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Optimal novel approach for estimating the pavement transition probabilities used in
Markovian prediction models
Khaled A. Abaza

Civil Engineering Department, Birzeit University, West Bank, Palestine

ABSTRACT
An optimal novel approach is proposed to estimate the transition probabilities associated with both
homogeneous and non-homogeneous Markov chains. The approach applies an exhaustive
optimisation technique to search for the optimal transition probabilities associated with minimal sum
of squared errors (SSE), wherein the error defined as the difference between predicted and observed
pavement condition ratings. Three state transitions are allowed in constructing the relevant transition
probability matrix (TPM). In the homogenous chain, the approach yields one optimal TPM applicable
to an analysis period of (n) years. Whereas, one distinct optimal TPM can be derived for each year if
non-homogenous chain is deployed. A sequential iterative optimisation approach is proposed wherein
the optimal TPM for a given year becomes the input for the subsequent year. Sample results are
presented for two projects (A & B) with superior and inferior performances, respectively. The sample
results indicate that the non-homogenous chain provided significant reduction in the SSE compared
to the homogeneous one. However, the use of 10 condition states instead of 5 resulted in moderate
reduction in the SSE considering both homogeneous and non-homogeneous Markov chains. Also, the
results indicate that the use of three state transitions made significant impact when deploying 10
condition states instead of 5 especially in the case of inferior performance.
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1. Introduction

Pavement rehabilitation and management remains to be an
important area of research because of the continuous need
for preserving the huge national investment in the roadway
infrastructure system. Pavement performance prediction is
an essential component of any advanced pavement manage-
ment system. The vast majority of pavement management
models developed in the last couple of decades had incorpor-
ated some form of performance prediction model (Ferreira
et al. 2002, Abaza et al. 2004, Gao and Zhang 2008, Abaza
and Ashur 2009, Jorge and Ferreira 2012, Mathew and
Isaac 2014, Cirilovic et al. 2015, Saliminejad and Perrone
2015). The function of any performance prediction model
is to forecast the future pavement conditions so that appro-
priate maintenance and rehabilitation strategies can be
identified and scheduled while taking into consideration
the required financial constraints. Therefore, the pavement
management problem is essentially an optimisation problem
with a set of pavement performance and cost constraints
designed to meet a certain performance outcome at the net-
work level.

Pavement performance prediction models are generally
classified into two categories: deterministic and probabilistic,
however the most popular are the probabilistic ones (Wang
et al. 1994, Amin 2015, Abed et al. 2019, Fuentes et al.
2019). This is because pavement performance has long been
recognised to be highly probabilistic in nature. Several prob-
abilistic-based prediction models have been used to model

pavement performance, however the most popular are the
Markovian-based ones (Li et al. 1996, Abaza et al. 2004,
Yang et al. 2006, Kobayashi et al. 2010, Zhang and Gao
2012, Lethanh and Adey 2013, Lethanh et al. 2015, Meidani
and Ghanem 2015, Abaza 2016, Daniel et al. 2019). In particu-
lar, these researchers have used different versions of the dis-
crete-time Markov model including the homogenous
Markov chain, non-homogeneous Markov chain, random
Markov chain, exponential hidden Markov chain, Poisson hid-
den Markov chain, and recurrent Markov chain. However,
they all require a main input parameter known as the tran-
sition probabilities regardless of the Markov chain type used.
The transition probabilities mainly represent the pavement
deterioration rates in the absence of any pavement mainten-
ance and rehabilitation works. Reliable estimates of the tran-
sition probabilities are vital for effective prediction of
pavement deterioration and consequently sound pavement
management decisions.

Generally, the transition probabilities are estimated from
historical records of pavement condition including pavement
distress and ride quality measurements. A few researchers
proposed different procedures to estimate the transition
probabilities (Ortiz-Garcia et al. 2006, Kobayashi et al.
2010, Abaza 2016, Abaza 2017). But it seems there isn’t yet
a well-recognised procedure that has gained widespread
acceptance by the scientific community. For example,
Ortiz-García et al. (2006) developed three approaches to
compute the deterioration transition probabilities as derived
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from minimising the sum of squared errors (SSE). The first
approach assumes the availability of original pavement con-
dition records, the second one involves the derivation of a
regression curve from the pavement condition records, and
the third one requires the availability of yearly distributions
of pavement condition records. Kobayashi et al. (2010)
applied the exponential hazard models to define the deterio-
ration transition probabilities between the deployed con-
dition states using non-uniform intervals amongst the
inspection time points. Abaza (2016) derived the mathemat-
ical models required to compute the transition probabilities
as a function of the state probabilities associated with two
consecutive transitions. The deployed transition probability
matrix (TPM) assumes only two state transitions. Abaza
(2017) proposed an empirical model to estimate the non-
homogenous transition probabilities. The model accounts
for the progressive increase in traffic loading and progressive
decrease in pavement strength.

In this paper, it is proposed to estimate the deterioration
transition probabilities associated with both homogeneous
and non-homogeneous Markov chains using an optimal
approach. The optimal approach applies an exhaustive search
algorithm to minimise the SSE associated with an analysis
period comprised of (n) transitions. The error is defined as
the difference between the predicted and observed distress
ratings, therefore it is assumed that distress records are avail-
able for the analysis period. The required distress records can
be in terms of the well-known pavement condition indicators
such as the PSI, PCI and IRI. Three state transitions are used
in defining the TPM, which include the probability of
remaining in the current state, transitioning to the 1st
worst state, and transitioning to the 2nd worst state. In the
case of homogenous Markov chain, the optimal approach
minimises the SSE over the entire analysis period in the
search for the optimal transition probabilities. Whereas it
deploys a sequential iterative approach in the search for (n)
sets of optimal transition probabilities in the case of non-
homogenous Markov chain. In the sequential iterative
approach, the optimal solution derived for one transition
becomes the input for the subsequent one.

2. Overview of discrete-time Markov model

The Markovian prediction model has been extensively used by
several researchers to predict the pavement long-term per-
formance with an emphasis on pavement deterioration predic-
tion. As outlined in the introduction section, different forms of
the Markov model have generally been used in predicting
pavement performance, but the most popular ones used dis-
crete-time and discrete condition states considering both
homogeneous and non-homogeneous Markov chains (Li
et al. 1996, Abaza et al. 2004, Kobayashi et al. 2010, Abaza
2016, Abaza 2017, Daniel et al. 2019). As explained in the sub-
sequent sections, the homogeneous Markov chain deploys the
same transition probability matrix (TPM) for each transition
(i.e. year) within the analysis period, however the TPM can
be different for each transition in the case of non-homo-
geneous Markov chain.

2.1. Homogeneous Markov chain

Equation (1) presents the mathematical model associated with
the discrete-time and discrete states homogenous Markov
chain. The state probability row vector, S(n), represents the
state probabilities, Si(n), at the end of an analysis period com-
prised of (n) transitions (i.e. years) with (m) being the number
of condition states. The state probability vector, S(n), is com-
puted from multiplying the initial state probability row vector,
S(0), by the transition probability matrix, P(n), raised to the
power (n). The state probabilities represent the pavement pro-
portions that exist in the various deployed condition states at
any given time, hence the sum of state probabilities must
add up to one. It is also typical to assign all project pavements
to the best condition state (i.e. state 1) when considering a new
pavement structure as indicated by Equation (1).

S(n) = S(0) P(n) (1)

where: S(n) =[S1(n), S2(n), S3(n), . . . ., Sm(n)]

S(0) =[S1(0), S2(0), S3(0), . . . ., Sm(0)]

=(1, 0, 0, 0, . . . , 0) for new pavement

∑m
i=1

Si(k) =1.0 (k = 0, 1, 2, 3, . . . , n)

The elements of the transition probability matrix (P) used in
Equation (1) denote the transition probabilities. The transition
probability (Pi,j) represents the probability of transitioning
from state (i) to state (j) in one transition (i.e. year), therefore
the sum of any row in the transition matrix must add up to
one. Different forms of the transition probability matrix have
been used in modelling pavement deterioration, however the
most popular ones only used 2 or 3 state transitions. This
means that pavement in state (i) can remain in the same
state with (Pi,i) probability, transition to state (i+1) with (Pi,i+1)
probability, or transition to state (i+2) with (Pi,i+2) probability
as indicated by Equation (2) assuming 3 state transitions.

P =

P1,1 P1,2 P1,3 0 0 0 . . . . 0
0 P2,2 P2,3 P2,4 0 0 . . . . 0
0 0 P3,3 P3,4 P4,5 0 . . . . 0

..

.

..

.

..

.

0 0 . . . Pm−1,m−1 Pm−1,m

0 0 0 0 0 . . . . 1.0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)

The matrix entries above the main diagonal represent the
pavement deterioration rates whereas the entries below the
main diagonal indicate the pavement improvement rates.
Entries below the diagonal are assigned zero values in the
absence of pavement maintenance and rehabilitation as
defined in Equation (2). Therefore, the TPM as outlined by
Equation (2) can mainly be used in predicting pavement
deterioration.
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2.2. Non-homogeneous Markov chain

Equation (3) provides the mathematical model associated
with the discrete-time non-homogeneous Markov chain. It
can incorporate a different TPM for each transition within
an analysis period comprised of (n) transitions. Therefore,
the P(k) is the TPM associated with the (k) transition.
The non-homogeneous Markov chain can provide improved
solutions of pavement deterioration predictions, however it
has substantial requirements for historical distress records
to be used in developing the required TPMs. Whereas, the
homogeneous Markov chain only requires one TPM which
can be estimated from the distress records obtained from
conducting two consecutive cycles of distress assessment.
Equation (3) is similarly used to estimate the future state
probabilities, S(n), which are key parameters for pavement
deterioration prediction.

S(n) = S(0)
∏n
k=1

P(k) (3)

Equation (4) provides an example of the TPM to be used in
the non-homogeneous Markov chain. It is similar to the one
indicated by Equation (2) as it only allows for three state
transitions, but it can have different deterioration transition
probabilities for each transition (i.e. year).

P(k) =

P(k)1,1 P(k)1,2 P(k)1,3 0 0 0 . . . 0
0 P(k)2,2 P(k)2,3 P(k)2,4 0 0 . . . 0
0 0 P(k)3,3 P(k)3,4 P(k)4,5 0 . . . 0

..

.

..

.

..

.

0 0 0 . . . P(k)m−1,m−1 P(k)m−1,m

0 0 0 0 0 0 0 . . . 1.0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4)

2.3. Pavement deterioration prediction

Pavement deterioration defines how pavement deteriorates
over time in terms of a specified pavement condition indicator.
Several pavement condition indicators have been used in mod-
elling pavement deterioration including internationally recog-
nised ones such as the present serviceability index (PSI),
pavement condition index (PCI), and international roughness
index (IRI). Abaza (2016) proposed a pavement condition
indicator called distress rating (DR) mainly estimated from
cracking and deformation as explained later. The expected
DR value associated with the (k) transition for a particular pro-
ject, DRp(k), can be computed using Equation (5) as a function
of the future state probabilities, Si(k), and state mean distress
ratings (DRi). The future state probabilities are to be estimated
using either the homogeneous Markov chain or non-homo-
geneous Markov chain as explained earlier. The (i) state
mean distress rating is typically estimated as the average of
the lower and upper distress ratings (LDRi & UDRi) used to
define the (i) condition state. The deployed DR scale has a

range of (0–100) with higher ratings indicating better pave-
ments.

DRp(k) =
∑m
i=1

DRi × Si(k) (k = 0, 1, 2, . . . ., m) (5)

Where: DRi = (LDRi + UDRi)/2
For example, the DRi are assigned the values of (95, 85, 75,

… .., 5) when considering a Markov chain with 10 condition
states defined using equal DR ranges (i.e. 100–90, 90–80, 80–
70,… ., 10–0). The DRi values become equal to (90, 70, 50,
30, 10) when 5 condition states are used with equal DR ranges
(i,e, 100–80, 80–60,… .., 20–0). These two DRi examples are
used in the sample problems presented later. The best con-
dition state is defined using DR ranges of (90–100 &
80–100) while the worst state is defined using DR ranges of
(0–10 & 0–20) for the previously outlined two examples.
Therefore, pavement deterioration can be predicted using
Equation (5) provided the required state probabilities, Si(k),
are available. Figure 1 shows two typical performance curves
with parabolic deterioration trends (i.e. smooth curvature),
which can be developed using the predicted distress ratings,
DRp(k), calculated using Equation (5). Other potential pave-
ment condition indicators such as PSI, PCI and IRI can be
used to replace DR in Equation (5).

3. Methodology

The methodology section presents the optimal simplified
novel approach proposed to estimate the pavement deterio-
ration transition probabilities considering both homo-
geneous and non-homogeneous discrete-time Markov
chains. The optimal approach for the homogenous Markov
chain aims to obtain the optimal deterioration transition
probabilities over an analysis period comprised of (n)
years. Whereas the optimal approach for the non-homo-
geneous Markov seeks to yield the optimal transition prob-
abilities associated with each year within the analysis
period by applying a sequential iterative approach. In this
sequential approach, the optimal transition probabilities
derived for a given year becomes the input for the sub-
sequent year. In both cases, the optimal approach is carried
out based on the minimisation of sum of squared errors
(SSE) wherein the error is defined as the difference between
the predicted and observed distress ratings.
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3.1. Estimation of trial TPM

The main objective of the proposed optimal novel approach is
to estimate the deterioration transition probabilities as
required by the TPM defined in Equations (2) and (4). The
proposed approach requires that pavement deterioration
curves similar to the ones shown in Figure 1 are available.
Therefore, the proposed optimal approach aims to yield the
optimal values of the relevant deterioration transition prob-
abilities that when they used would generate deterioration
curves that best match the available ones. In essence, the pro-
posed approach applies a backward solution to an existing for-
ward one. The forward solution assumes the availability of
transition probabilities to be used in developing the corre-
sponding deterioration curve as a function of DR values esti-
mated using Equation (5). However, the backward approach
seeks to find the deterioration transition probabilities corre-
sponding to a known pavement deterioration curve.

There are three transition probabilities that need to be esti-
mated as defined in Equations (2) and (4), namely the prob-
ability of remaining in the same condition state (Pi,i),
probability of transitioning to the first worst state (Pi,i+1),
and probability of transitioning to the second worst state
(Pi,i+2). All transition probabilities required by the TPM
defined in Equations (2) and (4) are to be computed from
only three main input parameters, namely the initial deterio-
ration transition probability (P1,2), terminal transition prob-
ability (Pm−1,m), and transition probability ratio (λ) defined
next. The following sections explain the detailed algorithm
used in computing the trial transition probabilities for both
homogeneous and non-homogeneous Markov chains.

3.1.1. Homogeneous Markov chain
There is only one TPM to be estimated when using the dis-
crete-time homogeneous Markov chain. The first step is to

estimate all transition probabilities associated with transition-
ing to the first worst state (i.e. Pi,i+1) from the specified initial
and terminal transition probabilities (P1,2 & Pm−1,m) as indi-
cated by Equation (6a). The estimation is performed based
on the assumption of linear interpolation as defined by the
incremental transition probability (Δp). The incremental tran-
sition probability is positive when the initial transition prob-
ability is smaller than the terminal transition probability, an
indication of superior performance as depicted in Figure 1.
Superior performance is typically associated with increasingly
higher deterioration rates (i.e. P1,2 < P2,3 < P3,4… . < Pm−1,m).
Similarly, the incremental transition probability is negative
when the initial transition probability is larger than the term-
inal transition probability, an indication of inferior perform-
ance as depicted in Figure 1. Inferior performance is
typically associated with decreasingly lower deterioration
rates (i.e. P1,2 > P2,3 > P3,4 .… > Pm−1,m).

Pi,i+1 = Pi−1,i + DP (i = 2, 3, . . . . , m− 2) (6a)

Where:

DP = Pm−1,m − P1,2
m− 2

The second step is to estimate the deterioration transition
probabilities associated with transitioning to the second
worst state (i.e. Pi,i+2). They are simply estimated as a pro-
portion of the deterioration transition probabilities (Pi,i+1) as
defined in Equation (6b). The transition probability ratio (λ)
is expected to be larger when using a larger number of con-
dition states. This is because the probability of transitioning
to the second worst state in one transition (i.e. time interval)
becomes higher when a larger number of condition states is
used.

Pi,i+2 = l× Pi,i+1 (l , 1) (6b)

Figure 1. Typical pavement performance curves with parabolic deterioration trends.
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The third and last step is to compute the transition probabil-
ities associated with remaining in the same condition state
(i.e. Pi,i) as indicated by Equation (6c). Equation (6c) simply
enforces the sum of any row in the TPM must add up to one.

Pi,i = 1− Pi,i+1 − Pi,i+2 (6c)

The previously outlined algorithm for computing the trial
transition probabilities as required by the TPM defined in
Equation (2) is to be used in the optimal approach that
searches for the optimal TPM. Therefore, the optimal
approach will essentially yield the optimal values of the three
main input parameters (i.e. λ, P1,2, Pm−1,m) to be used in
defining the TPM outlined in Equation (2).

3.1.2. Non-homogeneous Markov chain
Equation (7) provides the mathematical algorithm to be used
in estimating the required trial TPMs as defined in Equation
(4), which is similar to the algorithm previously outlined for
homogenous Markov chain. This algorithm is to be used in
estimating a number of TPMs that is equal to the number of
transitions used in the analysis period (n). The trial TPM for
the (k) transition is to be estimated from the three main
input parameters, namely λ(k), P(k)1,2 and P(k)m−1,m.

P(k)i,i+1 = P(k)i−1,i + DP(k)

(i = 2, 3, . . . , m− 2; k = 1, 2, . . . ., n)
(7a)

Where:

DP(k) = P(k)m−1,m − P(k)1,2
m− 2

P(k)i,i+2 = l(k)× P(k)i,i+1 l(k) , 1 (7b)

P(k)i,i = 1− P(k)i,i+1 − P(k)i,i+2 (7c)

The algorithms defined in Equations (6) and (7) are mainly
introduced to simplify and facilitate the calculations of the
remaining transition probabilities from only the initial and
terminal ones (i.e. P1,2 & Pm−1,m). Therefore, modifications
to these algorithms can be made if deemed necessary.

3.2. Estimation of optimal TPM

In the search for the optimal TPM, an exhaustive search pro-
cedure is to be applied as a function of the three previously
outlined main parameters, namely the transition probability
ratio (λ), initial transition probability (P1,2), and terminal tran-
sition probability (Pm−1,m). The optimal TPM is the one that
generates a pavement deterioration curve that provides the
best-fit with the known deterioration curve. The optimisation
procedure mainly relies on the minimisation of sum squared
errors (SSE) as outlined next.

3.2.1. Homogeneous Markov chain
The application of the homogenous Markov chain only requires
the estimation of one TPM as presented in Equation (1). The
minimisation of sum of squared errors (SSE) is defined as indi-
cated by Equation (8) wherein the (k) error is computed as the
difference between the predicted and observed DR values,

namely DRp(k) & DRo(k). The DRp(k) is obtained from
Equation (5) based on a trial TPM generated using the algor-
ithm outlined in Equation (6). The DRo(k) is to be obtained
from the known deterioration curve generated from historical
records of pavement distress for a given pavement project.

Minimise: SSE =
∑n
k=1

[DRp(k)− DRo(k)]
2 (8)

The proposed optimal approach for homogenous chain as
defined in Equation (8) accounts for pavement deterioration
over the entire analysis period (n), and not just using two con-
secutive distress assessments as occasionally done. The (k) tran-
sition is associated with a time interval that is the same for
successive transitions, and it is typically assumed to be equal
to one year when considering an analysis period comprised of
(n) transitions (i.e. years).

3.2.2. Non-Homogeneous Markov chain
Application of the non-homogenous Markov chain as outlined
in Equation (3) requires the estimation of (n) optimal TPMs.
The proposed optimal approach applies a sequential iterative
procedure to yield an optimal TPM for each transition. In
each iteration, the squared error (SE) is minimised as
defined in Equation (9). The optimal TPM obtained from
the kth iteration is used as an input in solving the (k+1) iter-
ation. The corresponding optimal state probabilities are also
computed as a function of the state probabilities associated
with the (k-1) transition and optimal TPM for the (k) tran-
sition, thus indicating an iterative application of Equation (3).

Minimise: SE(k) = [DRp(k)− DRo(k)]
2

(k = 1, 2, . . . ,n)
(9)

The first optimisation iteration is carried out based on the
assumed initial state probabilities, S(0), and variable trial
TPM, P(1), as indicated by Equation (10a). Then, the corre-
sponding optimal state probabilities, S′′(1), are computed
using Equation (10b) based on the derived optimal TPM, P′′

(1). The optimal TPM is mainly defined in terms of the opti-
mal λ′′(1), P′′(1)1,2, P′′(1)m−1,m.
First iteration

S(1) = S(0) P(1) (10a)

S′′(1) = S(0) P′′(1) (10b)

Similarly, the second optimisation iteration is executed as pre-
sented in Equation (11). The optimal state probabilities, S′′(1),
associated with the 1st iteration become the initial state prob-
abilities used in Equation (11a) for the purpose of yielding the
optimal TPM. Then, Equation (11b) is used to compute the
optimal state probabilities for the 2nd iteration based on the
optimal TPM. The optimal TPM, P′′(2), is a function of the
optimal λ′′(2), P′′(2)1,2 and P′′(2)m−1,m.
Second iteration

S(2) = S′′(1) P(2) (11a)

S′′(2) = S′′(1) P′′(2) (11b)
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Equation (12) provides the general model to be used in carry-
ing out the outlined sequential iterative procedure considering
(n) transitions. The general model is applicable to all iterations
with the exception of the 1st one to be executed using Equation
(10). The (k) iteration will yield the corresponding optimal
TPM, P′′(k), in terms of the optimal λ′′(k), P′′(k)1,2 and P′′

(k)m−1,m.
General model

S(k) = S′′(k− 1) P(k) (k = 2, 3, . . . , n) (12a)

S′′(k) = S′′(k− 1) P′′(k) (12b)

4. Pavement deterioration assessment

Pavement distress assessment and ride quality measurements
are typically used to evaluate pavement deterioration over
time. Several internationally recognised pavement condition
indicators have been used to model pavement deterioration
including the PSI, PCI and IRI. The PSI is a function of the
slope variance associated with the roadway longitudinal
profile, and pavement cracking and deformation (AASHTO
1993, Shah et al. 2013, Fuentes et al. 2019). However, the
PSI has been found to be highly correlated to the IRI in (m/
km). For examples, Equations (13) and (14) were developed
by Paterson (1986), and Al-Omari and Darter (1994), respect-
ively, for asphalt concrete pavement.

PSI = 5e(−0.18IRI) (13)

PSI = 5e(−0.24IRI) (14)

Currently, several highway agencies around the world use the
IRI to measure profile roughness. The development of the IRI
was sponsored by the World Bank to provide a common basis
for conducting and comparing roughness measurements. The
IRI provides a summary measure of the longitudinal surface
profile obtained from the surface elevation data collected
using a mechanical profilometer. The World Bank published
guidelines for conducting and calibrating roughness measure-
ments as reported by Sayers et al. (1986). The IRI gets larger in
value as pavement deterioration progresses whereas the corre-
sponding PSI value gets smaller.

In addition, researchers developed regression models to
estimate the PCI from the IRI data. For example, Park et al.
(2007) proposed the model presented in Equation (15) to esti-
mate the PCI from the IRI in (m/km). The PCI has a scale of
100 points with higher ratings indicating better pavements. It
is estimated based on visual inspection of pavement defects
and simple related measurements. ASTM (2007) outlined the
procedure to be followed in estimating the PCI for a particular
pavement segment.

PCI = 87.098 (IRI)−0.481 (15)

Abaza (2016) proposed simple models to calculate a pavement
condition indicator for flexible pavement called distress rating
(DR). It is estimated as a function of the two most significant
load-related pavement defects, namely cracking and defor-
mation. Equation (16) presents an example of such models
wherein the DR is estimated for a lane segment using the loca-
lised cracked and deformed areas (AC & AD) multiplied by
their corresponding severity factors (SFC & SFD), which are
assigned the values of 1, 2, and 3 for low, medium and high
severity, respectively. The average DR value associated with
all pavement segments is then computed to represent the dis-
tress condition of the entire highway project. Distress assess-
ment is typically performed annually or biennially. (AS)
represents the total surface area of a lane segment.

DR =
3AS −

∑
i
SFCiACi −

∑
i
SFDiADi

3AS

⎛
⎝

⎞
⎠× 100 (16)

where:
∑
i
SFCiACi +

∑
i
SFDiADi ≤ 3AS and∑

i
ACi +

∑
i
ADi ≤ As

5. Sample presentation

This section provides sample optimal TPMs derived using the
outlined optimal approach considering both homogenous and
non-homogeneous Markov chains. Two pavement projects (A
& B) have been investigated with parabolic deterioration
trends similar to the ones shown in Figure 1. Table 1 provides
the observed DR values for the two sample projects over an
analysis period of 10 years. An exhaustive optimisation
approach has been used with function evaluations made at
one hundredth point (0.01) in the search for minimal SSE.
The values of the three main input parameters (λ, P1,2, Pm−1,m)
can theoretically be varied over the (0.0–1.0) range resulting in
a total of (101)3 combinational function evaluations which can
easily be handled by all computers. The Markov chain size (m)
has been varied to include 5 and 10 condition states.

5.1. Sample optimal homogeneous TPMs

The sample optimal TPMs associated with the homogeneous
Markov chain have been derived using the previously outlined
optimal approach as presented by Equations (1), (2), (5), (6)
and (8). Table 2 provides the optimal TPM associated with 5
condition states for both projects (A and B). The optimal tran-
sition probability ratio (λ′′ = 0.0) has no impact on Project A
(superior performance) compared to Project B (inferior per-
formance). Therefore, the second transition probabilities (Pi,i
+2) have vanished from the optimal TPM in the case of Project
A. However, the impact of optimal transition probability ratio
(λ′′ = 0.06) has been limited in the case of Project B. Also, the
optimal initial transition probability (P′′

1,2 = 0.10) is smaller
than the optimal terminal transition probability (P′′

4,5 = 0.53)

Table 1. Observed distress ratings (DRo) estimated from distress assessment.

Year 0 1 2 3 4 5 6 7 8 9 10

Project A 95.0 92.7 90.5 87.9 85.5 83.1 80.2 77.6 73.4 70.7 66.1
Project B 95.0 90.1 80.8 74.5 69.3 64.9 59.8 55.2 50.6 43.7 39.8
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for Project A, an indication of superior performance. Similarly,
the optimal initial transition probability (P′′

1,2 = 0.30) is larger
than the optimal terminal transition probability (P′′

4,5 = 0.19)
for Project B, an indication of inferior performance. Figures
2 and 4 show a good agreement between the predicted and
observed DR values associated with Projects A and B, respect-
ively, using 5 condition states and 10 years analysis period. The
predicted DR values are computed using the two optimal
TPMs provided in Table 2. The optimal TPMs provided in
Table 2 are computed using Equation (6) as a function of opti-
mal values (λ′′, P′′

1,2, P
′′
m−1,m).

Table 3 provides the optimal TPM associated with Project A
using 10 condition states while Table 4 provides similar results
for Project B. It can be noted that the use of 10 condition states
has reduced the SSE from (5.34) to (2.01) in the case of Project
A, and from (19.68) to (11.98) in the case of Project B. Another
observation can be made in relation to the influence of the
optimal transition probability ratio which is lower in the
case of Project A (λ′′ = 0.20) compared to (λ′′ = 0.30) in the
case of Project B. Therefore, the impact of the optimal second
transition probabilities (Pi,i+2) is somewhat more significant in
the case of inferior performance (Project B) because of higher
(λ′′). Generally, the overall contribution of the second tran-
sition probabilities (Pi,i+2) is more significant when using 10

condition states as would be expected. Also, Table 3 indicates
that the optimal initial transition probability (P′′

1,2 = 0.16) is
lower than the optimal terminal transition probability
(P′′

9,10 = 0.45), an indication of superior performance. Simi-
larly, Table 4 indicates that the optimal initial transition prob-
ability (P′′

1,2 = 0.41) is higher than the optimal terminal
transition probability (P′′

9,10 = 0.21), an indication of inferior
performance. Figures 3 and 5 show an improved agreement
between the predicted and observed DR values when using
10 condition states compared to 5 states considering Projects
A & B, respectively.

5.2. Sample optimal non-homogeneous TPMs

The sample optimal TPMs associated with the non-homo-
geneous Markov chain have been derived using the pre-
viously outlined optimal approach as indicated by
Equations (3)–(5), (7), (9), (10) and (12). Table 5 provides
the optimal non-homogeneous parameters, λ′′(k), P′′(k)1,2,
P′′(k)4,5, associated with 5 condition states for Projects A
& B. Table 5 also provides the optimal squared error, SE′′

(k), with the error defined as the difference between the pre-
dicted and observed DR values as defined in Equation (9).
Observations similar to the ones indicated in case of

Table 2. Sample optimal homogeneous TPM with 5 condition states for 10-year analysis period.

Project Aa Project Bb

(λ′′ = 0.0, P′′1,2 = 0.10, P′′4,5 = 0.53) (λ′′ = 0.06, P′′1,2 = 0.30, P′′4,5 = 0.19)

State 1 2 3 4 5 1 2 3 4 5

1 0.900 0.100 0.000 0.000 0.000 0.682 0.300 0.018 0.000 0.000
2 0.000 0.757 0.243 0.000 0.000 0.000 0.721 0.263 0.016 0.000
3 0.000 0.000 0.613 0.387 0.000 0.000 0.000 0.760 0.226 0.014
4 0.000 0.000 0.000 0.470 0.530 0.000 0.000 0.000 0.810 0.190
5 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 1.000
aMinimal SSE = 5.34.
bMinimal SSE = 19.68.

Figure 2. Sample distress ratings predicted using homogeneous Markov chain with 5 condition states (Project A, SSE = 5.34).
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homogeneous Markov chain can be made regarding the
optimal transition probability ratios, λ′′(k), which are smaller
in the case of superior performance (Project A) compared to
inferior performance (Project B). Also, the optimal initial
transition probabilities, P′′(k)1,2, are lower than the optimal
terminal transition probabilities, P′′(k)4,5, in the case of Pro-
ject A, but they are generally larger in the case of Project
B. The SSE has substantially been reduced from (5.34) to

(0.0022) in the case of Project A, and from (19.68) to
(0.0035) in the case of Project B.

Similarly, Table 6 provides the optimal non-homogeneous
parameters, λ′′(k), P′′(k)1,2, P′′(k)9,10, associated with 10 condition
states for Projects A & B. The same earlier observations can be
made regarding the optimal transition probability ratios, λ′′(k),
optimal initial transition probabilities, P′′(k)1,2, and optimal term-
inal transition probabilities, P′′(k)9,10, considering Projects A &

Table 4. Sample optimal homogeneous TPM with 10 condition states for Project B.

(λ′′ = 0.30, P′′1,2 = 0.41, P′′9,10 = 0.21)a

State 1 2 3 4 5 6 7 8 9 10

1 0.467 0.410 0.123 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.499 0.385 0.116 0.000 0.000 0.000 0.000 0.000 0.000
3 0.000 0.000 0.532 0.360 0.108 0.000 0.000 0.000 0.000 0.000
4 0.000 0.000 0.000 0.564 0.335 0.101 0.000 0.000 0.000 0.000
5 0.000 0.000 0.000 0.000 0.597 0.310 0.093 0.000 0.000 0.000
6 0.000 0.000 0.000 0.000 0.000 0.630 0.285 0.085 0.000 0.000
7 0.000 0.000 0.000 0.000 0.000 0.000 0.662 0.260 0.078 0.000
8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.695 0.234 0.071
9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.790 0.210
10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
aMinimal SSE = 11.98.

Table 3. Sample optimal homogeneous TPM with 10 condition states for Project A.

(λ′′ = 0.20, P′′1,2 = 0.16, P′′9,10 = 0.45)a

State 1 2 3 4 5 6 7 8 9 10

1 0.808 0.160 0.032 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.765 0.196 0.039 0.000 0.000 0.000 0.000 0.000 0.000
3 0.000 0.000 0.722 0.232 0.046 0.000 0.000 0.000 0.000 0.000
4 0.000 0.000 0.000 0.677 0.269 0.054 0.000 0.000 0.000 0.000
5 0.000 0.000 0.000 0.000 0.634 0.305 0.061 0.000 0.000 0.000
6 0.000 0.000 0.000 0.000 0.000 0.591 0.341 0.068 0.000 0.000
7 0.000 0.000 0.000 0.000 0.000 0.000 0.547 0.377 0.076 0.000
8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.503 0.414 0.083
9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.550 0.450
10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
aMinimal SSE = 2.01.

Figure 3. Sample distress ratings predicted using homogeneous Markov chain with 10 condition states (Project A, SSE = 2.01).
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B. In particular, the optimal transition probability ratios, λ′′(k),
and optimal initial transition probabilities, P′′(k)1,2, are generally
higher than the corresponding values provided in Table 5 with 5
condition states as would be expected. This also indicates the sig-
nificance contribution of the second transition probabilities (Pi,i
+2) when using 10 condition states compared to 5 states especially
for Project B. However, there are only minor improvements in
the SSE values when using 10 condition states compared to 5
states. The SSE is reduced from (0.0022) to (0.0005) in the case
of Project A, and from (0.0035) to (0.0014) in the case of Project
B. This may indicate that using 5 condition states is adequate
when the non-homogenous Markov chain is deployed.

Table 7 provides the predicted and observed DR values
along with their differences (i.e. errors) for both homogeneous
and non-homogeneous Markov chains for Project A. The pre-
dicted DR values are as obtained using the optimal TPMs
derived from both the homogeneous and non-homogeneous
Markov chains. The average absolute DR error is reduced
from (0.351) to (0.005) when using the non-homogeneous
Markov chain compared to the homogeneous one. Table 8
provides similar results but for Project B. It can be noticed
that the average absolute DR error is reduced from (0.987)
to (0.009) when using the non-homogeneous Markov chain.
Therefore, it can be concluded that the non-homogeneous
Markov chain has provided substantially improved solutions
compared to the homogenous one. Also, the use of 10 con-
dition states has resulted in slightly improved solutions com-
pared to 5 states in the case of non-homogenous chain.

Generally, increasing the number of condition states (m)
would yield improved results, however it might require the

incorporation of additional state transitions (i.e. more than
three state transitions), thus resulting in higher function evalu-
ations and computation time. The optimal number of con-
dition states can be derived by specifying an absolute average
DR error as a threshold value. For example, a number of 10
condition states is adequate if a maximum of (0.1) absolute
average DR error is specified considering the presented sample
non-homogeneous Markov chains, but it is inadequate in the
case of sample homogeneous Markov chains based on the
results provided in Tables 7 and 8. Alternatively, a maximum
SSE value can be specified as a threshold value for yielding the
optimal number of condition states.

The sample results presented have mainly dealt with pave-
ment condition data that exhibits parabolic deterioration

Table 5. Sample optimal non-homogeneous transition probabilities using 5
condition states.

Project A Project B

Year
(k)

λ′′
(k)

P′′
(k)1,2

P′′
(k)4,5 SE′′(k)a

λ′′
(k)

P′′
(k)1,2

P′′
(k)4,5 SE′′(k)b

1 0.08 0.09 0.53 1.44E-4 0.29 0.29 0.10 1.30E-3
2 0.08 0.09 0.49 1.12E-6 0.31 0.21 0.12 5.12E-4
3 0.08 0.09 0.27 2.61E-5 0.32 0.19 0.07 4.48E-5
4 0.08 0.09 0.41 1.23E-6 0.32 0.17 0.07 3.31E-4
5 0.08 0.06 0.41 1.38E-4 0.33 0.22 0.07 5.16E-8
6 0.08 0.11 0.54 6.64E-5 0.32 0.22 0.07 1.43E-4
7 0.08 0.11 0.17 1.02E-4 0.33 0.22 0.10 2.95E-4
8 0.08 0.11 0.52 6.74E-4 0.32 0.22 0.29 5.57E-4
9 0.08 0.16 0.49 6.73E-4 0.35 0.21 0.13 1.58E-4
10 0.08 0.13 0.44 3.84E-4 0.34 0.21 0.19 1.98E-4
aMinimal SSE =

∑
SE′′(k) = 0.0022.

bMinimal SSE =
∑

SE′′(k) = 0.0035.

Table 6. Sample optimal non-homogeneous transition probabilities using 10 condition states.

Project A Project B

Year (k) λ′′(k) P′′(k)1,2 P′′(k)9,10 SE′′(k)a λ′′(k) P′′(k)1,2 P′′(k)9,10 SE′′(k)b

1 0.22 0.16 0.45 1.60E-5 0.20 0.35 0.20 2.02E-28
2 0.15 0.16 0.47 4.10E-9 0.70 0.40 0.20 3.60E-5
3 0.21 0.16 0.57 1.97E-7 0.60 0.30 0.22 4.27E-5
4 0.11 0.16 0.57 2.06E-5 0.43 0.30 0.22 5.95E-5
5 0.11 0.15 0.55 2.18E-5 0.30 0.30 0.22 3.67E-4
6 0.11 0.18 0.57 7.24E-5 0.45 0.30 0.22 1.40E-5
7 0.09 0.14 0.57 2.78E-6 0.37 0.30 0.22 1.07E-4
8 0.15 0.25 0.59 2.40E-6 0.40 0.30 0.22 1.77E-4
9 0.12 0.15 0.41 2.23E-4 0.89 0.30 0.22 5.49E-4
10 0.15 0.35 0.37 1.02E-4 0.34 0.30 0.22 2.09E-5
aMinimal SSE =

∑
SE′′(k) = 0.0005.

bMinimal SSE =
∑

SE′′(k) = 0.0014.

Table 7. Sample optimal errors associated with predicted DR values using 10
condition states for Project A.

Homogeneous Markov chain
Non-homogeneous Markov

chain

Year (k) DR′′P(k) DRo(k) Error′′(k)a DR′′P(k) DRo(k) Error′′(k)b

1 92.760 92.7 0.060 92.696 92.7 −0.004
2 90.406 90.5 −0.094 90.500 90.5 0.000
3 87.933 87.9 0.033 87.900 87.9 0.000
4 85.334 85.5 −0.166 85.504 85.5 0.004
5 82.604 83.1 −0.496 83.095 83.1 −0.005
6 79.735 80.2 −0.465 80.191 80.2 −0.009
7 76.723 77.6 −0.877 77.602 77.6 0.002
8 73.563 73.4 0.163 73.398 73.4 −0.002
9 70.259 70.7 −0.441 70.685 70.7 −0.015
10 66.819 66.1 0.719 66.090 66.1 −0.010
aAverage absolute DR error = 0.351.
bAverage absolute DR error = 0.005.

Table 8. Sample optimal errors associated with predicted DR values using 10
condition states for Project B.

Homogeneous Markov chain
Non-homogeneous Markov

chain

Year (k) DR′′(k) DRo(k) Error′′(k)a DR′′P(k) DRo(k) Error′′(k)b

1 88.440 90.1 −1.660 90.100 90.1 0.000
2 82.142 80.8 1.342 80.794 80.8 −0.006
3 76.097 74.5 1.597 74.506 74.5 0.006
4 70.293 69.3 0.993 69.308 69.3 0.008
5 64.721 64.9 −0.179 64.919 64.9 0.019
6 59.374 59.8 −0.426 59.796 59.8 −0.004
7 54.249 55.2 −0.951 55.210 55.2 0.010
8 49.350 50.6 −1.250 50.587 50.6 −0.013
9 44.688 43.7 0.988 43.723 43.7 0.023
10 40.280 39.8 0.480 39.805 39.8 0.005
aAverage absolute DR error = 0.987.
bAverage absolute DR error = 0.009.
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trends (i.e. smooth curvature) similar to the ones depicted in
Figure 1. However, the proposed non-homogeneous approach
can still provide reliable results when applied to non-parabolic
deterioration trends (i.e. variable concavity). This is because
estimation of the transition probabilities for a particular tran-
sition mainly depends on the state probabilities associated with
the previous transition and the drop in pavement condition.
Therefore, the non-homogeneous approach can yield reliable
results, but this may not necessarily be true in the case of the
homogeneous approach wherein the SSE is cumulatively mini-
mised over the entire analysis period. A hypothetical non-
parabolic sample problem has been presented in Figure 6
wherein the non-homogeneous transition probabilities are

estimated using 10 condition states, which are then used to
compute the predicted distress ratings (DRp) for 7 transitions
(i.e. 7 years). The corresponding optimal non-homogeneous
transition probabilities along with the predicted and observed
distress ratings are provided in Table 9. It is clear from Figure 6
that there is a strong agreement between the predicted and
observed DR values for the investigated deterioration problem
with non-parabolic trend.

6. Conclusions and recommendations

The proposed optimal novel approach for estimating the tran-
sition probabilities from pavement deterioration curves has

Figure 4. Sample distress ratings predicted using homogeneous Markov chain with 5 condition states (Project B, SSE = 19.68).

Figure 5. Sample distress ratings predicted using homogeneous Markov chain with 10 condition states (Project B, SSE = 11.09).
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been investigated using two sample projects (A & B). The
sample results derived for both homogeneous and non-homo-
geneous Markov chains have indicated the effectiveness of the
proposed approach. A few conclusions can be drawn from the
sample results obtained using a Markov chain with 5 and 10
condition states. The use of 10 condition states compared to
5 states has resulted in moderate reductions in the SSE consid-
ering both homogeneous and non-homogeneous Markov
chains. However, substantial reductions in the SSE have been
reached when using a non-homogeneous Markov chain com-
pared to a homogeneous one. The use of 3 state transitions has
made significant impact when deploying 10 condition states
especially in the case of inferior performance (Project B).
The superior performance (Project A) has been associated
with initial transition probabilities that are lower than the
terminal transition probabilities as would be expected. Simi-
larly, the inferior performance (Project B) has been associated
with initial transition probabilities that are higher than the
terminal transition probabilities as would again be expected
considering all investigated cases.

Therefore, it is recommended to use 3 state transitions
when deploying a Markov chain with 10 condition states. It
is also recommended to use the non-homogeneous Markov
chain over the homogenous one, however 5 condition states
with 2 state transitions would be adequate. It is worthy to
emphasise that the conclusions drawn are based on sample

projects with both parabolic and non-parabolic deterioration
trends. Also, the programming and computations associated
with the non-homogeneous chain are straightforward and
much simpler. An analysis period of 5–10 years would gener-
ally be sufficient for most pavement management applications
with the sample results presented for 10-year period. The data
requirements are minimal which mainly include pavement
condition records collected over the specified analysis period
for a particular project. The collected condition records can
be presented in the form of an appropriate indicator such as
the PSI and PCI, thus facilitating the use of the proposed opti-
mal approach. Both PSI and PCI can be estimated from the IRI
data using correlation models similar to the ones cited in this
paper. The deterioration transition probabilities can be esti-
mated for individual projects or project groups with similar
traffic conditions and material properties. The relevant math-
ematical computations are straightforward and can easily be
programmed using computer software such as ‘Excel’ and
‘Matlab’. Also, the computer time required to solve a particular
problem is very minimal.
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