
straight line, S(k), is computed from the difference between the
initial and terminal transition probabilities, as indicated by Eq. (14)

_ P(k)m—l.m - P(k)IZ
m—2

S(k) (14)

Generally, there are two types of performance trend as depicted
in Fig. 1. The first type is considered as a high-grade performance
such as Project A shown in Fig. 1. It is typically associated with
increasingly higher deterioration rates [i.e., P(k);, <P(k),3 <
P(k)34 ... <P(k),_1,]. The straight-line slope S(k) associated
with this performance type is positive according to Eq. (14). The
second type is a low-grade performance such as Projects B and C

J. Infrastruct. Syst.

J. Infrastruct. Syst., 2022, 28(1): 04021048



Downloaded from ascelibrary.org by Khaled Abaza on 10/19/21. Copyright ASCE. For personal use only; all rights reserved.

100

90

80

70

60

50

40

30

Observed Performance Rating, R,(k)

20

10

0 1 2 3 4

—@— Project A —@— ProjectB

Project C

5 6 7 8 9 10

Transition Number (k)

Fig. 1. Deterioration trends associated with sample Projects A, B, and C.

shown in the same figure. It is associated with decreasingly lower de-
terioration rates [i.e., P(k); 5 > P(k)y3 > P(k)34... > P(k),, 1]
Therefore, the corresponding straight line slope S(k) is negative. In
both cases, the intermediate transition probabilities for a particular
transition are estimated using Eq. (15). This linear estimation of in-
termediate transition probabilities had yielded satisfactory results in
former Markovian-based studies (Abaza 2017b, 2021)

P(k); i1 = P(k);_y; + S(k)
(i=23,....m—=2; k=12,...,n) (15)
It is also possible to estimate the intermediate transition prob-

abilities using nonlinear approximation such as second-degree pol-
ynomial (i.e., quadratic) and third-degree polynomial (i.e., spiral)

models. Different models can be proposed for both types of per-
formance trend depicted in Fig. 1. For example, a best-fit quadratic
model can be approximated using three data points, namely initial
point (1, Py ,), terminal point (m — 1, P,,_; ), and middle point
[m/2, Fy x (P15 + Py_1,,)]. The middle point approximation is
based on a quadratic factor F,. A linear model is associated with
an F, value equal to 1/2, wherein F, can be smaller or greater than
1/2 for quadratic modeling depending on concavity shape.

Fig. 2 shows sample quadratic models for both high-grade
performance with P, = 0.2, P,,_y,, = 0.6, and m = 10, and low-
grade performance with P,, = 0.6, P,,_; ,, = 0.2, and m = 10 for
a particular transition. The corresponding quadratic models are pre-
sented in Egs. (16) and (17) for high- and low-grade performances,
respectively. The two sample models are generated using a quadratic

0.7
06 ¢ =0.005x2- 0.1x + 0.695 g
RS e y=0.005x2+ 7E-16x +0.195  .-*
_ - R2=1 :
7 05
Ej
=
S 04
@
Qo ce,
2
L .,
§O3 e
T e e
O | eesesettt e
= 0.2 @ttt "teees. PN
------- Poly. (Low-grade performance trend)
0.1
------- Poly. (High-grade performance trend)
0
1 2 3 4 5 6 7 8 9

Current Condiiton State (i)

Fig. 2. Sample quadratic models for estimating the intermediate transition probabilities using a quadratic factor of F, = 0.4.
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factor of 0.4 so that both curves are concave upward to be consistent
with the previously outlined deterioration trends. This results in the
intermediate transition probabilities being progressively increasing
in the case of high-grade performance, and progressively decreasing
in the case of low-grade performance. Eqs. (16) and (17) are only
applicable to a particular transition; thus, different models need to be
developed for each transition using the corresponding initial and
terminal transition probabilities

Pi,i+1 :0.005i2+0.195 (i:1,2,...,m—1) (16)
Piiy = 0.0052 —0.1i +0.695 (i=1,2,....m—1) (17)

Generally, the initial transition probability associated with the
first transition, P(1), ,, as defined in Eq. (7) is only applicable to
the form of transition matrix presented in Eq. (3) considering a new
infrastructure wherein all elements are assigned to State 1. For all
other cases, an initial trial value of P(1), , can be selected to initiate
the proposed sequential exhaustive search. The typical P(1),,
value range is about 0.1-0.4 for a high-grade performance trend,
and about 0.5-0.8 for a low-grade performance trend. Therefore,
it is recommended to select the midrange value as an initial trial
value in each case. These probability ranges are suggested based
on prior experience (Abaza 2017a, 2021).

Proposed Sequential Approach Flowchart

The main steps required in the execution of the proposed exhaus-
tive search approach are described in a flowchart. Fig. 3 shows the
flowchart that outlines the basic steps and their logical sequence to
be followed in the execution of the sequential exhaustive search
to yield the optimal nonhomogeneous transition probabilities for
Optimization option I. The same logical sequence is used in Opti-
mization option I except that the second deterioration exponent,
B(k), will be required prior to the computation of the terminal tran-
sition probabilities P(k),,_, ,, as defined in Eq. (12), Constraint 2.
The flowchart shows that the initial transition probability associated

Ro(k), Fa(k), Ri | P2
Da, n, m Equation (7)
Next (k) 4?
Specify | P(k+1)1,2
Trial A(k) )
Kth Optimal Equation (8)
Solution l
P(k)m—l,m
Equation (9)
Yes No l

Equations (14) & (15)

D(k) Rp(k) Qi(k)
Equation (10)

Equation (4) Equation (2)

Fig. 3. Flowchart depicting the main steps used to estimate the
nonhomogeneous transition probabilities according to Optimization
option L.
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with the first transition, P(1), ,, is computed only one time when
solving a problem with n transitions. However, the initial, terminal,
and intermediate transition probabilities for the remaining transi-
tions are sequentially computed for every trial value of A(k) until
a satisfactory optimal solution is reached. The main steps outlined
in the flowchart can easily be programmed using simple software
packages such as Microsoft Excel.

Sample Presentation

In this section, sample nonhomogeneous transition probabilities are
presented using the proposed sequential exhaustive search approach.
In particular, two case studies are investigated. The first one consists
of three pavement projects, namely A, B, and C, with deterioration
trends represented by hypothetical second-degree polynomial mod-
els. Meanwhile, the second case study applies actual deterioration
data using the international roughness index (IRI) as the pavement
performance indicator.

Case Study I: Hypothetical Performance Data

The three pavement projects (A, B, and C) depicted in Fig. 1 are
used to estimate the corresponding nonhomogeneous transition
probabilities. The mathematical models that represent the deterio-
ration trends of these three projects are provided in Eqgs. (18)—(20)
using the pavement condition index (PCI) as the performance in-
dicator. These deterioration trends/models can be generated based
on a limited number of data points using a best-fit technique. The
ASTM (2007) manual has provided the procedure to estimate the
PCI for a given pavement section considering 19 different distresses.
The PCI is widely used in pavement management applications. It is
estimated using a scale of 100 points, with higher values indicating
superior pavement performance. The PCI values at different transi-
tion numbers (k) are computed and provided in Table 1 for the three
projects. These PCI values represent the observed performance rat-
ings R, (k) that form the main data input for estimating the corre-
sponding nonhomogeneous transition probabilities.

It is clear from Fig. 1 that Project A has a high-grade perfor-
mance trend, and Projects B and C have a low-grade performance
trend, with Project C being associated with higher deterioration rates
compared with Project B. The PCI values associated with Projects A
and B are 65.93 and 39.40 after 10 years of service, respectively, and
it is 34.18 for Project C after only 5 years of service. The length of
one transition is considered to be equal to 1 year. The sample non-
homogeneous transition probabilities for the three projects have
been estimated following the flowchart depicted in Fig. 3

PCI(k) = —0.136k> — 1.566k + 95.19 (ProjectA)  (18)
PCI(k) = 0.128k* — 6.884k -+ 95.44 (Project B) (19)

PCI(k) = 0.911k% — 15.696k + 89.89 (Project C) (20)

Tables 2 and 3 provide sample nonhomogeneous transition prob-
abilities derived to represent the deterioration trend of Project A
using a Markov chain with 10 condition states. The tables mainly
present the initial and terminal transition probabilities for 10 tran-
sitions (years). The first-year initial transition probability, P(1), , =
0.1510, is computed from Eq. (7) based on R,(1) = 93.49, R, =
95, and R, = 85.

Table 2 provides two sets of solution: the first set is derived us-
ing Optimization option I with a constant deterioration factor of
F, =2, and the second set is obtained from Optimization option
II with variable deterioration factor F,(k). The two sets of solution
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Table 1. Observed pavement condition index values

Transition number, k

Project

name 1 2 3 4 5 6 7 8 9 10
A 93.49 91.52 89.27 86.75 83.96 80.90 77.57 73.96 70.08 65.93
B 88.68 82.18 75.94 69.95 64.22 58.74 53.52 48.56 43.85 39.40
C 75.11 62.14 51.00 41.68 34.18 - — — — —

“Not applicable.

Table 2. Sample optimal nonhomogeneous transition probabilities obtained for Project A using a 10 x 10 Markov chain (F; = 2)

Optimization option I

Optimization option II

Transition

nmber, k  P'(K), Pk A'K) D' (k) P, Pk Fik) A B'(K) D' (k)

1 0.1510 0.3020 -2 0.0000 0.1510 0.3020 2.000 — — 0.0000

2 0.1934 0.3867 11.61 6.46 x 1073 0.1937 0.3671 1.895 11.70 9.165 7.26 x 1077
3 0.2156 0.4312 4.378 547 x 1073 0.2168 0.4053 1.869 4.520 3.982 —1.86 x 10
4 0.2352 0.4703 3.028 —221 %107 0.2370 0.4467 1.885 3.108 1.102 —2.44 x 107
5 0.2529 0.5058 2.229 411 %107 0.2550 0.4879 1.913 2.240 2.701 6.30 x 107°
6 0.2689 0.5378 1.649 3.25x 1073 0.2710 0.5247 1.936 1.640 1.957 5.10 x 107°
7 0.2831 0.5662 1.225 —3.18 x 107 0.2854 0.5555 1.946 1.232 1.358 1.10 x 1073
8 0.2964 0.5928 0.965 6.16 x 1073 0.2988 0.5842 1.955 0.965 1.056 —2.75x 1073
9 0.3072 0.6144 0.663 6.37 x 107 0.3097 0.6075 1.962 0.662 0.726 —1.69 x 1073
10 0.3165 0.6330 0.487 9.42 x 1075 0.3190 0.6273 1.966 0.487 0.526 5.09 x 107

“Not applicable.

are somewhat similar in terms of the values associated with the non-
homogeneous transition probabilities, with the optimal differences
between the predicted and observed performance ratings, D’(k),
less than 1 in 10,000 (i.e., D, = 1.00 x 10~%), the specified toler-
able value. This means that the derived optimal solutions have es-
timated the annual performance ratings in terms of PCI with a high
degree of accuracy.

The results also show that the optimal deterioration rate expo-
nent A’(k) has consistently decreased with the increase in service
time, which resulted in increasing the value of the initial transition
probability from 0.1510 to 0.3165 over 10 years of service life. The
deterioration rate exponents A’(k) and B’(k) associated with the
second optimal set exhibited similar trends as in the first optimal
set, but they are not equal in values. The optimal deterioration fac-
tor (k) is less than 2, and it is generally increasing with service
time.

Table 3 provides similar results using a constant deterioration
factor of F; = 3 for the case of Optimization option I, which gen-
erally resulted in a decrease in the initial transition probabilities but
is compensated for by an increase in the terminal transition prob-
abilities. The two deterioration exponents A’(k) and B’ (k) are very

similar and very close in values to the exponent associated with
Optimization option I. Therefore, the two sets of solution are al-
most identical, with prediction accuracy as high as the one asso-
ciated with the solutions provided in Table 2. This means there is
more than one set of optimal solutions that can predict the deterio-
ration trend of Project A.

Although it cannot be proven that any one of the obtained so-
lutions is the absolute optimal solution, it is clear they are all reliable
solutions that met the objective set in the optimization procedure,
which is minimizing the performance rating difference D(k) to
be below a tolerable value of 1.00 x 107, It is true that simplified
exhaustive optimization procedures may not always yield the abso-
lute optimal solution, but near-optimal solutions often serve the pur-
pose. Therefore, even if there are relatively better solutions than the
obtained ones, they would practically make no impact on the overall
performance prediction. However, if higher accuracy is needed, it
can be achieved by simply reducing the tolerance value.

Tables 4 and 5 provide sample optimal nonhomogeneous tran-
sition probabilities obtained to characterize the deterioration trend
of Project B using a Markov chain with 10 condition states. The
first-year initial transition probability P(1);, = 0.6320 is obtained

Table 3. Sample optimal nonhomogeneous transition probabilities obtained for Project A using a 10 x 10 Markov chain (F; = 3)

Optimization option I

Optimization option II

Transition

number, k— P'(k);,  P'(k)o,10 A'(k) D'(k) Pl(k)ia  Pl(K)g0  Fi(k) A'(k) B'(k) D'(k)

1 0.1510 0.4530 —* 0.0000 0.1510 0.4530 3.000 — — 0.0000

2 0.1898 0.5695 10.75 1.84 x 1073 0.1898 0.5694 2.999 10.75 10.74 1.05 x 1077
3 0.2070 0.6210 3.475 —2.74 x 1073 0.2070 0.6211 3.000 3.475 3.489 1.48 x 107°
4 0.2204 0.6613 2.198 8.17 x 1073 0.2204 0.6611 2.999 2.198 2.182 —2.05 x 1073
5 0.2313 0.6938 1.470 —3.44 x 1073 0.2313 0.6940 3.000 1.471 1.483 2.90 x 1073
6 0.2398 0.7194 0.974 —1.63 x 1073 0.2398 0.7194 3.000 0.974 0.971 4.74 x 1076
7 0.2462 0.7387 0.629 4.14 x 1073 0.2462 0.7385 2.999 0.629 0.623 1.49 x 1076
8 0.2514 0.7543 0.439 —1.81x 1073 0.2514 0.7543 2.999 0.439 0.444 3.60 x 1073
9 0.2543 0.7628 0.208 8.35x 107 0.2543 0.7627 2.999 0.208 0.206 2.55 %107
10 0.2559 0.7676 0.103 -3.33x 1073 0.2559 0.7676 3.000 0.103 0.105 4.44 x 107
“Not applicable.
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Table 4. Sample optimal nonhomogeneous transition probabilities obtained for Project B using a 10 x 10 Markov chain (F,; = 0.2)

Optimization option I

Optimization option II

Transition

number, k P'(k), P'(k)o,10 A'(k) D'(k) P'(k)12 P'(k),10 Fa(k) A'(k) B'(k) D'(k)

1 0.6320 0.1264 — 0.0000 0.6320 0.1264 0.2000 — — 0.0000

2 0.6938 0.1388 1.227 2.16 x 1073 0.6938 0.1387 0.1999 1.227 0.601 3.84 x 1076
3 0.7158 0.1432 0.394 4.56 x 107° 0.7158 0.1432 0.2000 0.394 0.396 —2.32x 1077
4 0.7401 0.1480 0.406 1.77 x 1073 0.7401 0.1480 0.1999 0.406 0.405 —6.42 x 1077
5 0.7645 0.1529 0.380 —1.84x 1073 0.7645 0.1529 0.2000 0.380 0.382 —9.80 x 1077
6 0.7917 0.1583 0.392 —1.01 x 1073 0.7917 0.1583 0.1999 0.392 0.391 8.02 x 1077
7 0.8190 0.1638 0.364 —1.99 x 1073 0.8190 0.1638 0.2000 0.364 0.364 —2.38 x 107°
8 0.8476 0.1695 0.353 1.25x 1073 0.8476 0.1695 0.1999 0.353 0.353 3.17x 1076
9 0.8794 0.1759 0.361 8.26 x 107° 0.8794 0.1759 0.2000 0.361 0.361 1.63 x 107°
10 0.9110 0.1822 0.330 —1.52x 1073 0.9110 0.1822 0.2000 0.330 0.330 5.81 x107°

“Not applicable.

Table 5. Sample optimal nonhomogeneous transition probabilities obtained for Project B using a 10 x 10 Markov chain (F; = 0.3)

Transition Optimization option I

Optimization option II

mmber, K P'(K),  P'(Royy  A'K) D' (k) P, PRos  Fi) A Bk D'(k)
1 0.6320 0.1896 —* 0.0000 0.6320 0.1896 0.3000 — — 0.0000

2 0.6880 0.2064 1.116 —1.94 x 107 0.6880 0.2064 0.3000 1.116 1.118 4.6 x 1077
3 0.7028 0.2108 0.269 —1.61 x 107 0.7028 0.2108 0.3000 0.269 0.268 8.99 x 107
4 0.7189 0.2157 0.275 6.25 x 1073 0.7189 0.2156 0.2999 0.275 0.274 1.81 x 1077
5 0.7338 0.2202 0.241 1.17 x 1073 0.7338 0.2202 0.2999 0.241 0.242 2.26 x 10°°
6 0.7500 0.2250 0.244 6.85 % 107° 0.7500 0.2250 0.3000 0.244 0.244 3.06 x 10°°
7 0.7646 0.2294 0.207 —2.02x 107 0.7646 0.2294 0.3000 0.207 0.207 1.65 x 10~°
8 0.7786 0.2336 0.187 —1.83 x 107 0.7786 0.2334 0.2999 0.187 0.186 —3.54x 107
9 0.7934 0.2380 0.185 1.03 x 10~ 0.7934 0.2380 0.2999 0.185 0.185 —5.81x107°
10 0.8057 0.2417 0.144 5.46 x 107° 0.8057 0.2417 0.2999 0.144 0.144 731 x 107°

“Not applicable.

from Eq. (7) based on R, (1) = 88.68, R, = 95, and R, = 85. This
high initial probability value is an indication of low-grade perfor-
mance trend, as depicted in Fig. 1. Table 4 provides the optimal
nonhomogeneous transition probabilities for a constant deteriora-
tion factor of F; = 0.2. The two sets of optimal solution as derived
from the two optimization options are the same in most cases.

Similarly, Table 5 provides the optimal solutions for a constant
deterioration factor of F; = 0.3 with the two optimal sets are being
very much identical. However, the optimal initial transition prob-
abilities are lower in value compared with the corresponding ones
provided in Table 4. This is because of the higher deterioration fac-
tor, which resulted in an increase in the optimal terminal transition
probabilities, thus compensating for the decrease in the initial tran-
sition probabilities to still yield the same performance ratings.
Again, Tables 4 and 5 practically provide two sets of optimal sol-
ution that are highly compatible in terms of yielding the minimum
performance difference D(k) between the predicted and observed
performance ratings.

Table 6 provides sample optimal nonhomogeneous transition
probabilities for Project C using a Markov chain with five condition
states. The performance trend of this project could not be predicted
using 10 condition states because the first-year initial transition
probability would be greater than one when computed using Eq. (7).
The first-year initial transition probability P(1); , = 0.7445 is com-
puted from Eq. (7) using R,(1) = 75.11, R, = 90, and R, = 70.

Table 6 provides two sets of optimal solution based on Optimi-
zation option I for only five transitions (i.e., 5 years) using 0.2 and
0.3 as constant deterioration factors. The two solutions derived are
compatible except for the last transition, wherein using the 0.2 con-
stant deterioration factor failed to yield an error difference D(k)
within the specified tolerable value of 1.00 x 10~*. This is because
the corresponding initial transition probability has almost reached
the limit value (0.9999). However, the optimal solution associated
with the 0.3 constant deterioration factor has generally achieved
the objective by yielding error differences within the specified
tolerance.

Table 6. Sample optimal nonhomogeneous transition probabilities obtained for Project C with a 5 x 5 Markov chain using Optimization option I

Deterioration rate factor F; = 0.3

Deterioration rate factor F; = 0.2

Transition

number, k P'(K)i, P'(k)ys A'(k) D'(k) P'(k)i 2 P'(k)ys A'(k) D'(k)

1 0.7445 0.2234 —* 0.0000 0.7445 0.1489 — 0.0000

2 0.7848 0.2354 0.2784 0.99 x 1073 0.8091 0.1618 0.4392 —6.00 x 1073
3 0.8252 0.2476 0.2539 -9.30 x 107® 0.8862 0.1772 0.4604 —8.58 x 1073
4 0.8550 0.2565 0.1759 —8.92 x 107° 0.9708 0.1942 0.4521 1.79 x 107
5 0.8663 0.2599 0.0658 3.23 x 1073 0.9999 0.1999 0.1491 —3.38 x 107!
“Not applicable.
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Case Study II: Actual Performance Data

In this section, actual IRI data are used to estimate the nonhomo-
geneous transition probabilities considering the urban arterial system
in Ramallah, Palestine. The IRI is an internationally used perfor-
mance indicator for pavement management applications. Birzeit
University has recently acquired a new device called IRIMETER-2
(Englo LLC, Tallinn, Estonia) for measuring the roadway longitu-
dinal roughness. The device estimates the IRI by measuring the ve-
hicle vibration via two sensors installed on the vehicle front axle, one
next to each wheel.

As an initial experimentation with the new device, several road
segments were tested for IRI. The selected segments belong to the
arterial system, which exhibits similar traffic loading, pavement
structure, and drainage and subgrade conditions. The selected seg-
ments were rehabilitated within the last 5 years using cold milling
and asphaltic overlay, which is a popular rehabilitation strategy in
Palestine. However, the pavement conditions of selected segments
are diverse due to differences in rehabilitation age. The segments
were selected so that the rehabilitation age covered a period of
5 years. The average IRI value is obtained for all segments with
approximately the same rehabilitation age as follows:

* Rehabilitation age (year): 1, 2, 3, 4, and 5, and
e IRI (m/km): 0.95, 1.35, 1.89, 2.48, and 3.17.

The device measures the IRI at intervals of 5 m for both the left
and right wheels. The IRI provided above is estimated as an average
value for both wheels considering all segments with the same age.
Pavement deterioration requires that the IRI value increases over
time, as evidenced from the preceding IRI data, wherein higher IRI
values indicate inferior pavement performance. Although, these an-
nual IRI values do not belong to the same roadway segments, they
provide a means to estimate the corresponding nonhomogeneous
transition probabilities for a period of 5 years. A Markov chain with

Table 7. Sample optimal nonhomogeneous transition probabilities
obtained from actual IRI data with a 5x5 Markov chain using
Optimization option II

Optimal parameter

Transition

number, k  P'(k);, P'(k)ys Fj(k) A'(k) B'(k) D' (k)

1 0.4500 0.1020 0.2267 —* — 0.0000

2 0.4519  0.1061 0.2347 0.012 0.111 —2.49 x 107
3 0.6790 0.1884 0.2774 1.210 1.707 7.20 x 107°
4 0.8427 0.2973 0.3528 0.795 1.680 1.80 x 103
5 0.9434  0.5702 0.6044 0.460 2.653 —1.56x 107

“Not applicable.

five condition states and equal IRI ranges of (0-1, 1-2, 2-3, 34,
and 4-5) are used in deterioration modeling. The corresponding
state mean performance ratings R; become equal to 0.5, 1.5, 2.5,
3.5, and 4.5.

Table 7 provides the corresponding optimal nonhomogeneous
initial and terminal transition probabilities estimated for 5 years
using Optimization option II. The first-year initial transition prob-
ability is estimated using Eq. (21), which is a modification of
Eq. (7) accounting for a performance indicator that increases over
time such as the IRI. The first-year initial transition probability
P(1),, = 0.450 is computed from Eq. (21) using R,(1) = 0.95,
R, = 0.5, and R, = 1.5. In this case, Optimization option II was
successful in yielding optimal solutions with variable deterioration
factor F'(k) and variable deterioration rate exponents A’(k) and
B’(k) as indicated by the results provided in Table 7. All optimal
solutions have met the specified error tolerance of 1.00 x 1074,
although a smaller value can be specified because the IRI scale is
typically much smaller than the PCI scale

P(1)L2=%<10 (21)

where R,(1) > R, R, > R, and R,(1) < R,.

Additionally, the sequential computation of the initial and ter-
minal transition probabilities have been computed using the two
constraints provided in Eq. (12). However, the deterioration rate
ratio has been reversed to become R, (k + 1)/R,(k), which keeps
the ratio value greater than one. This is required in order to obtain
positive exponent values instead of negative ones.

Sample optimal intermediate transition probabilities have
been estimated using both linear and quadratic approximations for
Project B considering Optimization option I. The corresponding
optimal solutions are provided in Table 8 for a limited number of
transitions. A quadratic model similar to the one presented in Fig. 2
has been used with an F'; = 0.4 quadratic factor. Generally, both
linear and quadratic approximations have yielded compatible re-
sults in terms of meeting the specified tolerance limit of 1.00 x
104, whereas the associated deterioration rate exponents A’(k)
are different in values. It can also be noted that the initial transition
probability P’(k), , associated with quadratic modeling is consis-
tently higher than the corresponding value associated with linear
approximation. However, the intermediate transition probabilities
are generally lower in the case of quadratic modeling. Hence, both
linear and quadratic models are viable options for estimating the
intermediate transition probabilities while meeting the specified op-
timization objective.

Table 8. Sample optimal intermediate transition probabilities obtained for Project B using Optimization option I (F; = 0.2)

Transition number, k

Ot k=2 k=3 k=4 k=5
ptimal
parameter Linear Quadratic Linear Quadratic Linear Quadratic Linear Quadratic
P'(k), 0.6938 0.7193 0.7158 0.7700 0.7401 0.8245 0.7645 0.8796
P'(k)y5 0.6245 0.6096 0.6442 0.6527 0.6660 0.6988 0.6881 0.7456
P/(k)g 4 0.5551 0.5108 0.5726 0.5468 0.5920 0.5854 0.6116 0.6246
P'(k)ys 0.4857 0.4226 0.5010 0.4525 0.5180 0.4844 0.5352 0.5167
P’(k)5 6 0.4163 0.3453 0.4294 0.3697 0.4440 0.3958 0.4587 0.4223
P'(k)g7 0.3469 0.2788 0.3579 0.2984 0.3700 0.3195 0.3823 0.3409
P'(k)7 g 0.2775 0.2230 0.2863 0.2387 0.2960 0.2556 0.3058 0.2727
P'(k)go 0.2082 0.1780 0.2147 0.1906 0.2220 0.2040 0.2294 0.2177
P/(k)g 10 0.1388 0.1438 0.1432 0.1540 0.1480 0.1649 0.1529 0.1759
A'(k) 1.2266 1.6995 0.3936 0.8633 0.4063 0.8314 0.3803 0.7579
D' (k) 2.16 x 1073 1.11 x 1076 4.56 x 10°° —1.30 x 1073 1.77 x 1073 1.37 x 107 —1.84 x 1073 7.35x 1076
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Conclusions and Recommendations

In all presented sample results, it can be noticed that both the initial
and terminal transition probabilities have consistently increased
over time, as would be expected due to the progressive increase
in traffic loading and progressive decrease in pavement structural
capacity (Abaza 2017a). Furthermore, there is more than one reli-
able solution to achieve the objective of minimizing the differences
between the predicted and observed performance ratings. They
have all provided accurate prediction of the investigated deteriora-
tion trends, although none of them may be the absolute optimal
solution. Additionally, the two proposed optimization options have
provided solutions that are very compatible in terms of yielding
accurate performance predictions. Therefore, either one of them
can be used to obtain the nonhomogeneous initial and terminal
transition probabilities for a given performance trend. The data re-
quirement is very minimal, consisting mainly of annual perfor-
mance ratings estimated over the analysis period, which can be
estimated from historical distress records when dealing with pave-
ment structures. The sample results have been obtained for a maxi-
mum 10-year analysis period because this is typically adequate in
most pavement management applications. However, the proposed
approach can be used for a longer period if so desired.

The selection of the appropriate size of Markov chain is an
essential task. The two most popular ones are the Markov chains
associated with 5 and 10 condition states. Generally, a 10 x 10
Markov chain is used when the average annual drop in performance
rating is below 10 on a scale of 100 points, whereas a 5 x 5 Markov
chain is employed when the average annual drop reaches 20 points.
In either case, the first-year initial transition probability has to be
less than one when computed from Eq. (6).

The proposed sequential search approach has mainly focused on
dealing with a transition matrix with only two transitions per state,
as indicated by Eq. (2). The sample results have indicated that this
form of transition matrix is effective in modeling performance
trends similar to the ones depicted in Fig. 1. However, there may
be other performance trends that this form of transition matrix may
not be able to predict even with using different Markov chain sizes.
The solution in this case would require using additional state tran-
sitions such as three or even four transitions per state, which would
require more extensive mathematical modeling (Abaza 2021).

Data Availability Statement

All data, models, and code generated or used during the study
appear in the published article.
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