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Abstract—We present a discrete game theoretical model with
homogeneous individuals who make simultaneous decisions. In
this model the strategy space of all individuals is a discrete
and dichotomous set which consists of two strategies. We fully
characterize the coherent, split and mixed strategies that form Nash
equilibria and we determine the corresponding Nash domains for all
individuals. We find all strategic thresholds in which individuals can
change their mind if small perturbations in the parameters of the
model occurs.
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I. INTRODUCTION

GAME theory becomes a pioneer research of interest for

many scholars who develop game theory models in order

to study how optimal strategies (decisions) have been selected

by individuals among other strategies. Ajzen [1] developed

the Planned Behavior and Reasoned Action theories in which

the measures of perceived behavioral control should contain

items that assess self-efficacy and controllability in order to

understand and predict the way individuals turn intentions

into behaviors. A psychological game theoretical model was

developed by Almeida et al. [2] for Reasoned Action and

Planned Behavior Theory and a Bayesian-Nash Equilibria are

characterized. Brida et al. [3] introduced a game theory model

and studied the crowding type effect of individuals over their

decisions. This work inspired by the results of Cownley and

Wooders [4].

Mousa et al. [5] presented a resort game model and

determine the resort’s prices that attract all customers and and

leave the other resort to go bankruptcy, such prices depends

the characteristics of the tourists present in that resorts. The

characteristics of individuals have been studied widely in the

Dichotomous Decision Model [6] introduced by Mousa et al. in

2011. This game model has two types of individuals who can

make the decision yes or no and can influence the decisions

of others. In addition, individuals make decisions according to

their preferences. The preferences have an interesting feature

by taking into account not only how much the individuals like

or dislike a certain decision but also the decisions made by

the other individuals .

Making an appropriate decision helps in choosing the

optimal strategies when facing a certain optimization
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problems. For instance, (i) to find the optimal strategies

for the management of an economic agent’s consumption

from a basket of K goods that may become unavailable for

consumption from some random time onwards, see [7]; (ii) or

to find the optimal consumption, investment and life-insurance

selection and purchase strategies for a wage-earner with an

uncertain lifetime, see [8].

Resorting to the dichotomous decision model, Mousa and

Pinto [9] constructed all the decision tilings whose axes reflect

the personal preferences of the individuals to make decision

yes or to make the decision no. They show how these tilings

include geometrically all the pure and mixed Nash equilibria.

In [10], Mousa et al. introduced a game theory model and

studied the impact and repercussion of the individual decisions

in a competitive market perspective.

Recently, Mousa et al. [11] presented an envy behavioral

game theoretical model with two types of homogeneous

players. They studied the influence of the envy behavior

parameters on the Cartesian position of the equilibria. A

modified version of the dichotomous decision model is

presented in [12], where all strategies (decisions) that form

pure and mixed Nash equilibria are characterized taking into

account the way individuals influence the decisions of others.

In this paper, they show how Nash equilibria form degenerated

hysteresis with respect to the replicator dynamics, with the

property that the pure Nash equilibria are asymptotically

stable and the strict mixed equilibria are unstable. This results

in the observation of the existence of limit cycles for the

dynamics associated to situations where the individuals keep

changing their decisions with time, but exhibiting a periodic

and attracting repetition in their decisions.

A pure strategy is cohesive if all the individuals of same

type make the same decision. Soeiro et al. [13] show that

individuals with same type can make different decisions

at certain Nash equilibria, mainly when individuals are

characterized according to their valuation type, externality

type and crowding type. Furthermore, they show how positive

externalities lead to type symmetries in the set of Nash

equilibria, while negative externalities allow the existence of

equilibria that are not type-symmetric.

In this paper, we will introduce a simplified version of the

game decision model [12] by considering a discrete game

model with homogenous individuals who make simultaneous

decisions. The strategy space is visible to all individuals and

contains two possibilities. We will determine all pure and

mixed Nash equilibria strategies and the find the corresponding
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Nash intervals for all individuals. Finally, we will show how

the order of the strategic thresholds can preserve certain

decision for all individuals and so may keep them united.

However, small perturbations in the parameters of the model

allow individuals to make different decisions, and so may

divide the community.

This paper is organized as follow: In Section II, we

introduce the model set up. In Section III, we characterize

the pure coherent strategies that form Nash equilibria and

determine the bifurcated coherent thresholds. In Section IV,

we study the pure split strategies that form Nash equilibria. In

Section V, we determine the mixed strategies that form Nash

equilibria. We conclude in Section VI.

II. THE MODEL SETUP

The model has m ≥ 2 homogenous individuals

i ∈ I = {1,2, . . . ,m} .

Each individual has to make one decision

d ∈ D = {d1, d2} .

Note that we can consider the case where a single individual

makes m decisions, or we can also consider a mixed model

using these two possibilities. We define the preference decision
vector

(ωd1 ωd2)

whose coordinates ωd ∈ R indicate how much an individual

likes ωd > 0, or dislikes ωd < 0, or indifference ωd = 0
to make decision d ∈ D. We define the preference neighbors
vector

(αd1 αd2)

whose coordinates αd ∈ R indicate how much an individual

likes αd > 0, or dislikes αd < 0, or indifference αd = 0 to

be with other individuals making decision d ∈ D. We describe

the individuals’ decision by a strategy map

S : I → D

that associates to each individual i ∈ I his decision S(i) ∈ D.

Let S be the space of all strategies S. Given a strategy S ∈ S,

let OS be the strategic occupation vector

OS = (ld1 ld2)

whose coordinates ld = ld(S) indicate the number of

individuals who make decision d ∈ D under strategy S. Hence,

for a given a strategy S ∈ S, let

ld1(S) = l (1)

be the number of individuals who make the decision d1.

Hence,

ld2(S) = m− ld1(S) = m− l (2)

is the number of individuals who make the decision d2. Let

O be the occupation set defined by

O = {l : l ∈ {0, 1, 2, . . . ,m}}.

Given a strategy S ∈ S, the utility Ui(S) of an individual

i ∈ I is then given by

Ui(S(i); l
d(S)) , d ∈ D .

Let Ui : D × O → R be the pure utility function for any

individual i ∈ I given by

Ui(S(i); l) =

⎧⎨
⎩

ωd1 + αd1(ld1 − 1), S(i) = d1 ,

ωd2 + αd2(ld2 − 1), S(i) = d2 .
(3)

Definition 1: A strategy S∗ ∈ S defined by

S∗ : I → D

is a Nash equilibrium if and only if for every individual i ∈ I
and for every strategy S ∈ S, we have

Ui(S
∗) ≥ Ui(S) .

III. COHERENT NASH EQUILIBRIUM STRATEGIES

In this section, we will study the Nash domain intervals for

all coherent strategies S ∈ S that form Nash equilibria.

Definition 2: A coherent strategy is a strategy in which all

individuals prefer to make the same decision d ∈ D.

A coherent strategy C ∈ S is described by a map

C : I → D

that indicates for every individual i ∈ I his coherent decision

C(i) ∈ D. We observe that there are two distinct coherent
strategies:

(i) dc1 coherent strategy

Cm : I → {d1}
in which all individuals make the decision d1, i.e

l = m;

(ii) dc2 coherent strategy

C0 : I → {d2}
in which all individuals make the decision d2, i.e

l = 0.

We now define the difference decision parameter which

plays a major role in classifying the equilibria.

Definition 3: The difference decision parameter of the

individuals is defined by

x = ωd1 − ωd2 . (4)

Independently from the influence of the other individuals: if

x > 0, then individuals prefer to decide d1; if x = 0, then

individuals are indifferent to decide d1 or d2; and if x < 0,

then individuals prefer to decide d2.

We now introduce one of the main results.

Lemma 1: The coherent strategy dc1 is Nash Equilibrium if

and only if

x ≥ −αd1(m− 1)

and the coherent strategy dc2 is Nash Equilibrium if and only

if

x ≤ αd2(m− 1) .
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Proof: Let C ∈ S be a coherent Nash Equilibrium
strategy. All individuals prefer to be together making decision

d1 if and only if

Ui(d1,m) ≥ Ui(d2, 1) , i ∈ I .

Substituting the utility functions of Ui from (3), we obtain

ωd1 + αd1(m− 1) ≥ ωd2 .

Rearranging the terms using (4), we get

x ≥ −αd1(m− 1) ,

which includes the proof of the first part.

To prove the second part, note that all individuals prefer to

be together making decision d2 if and only if

Ui(d2,m) ≥ Ui(d1, 1) .

Substituting the utility functions of Ui from (3), we obtain

ωd2 + αd2(m− 1) ≥ ωd1 .

Rearranging the terms using (4), we get

x ≤ αd2(m− 1) .

This includes the proof of the second part.

We now introduce the following definition for the coherent
threshold.

Definition 4: The coherent thresholds C(dc1) and C(dc2) for

the strategies d1 and d2 are, respectively, defined by

C(dc1) = −αd1(m− 1) and

C(dc2) = αd2(m− 1) . (5)

We proceed to define the decision parameter A ∈ R which

measures the influence of the individual’s decisions over each

other.

Definition 5: The decision parameter is defined by

A = αd1 + αd2 . (6)

The decision parameter A determines the orders for the

coherent thresholds C(dc1) and C(dc2). In Fig. 1, we order

the coherent thresholds C(dc1) and C(dc2) when the decision
parameter A < 0.

    

  

Fig. 1 Ordering the coherent thresholds when A < 0

Definition 6: The Nash Equilibria domain N(S) of a

strategy S ∈ S is the set of all difference decision parameter
x for which S is a Nash Equilibrium.

To characterize the Nash domain intervals, we now introduce

the following result.

Lemma 2: Assume C ∈ S is coherent Nash Equilibrium
strategy. The Nash Equilibria domain of the coherent strategy
dc1 is the interval of all difference decision parameter x for

which

x ∈ I(dc1) = [C(dc1),∞)

and the Nash Equilibria domain of the coherent strategy dc2 is

the interval of all difference decision parameter x for which

x ∈ I(dc2) = (−∞, C(dc2)] ,

where the coherent thresholds C(dc1) and C(dc2) are as given

in (5).

Proof: Let C ∈ S be coherent Nash Equilibrium strategy.

By Lemma 1 the coherent strategy dc1 is Nash Equilibrium if

and only if

x ≥ −αd1(m− 1) .

Hence, the Nash Equilibria domain of the coherent strategy
dc1 is the right segment

x ∈ [C(dc1),∞) .

Similarly, the coherent strategy dc2 is Nash Equilibrium if and

only if

x ≤ αd2(m− 1) .

Hence, the Nash Equilibria domain of the coherent strategy
dc2 is the left segment

x ∈ (−∞, C(dc2)] .

The representations of the coherent Nash domains intervals
I(dc1) and I(dc1) along the horizontal axis determine the

coherent decision intervals. The intersections of the coherent
Nash domains intervals I(dc1) and I(dc1) are determined by

the way the coherent thresholds C(dc1) and C(dc2) are ordered

along the horizontal axis. We observe that the order of the

coherent thresholds are independent of each other.

Lemma 3: Assume that the decision parameter A < 0.

Then there are no coherent Nash equilibria strategies for every

x ∈ (C(dc2), C(dc1)) .

Proof: Note that the decision parameter A < 0 if and

only if

C(dc2) < C(dc1) .

Therefore, the coherent strategy dc1 is unique Nash Equilibrium

if and only if

x ≥ C(dc1)

and the coherent strategy dc2 is unique Nash Equilibrium if

and only if

x ≤ C(dc2) .

Hence, there are no coherent Nash equilibria strategies for

every

x ∈ (C(dc2), C(dc1)) .
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In the following result, we study the case where the decision
parameter A takes positive values.

Lemma 4: Assume the decision parameter is such that A >
0. Then there exist a coherent Nash equilibria strategies for

every x ∈ R.

Proof: Note that the decision parameter A > 0 if and

only if

C(dc1) < C(dc2) .

The coherent strategy dc1 is unique Nash Equilibrium if and

only if

x ≥ C(dc1)

and the coherent strategy dc2 is unique Nash Equilibrium if

and only if

x ≤ C(dc2) .

Moreover, the two coherent strategies dc1 and dc2 are Nash

equilibria for every

x ∈ [C(dc1), C(dc2)] .

In Fig. 2, we order the coherent thresholds C(dc1) and

C(dc2) along the horizontal axis when the decision parameter

A > 0.

  

  

 

   

Fig. 2 Overlapping the coherent thresholds when A > 0

Definition 7: If the coherent thresholds C(dc1) and C(dc2)
are coincide, then the coherent thresholds are in bifurcation
position.

Now we study the case where the decision parameter A has

no influence.

Lemma 5: Assume the decision parameter A = 0. Then

there exist a unique coherent Nash equilibrium for every

x ∈ R \ {C(dc1), C(dc2)} .

Proof: Note that the decision parameter A = 0 if and

only if

C(dc1) = C(dc2) .

Hence, the coherent strategies dc1 and dc2 are Nash equilibria

only at the bifurcation point where

x = C(dc1) = C(dc2) .

As an illustration of Lemma 5, the coherent thresholds
C(dc1) and C(dc2) coincide when the decision parameter A = 0
(see Fig. 3).

  

  

=  

  

Fig. 3 Bifurcation of the coherent thresholds when A = 0

IV. SPLIT NASH EQUILIBRIUM STRATEGIES

We remark that the coherent Nash equilibria requires the

group of individuals to be united in their decisions. However,

in the this section this will not be the case as the community

will be divided in their decisions. Here we will study the split
strategies or the no-coherent strategies.

Definition 8: A split strategy S ∈ S is a strategy in which

individuals prefer to make different decisions.

The split strategy is then a strategy in which the individuals

split between the two decisions. Recall that l = ld1 strategy
refers to the number of individuals who make decision d1 as

defined in (1). Therefore, m − l = ld2 refers to the number

of individuals who make decision d2. Note that, a necessary

condition for the individuals to split between the two decisions

is

l ∈ {1, 2, . . . ,m− 1} .

Hence, there are m − 1 possibilities for the split strategies.

Our aim in this section is to characterize all split strategies

that form Nash equilibria by determining the necessary and
sufficient conditions which guarantee the existence of split
Nash equilibria strategies.

Definition 9: Let l be as defined in (1) for a given strategy

S ∈ S. The left split threshold SL(l
d1) for the strategy d1 is

defined by

SL(l) = SL(l
d1)

= −αd1(m− 1) + (αd1 + αd2)(m− ld1) (7)

= −αd1(m− 1) +Ald2

and the right split threshold SR(l
d2) for the strategy d2 is

defined by

SR(l
d2) = SR(m− l)

= αd2(m− 1)− (αd1 + αd2)(m− ld2)

= αd2(m− 1)−Ald1 (8)

= SR(l
d1) ,

where the preference decision A is as given in (6).

The connection between the left split threshold (7) and the

right split threshold (8) is presented in the following result.

Lemma 6: Given S ∈ S. For all ld1 ∈ {1, 2, . . . ,m−1} we

have

SR(l
d1 − 1) = SL(l

d1) .
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Furthermore,

SR(l
d2)− SL(l

d1) = −A ,

where the preference decision A is as given in (6).

Proof: To prove the first part, we start with the right split
threshold (8) as follows

SR(l
d1 − 1) = αd2(m− 1)−A(ld1 − 1) .

Substituting the identity (2) we obtain

SR(l
d1 − 1) = αd2m− αd2 −A(m− ld2) +A .

Using the definition of the decision preference A given in (6)

and rearranging terms we get

SR(l
d1 − 1) = αd2m− αd2 − (αd1 + αd2)m+Ald2 +A .

Rearranging terms we obtain

SR(l
d1 − 1) = −αd1m+ αd1 +Ald2

= SL(l
d1) ,

where the left split threshold SL(l
d1) is as given in (7). To

prove the second part, we remark that the difference between

each step (when one individual changes his decision) is the

negative of decision parameter, −A, i.e

SR(l
d1)− SL(l

d2) = A(m− 1)−Am

= −A ,

which includes the proof.

As an illustration of Lemma 6, we show in Fig. 4 the

process of dividing the group of all individuals between the

two decisions d1 and d2.

 

=  

=  

=  

 

  

  

Fig. 4 Split Nash domain when A < 0

In the following result we determine the necessary

conditions for the split strategy to be Nash equilibrium.

Lemma 7: Let S be Nash Equilibrium strategy. If A > 0
then the individuals can not be splitted between the strategies

d1 and d2.

Proof: By contradiction. Assume that S is split Nash
equilibrium strategy. Let ld1 = ld1(S) and ld2 = ld2(S). We

note that

U(d1; l
d1 + 1) = αd1 + U(d1; l

d1) and

U(d2, l
d2 + 1) = αd2 + U(d2, l

d2) . (9)

Since the strategy S is split Nash equilibrium, we have that

U(d2, l
d2 + 1) ≤ U(d1; l

d1) and

U(d1; l
d1 + 1) ≤ U(d2, l

d2) . (10)

By substituting equalities from (9) in the inequalities of (10),

we obtain that

αd1 + αd2 + U(d2, l
d2) ≤ U(d1; l

d1 + 1) ,

αd1 + αd2 + U(d2, l
d2) ≤ U(d2, l

d2).

Using (10) and rearranging the terms we get

αd1 + αd2 ≤ 0 .

This gives A ≤ 0 which contradicts our previous assumption

A > 0.

Now we will determine the values of the difference decision
parameter x in which the split strategy S ∈ S form a Nash

Equilibrium.

Lemma 8: Assume S ∈ S is a split strategy. Then, S is

Nash equilibrium strategy if and only if the difference decision
parameter x is such that

x ∈ [SL(l
d1), SR(l

d2)] .

Proof: Let S ∈ S be split Nash equilibrium strategy. If

the individual i ∈ I decides d1, then the individual i does not

like to change his decision to d2, i.e.

Ui(d1, l) ≥ U(d2, l
d2 + 1) .

Similarly, if the individual i ∈ I decides d2, then the individual

i does not like to change his decision to d1, i.e.

Ui(d1, l + 1) ≤ U(d2, l
d2) .

Substituting the utility functions (3) in the last inequality and

rearranging the terms, we obtain

ωd1 + αd1(ld1 − 1) ≥ ωd2 + αd2 ld2 ,

ωd1 + αd1 ld1 ≤ ωd2 + αd2(ld2 − 1) . (11)

Hence, the strategy S is Nash Equilibrium if and only if the

two inequalities in (11) are satisfied. Substituting the identities

(1) and (2) above, we obtain

ωd1 + αd1(l − 1) ≥ ωd2 + αd2(m− l)

ωd1 + αd1 l ≤ ωd2 + αd2(m− l − 1).

Rearranging the last two inequalities using the difference
decision parameter from (4), we get

x ≥ −αd1(m− 1) + (αd1 + αd2)(m− ld1) ,

x ≤ αd2(m− 1)− (αd1 + αd2)(m− ld2) .

Resorting to the two identities defined in (7) and (8), the last

two inequalities become, respectively

x ≥ SL(l
d1) ,

x ≤ SR(l
d2) .

Joining the above two inequalities, we obtain that the strategy

S is Nash Equilibrium if and only if

SL(l
d1) ≤ x ≤ SR(l

d2) ,
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which concludes the proof.

Definition 10: Assume A < 0. The relative split threshold
is defined by

G(x) = (−x+ αd2(m− 1))/A (12)

and the matching split threshold is defined by

H(l) = αd2(m− 1)− ld1A . (13)

Let us define also Z(x) by

Z(x) = x− αd2m− αd1 . (14)

We observe that the map G(x) is an increasing affine functions

in x with the property that

G(C(dc2)− αd2) = 0 and

G(C(dc1)) = m− 1 .

For a given split strategy S ∈ S, we will show how the

split Nash Equilibrium strategy l = ld1 can be related to the

identities G(x), H(l) and Z(x) defined in (12), (13) and (14),

respectively.

Lemma 9: Assume that the decision parameter A < 0.

Given the split strategy S ∈ S. The split strategy l = ld1

is a Nash equilibium if and only if

x ∈ [H(l) +A,H(l)] .

Furthermore, the split strategy S is Nash equilibrium if and

only if

ld1(S) ∈ [G(x), G(x) + 1] .

where G(x) is as given in (12) and H(l) is as given in (13).

Proof: Using Lemma 8, the split strategy S ∈ S is Nash

Equilibrium if and only if

x ∈ [SL(l
d1), SR(l

d2)] .

We rewrite the last interval in terms of the following two

inequalities

x ≥ SL(l
d1) and

x ≤ SR(l
d2) .

Substituting the left split threshold (7) and the right split
threshold (8) above we obtain

x ≥ −αd1(m− 1) +Ald2 and

x ≤ αd2(m− 1)−Ald1 . (15)

Rearranging the two inequalities in (15), we get

H(l) +A ≤ x ≤ H(l)

and we conclude the first part. To prove the second part,

we add the term −αd2m − αd1 to both sides of the above

inequalities, we obtain

Z(x) +Ald1 ≥ 0 and (16)

Z(x) +A+Ald1 ≤ 0 ,

where Z(x) is as given in (14). Noting that l = ld1(S) ∈
{1, 2, . . . ,m−1} and A < 0, one can rearrange the inequalities

in (16) to get

1 ≤ ld1(S) ≤ −Z(x)

A
and

m− 1 ≥ ld1(S) ≥ −Z(x)−A

A
. (17)

Hence, the strategy S is Nash Equilibrium if and only if the

inequalities in (17) are satisfied. Note that from the definition

of G(x) in (12) and Z(x) in (14), we conclude that

G(x) =
−Z(x)

A
− 1 .

Hence, from the inequalities in (17) we can see that the split
strategy S is Nash equilibrium if and only if

ld1(S) ∈ [G(x), G(x) + 1]

and we conclude the proof of the second part.

V. MIXED STRATEGIES

Recall that the pure strategies are either coherent as we

have seen in Section III or split as we have seen in Section

IV. More generally, individuals may decide with probability,

so we describe the mixed decision of the individuals by the

mixed strategy map

S : I → [0,1]

that associates to each individual i ∈ I the probability

pi = S(i) ∈ [0, 1]

to decide d1. Hence, each individual i ∈ I decides d2 with

probability

1− pi = 1− S(i) .

We assume that the decisions of the individuals are taken

independently. Define the following values

P =

m∑
i=1

pi

Pi = P − pi , i ∈ I .

For every individual i ∈ I, we define the d1-fitness function

fd1
: [0, 1]× [0,m] → R

+

by

fd1(pi;P ) = ωd1 + αd1Pi ; (18)

and we define the d2-fitness function

fd2
: [0, 1]× [0,m] → R

+

by

fd2
(pi;P ) = ωd2 + αd2(m− 1− Pi) . (19)

For every individual i ∈ I, we define the mixed utility function

U : [0, 1]× [0,m] → R
+

by

U1(pi;P ) = pi fd1
(pi;P, ) + (1− pi) fd2

(pi;P ) . (20)
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Note that for every i ∈ I, if pi ∈ {0, 1}, then every individual

decides the pure strategy d1 with pi = 1 and decides the pure

strategy d2 with pi = 0. In case where pi ∈ {0, 1}, the mixed
utility function defined in (20) coincides with the pure utility
function defined in (3).

Definition 11: A strategy

S∗ : I → [0,1]

is a mixed Nash equilibrium if and only if

Ui(S
∗) ≥ Ui(S)

for every individual i ∈ I and for every strategy S ∈ S.
We now introduce the following result.
Lemma 10: Let S : I → [0,1] be a mixed Nash

equilibrium. If 0 < pi < 1, then the difference decision
parameter is given by

x = −A(P − pi) + C(dc2) ,

where the coherent threshold C(dc2) is as given in (5).
Hence, if A �= 0, then there is no mixed Nash equilibrium

with the property that 0 < pi �= pj < 1. This is because all

individuals are homogeneous.
Proof: Let S : I → [0,1] be a mixed Nash equilibrium.

Hence, for every p ∈ [0, 1], we must have

U(pi;P ) ≥ U(p;P − pi + p) .

Since S ∈ S is mixed Nash equilibrium, it follows that when

0 < pi < 1 we must have

fd1(pi;P ) = fd2(pi;P ) .

Substituting the fitness function fd1
from (18) and the fitness

function fd2 from (19) we get

ωd1 + αd1Pi = ωd2 + αd2(m− 1− Pi) .

Rearranging the last identity we obtain

ωd1 − ωd2 = αd2(m− 1)− (αd1 + αd2)Pi

= C(dc2)−APi .

Resorting to the difference decision parameter (4) we get

x = −A(P − pi) + C(dc2) ,

which concludes the proof.

VI. CONCLUSION

We have studied a simplified game decision model for

group of homogenous individuals whose strategy space is the

discrete set with two alternatives. We have characterized the

coherent strategies that form Nash equilibria and determined

the corresponding coherent Nash intervals for all individuals,

which explains how individuals preserve together their

decisions, and thus may keep the community united. We have

characterized the split strategies that form Nash equilibria

and determined the corresponding split Nash intervals for

all individuals, which explains how the community becomes

divided if the difference decision parameter of the individuals

x passes some split thresholds. Finally, we have characterized

the mixed strategies that form Nash equilibria and determined

the corresponding mixed Nash intervals for all individuals,

which generalize all pure Nash strategies.
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