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Abstract

We study some results concerning dynamics and bifurcation of a spe-
cial case of a second order rational difference equations with quadratic
terms. We consider the second order, quadratic rational difference
equation

xn+1 =
α +β xn−1

A+Bx2n +Cxn−1
, n = 0, 1, 2, ...

with positive parameters α, β , A, B, C, and non-negative initial con-
ditions.
We investigate local stability, invariant intervals, boundedness of the
solutions, periodic solutions of prime period two and global stability
of the positive fixed points. And we study the types of bifurcation
exist where the change of stability occurs. Then, we give numerical
examples with figures to support our results.

©2021 L&H Scientific Publishing, LLC. All rights reserved.

1 Introduction1

In mathematics, a dynamical system is a system whose behavior at a given time depends on its behavior2

at one or more previous time. One of the main objectives in the theory of dynamical systems is the3

study of the behavior of orbits near fixed points.4

Dynamical systems are a fundamental part of bifurcation theory which studies the changes in the5

qualitative or topological structure of systems. The term bifurcation refers to the phenomenon of a6

system exhibiting new dynamical behavior as the parameter is varied.7

In this paper, we consider the second order, quadratic rational difference equation8

xn+1 =
α +βxn−1

A+Bx2
n +Cxn−1

, n = 0, 1, 2, ... (1)

With positive parameters α , β , A, B, C, and non-negative initial conditions.9

We focus on local stability, invariant intervals, boundedness of the solutions, periodic solutions of10

prime period two and global stability of the positive fixed points. And we study the types of bifurcation11
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exist where the change of stability occurs. Then, we use Matlab for numerical discussions with figures12

to support our results.13

Equation (1) is special case of equation14

xn+1 =
α +βxn−1 + γxn +ηx2

n−1 +ζxnxn−1 + ℓx2
n

A+Dxn−1+Bxn +Cx2
n−1 +Exnxn−1 +Fx2

n
, n = 0, 1, 2, ... (2)

Some special cases of (2) have been considered in many papers [1–18]. In [3] and [4] global stability15

character, the periodic nature, and the boundedness of solutions of special cases of equation16

xn+1 =
α +βxnxn−1 + γxn−1

A+Bxnxn−1 +Cxn−1
, n = 0, 1, 2, (3)

have been studied, with non-negative parameters and with arbitrary non-negative initial conditions17

such that the denominator is always positive.18

A. M. Amleh, E. Camouzis and G. Ladas [2] considered equations 24 and 25 in [4], they confirmed19

some conjectures and solved some open problems stated.20

In [5] M. GariT-Demirović et al. investigated global behavior of the equation21

xn+1 =
xn−1

2

axn
2 +bxnxn−1 +Cxn−12 , n = 0, 1, 2, (4)

where the parameters a, b, and c are positive numbers and the initial conditions x−1 and x0 are arbitrary22

non-negative numbers such that x−1 + x0 > 0.23

2 Preliminaries24

Before studying the behavior of solutions of this rational difference equation, we will review some25

definitions and basic results that will be used throughout this paper.26

Lemma 1. [20] Consider the second order difference equation,27

x(n+1) = f (x(n),x(n−1)), n = 0, 1, 2, ... (5)

Where f : I× I → I is a continuously differentiable function, and I is an interval of real numbers. Then28

for every set of initial conditions x−1, x0 ∈ I the difference equation (5) has a unique solution {xn}∞
n=−1.29

Definition 1. [20] A point x̄ ∈ I is an equilibrium point of equation (5) if f (x̄, x̄) = x̄.30

Definition 2. [20] Let x̄ be an equilibrium point of equation (5).31

1. x̄ is called locally stable if for every ε > 0, there exists δ > 0 such that if |x−1 − x̄|+ |x0 − x̄| < δ ,32

then |xn − x̄|< ε for all n > 0.33

2. x̄ is called attracting, if there exists γ > 0 such that if |x−1 − x̄|+ |x0 − x̄|< γ , then limn→∞ xn = x̄.34

3. x̄ is called a global attractor if for every x−1, x0 ∈ I we have limn→∞ xn = x̄.35

4. x̄ is called globally asymptotically stable if it is locally stable and a global attractor.36

5. x̄ is called unstable if it is not stable.37

Definition 3. [20]38
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1. A solution {xn}∞
n=−1 of equation (5) is said to be periodic with period p if xn+p = xn for all n ≥−1.39

2. A solution {xn}∞
n=−1 of equation (5) is said to be periodic with prime period p, or p-cycle if it is40

periodic with period p and p is the least positive integer for which xn+p = xn for all n ≥−1.41

Definition 4. [20] Consider the difference equation (5). Then the linearized equation associated with42

this difference equation is43

yn+1 = pyn +qyn−1, n = 0, 1, 2, ... (6)

Where a = ∂ f
∂u (x̄, x̄), and b = ∂ f

∂v (x̄, x̄).44

And the characteristic equation of (5) is45

λ 2 −aλ −b = 0 (7)

Theorem 2. [21] (Linearized Stability)46

Consider the characteristic equation (7).47

1. If both characteristic roots of (7) lie inside the unit disk in the complex plane, then the equilibrium48

x̄ of (5) is locally asymptotically stable.49

2. If at least one characteristic root of (7) is outside the unit disk in the complex plane, the equilib-50

rium point x̄ is unstable.51

3. If one characteristic root of (7) is on the unit disk and the other characteristic root is either inside52

or on the unit disk, then the equilibrium point x̄ may be stable, unstable, or asymptotically stable.53

4. A necessary and sufficient condition for both roots of (7) to lie inside the unit disk in the complex54

plane, is55

|a|< 1−b < 2. (8)

Let A = J f (x̄) is the Jacobian matrix of f at x̄, where56

J f (x̄) =

(
∂ f1
∂x1

∂ f1
∂x2

∂ f2
∂x1

∂ f2
∂x2

)
|x̄ (9)

An important way to determine the stability of fixed points is given in the following result.57

Theorem 3. [22] Consider the map f : H ⊂ R2 → R2, and let A = J f (x̄), with spectral norm ρ(A).58

Then ρ(A)< 1, if and only if59

|tr(A)|−1 < det(A)< 1 (10)

where tr(A) is the trace of A, and det(A) is the determinant of A.60

The following theorem will be used to investigate global stability of fixed points.61

Theorem 4. [20] Let [a,b] be an interval of real numbers and assume that f : [a,b]× [a,b] → [a,b] is62

a continuous function satisfying the following properties:63

1. f (x,y) is non-increasing in x ∈ [a,b] for each y ∈ [a,b], f (x,y) is non-decreasing in y ∈ [a,b] for64

each x ∈ [a,b].65

2. The difference equation (5) has no solutions of prime period two in [a,b].66

Then (5) has a unique equilibrium x̄ ∈ [a,b] and every solution of (5) converges to x̄.67
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The expression ?bifurcation? is extremely general. We use it to describe the orbit structure near68

non-hyperbolic fixed points.69

Definition 5. Bifurcation is a change of the topological type of the system as its parameters pass70

through a bifurcation (critical) value.71

There are several types of bifurcation, the saddle-node bifurcation, period-doubling bifurcation,72

Neimark-Sacker bifurcation.73

Definition 6. [18] Consider the non-linear difference equation

Xn+1 = AXn +F(Xn),

where A is k× k matrix, Xn ∈ Rk for every n > 0, F ∈C[Rk,Rk].74

1. The bifurcation associated with the appearance of an eigenvalue µ = 1 is called fold or (tangent)75

bifurcation.76

This bifurcation is also referred to as a limit point, saddle-node bifurcation, turning point, among77

others.78

79

2. The bifurcation associated with the appearance of an eigenvalue µ =−1 is called flip or (period-80

doubling) bifurcation.81

82

3. The bifurcation corresponding to the presence of two eigenvalues λ1,2 = e±iθ0 , 0 < θ0 < π, is called83

a Neimark-Sacker (or torus) bifurcation.84

85

The fold and flip bifurcations are possible if n ≥ 1, but for the Neimark- Sacker bifurcation we86

need n ≥ 2.87

Theorem 5. [22] Consider the two-dimensional map88

x 7→ f (x,µ), x ∈ R, µ ∈ R. (11)

Let (x̄,µ∗) be a fixed point of f (x,µ) and A = J f (x̄,µ∗). Then the following statements hold:89

1. If det(A) = tr(A)−1, then the eigenvalues of A are λ1 = det(A) and λ2 = 1.90

2. If det(A) =−tr(A)−1, then the eigenvalues of A are λ1 =−det(A) and λ2 =−1.91

3. If |tr(A)|−1< det(A) and det(A)= 1, then A has a pair of complex conjugate eigenvalues λ1,2 = e±iθ
92

where θ = cos−1( tr(A)
2 ).93

Corollary 6. Let94

x 7→ f (x,µ), x ∈ R2, µ ∈R (12)

be a one-parameter family of two-dimensional maps, with fixed point (x̄,µ∗) and A = J f (x̄,µ∗). Then95

the following statements hold:96

1. If det(A) = tr(A)−1, then the system (12) undergoes a saddle-node bifurcation.97

2. If det(A) =−tr(A)−1, then the system (12) undergoes a period-doubling bifurcation.98

3. If |tr(A)|−1< det(A) and det(A)= 1, then the system (12) undergoes a Neimark-sacker bifurcation.99
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Consider the period-doubling bifurcation case for any n-dimensional map100

x̃ = Ax+G(x), x ∈R (13)

where G(x) = O(‖x‖2) is a smooth function and its Taylor expansion is101

G(x) =
1
2

B(x,x)+
1
6

C(x,x,x)+O(‖x4‖) (14)

where102

Bi(x,y) =
n

∑
k, j=1

∂ 2Yi(η)

∂ηk∂η j
|η=0(xky j) (15)

and103

Ci(x,y,z) =
n

∑
l,k, j=1

∂ 3Yi(η)

∂ηl∂ηk∂η j
|η=0(xlykz j). (16)

And the Jacobian matrix A has the eigenvalue λ =−1 and the corresponding critical eigenspace T c is104

one-dimensional and spanned by an eigenvector q̂ ∈ Rn such that Aq̂ = λ q̂. Let p̂ ∈ Rn be the adjoint105

eigenvector, that is, AT p̂ = λ p̂, where AT is the transposed matrix. Normalize p̂ with respect to q̂106

such that 〈p̂, q̂〉= 1. Let T su denote an (n−1)-dimensional linear eigenspace of A corresponding to all107

eigenvalues other than λ . Note that the matrix (A−λ In) has common invariant spaces with the matrix108

A, so we conclude that y ∈ T su if and only if 〈p̂,y〉 = 0.109

To predict the direction of period-doubling bifurcation, we use the critical normal form coefficient110

c(0). c(0) is given by the following invariant formula:111

c(0) =
1
6
〈p̂,C(q̂, q̂, q̂)〉− 1

2
〈p̂,B(q̂,(A− In)

−1B(q̂, q̂))〉. (17)

If c(0)> 0, then a unique and stable period-two cycle bifurcates from the fixed point at the bifurcation112

point. [18]113

3 Dynamics of xn+1 =
α+βxn−1

A+Bx2n+Cxn−1
114

In this section we return to our problem115

xn+1 =
α +βxn−1

A+Bx2
n +Cxn−1

, n = 0, 1, 2, ... (18)

with positive parameters α , β , A, B, C, and non-negative initial conditions.116

3.1 Change of variables117

The change of variables118

xn =

√
A√
B

yn. (19)

reduces equation (18) to the difference equation119

yn+1 =
p+qyn−1

1+ y2
n + ryn−1

, n = 0, 1, 2, ... (20)

Where p = α
√

B√
A3 , q = β

A , and r = C√
AB

.120
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3.2 Equilibrium points121

We will prove the existence of the unique positive equilibrium point of the rational difference equation122

yn+1 =
p+qyn−1

1+ y2
n + ryn−1

, n = 0, 1, 2, ... (21)

with positive parameters p, q, r, and non-negative initial conditions. And we use a Matlab code to123

find it.124

To find the equilibrium point, we solve the following equation125

ȳ =
p+qȳ

1+ ȳ2 + rȳ
(22)

hence126

ȳ3 + rȳ2 +(1−q)ȳ− p = 0. (23)

By Descartes’ rule of signs equation (23) has one positive root, which is the unique positive equi-127

librium point of equation (21).128

To find the roots of equation (23) we use a Matlab code.129

And then we choose the positive root to be ȳ.130

3.3 Linearized equation131

To find the linearized equation of (21) about the equilibrium point ȳ, let132

f (x,y) =
p+qy

1+ x2 + ry
(24)

We have

∂ f
∂x

(x,y) =
−2x(p+qy)

(1+ x2 + ry)2 . (25)

∂ f
∂y

(x,y) =
q(1+ x2 + ry)− r(p+qy)

(1+ x2 + ry)2 . (26)

by substituting ȳ = p+qȳ
1+ȳ2+rȳ from equation (22) we get133

∂ f
∂x

(ȳ, ȳ) =
−2ȳ2

1+ ȳ2 + rȳ
. (27)

And134

∂ f
∂y

(ȳ, ȳ) =
q− rȳ

1+ ȳ2 + rȳ
. (28)

The linearized equation is135

yn+1 =
−2ȳ2

1+ ȳ2 + rȳ
yn +

q− rȳ
1+ ȳ2 + rȳ

yn−1. (29)

And the characteristic equation is136

λ 2 +
2ȳ2

1+ ȳ2 + rȳ
λ − q− rȳ

1+ ȳ2 + rȳ
= 0. (30)
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3.4 Local stability137

To check when the unique positive equilibrium point ȳ of equation (21) is locally asymptotically stable,138

let139

a =
−2ȳ2

1+ ȳ2 + rȳ
, b =

q− rȳ
1+ ȳ2 + rȳ

(31)

Using Theorem 2 (4) a sufficient condition for asymptotic stability of ȳ is |a|< 1−b < 2.140

Which is equivalent to

−b < 1, (32)

and |a|< 1−b. (33)

The inequality (32) always holds, since it is equvilent to

1+ ȳ2 +q > 0. (34)

Which always holds.141

And (33) is equivalent to

a >−1+b, (35)

and a < 1−b. (36)

(35) holds when142

q < 1− ȳ2 +2rȳ. (37)

And (36) holds when143

q < 1+3ȳ2 +2rȳ. (38)

Hence a sufficient conditions for asymptotic stability of ȳ is

q < 1− ȳ2 +2rȳ. (39)

and q < 1+3ȳ2 +2rȳ. (40)

Note that if (39) holds, then (40) holds, thus q < 1− ȳ2 +2rȳ is a sufficient condition for asymptotic144

stability of ȳ .145

3.5 Invariant intervals146

Consider the difference equation (21), and {yn}∞
n=−1 as a solution. Then the following are invariant147

intervals:148

1. [0,q] when r ≥ 1, and q ≥ p.149

150

2. [0, q
r ] when pr ≤ q.151

Proof.152

1. Assume that r ≥ 1, and q ≥ p, and yN−1, yN ∈ [0,q] for some integer N.153

154

yN+1 =
p+qyN−1

1+ y2
N + ryN−1

≤ p+qyN−1

1+ ryN−1

≤ q+qyN−1

1+ yN−1
,

= q.

(41)
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And working inductively we complete the proof.155

2. Assume that pr ≤ q, and yN−1, yN ∈ [0, q
r ] for some integer N.156

yN+1 =
p+qyN−1

1+ y2
N + ryN−1

=
q( p

q + yN−1)

r(1
r +

1
r y2

N + yN−1)

≤ q(1
r + yN−1)

r(1
r + yN−1)

=
q
r
.

(42)

And working inductively we complete the proof.157

3.6 Boundedness158

We will show that every solution of the difference equation (21) is bounded. Let {yn}∞
n=−1 be a solution159

of (21). then we have f or n = 0, 1, 2, ...160

0 < yn+1 =
p+qyn−1

1+ y2
n + ryn−1

=
p

1+ y2
n + ryn−1

+
qyn−1

1+ y2
n + ryn−1

≤ p
1
+

qyn−1

ryn−1

= p+
q
r
.

(43)

Hence the solution is bounded, since it is bounded from below and from above.161

3.7 Period two cycles162

In general, we say that the solution {yn}∞
n=−1 has a prime period two if the solution eventually takes163

the form:164

..., φ , ψ , φ , ψ , ... (44)

where φ and ψ are positive, and φ 6= ψ .165

Theorem 7. Assume that equation (21) has a two periodic cycle {φ , ψ}, where φ and ψ are positive,166

and φ 6= ψ. Then q must satisfy the following conditions:167

1.
q ≤ 1+ r(φ +ψ) (45)

2.
q > 1−φψ (46)

Proof. Assume {φ , ψ} is prime period two solution of equation (21), then φ , ψ satisfy :168

φ =
p+qφ

1+ψ2 + rφ
(47)

and169

ψ =
p+qψ

1+φ2 + rψ
. (48)
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From Equation (47) we have170

φ +φψ2 + rφ2 = p+qφ , (49)

and from Equation (48) we have171

ψ +ψφ2 + rψ2 = p+qψ . (50)

Subtracting Equation (50) from (49), we get:172

(φ −ψ)−ψφ(φ −ψ)+ r(φ2 −ψ2) = q(φ −ψ). (51)

Since φ 6= ψ , the last equation can be divided by (φ −ψ), and we get173

1−ψφ + r(φ +ψ) = q. (52)

So174

φψ = 1+ r(φ +ψ)−q. (53)

But ψφ ≥ 0, so175

1+ r(φ +ψ)−q ≥ 0, (54)

hence176

q ≤ 1+ r(φ +ψ). (55)

Which is the first condition. From (52) we get also:177

φ +ψ =
φψ +q−1

r
. (56)

But φ +ψ > 0, so178

φψ +q−1
r

> 0, (57)

since r > 0 we have179

φψ +q−1 > 0, (58)

hence180

q > 1−φψ . (59)

Which is complete the proof.181

3.8 Global stability182

Now we will investigate a result about the global stability of the positive equilibrium point of (21) ȳ.183

Theorem 8. Assume pr ≤ q ≤ r
√

r2+4−r2

2 . Then the positive equilibrium point ȳ on the interval S = [0, q
r ]184

is globally asymptotically stable.185

Proof. this proof can easily done depending on Theorem (4). Assume pr ≤ q, and consider the186

function187

f (x,y) =
p+qy

1+ x2 + ry
. (60)

Note that S is an invariant interval and all non-negative solutions of equation (21) lie in this interval.188

And f (x,y) on S is non-increasing function in x, and non-decreasing in y.189

Now we need to show that the difference equation (21) has no solution of prime period two in S.190

For seek of contradiction assume that the difference equation (21) has a solution of prime period191

two {φ ,ψ} ∈ S. Then q must satisfy192

q > 1−φψ , (61)
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Fig. 1 The positive equilibrium point is unstable.

but since {φ ,ψ} ∈ S193

1−φψ ≥ 1− q2

r2 , (62)

hence194

q > 1− q2

r2 , (63)

which is a contradiction, since q ≤ r
√

r2+4−r2

2 .195

So equation (21) has no solution of prime period two in S. Then both conditions of Theorem (4)196

hold, then (21) has a unique positive equilibrium point ȳ ∈ S, and it is globally asymptotically stable.197

3.9 Numerical discussion198

In this subsectionm we use Matlab to graph an example to support our results.199

Example 1. Consider the difference equation (21), take p = 4, q = 5, r = 0.5. Equation (21) becomes200

yn+1 =
4+5yn−1

1+ y2
n +0.5yn−1

, n = 0, 1, 2, ... (64)

With initial conditions y0 = 0.1, y1 = 1.1.201

The theoretical positive equilibrium point will be ȳ = 2.1786778129.202

Theoretically the positive equilibrium point ȳ is unstable since pr = 2 ≤ q but q > r
√

r2+4−r2

2 =203

0.3903882032.204

Figure (1) shows that the positive equilibrium point is unstable.205

4 Bifurcation of yn+1 =
p+qyn−1

1+y2
n+ryn−1

206

In this section we study the types of bifurcation that occur at q = q∗ as q is the bifurcation parameter.207

In order to convert equation (21) to a second dimensional system with three parameters p, q, and208

r, let209

zn = yn−1, (65)

and210

vn = yn. (66)
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We get the following system211

zn+1 = vn (67)
212

vn+1 =
p+qzn

1+ v2
n + rzn

, n = 0, 1, 2, ... (68)

This system has the unique fixed point (z̄, v̄)T = (ȳ, ȳ)T . Convert this system in to second dimensional213

map214

F
(

z
v

)
=

(
f1(z,v)
f2(z,v)

)
=

(
v

p+qz
1+v2+rz

)
. (69)

So the Jacobian matrix of F(z,v) at (ȳ, ȳ) is215

JF(z,v)|(ȳ,ȳ) =
(

0 1
q−rȳ

1+ȳ2+rȳ
−2ȳ2

1+ȳ2+rȳ

)
(70)

So216

det(JF(ȳ, ȳ)) =− q− rȳ
1+ ȳ2 + rȳ

, (71)

and217

tr(JF(ȳ, ȳ)) =
−2ȳ2

1+ ȳ2 + rȳ
. (72)

Theorem 9. the fixed point (ȳ, ȳ) of the system (69) undergoes a saddle-node bifurcation when q =218

2rȳ+3ȳ2 +1.219

Proof. Saddle-node bifurcation happens when220

det(J) = tr(J)−1. (73)

So the fixed point (ȳ, ȳ) of the system (69) undergoes a saddle-node bifurcation if221

− q− rȳ
1+ ȳ2 + rȳ

=
−2ȳ2

1+ ȳ2 + rȳ
−1 (74)

so222

q = 2rȳ+3ȳ2 +1. (75)

So saddle-node bifurcation happens if q = 2rȳ+3ȳ2 +1.223

Theorem 10. the fixed point (ȳ, ȳ) of the system (69) undergoes a period-doubling bifurcation when224

q = 2rȳ− ȳ2 +1 if r > ȳ2−1
2ȳ .225

Proof. Assume r > ȳ2−1
2ȳ . Period-doubling bifurcation happens when226

det(J) =−tr(J)−1. (76)

So the fixed point (ȳ, ȳ) of the system (69) undergoes a period-doubling bifurcation if227

− q− rȳ
1+ ȳ2 + rȳ

=− −2ȳ2

1+ ȳ2 + rȳ
−1 (77)

so228

q = 2rȳ− ȳ2 +1. (78)

Which is positive since r > ȳ2−1
2ȳ . So period-doubling bifurcation happens if q = 2rȳ− ȳ2 +1.229

Note that the system (69) does not undergo Neimark-sacker bifurcation at (ȳ, ȳ).230
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4.1 Direction of the period-doubling (Flip) bifurcation231

In this section we will find the direction of Flip bifurcation of system (69) at q = 2rȳ− ȳ2 +1.232

We need at first to shift the fixed point (ȳ, ȳ) to the origin. Let

wn = zn − ȳ, (79)

un = vn − ȳ. (80)

System (69) will be233

wn+1 = un (81)
234

un+1 =
p+q(wn + ȳ)

1+(un + ȳ)2 + r(wn + ȳ)
, n = 0, 1, 2, ... (82)

Or235

Yn+1 = AYn +G(Yn), (83)

where236

A =

(
0 1

q−rȳ
1+ȳ2+rȳ

−2ȳ2

1+ȳ2+rȳ

)
, Yn =

(
wn
un

)
, (84)

and237

G(Y ) =
1
2

B(Y,Y )+
1
6

C(Y,Y,Y )+O(‖Y‖4) (85)

238

B(Y,Y ) =

(
B1(Y,Y )
B2(Y,Y )

)
and C(Y,Y,Y ) =

(
C1(Y,Y,Y )
C2(Y,Y,Y )

)
(86)

where239

Bi(x,y) =
n

∑
k, j=1

∂ 2Yi(η)

∂ηk∂η j
|η=0(xky j) (87)

and240

Ci(x,y,z) =
n

∑
l,k, j=1

∂ 3Yi(η)

∂ηl∂ηk∂η j
|η=0(xlykz j). (88)

So B1(ψ ,φ) = 0 and C1(ψ ,φ ,ξ ) = 0,241

B2(ψ ,φ) =
−2r(q− rȳ)
(1+ ȳ2 + rȳ)2 (ψ1φ1)+

2ȳ(2rȳ−q)
(1+ ȳ2 + rȳ)2 (ψ1φ2 +ψ2φ1)+

8ȳ3 −2(p+qȳ)
(1+ ȳ2 + rȳ)2 (ψ2φ2), (89)

and

C2(ψ ,φ ,ξ ) =
6r2(q− rȳ)
(1+ ȳ2 + rȳ)3 (ψ1φ1ξ1)+

4rȳ(2q−3rȳ)
(1+ ȳ2 + rȳ)3 (ψ1φ1ξ2 +ψ1φ2ξ1 +ψ2φ1ξ1)

+
2q(rȳ+3ȳ2 −1)+4r(p−6ȳ3)

(1+ ȳ2 + rȳ)3 (ψ2φ2ξ1 +ψ2φ1ξ2 +ψ1φ2ξ2)

+
20ȳ(p+qȳ)−48ȳ4

(1+ ȳ2 + rȳ)3 (ψ2φ2ξ2).

(90)

Now we find the eigenvectors of A and AT corresponding to the eigenvalue λ =−1 at the bifurcation242

point q = 2rȳ− ȳ2 +1.243

Let q̂ and p∗ be the eigenvectors of A and AT corresponding to the eigenvalue λ =−1 respectively.244

So we have245

Aq̂ =−q̂, and AT p∗ =−p∗. (91)
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Or

(A+ I)q̂ = 0 (92)

(AT + I)p∗ = 0. (93)

From equation (92) we get246

q̂ ∼
(

1
−1

)
. (94)

And from equation (93) we get247

p∗ ∼
(

rȳ−q
1+ȳ2+rȳ

1

)
. (95)

Now, we normalize p∗ and q̂, take p̂ = η

(
rȳ−q

1+ȳ2+rȳ
1

)
, η = 1

rȳ−q
1+ȳ2+rȳ

−1
=− 1+ȳ2+rȳ

1+ȳ2+q .248

The critical eigenspace T c corresponding to λ =−1 is one-dimensional and spanned by an eigenvec-249

tor q̂. Let T su denote a one-dimensional linear eigenspace of A corresponding to all eigenvalues other250

than λ . Note that the matrix (A−λ In) has common invariant spaces with the matrix A, so we conclude251

that y ∈ T su if and only if 〈p̂,y〉= 0.252

So, to find c(0) which is given by the following invariant formula:253

c(0) =
1
6
〈p̂,C(q̂, q̂, q̂)〉− 1

2
〈p̂,B(q̂,(A− In)

−1B(q̂, q̂))〉. (96)

We evaluate254

B(q̂, q̂) =

(
0

−2r(q−rȳ)−4ȳ(2rȳ−q)+8ȳ3−2(p+qȳ)
(1+ȳ2+rȳ)2

)
. (97)

C(q̂, q̂, q̂) =

(
0

6r2(q−rȳ)
(1+ȳ2+rȳ)3 − 12rȳ(2q−3rȳ)

(1+ȳ2+rȳ)3 +32q(rȳ+3ȳ2−1)+4r(p−6ȳ3)
(1+ȳ2+rȳ)3 − 20ȳ(p+qȳ)−48ȳ4

(1+ȳ2+rȳ)3

)
. (98)

255

〈p̂,C(q̂, q̂, q̂)〉=−
(

1+ ȳ2 + rȳ
1+ ȳ2 +q

)[
6r2(q− rȳ)
(1+ ȳ2 + rȳ)3 −

12rȳ(2q−3rȳ)
(1+ ȳ2 + rȳ)3

+3
2q(rȳ+3ȳ2 −1)+4r(p−6ȳ3)

(1+ ȳ2 + rȳ)3 − 20ȳ(p+qȳ)−48ȳ4

(1+ ȳ2 + rȳ)3

]
.

(99)

(A− I)−1 =

(
−1 1
q−rȳ

1+ȳ2+rȳ −1+ −2ȳ2

1+ȳ2+rȳ

)−1

=
1+ ȳ2 + rȳ

2ȳ2

(
−1+ −2ȳ2

1+ȳ2+rȳ −1
− q−rȳ

1+ȳ2+rȳ −1

)
. (100)

256

(A− I)−1B(q̂, q̂) =
1+ ȳ2 + rȳ

2ȳ2




2r(q−rȳ)+4ȳ(2rȳ−q)−8ȳ3+2(p+qȳ)
(1+ȳ2+rȳ)2

2r(q−rȳ)+4ȳ(2rȳ−q)−8ȳ3+2(p+qȳ)
(1+ȳ2+rȳ)2


 . (101)

257

B(q̂,(A− In)
−1B(q̂, q̂)) =

1+ ȳ2 + rȳ
2ȳ2

(
0
m

)
, (102)

where258

m =

(
2r(q− rȳ)+4ȳ(2rȳ−q)−8ȳ3 +2(p+qȳ)

(1+ ȳ2 + rȳ)2

)(−2r(q− rȳ)−8ȳ3 +2(p+qȳ)
(1+ ȳ2 + rȳ)2

)
. (103)
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259

〈p̂,B(q̂,(A− In)
−1B(q̂, q̂))〉=([

2r(q− rȳ)+4ȳ(2rȳ−q)−8ȳ3 +2(p+qȳ)
2ȳ2(1+ ȳ2 +q)

]

[
−2r(q− rȳ)−8ȳ3 +2(p+qȳ)

(1+ ȳ2 + rȳ)2 ]).

(104)

If c(0) > 0, then a unique and stable period-two cycle bifurcates from the fixed point at the bifur-260

cation point q = 2rȳ− ȳ2 +1.261

4.2 Numerical Results262

In this subsection, we use Matlab to give a graph of an example to support our results.263

Example 2. Consider the difference equation (21). Fix p, r, and consider q as bifurcation parameter.264

Take p = 1, r = 0.9, and 0 < q ≤ 10. Equation (21) becomes265

yn+1 =
1+qyn−1

1+ y2
n +0.9yn−1

, n = 0, 1, 2, ... (105)

Which is equivalent to266 (
y1(n+1)
y2(n+1)

)
=

(
y2(n)

1+qy1(n)
1+y2(n)

2
n+0.9y1(n)

)
. (106)

The positive equilibrium point ȳ of (105) satisfies267

ȳ3 +0.9ȳ2 +(1−q)ȳ−1 = 0. (107)

Theorem 10 shows that the fixed point undergoes a period-doubling bifurcation at q∗ = 1.8ȳ− ȳ2 + 1.268

So equation (107) at q∗ becomes269

2ȳ3 −0.9ȳ2 −1 = 0. (108)

Thus the theoretical fixed point of (105) is270

ȳ = 0.97546665.

Note that r = 0.9 > ȳ2−1
2ȳ =−0.0236, so the condition of Theorem 10 holds. Substituting the value of ȳ271

in q∗ we get272

q∗ = 1.8043047.

Now to determine the direction of period-doubling bifurcation we find c(0).273

q̂ =

(
1
−1

)
and p̂ = (−0.7533482)

(
−0.2466518

1

)
.

274

c(0) =
1
6
〈p̂,C(q̂, q̂, q̂)〉− 1

2
〈p̂,B(q̂,(A− In)

−1B(q̂, q̂))〉.
275

〈p̂,C(q̂, q̂, q̂)〉= 1.94576.
276

〈p̂,B(q̂,(A− In)
−1B(q̂, q̂))〉= 0.0266652827.

So277

c(0) = 0.1857633587 > 0

So this shows that a unique and stable period-two cycle bifurcates from the fixed point at the bifurcation278

point q∗ = 1.8043047. Figure (2) shows the stable period-two cycle.279
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Fig. 2 Period-doubling bifurcation of yn+1 =
1+qyn−1

1+y2
n+0.9yn−1

.

5 Summary280

In this paper, we consider the second order, quadratic rational difference equation281

xn+1 =
α +βxn−1

A+Bx2
n +Cxn−1

, n = 0, 1, 2, ...

With positive parameters α , β , A, B, C, and non-negative initial conditions.282

We focus on local stability, invariant intervals, boundedness of the solutions, periodic solutions of prime283

period two and global stability of the positive fixed points. And we study the types of bifurcation exist284

where the change of stability occurs. Then, we give some Matlab codes that use these results and285

numerical discussions with figures to support our results.286

The change of variables287

xn =

√
A√
B

yn. (109)

reduces equation (18) to the difference equation288

yn+1 =
p+qyn−1

1+ y2
n + ryn−1

, n = 0, 1, 2, ... (110)

Where p = α
√

B√
A3 , q = β

A , and r = C√
AB

.289

We prove the existence of the unique positive equilibrium point of our difference equation, and then290

we insert a Matlab code to find it.291

Then we find the linearized equation and the characteristic equation. And we check when the292

unique positive equilibrium point ȳ of equation (21) is locally asymptotically stable. We investigate293

also two invariant intervals. And we show that any solution take its values between 0 and p+ q
r .294

Then we set some conditions on q that must hold when two periodic cycle exist. And we give a295

case for global stability. And we introduce Matlab code that uses our results for finding the fixed point296

and its stability and solution behavior, and then we insert an example.297

Finally, we study the bifurcation of our difference equation. And we concentrate at the Period-298

Doubling (Flip) Bifurcation and its direction.299
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