
Received December 10, 2019, accepted December 30, 2019, date of publication January 6, 2020, date of current version January 15, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2964321

Enhanced Binary Moth Flame Optimization as
a Feature Selection Algorithm to Predict
Software Fault Prediction
IYAD TUMAR 1, (Member, IEEE), YOUSEF HASSOUNEH 2,
HAMZA TURABIEH 3, AND THAER THAHER 4
1Electrical and Computer Engineering Department, Birzeit University, Ramallah 00970, Palestine
2Department of Computer Science, Birzeit University, Ramallah 00970, Palestine
3Department of Information Technology, Taif University, Taif 21431, Saudi Arabia
4Department of Computer Science, Al-Quds University, Jerusalem 00970, Palestine

Corresponding author: Hamza Turabieh (h.turabieh@tu.edu.sa)

ABSTRACT Software fault prediction (SFP) is a complex problem that meets developers in the software
development life cycle. Collecting data from real software projects, either while the development life
cycle or after lunch the product, is not a simple task, and the collected data may suffer from imbalance
data distribution problem. In this research, we proposed an Enhanced Binary Moth Flame Optimization
(EBMFO) with Adaptive synthetic sampling (ADASYN) to predict software faults. BMFO is employed as
a wrapper feature selection, while ADASYN enhances the input dataset and address the imbalanced dataset.
ConvertingMFO algorithm from a continues version to the binary version using transfer functions (TFs) from
two different groups (S-shape and V-shape) is investigated in this work and proposed an EBFMFO version.
Fifteen real projects data obtained from PROMISE repository are employed in this work. Three different
classifiers are used: the k-nearest neighbors (k-NN), Decision Trees (DT), and Linear discriminant analysis
(LDA). The reported results demonstrate that the proposed EBMFO enhances the overall performance of
classifiers and outperforms the results in the literature and show the importance of TF for feature selection
algorithms.

INDEX TERMS Software fault prediction, feature selection, binary moth flame optimization, adaptive
synthetic sampling, classification.

I. INTRODUCTION
The process of developing good software consists of sev-
eral stages, such as software requirements, analysis, design,
implementation, testing, and documentation. The test phase is
an important stage that enhances the quality of the software
and reduces the total cost. In practice, testing is performed
either as a linear approach (i.e., waterfall) or cyclical (i.e.,
incremental, iterative, agile) models. Finding or predicting
faults called Software fault prediction (SFP). SFP detects
either clear or hidden fault-prone modules in advance before
new software versions being developed. SFP process deter-
mines the efficiency of the new software based on several
factors, such as historical fault datasets, user comments and
predefined software metrics [1], [2]. Developing software
based on incremental delivery (known as Agile Software

The associate editor coordinating the review of this manuscript and

approving it for publication was Baoping Cai .

Development (ASD) methodology) will minimize the devel-
opment time, and thus delivering the new software before the
deadline approaches in addition to reducing the gap between
developers and business owners [3]. However, repaid soft-
ware development leads to faults. As a result, SFP becomes
a mandatory step in order to predict faults and satisfy end
users. This process helps in reduces the costs needed to finish
a project, and thus in improving the subsequent versions.

Software quality assurance (SQA) aims to control the soft-
ware development lifecycle (SDLC) to ensure that the current
systemmeets the expectations. SQA consists of several appli-
cations such as code walkthroughs, software testing, and SFP
[4], [5]. SFP models predict the expected faults during devel-
opment stage, which enhances the overall software quality.
These models are developed based on either software metrics
(i.e. change or file statusmetrics) or fault datasets (aggregated
from previous versions of similar projects). Such models are
helpful when resources of the project are not adequate, or the

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 8041

https://orcid.org/0000-0002-9304-0989
https://orcid.org/0000-0001-6565-1179
https://orcid.org/0000-0002-8103-563X
https://orcid.org/0000-0001-7047-5886
https://orcid.org/0000-0002-4499-492X


I. Tumar et al.: EBMFO as a Feature Selection Algorithm to Predict SFP

system is quite large and difficult to test. In general, build-
ing SFP models depends on three factors: software metrics,
soft computing (SC), and machine learning (ML) algorithm,
and techniques [1]. The process of developing the software
metrics model is related to collecting metrics data to predict
the faults [6]. This approach does not work smoothly with
different projects or different versions [7]. So, researchers use
software change metrics (i.e. historical changes) to overcome
this drawback and build an accurate SFP model. However,
this approach is considered time-consuming and impractical
with complex systems.

ML algorithms are the heart of data science that used
successfully to solve complex problems either in the indus-
trial or research world. The performance of ML algorithms
depends on several factors such as data dimensionality, data
representation, andML algorithms. High data dimensionality
that has irrelevant, noisy, and redundant data will reduce
the overall performance of ML classifiers. Extracting these
features will reduce the dimensionality and enhance the
performance of ML algorithm [8]. Generally, reducing the
data dimensionality is performed using feature selection (FS)
algorithms [9]. FS algorithms remove noisy, irrelevant, and
redundant data without reducing the performance of ML
algorithms. Moreover, FS enables developers and researchers
to understand the data itself and focus on the most valu-
able features [10]. Several research papers in the literature
reported that FS algorithms are able to enhance the perfor-
mance of SFP systems [11].

Selecting the best features for SFP problem is challenging
process since projects have different requirements and differ-
ent development procedures. The high dimensionality of data
with redundant and noisy data will increase the learning time
for ML classifiers and will not guarantee to achieve a high-
quality model. So, the motivation of this work is to propose an
intelligent FS algorithm based on MFO that is able to address
all issues related to high dimensionality data that will enhance
the overall performance of SFP model.

The rest of this paper is organized as follows: a literature
review of related works for SFPmethods and FS algorithms is
presented in Section II. In Section III, the proposed intelligent
approach is discussed deeply. In Section IV, set of TFs with
their mathematical models are presented. The imbalanced
data problem is addressed in Section V. Sections VI and VII
discussed the classification methods and evaluation criteria,
respectively. Section VIII presents the obtained results and
their analysis. Finally, Section IX concludes the obtained
results and future works for this research paper.

II. REVIEW OF RELATED WORKS
SFP problem has been tackled using several algorithms.
These algorithms mainly focus on machine learning algo-
rithms. Researchers applied feature selection algorithms
incorporating a selected classifier(s) to enhance the overall
performance. In the next subsections, we will explore the
machine learning and feature selection algorithms that solved
SFP problem.

A. SOFTWARE FAULT PREDICTION
ML algorithms show promising performance in solving SFP
problem. Several algorithms are used such as Naive Bayes
(NB) [12], Multilayer Perceptron (MLP) [13], Case-based
Reasoning (CR) [14], Artificial Neural Networks [15], Deep
learning methods [1], Support Vector Machine (SVM) [16],
Bayesian Networks (BN) [17], Decision Trees (DT) [18],
Multinomial Logistic Regression (MLR) [13] and Logistic
Regression (LR) [17]. Several public bechmarck datasets
are available online, and researchers employed their pro-
posed algorithms and compare the obtained results with the
literature.

One of the most well-known public datasets is NASA
repository, that has been used by researchers in this field.
For example, Cahill et al. [19] introduced a ranking approach
called Rank Sum to examine the achieved results for
SFP problem. The authors applied SVM and NB machine
learning algorithms, and NB results outperform SVM.
Carrozza et al. [13] examine five ML algorithms (i.e., MLR,
BN, NB, SVM, abd DT) over several datasets from NASA
repository. The performance of MLP and SVM outperform
other algorithms. Moreover, the authors proposed new metric
criteria for complex systems that have Mandelbugs. Malho-
tra [20] investigates the performance of multi ML and LR
algorithms on another public dataset obtained the PROMISE
repository. Experimental results show that DT algorithm out-
perform all examine algorithms. Khoshgoftaar et al. [21]
proposed a hybrid approach called multi-strategy classifier
(RB2CBL), which hybridized with Rule-based (RB) model
with two different case-based learning (CBL). The authors
employed genetic algorithms to optimize CBL parameters.
The obtained results show that RB2CBL outperform stan-
dard BR model. Rathore and Kumar [22] tackle two dif-
ferent datasets from PROMISE repository and Eclipse bug
data repository using two ensemble learners methods, lin-
ear regression based combination rule (LRCR) and Gradi-
ent boosting regression based combination rule (GRCR).
The authors employed two evaluation criteria evaluate the
obtained results, Average Absolute Error (AAE) and Aver-
age Relative Error (ARE), and GRCR model outperforms
LRCR one.

Erturk and Ebru [23] solve SFP problem based on an
iterative hybrid approach between Fuzzy Inference System
(FIS) and Artificial Neural Network (ANN). The FIS is
employed at the beginning of the project where no historical
data available, while ANN is employed once some historical
data available. Shatnawi [24] investigate the performance
of different set of ML algorithms based on receiver oper-
ating characteristic (ROC). The author proposed a thresh-
old value to determine that project has a fault or not.
Choudhary et al. [25] study the importance of change metrics
with code metrics to improve the overall performance of
SFP models. The authors examine their proposed approach
on a set of Eclipse projects for code metrics and change
metrics are extracted from the GIT repositories, the obtained
results improve the overall performance of SFP models.

8042 VOLUME 8, 2020



I. Tumar et al.: EBMFO as a Feature Selection Algorithm to Predict SFP

Sharma and Chandra [26] review several machine learning
and conventional algorithms to solve SFP problem and high-
light the importance of SFP in reality.

B. FEATURE SELECTION
FS is NP-hard search problem [27], [28] that tries to deter-
mine the optimal number of features or attributes from the
original dataset without losing the main functionality of the
original dataset. The problem complexity increased exponen-
tially based on the number of features. Therefore, researchers
employed heuristic search to enhance to obtained results and
the computational time for large problems. In general, FS
algorithms perform two tasks: (i) Find the minimal number
of features that represent the original dataset, and (ii) eval-
uate the selected features based on a predetermined fitness
function. FS algorithms evaluate selected features based on
two approaches: filter and wrapper. Filter approach evaluates
the selected features based on the relation between features,
while the wrapper approach uses a learning algorithm to
evaluate the selected features. Based on execution time, filter
approach is faster than wrapper one. However, the wrapper
approach is more accurate than filter approach [29].

FIGURE 1. A pictorial diagram of the feature selection.

A binary representation is the simplest approach to tackle
FS problems, where 0 means the feature is not selected, while
1 means that the feature is selected. Figure 1 shows a pictorial
diagram for a dataset of n features. Applying FS algorithm
will select m features from the original n features, where
m ≤ n.

Several algorithms have been proposed as features selec-
tion algorithms. These algorithms are classified into two
groups such as exact algorithms and meta-heuristic search
algorithms [30]. Meta-heuristic algorithms show a higher
performance compared to the exactmethod for complex prob-
lems [1]. In general, meta-heuristic algorithms are classified
into two groups: (i) single-solution algorithms (S-based),
(e.g. Tabu Search (TS) [31], Great Deluge (GD) [32], and
Simulated Annealing (SA) [33]), and (ii) population-based
algorithms (P-based), (e.g. Artificial Bee Colony algorithm
(ABC) [30], Genetic Algorithms (GA) [34], Harris hawks
optimization [35], Moth Flame Optimization (MFO) [36],
Particle Swarm Optimization (PSO) [37], and Whale Opti-
mization Algorithm [38]). The S-based algorithms focus
on exploitation process, while P-based algorithms focus on
exploration process. In general, P-based algorithms are able
to research more areas in the search space and achieve
more accurate results compared to S-basedmethod. However,
S-based method execution time is less than P-based one.

III. PROPOSED APPROACH
In this work, we employed a wrapper approach by adopting
the binary version of MFO algorithm to tackle SFP problem.
Figure 2 explores themethodology of the proposed algorithm.
At each iteration, a cross-validation process with k = 10 is
evaluated. The algorithm begins by employing MFO on the
SFP dataset. At each iteration, the selected dataset is divided
using cross-validation approach. An adaptive synthetic sam-
pling approach is used to address the imbalanced dataset for
the training dataset. This process will create oversampling
training dataset. Three different classifiers (i.e. kNN, DT, and
LDA) are used to build an SFP model and evaluated based
on Kfold = 10. The proposed approach stops once achieve
the optimal solution based on the fitness function or reach
maximum number of iterations. The following subsections
demonstrate the proposed model.

A. MOTH FLAME OPTIMIZATION
MFO is a swarm optimization algorithm that was firstly
introduced by Mirjalili in 2015 [39]. Moth is an insect that is
related to the butterflies family; where its main activities start
at night. The basic idea for MFO comes from the exploration
process of moths while searching for light in nature, which
is called transverse orientation while traveling toward light
at night, depending on the light that comes either from the
moon or man-made light. The position of moths is controlled
based on a fixed movement angle concerning the incomming
light. The moths move in a spiral shape and try to keep a
similar angel for the man-made light. This flying approach
will create a deadly spiral fly path for moths [39]. Figure 3
demonstrates the moths spiral flying path toward a man-made
light.

B. MFO MATHEMATICAL FORMULATION
MFO is a population-based algorithm, where each moth
presents a candidate solution in the search space for

VOLUME 8, 2020 8043



I. Tumar et al.: EBMFO as a Feature Selection Algorithm to Predict SFP

FIGURE 2. Proposed methodology.

the problem. The following matrix demonstrates the moths
solutions.

M =


m1,1 m1,2 . . m1,d
. . . . .

. . . . .

. . . . .

mn,1 mn,2 . . mn,d


where d indicates the problem dimension (i.e. number of
variables), and n refers to the number of moths (Solutions).

The best positions in the search space presented as a set of
flames. The following matrix demonstrates the set of flames,
which is similar to matrix of moth.

F =


F1,1 F1,2 . . F1,d
. . . . .

. . . . .

. . . . .

Fn,1 Fn,2 . . Fn,d


8044 VOLUME 8, 2020



I. Tumar et al.: EBMFO as a Feature Selection Algorithm to Predict SFP

FIGURE 3. Spiral flying path for moths around close light source.

where both d and n presents the dimension of the search space
andmoths, respectively.Moths and flames are solutions in the
search space. However, the main difference between them is
the updating process. Moths resent the actual search agents
that explore the search space. Each moths exploit around a
flame and update its position. This approach enables moths to
balance between exploration and exploitation process while
search process [39]. Equation 1 presents the updating process
based on the flames, where Mi represents the ith moth and
Fj is the jth flame. Equation 2 presents the logarithmic spiral
function that is used to updatemoth in the search space, where
b is a consist value for control the shape of the logarithmic
spiral function, t is a random value between −1 and 1,
and Di represents distance between Mi moths and Fj flame.
Equation 3 presents the Di calculation process. All flames
are sorted ascending based on the fitness values in each
generation. So, the moths update mechanism for its positions
based on the closest best flames (best solutions).

Mi = P(Mi,Fj) (1)

S(Mi,Fj) = Di · ebt · cos(2π t)+ Fj (2)

Di = |Fj −Mi| (3)

In the beginning of MFO algorithm, a predefined number
of flamesN will be determined. This number of flameswill be
gradually decreased with more iterations due to the updating
mechanism for moths. This process of decrementation will
keep a good ratio between the exploitation and exploration
[39]. Equation 4 presents the number of flames inside MFO
algorithm, where N is a predefined number represents the
initial number of flames at first iteration, l represents the
actual number of iteration, and T represents the maximum
number of iterations. The pseudo-code of MFO is shown in
Algorithm 1.

FlameNumber = round(N − l ×
N − l
T

) (4)

In binary moths flame optimization (BMFO), each
moth (solution) is represented by a binary vector x =
(x1, x2, . . . , xn), xi ∈ {0, 1}. Figure 4 demonstrates the binary
representation of moth solution.

Algorithm 1 The Original Pseudo-Code of MFO Algorithm
Input: Total number of moths and iterations (Tmax).
Output: The best solution and the its fitness value.
Initialize positions of moths xi(i = 1, 2, . . . , n)
Obtain the fitness of moths.
while (Looping condition is not met) do

Update flame no. based on Eq. (4)
Define: OM = Fitness Function(M)
if (i == 1) then

F = sort(M), OF = sort(OM)
else

F = sort(Mt−1,Mt ), OF = sort(Mt−1,Mt );
end if
for i = 1 : n do

for j = 1 : d do
Update r and t
Obtain D by Eq. (3) with regard to the related

moth
Update M (i, j) via Eqs. (1) and (2) with regard

to the related moth
end for

end for
end while
Return the best solution

FIGURE 4. Binary presentation for moth solution.

C. ENHANCED BMFO (EBMFO)
To enhance the performance of the exploration and
exploitation of MFO algorithm, we modified the moth-flame
following strategy and population diversity of MFO using
evolutionary population dynamics (EPD). EPD was applied
successfully by several researchers to control the population
diversity of several meta-heuristic algorithms [40], [41].
The following subsections present both enhancement
components.

D. MOTH-FLAME FOLLOWING STRATEGIES
MFO sorted flames in ascending order based on fitness func-
tion at the beginning of MFO algorithm, while moths are not
sorted. In the original MFO, the first moth follows the fittest
best flame (index = 1), while the last moth follows the worst
flame that have the similar index as shown in Figure 5. Since
there are a large number of flames exists at the beginning
of algorithm execution, the probability of moth to follow a
flame with worst fitness value is high. This will force moth to
move in a direction far away to the source light (best solution)
if the last moth fitness value is better than the last flame

VOLUME 8, 2020 8045



I. Tumar et al.: EBMFO as a Feature Selection Algorithm to Predict SFP

FIGURE 5. Original moth-flame following strategy (ascending order).

FIGURE 6. Enhanced moth-flame following strategy (descending order).

fitness value. As a result, a set of iterations will not improve
the moths fitness values, which increase the computational
time. To address this problem, the moths are sorted in
descending order, to force the worst moth to follow the best
flame as shown in Figure 6. In this scenario, we make sure
that from the first iteration all worst moth moves toward best
flame (source light).

After a set of iterations, the number of flames will decrease
gradually, and number of moths becomes greater than number
of flames. In this case, the original MFO algorithm forces
all moths that have index greater than last flame index to
follow the last flame as shown in Figure 7. This original
scenario will force a large number of moths to follow the
worst flame. To address this issue, we proposed that all moths
that have index greater than last flame index will select a
flame randomly fromflamematrix. This process will enhance
the exploitation process inside MFO algorithm.

E. POPULATION DIVERSITY BASED ON EPD
To enhance the population diversity and to avoid prema-
ture convergence for MFO, an EPD method is employed.

FIGURE 7. Random selection of flame to follow strategy.

All moths are sorted in ascending order. EPD will divide
the moths matrix into two halves, Best-half and Worst-
half. To keep the population diversity high, the worst-half is
replaced by applying a uniform crossover operator between
each solution in the worst-half with a randomly selected
solution from the best-half. This process will enhance the
exploration ratio for MFO algorithm.

IV. TRANSFER FUNCTIONS
MFO is a continuous algorithm in nature, converting MFO
to a binary version should utilize the transfer function (TF).
To achieve this, we adopted eight different TFs from two
groups, S-shaped and V-shaped. Equation 5 explores the
probability of updating the process of selecting features from
a binary vector, 1 means selected features, while 0 means
not selected. Several researchers employed this mechanism to
convert continuous algorithms to a binary version [42], [43].

T (x ij (t)) =
1

1+ exp−x
i
j (t)

(5)

where the variable x ij represents the j
th element in x solution

in the jth dimension, and t is the current iteration.
Equation 6 presents the updating process for S-shape group

for the next iteration.

xki (t + 1) =

{
0 If rand < T (vki (t + 1))
1 If rand ≥ T (vki (t + 1))

(6)

where xdi (t + 1) is the ith element at d th dimension in x
solution, T (x ij (t)) represents the probability value that can can
be calculated from Equation 5.

Equation 8 explores the updating process for V-shape
group for the next iteration, based on the probability values
that can be calculated from Equation 7 [44]. The mathe-
matical models for both groups (S-shape and V-shape) are
presented in Table 1.

T (x ij (t)) = | tanh(x
i
j (t))| (7)

Xt+1 =

{
¬Xt r < T (1xt+1)
Xt r ≥ T (1xt+1)

(8)

8046 VOLUME 8, 2020



I. Tumar et al.: EBMFO as a Feature Selection Algorithm to Predict SFP

FIGURE 8. EPD process for BMFO algorithm.

TABLE 1. S-shaped and V-shaped transfer functions.

V. IMBALANCED DATA LEARNING
The performance of classifier affected by several factors
such as number of samples and number of class type. The
imbalance problem for collected data occurs when the class
of interest (minority class) is very small compared to the
normal class (majority class). Intelligent machine learning
classifiers usually suffers when the input dataset is skewed
toward one class. In reality, most of the collected data suffer
from imbalanced data, which reduces the overall performance
of classifiers [45].

Several research papers highlighted the imbalanced dataset
problem and proposed several methods to address it. In gen-
eral, there are two main methods to handle imbalanced data:
the data perspective and the algorithm perspective [46]. The
data perspective rebalances the class distribution based on re-
sampling the data space, using either over-sampling or under-
sampling instances for minority class or majority class,
respectively. The re-sampling methods try to overcome
imbalance dataset problem either randomly or deterministi-
cally.

One of the most recommended approaches to address
imbalanced data are called SMOTE (Synthetic Minority

Over-sampling TEchnique), that generates synthetic samples
between every positive sample and one of its close sam-
ple [46], and Adaptive synthetic sampling (ADASYN), that
create a weighted distribution for several minority class based
on their difficulty while learning process, several synthetic
data is created forminority class whichmake learning process
more easier [47]. The main advantages of ADASYN are
reducing the bias toward the minority class and adaptively
learning.

VI. CLASSIFIERS METHODS
There are several classifiers learning classifiers in the
literature. So, we limit our work to employ only three
different classifiers: nearest neighbors (kNN), Linear dis-
criminant analysis (LDA) and decision trees (DT). These
classifiers are applied in different domains successfully. The
kNN classifiers work based upon the similarity threshold
value to classify the dominant class to the nearest group [48].
In this work, we select k = 5. LDA is a statistical machine
learning approach, which finds an optimal projection by
mean of Fisher criterion optimization. LDA employs a scatter
approach in each class concerning the overall data aver-
age [49]. Decision tree (DT) classifier that works based upon
the information-based criteria to set up decision trees [50].
The tree is extended once new valuable information obtained.

VII. EVALUATION METHOD
A. RECEIVER OPERATING CHARACTERISTIC
CURVE-AREA UNDER CURVE (AUC)
Classification and prediction problems have several eval-
uation criteria such as accuracy, precision, and Receiver

VOLUME 8, 2020 8047



I. Tumar et al.: EBMFO as a Feature Selection Algorithm to Predict SFP

TABLE 2. A matrix of the confusion matrix.

TABLE 3. AUC values description [51].

TABLE 4. The selected imbalanced SFP datasets.

TABLE 5. Average AUC results obtained by BMFO-S2 with different
number of search agents [KNN as the base classifier].

Operating Characteristic curve- area under curve (AUC).
Accuracy and precision are easily affected by cut-off value
once a little change in the dataset classes, while AUC is not

TABLE 6. Average AUC values obtained by BMFO-S2 with ADASYN using
different balancing ratios [KNN as the base classifier].

TABLE 7. A comparison between the performance of BMFO-S2 in dealing
with imbalanced versus balanced data in terms of evaluation metrics
[KNN as the base classifier].

affected by the cut-off value. In this work, we evaluate the
proposed approach based on AUC value.

The calculation of AUC value depends on the ratio between
True Positive (TP) rate verse False Positive (FP) rate. A con-
fusion matrix as shown in Table 2 define the process of evalu-
ating AUC value, where TP (True positive) when both actual
and predicted value are correct positive. FP (False Positive)
when both actual and predicted value are correct negative.
FN (False Negative) when predicted value is negative, while
actual value is positive. TN (True Negative) when predicted
value is positive, while actual value is negative.

The AUC value depends on two values: sensitiv-
ity (Equation 10) and specificity (Equation 10), where

8048 VOLUME 8, 2020



I. Tumar et al.: EBMFO as a Feature Selection Algorithm to Predict SFP

TABLE 8. A comparative results of BMFO-S2 using different classifiers with ADASYN oversampling in terms of sensitivity, specificity, AUC, and running
time.

TABLE 9. Comparative results of LDA classifier before and after feature selection [based on re-sampled data and BMFO-S2 as FS].

P represents the number of actually positive records and N is
the number of actually negative records. Table 3 demonstrates
a description of AUC values scale.

Sensitivity = TPrate =
TP
P

(9)

Specificity = TNrate =
TN
N

(10)

B. FEATURE SELECTION FITNESS FUNCTION
Since FS problem is an optimization problem, the fitness
function that used in this work to evaluate the selected fea-
tures is presented in Equation 11. Where α is a float number
between 0 and 1 that is selected randomly, λR(D) is the error
rate for internal classifier, β is a float number selected ran-
domly between 0 and α, |R| represents a number of selected
features, and finally |N | represents the overall number of
features.

Fitness = min[αλR(D)+ β
|R|
|N |

] (11)

VIII. EXPERIMENTAL RESULTS AND SIMULATIONS
To evaluate the proposed approach, 15 different software fault
projects obtained from PROMISE public software engineer-
ing repository are selected [52], [53]. The datasets have no
missing data and well structured for research use. Table 4
demonstrates PROMISE datasets. The selected dataset is an
object-orientedmetrics, where each project consists of 20 fea-
tures (input metrics) and a one binary output as a fault value.
Table 17 in Appendix IX shows a description of each feature
in the datasets used in this paper.

At the beginning, we examine the performance of
BMFO-S2 using different number of agents (moths). Table 5
shows the average AUC values using different size of agents
(i.e 5, 10, 20, 30, 40, and 50) using kNN classifier. It is clear
that number of agents play a vital role of the overall perfor-
mance. For example, the performance is worst when number
of agent is small (i.e Size= 5), while the best performance is
achieved when agent size is 30. Choosing the correct size of
agents will play a vital role on the final results.

VOLUME 8, 2020 8049



I. Tumar et al.: EBMFO as a Feature Selection Algorithm to Predict SFP

TABLE 10. Comparison between different variants of BMFO based on S-shaped TFs in terms of number of features, AUC, and fitness results. [based on
LDA classieir with ADASYN].

TABLE 11. Comparison between different variants of BMFO based on V-shaped TFs in terms of number of features, AUC, and fitness results. [based on
LDA classieir with ADASYN].

TABLE 12. Comparison between the top variants of BMFO with S-shaped and V-shaped versus the corresponding proposed methods based on the
number of features, AUC, and fitness results.

Table 6 explores the obtained results of original BMFO-S2
and modified BMFO-S2 with ADASYN using kNN classi-
fiers. We employed different balancing ratio (i.e. 0.4, 0.6,

0.8 and 1.0). It is clear that the modified BMFO-S2
with ADASYN outperforms the original BMFO-S2 algo-
rithm. Moreover, balancing ratio affects the performance of

8050 VOLUME 8, 2020



I. Tumar et al.: EBMFO as a Feature Selection Algorithm to Predict SFP

TABLE 13. Comparison between EBMFOS2, EBMFOV3 and other metaheuristics in terms of average AUC, and average number of features [based on LDA
classifier with ADASYN 0.8].

BMFO-S2 algorithm. For example, balancing ratio equals 0.8
shows a good performance compared to other ratios. Table 7
shows a comparison between original BMFO-S2 and modi-
fiedBMFO-S2withADASYNover balanced and imbalanced
datasets. It is clear that the performance of KNN classifier is
outstanding based on the AUC value for balanced datasets.
The reported results in Tables 6 and 7 show the balance
datasets will enhance the performance of kNN classifiers
compared to imbalanced one.

Table 8 explores the obtained results for modified
BMFO-S2 using three different classifiers (ie. kNN, DT and
LDA). The performance of DT is the worst based on AUC
values, while the performance of LDA is best. However,
the execution time for kNN is better than DT and LDA.
In general, Software fault prediction problem works offline.
So, if we are looking for outstanding classifiers, LDA will be
the first choice since project developers have time to predict
and evaluate their new products.

For more investigation about the activeness of the proposed
approach, we executed our approach using two strategies,
with and without FS. We believe that will give us a big
picture about the performance of the classifiers while using
FS or not. Table 9 shows the obtained results before and after
FS with re-sampled data. It is clear that the AUC values are
improved with FS, while the computational time is increased.
In reality, execution time for software fault prediction is not
an important factor due to all experiments are done offline.

Since LDA classifiers outperforms all other classifiers,
Table 10 compares 4 different versions of BMFO based
on S-shaped TFs (i.e. BMFOS1, BMFOS2, BMFOS3 and
BMFOS4) using LDA classifiers with ADASYN. The exper-
iments show that executing feature selection will have a high
impact on the overall performance. Based on AUC and fitness
values, BMFOS2 gain the first rank. Table 11 reports the
performance of BMFO based on V-shape TFs (i.e. BMFOV1,
BMFOV2, BMFOV3 and BMFOV4). The obtained results
show that BMFOV3 outperforms all other versions base on
rank.

TABLE 14. The total number of selections by EBMFOV3 algorithm for
each feature.

From Tables 10 and 11, we found that BMFOS2 (from
S-shape group) and BMFOV3 (from V-shape group) show
an excellent performance compared to other versions. As a
result, we employed both versions with BMFO and EBMFO
as shown in Table 12. The obtained results show that EBMFO
for both groups (S-shape and V-shape) shows a stable and
robust performance compared to BMFO.

The comparisons with the most related meta-heuristic
algorithms were conducted in two phases. In the first one, all
algorithms were implemented and executed in the same envi-
ronment and using the same parameter settings to make fair
comparisons. In the second phase, the results of well-known
approaches that use the same datasets were obtained from
the literature, and an in-depth comparison was conducted.
All comparisons were held based on the AUC matrix and
the number of selected features. Table 13 shows the compar-
isons between the best performing MFO based approaches

VOLUME 8, 2020 8051



I. Tumar et al.: EBMFO as a Feature Selection Algorithm to Predict SFP

TABLE 15. The selected features by EBMFOV3 for the best AUC results for each dataset.

TABLE 16. Comparison between the proposed approach and other methods in the literature in terms of AUC.

and the implemented meta-heuristic algorithms (i.e., BGOA,
BGSA, WOA, BBA, and BALO). Based on AUC values,
it is clear that EBMFOV3 obtained the best results among all
algorithms in 67% of the datasets. BGOA obtained the best
results in 13% of the datasets whileWOA outperformed other
algorithms in one dataset only. This proves the efficiency of
the proposed approach in selecting the most relevant features
that significantly enhance the performance of the MFO algo-
rithm. The same behavior of the EBMFOV3 when the num-
ber of selected features is investigated. EBMFOV3 obtained
the minimum of selected features in 87% of the datasets.

While BGOA and BBA could select the minimum number
of features in one dataset only. The obtained results prove the
ability of the proposed approach to explore the search space
efficiently and find the best performing solutions. We believe
that updating the population using the EPD concept helped
the algorithm to escape from the local optima by increasing
the population diversity. This can be seen obviously when
observing the reported results in the aforementioned tables.

Table 14 shows the frequency of selecting each feature
from all datasets using the EBMFOV3 FS approach.The
presented numbers in this table were obtained after 10 runs

8052 VOLUME 8, 2020



I. Tumar et al.: EBMFO as a Feature Selection Algorithm to Predict SFP

TABLE 17. The description of features.

for each dataset. From Table 14, it can be seen that rfc
feature has been selected for 77 times, which indicates that
importance of this feature in the prediction process. The same
observation can be made when observing features dam and
wmc, that were selected for 74 and 68 times respectively. As a
conclusion, to generate a good classification model for SFP
problem, the most frequent features (e.g., rfc, dam and wmc)
metric should not be ignored during collecting data for any
new project. The selected features in the solution with the
best AUC results, for each dataset, were reported in Table 15.
Table 16 shows a comparison between the proposed approach
and other methods in the literature in terms of AUC value. It is
clear that the proposed approach is outperform the reported
results in eight datasets using EBMFOV3 and one dataset
using EBMFOS2 compared to other methods.

We are interested to compare the obtained (AUC) results
from the proposed approaches with the results of a set of SFP
approaches that used feature selection algorithms or fixed size
of features.

IX. CONCLUSION AND FUTURE WORKS
In this paper, an intelligent approach to predict software fault
based on a Binary Moth Flame Optimization (BMFO) with
Adaptive synthetic sampling (ADASYN) was introduced.
BMFOworks as a wrapper feature selection, while ADASYN
works to overcome imbalanced data problem. Several classi-
fiers such as kNN, DT, and LDA are used to predict software
faults. The proposed approach improves the performance
of all classifiers after solving imbalanced problems. LDA
outperforms other classifiers based on AUC value, while
kNN execution time is the best. The performance of EBFMO
with V-shape (TFs = 3) outperforms other versions and all
results in the literature. It is clear that from the obtained
results, the importance of feature selection algorithm for clas-
sification problems and build an accurate system to predict

software faults. In the future work, we will study the impor-
tance of features to enhance the performance of classifiers
and SFP model accuracy.

APPENDIXES
See the table 17.

REFERENCES
[1] H. Turabieh, M. Mafarja, and X. Li, ‘‘Iterated feature selection algo-

rithmswith layered recurrent neural network for software fault prediction,’’
Expert Syst. Appl., vol. 122, pp. 27–42, May 2019.

[2] A. Porter and R. Selby, ‘‘Empirically guided software development using
metric-based classification trees,’’ IEEE Softw., vol. 7, no. 2, pp. 46–54,
Mar. 1990.

[3] R. Hoda, N. Salleh, J. Grundy, and H. M. Tee, ‘‘Systematic literature
reviews in agile software development: A tertiary study,’’ Inf. Softw. Tech-
nol., vol. 85, pp. 60–70, May 2017.

[4] A. M. Johnson and M. Malek, ‘‘Survey of software tools for evaluating
reliability, availability, and serviceability,’’ ACM Comput. Surv., vol. 20,
no. 4, pp. 227–269, Sep. 1988, doi: 10.1145/50020.50062.

[5] Y. Xia, G. Yan, and Q. Si, ‘‘A study on the significance of software metrics
in defect prediction,’’ in Proc. 6th Int. Symp. Comput. Intell. Design, vol. 2,
Oct. 2013, pp. 343–346.

[6] S. S. Rathore and S. Kumar, ‘‘A decision tree logic based recommendation
system to select software fault prediction techniques,’’ Computing, vol. 99,
no. 3, pp. 255–285, Mar. 2017.

[7] T. Zimmermann, N. Nagappan, and A. Zeller, ‘‘Predicting bugs from
history,’’ Softw. Evol., vol. 4, no. 1, pp. 69–88, 2008.

[8] H. Liu and H. Motoda, Feature Selection for Knowledge Discovery and
Data Mining, vol. 454. New York, NY, USA: Springer, 2012.

[9] T. W. Rauber, F. De Assis Boldt, and F. M. Varejao, ‘‘Heterogeneous
feature models and feature selection applied to bearing fault diagnosis,’’
IEEE Trans. Ind. Electron., vol. 62, no. 1, pp. 637–646, Jan. 2015.

[10] M. Dash and H. Liu, ‘‘Feature selection for classification,’’ Intell. Data
Anal., vol. 1, nos. 1–4, pp. 131–156, 1997.

[11] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, ‘‘A systematic
literature review on fault prediction performance in software engineering,’’
IEEE Trans. Softw. Eng., vol. 38, no. 6, pp. 1276–1304, Nov. 2012.

[12] T. Menzies, J. Greenwald, and A. Frank, ‘‘Data mining static code
attributes to learn defect predictors,’’ IEEE Trans. Softw. Eng., vol. 33,
no. 1, pp. 2–13, Jan. 2007.

[13] G. Carrozza, D. Cotroneo, R. Natella, R. Pietrantuono, and S. Russo,
‘‘Analysis and prediction of mandelbugs in an industrial software system,’’
inProc. IEEE 6th Int. Conf. Softw. Test., Verification Validation, Mar. 2013,
pp. 262–271.

VOLUME 8, 2020 8053

http://dx.doi.org/10.1145/50020.50062


I. Tumar et al.: EBMFO as a Feature Selection Algorithm to Predict SFP

[14] K. El Emam, S. Benlarbi, N. Goel, and S. N. Rai, ‘‘Comparing case-based
reasoning classifiers for predicting high risk software components,’’ J. Syst.
Softw., vol. 55, no. 3, pp. 301–320, Jan. 2001.

[15] M. M. T. Thwin and T.-S. Quah, ‘‘Application of neural networks for
software quality prediction using object-oriented metrics,’’ J. Syst. Softw.,
vol. 76, no. 2, pp. 147–156, May 2005.

[16] F. Xing, P. Guo, and M. Lyu, ‘‘A novel method for early software quality
prediction based on support vectormachine,’’ inProc. 16th IEEE Int. Symp.
Softw. Rel. Eng. (ISSRE), Oct. 2006, p. 222.

[17] X. Yuan, T. Khoshgoftaar, E. Allen, and K. Ganesan, ‘‘An application of
fuzzy clustering to software quality prediction,’’ in Proc. 3rd IEEE Symp.
Appl.-Solidification Syst. Softw. Eng. Technol., Nov. 2002, pp. 85–90.

[18] T. M. Khoshgoftaar and N. Seliya, ‘‘Software quality classification mod-
eling using the SPRINT decision tree algorithm,’’ Int. J. Artif. Intell. Tools,
vol. 12, no. 03, pp. 207–225, Sep. 2003.

[19] J. Cahill, J. M. Hogan, and R. Thomas, ‘‘Predicting fault-prone software
modules with rank sum classification,’’ in Proc. 22nd Austral. Softw. Eng.
Conf., Jun. 2013, pp. 211–219.

[20] R. Malhotra, ‘‘Comparative analysis of statistical and machine learning
methods for predicting faulty modules,’’ Appl. Soft Comput., vol. 21,
pp. 286–297, Aug. 2014.

[21] T. M. Khoshgoftaar, Y. Xiao, and K. Gao, ‘‘Software quality assess-
ment using a multi-strategy classifier,’’ Inf. Sci., vol. 259, pp. 555–570,
Feb. 2014.

[22] S. S. Rathore and S. Kumar, ‘‘Towards an ensemble based system for
predicting the number of software faults,’’ Expert Syst. Appl., vol. 82,
pp. 357–382, Oct. 2017.

[23] E. Erturk and E. Akcapinar Sezer, ‘‘Iterative software fault prediction
with a hybrid approach,’’ Appl. Soft Comput., vol. 49, pp. 1020–1033,
Dec. 2016.

[24] R. Shatnawi, ‘‘The application of ROC analysis in threshold identification,
data imbalance and metrics selection for software fault prediction,’’ Innov.
Syst. Softw. Eng., vol. 13, nos. 2–3, pp. 201–217, Sep. 2017, doi: 10.1007/
s11334-017-0295-0.

[25] G. R. Choudhary, S. Kumar, K. Kumar, A. Mishra, and C. Catal, ‘‘Empir-
ical analysis of change metrics for software fault prediction,’’ Comput.
Elect. Eng., vol. 67, pp. 15–24, Apr. 2018.

[26] D. Sharma and P. Chandra, ‘‘Software fault prediction using
machine-learning techniques,’’ in Smart Computing and Informatics,
S. C. Satapathy, V. Bhateja, and S. Das, Eds. Singapore: Springer, 2018,
pp. 541–549.

[27] Y. Chen, D. Miao, and R.Wang, ‘‘A rough set approach to feature selection
based on ant colony optimization,’’ Pattern Recognit. Lett., vol. 31, no. 3,
pp. 226–233, Feb. 2010.

[28] M. Charikar, V. Guruswami, R. Kumar, S. Rajagopalan, and A. Sahai,
‘‘Combinatorial feature selection problems,’’ in Proc. 41st Annu. Symp.
Found. Comput. Sci., Nov. 2002, pp. 631–640.

[29] M. Kudo and J. Sklansky, ‘‘Comparison of algorithms that select fea-
tures for pattern classifiers,’’ Pattern Recognit., vol. 33, no. 1, pp. 25–41,
Jan. 2000.

[30] E. Zorarpacı and S. A. Özel, ‘‘A hybrid approach of differential evolution
and artificial bee colony for feature selection,’’ Expert Syst. Appl., vol. 62,
pp. 91–103, Nov. 2016.

[31] H. Zhang and G. Sun, ‘‘Feature selection using tabu search method,’’
Pattern Recognit., vol. 35, no. 3, pp. 701–711, Mar. 2002.

[32] M. Mafarja and S. Abdullah, ‘‘Fuzzy modified great deluge algorithm
for attribute reduction,’’ in Recent Advances on Soft Computing and Data
Mining, T. Herawan, R. Ghazali, andM.M.Deris, Eds. Cham, Switzerland:
Springer, 2014, pp. 195–203.

[33] J. C.W. Debuse and V. J. Rayward-Smith, ‘‘Feature subset selection within
a simulated annealing data mining algorithm,’’ J. Intell. Inf. Syst., vol. 9,
no. 1, pp. 57–81, 1997.

[34] R. Leardi, R. Boggia, and M. Terrile, ‘‘Genetic algorithms as a strategy for
feature selection,’’ J. Chemometrics, vol. 6, no. 5, pp. 267–281, Sep. 1992.

[35] A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, and H. Chen,
‘‘Harris hawks optimization: Algorithm and applications,’’ Future Gener.
Comput. Syst., vol. 97, pp. 849–872, Aug. 2019.

[36] H. M. Zawbaa, E. Emary, B. Parv, and M. Sharawi, ‘‘Feature selection
approach based on moth-flame optimization algorithm,’’ in Proc. IEEE
Congr. Evol. Comput. (CEC), Jul. 2016, pp. 4612–4617.

[37] X.Wang, J. Yang, X. Teng,W. Xia, and R. Jensen, ‘‘Feature selection based
on rough sets and particle swarm optimization,’’ Pattern Recognit. Lett.,
vol. 28, no. 4, pp. 459–471, Mar. 2007.

[38] M. M. Mafarja and S. Mirjalili, ‘‘Hybrid whale optimization algorithm
with simulated annealing for feature selection,’’Neurocomputing, vol. 260,
pp. 302–312, Oct. 2017.

[39] S. Mirjalili, ‘‘Moth-flame optimization algorithm: A novel nature-inspired
heuristic paradigm,’’ Knowl.-Based Syst., vol. 89, pp. 228–249, Nov. 2015.

[40] M. Mafarja, I. Aljarah, A. A. Heidari, A. I. Hammouri, H. Faris,
A. Al-Zoubi, and S. Mirjalili, ‘‘Evolutionary population dynamics and
grasshopper optimization approaches for feature selection problems,’’
Knowl.-Based Syst., vol. 145, pp. 25–45, Apr. 2018.

[41] S. Saremi, S. Z. Mirjalili, and S. M. Mirjalili, ‘‘Evolutionary population
dynamics and grey wolf optimizer,’’ Neural Comput. Appl., vol. 26, no. 5,
pp. 1257–1263, Jul. 2015.

[42] J. Kennedy and R. Eberhart, ‘‘A discrete binary version of the particle
swarm algorithm,’’ in Proc. IEEE Int. Conf. Syst., Man, Cybern. Comput.
Simulation, vol. 5, Oct. 1997, pp. 4104–4108.

[43] S. Mirjalili and A. Lewis, ‘‘S-shaped versus V-shaped transfer functions
for binary Particle Swarm Optimization,’’ Swarm Evol. Comput., vol. 9,
pp. 1–14, Apr. 2013.

[44] E. Rashedi, H. Nezamabadi-Pour, and S. Saryazdi, ‘‘BGSA: Binary grav-
itational search algorithm,’’ Natural Comput., vol. 9, no. 3, pp. 727–745,
Sep. 2010, doi: 10.1007/s11047-009-9175-3.

[45] H. He and E. A. Garcia, ‘‘Learning from imbalanced data,’’ IEEE Trans.
Knowl. Data Eng., vol. 21, no. 9, pp. 1263–1284, Sep. 2009.

[46] K. W. Bowyer, N. V. Chawla, L. O. Hall, andW. P. Kegelmeyer, ‘‘SMOTE:
Synthetic minority over-sampling technique,’’ CoRR, vol. abs/1106.1813,
2011. [Online]. Available: http://arxiv.org/abs/1106.1813

[47] H. He, Y. Bai, E. A. Garcia, and S. Li, ‘‘ADASYN: Adaptive synthetic
sampling approach for imbalanced learning,’’ in Proc. IEEE Int. Joint
Conf. Neural Netw. (IEEE World Congr. Comput. Intell.), Jun. 2008,
pp. 1322–1328.

[48] S. Zhang, X. Li, M. Zong, X. Zhu, and R. Wang, ‘‘Efficient kNN classifi-
cation with different numbers of nearest neighbors,’’ IEEE Trans. Neural
Netw. Learn. Syst., vol. 29, no. 5, pp. 1774–1785, May 2018.

[49] L. Xu, A. Iosifidis, and M. Gabbouj, ‘‘Weighted linear discriminant anal-
ysis based on class saliency information,’’ in Proc. 25th IEEE Int. Conf.
Image Process. (ICIP), Oct. 2018, pp. 2306–2310.

[50] L. A. Breslow and D. W. Aha, ‘‘Simplifying decision trees: A survey,’’
Knowl. Eng. Rev., vol. 12, no. 01, pp. 1–40, Jan. 1997, doi: 10.1017/
s0269888997000015.

[51] D. W. Hosmer and S. Lemeshow, Applied Logistic Regression (Wiley
Series in Probability and Statistics), 2nd ed. Hoboken, NJ, USA: Wiley,
2000.

[52] (2017). Tera-Promise. Accessed: Nov. 24, 2017. [Online]. Available: http://
openscience.us/repo

[53] M. Jureczko and L. Madeyski, ‘‘Towards identifying software project
clusters with regard to defect prediction,’’ in Proc. 6th Int. Conf. Predic-
tive Models Softw. Eng. (PROMISE), 2010, pp. 9:1–9:10, doi: 10.1145/
1868328.1868342.

[54] A. Okutan and O. T. Yıldız, ‘‘Software defect prediction using Bayesian
networks,’’ Empirical Softw. Eng., vol. 19, no. 1, pp. 154–181, Feb. 2014.

IYAD TUMAR (Member, IEEE) received the
bachelor’s degree in electrical engineer (com-
munication systems) and the master’s degree in
computational science from Birzeit University,
Palestine, in 2002 and 2006, respectively, and
the Ph.D. degree in smart systems from Jacobs
University Bremen, Germany, in 2010. He was a
ResearchAssociate and amember of the Computer
Networks and Distributed Systems Group, Jacobs
University Bremen. He is currently an Assistant

Professor with the Electrical and Computer Engineering Department, Birzeit
University (BZU). He is also a Project Manager for two research projects
funded by Qatar Foundation and BMBF, Germany. His research interests are
wireless networks, resource management of disruption tolerant networks,
wireless communication, wireless sensor networks, underwater networks,
network management, feature selection, software engineering, and machine
learning. He was a Research Associate and a Member of European Network
of Excellence for the Management of Internet Technologies and Complex
Services (EMANICS) from 2007 to 2010. He is a reviewer for IEEE/ACM
journals and conferences.

8054 VOLUME 8, 2020

http://dx.doi.org/10.1007/s11334-017-0295-0
http://dx.doi.org/10.1007/s11334-017-0295-0
http://dx.doi.org/10.1007/s11047-009-9175-3
http://dx.doi.org/10.1017/s0269888997000015
http://dx.doi.org/10.1017/s0269888997000015
http://dx.doi.org/10.1145/1868328.1868342
http://dx.doi.org/10.1145/1868328.1868342


I. Tumar et al.: EBMFO as a Feature Selection Algorithm to Predict SFP

YOUSEF HASSOUNEH is currently an Assistant
Professor with the Computer Science Department,
Birzeit University, teaching courses in software
engineering, Internet programming, and program-
ming languages. He has academic administration
experience, as he served as the Department Chair
and the Director of the computing master pro-
gram. He has a profound experience in Human–
Computer Interaction, he designed a collaboration
framework and groupware tool to enable Require-

ments Engineering team collaboration. His research interests are in software
architecture, virtual software engineering teams, software risk assessment
and metrics, and mining software repositories. He has participated in several
EU funded projects.

HAMZA TURABIEH received the B.A. andM.Sc.
degrees in computer science from Balqa Applied
University, Jordan, in 2004 and 2006, respectively,
and the Ph.D. degree from the National University
of Malaysia (UKM), in 2010. He is currently an
Associate professor with the Computer Science
Department, Faculty of Science and Information
Technology, Taif University. His research interests
and activities include the interface of computer sci-
ence and operational research. Intelligent decision

support systems, search and optimization (combinatorial optimization,

constraint optimization, multimodal optimization, and multiobjective opti-
mization) using heuristics, local search, hyper-heuristics, met heuristics
(in particular memetic algorithms, and particle swarm optimization), and
hybrid approaches and their theoretical foundations. Minor interest in
machine learning, computational geometry, pattern recognition, image pro-
cessing, intelligent user-interfaces, and bioinformatics.

THAER THAHER received the B.Sc. degree in
computer engineering and the M.Sc. degree in
advanced computing from An-Najah National
University, Palestine, in 2007 and 2018, respec-
tively. He is currently pursuing the Ph.D. degree
in information technology engineering with Arab
American University, Palestine Polytechnic Uni-
versity, and Al-Quds University, Palestine. His
research interests include evolutionary computa-
tion, meta-heuristics, data mining, and machine
learning.

VOLUME 8, 2020 8055


