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ABSTRACT The next-generation 5G networks are being developed with high promised capabilities. Beyond
just multitudes faster data speed, 5G is expected to serve billions of connected devices and the Internet of
Things (IoT), with the right trade-offs between speed, latency, and energy at an affordable cost. 5G radio
networks will strongly depend on using ultra-dense integrated Small Cells (SCs) beside the Macro Cells
(MCs). This kind of Ultra-Dense Networks (UDN) consisting of a large number of MCs and SCs will
significantly increase network energy demands. A practical method to control energy consumption is by
dynamically controlling power-savingmodes in radio networks. In this paper, we propose a novel cooperative
energy management framework for 5G UDN using graph theory. The 5G network is first modeled as a graph,
then graph theory methods are exploited to determine the order of nodes at which power-off/on procedure is
applied. We also show that significant power savings are achievable by considering only a subset of network
nodes and thus reduce traffic migration and control plane signaling. We evaluated the proposed algorithm
at different network densification levels and several load factors including two real-life networks. We also
present the convergence of the proposed algorithm and the robustness of networks optimized using it.We also
show that power savings up to 25% at full load and 65% during off-peak can be achieved using the proposed
algorithm. These power savings increase further if no constraints are imposed on trafficmigration and control
signaling.

INDEX TERMS 5G, energy efficiency, graph theory, power saving, sleep mode.

I. INTRODUCTION
Several operators around the world started commercial 5G
network deployments beginning of 2019 based on 3GPP Rel-
15. In 2023, it is expected that 20% of mobile data traffic
will be carried by 5G networks [1]. The requirements from
the next generation networks are to support hundreds of
millions of connected devices, 10 to 100 times higher user
data rate, and 10 times longer battery life at similar cost and
energy dissipation as of today [2]. The integration of the new
radio concepts such as Massive Multi-Input Multi-Output
(MIMO), UDN, Direct device to Device (D2D) Communica-
tion, Ultra-Reliable Communication, Massive Machine Type
Communication (MTC) and the exploitation of new spectrum
bands will allow supporting these huge demands [2]. Consid-
ering energy and spectrum are the most important resources
in mobile communication, energy consumption however is

The associate editor coordinating the review of this manuscript and

approving it for publication was Yanli Xu .

growing significantly. The Information and Communica-
tion Technology (ICT) field is responsible for about 3% of
energy consumption and 2% - 4% of CO2 emissions in the
world [3], [4]. Energy consumption is increasing at a rate of
15% - 20% annually which means double consumption after
about 5 years [5]. Base Stations (BSs) consume 60% - 80% of
the total energy [6], [7]. These expectations and figures moti-
vate more research on energy management especially in 5G
UDN towards green cellular networks [8].

In 5G, operators will deploy hundreds of Macro
Cells (MCs) to cover a city of few million inhabitants.
Each of these MCs will coordinate tens of underlying Small
Cells (SCs) in high traffic areas [9], [10]. SCs consist of
femto and pico cells with coverage radius up to 200 meters,
in comparison with MCs of coverage radius up to 1km. The
population of SCs is expected to be 100 million subscribers
with 500 million UEs in 2020 [11], [12]. These SCs will
be deployed to offload the traffic from over-crowded MCs.
This radio densification will significantly improve network
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capacity [8]. However, it also raises the issue of resource
management concerning spectrum and energy efficiency.
Even though SCs are of low power compared to MCs,
the sum of energy consumed on ultra-dense SCs together
with the MCs is non-negligible and energy management is
not trivial. This brings focus on how to efficiently manage
energy consumption in UDN. Especially that due to the
variations of users’ and traffic distributions, it is expected that
differentmobile cells will have different load demands at each
time. Thus, some of these cells can be put into sleep mode
depending on the level of utilization and power consumption
[13]. A solution can be achieved using an exhaustive search,
however, this will be very complex and time consuming for
UDN. Also, achieving the optimal solution is not guaranteed
due to the trade-off between network capacity and energy
efficiency. In this work, we investigate this problem and
propose an energy management framework for UDN using
graph theory and its properties.

Graphs have been used widely to model many types of
relations and connections [14], [15]. Recently due to the
advancements in graph theory simulation tools, it is getting
more momentum in social networks, computer networking,
and security. However, it is still of limited use in mobile
networks [15]. After modeling the 5G UDN as a graph
where nodes and connections are represented by vertices and
edges, respectively. Weights on these edges and vertices are
then being associated with traffic and power consumption.
We used graph theory methods and properties such as Alge-
braic Connectivity [16] and Weighted Degree Centrality to
switch-off/on nodes and offload traffic while maintaining full
network coverage. The main contributions of this work are
summarized as follows:
1) We propose to model UDN 5G networks using graphs.

Then we design an energy management framework
to optimize power consumption of the graph model
by putting low-loaded nodes into power-saving (sleep)
mode.

2) We propose to use graph-theory based methods such
as the Weighted Degree Centrality to determine the
order at which nodes are inspected for power-off/on
procedure in STAR5. We show also that such meth-
ods would achieve significant power savings with
minimum control plane signaling by applying the
STAR5 procedure to only a subset of the network
nodes.

3) We evaluate the proposed algorithm at different net-
work densification levels and many load factors.
We also show the convergence of STAR5 and the
robustness of networks optimized using it.

The rest of this paper is organized as follows: We review
some related work in Section II. Graph theory and its proper-
ties are introduced in Section III. In Section ?? we describe
problem formulation and energy management system. Exper-
iment results are presented in Section V and concluding
remarks are drawn in Section VI.

II. RELATED WORK
Aplethora of works have studied optimizing power consump-
tion during peak and off-peak periods by applying power-
off/on procedure for light loaded Base Stations (BSs) [8],
[14], [17]–[24]. These works vary in terms of the energy
management framework and applied constraints. For exam-
ple, in [18], Chiaraviglio et al. proposed to switch-off some
BSs in UMTS networks during off-peak traffic periods while
guaranteeing certain call blocking probability and electro-
magnetic exposure limits. This work was extended in [14]
to an energy-aware dynamic network planning framework
that reduces the number of underutilized BSs constrained to
complete radio coverage. Marsan et al. [19] built on previous
work to propose an energy-awaremanagement framework for
realistic regular cell architectures. Centralized and decentral-
ized management frameworks were proposed in [20]. In the
centralized greedy algorithm, BSs are switched off based on
the traffic distribution. However in the decentralized algo-
rithm, users associate themselves with BSs based on a utility
function, then all remaining unoccupied cells are switched
off. To avoid frequent mode (active or sleeping) switching,
Gong et al. [21] proposed an energy management framework
in which BSs hold their working modes for at least a given
interval. In [22], Xiang et. al., considered the ratio between
dynamic and fixed power of BSs in the proposed load
balancing energy management framework. While in [23],
Lorincz et al. proposed an energymanagement framework for
UMTS cellular access network based on the average distance
between BSs and UEs. Bousia et al. in [24] also propose a
distance-aware energy management algorithm but for LTE
systems.

Recently, more advanced energy management techniques
have been proposed [25]–[29]. For example, in [25], Pen
et. al. proposed a location-dependent energy management
framework through which the geographical coverage area
is divided into multiple grids. In each grid area, the max-
imum number of Small BSs (SBSs) is determined based
on users’ traffic during peak periods. In off-peak peri-
ods, only a subset of these SBSs are kept active and
remaining SBSs are turned off. This strategy yields up
to 53% and 23% energy savings in dense and sparse
areas, respectively. To enhance the reliability of energy
management frameworks, Soliman and Song [26] proposed
a dynamic/opportunistic technique to determine the set of
active nodes in a network. In this technique, overloaded nodes
offload traffic to one or more sleeping nodes after being
activated. These nodes are identified based on location and
coverage information. In another work [27], an analytical
model is proposed and used to determine the optimum num-
ber of active nodes in the network to meet the quality of
service demands from all users. In [28], Alsharif. et. al. pro-
poses a cooperative energy management approach between
LTE and 5G technologies. The proposed algorithm tries to
achieve an equilibrium between network performance and
energy savings via switching off/on nodes in the 5G small
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cell networks (SCNs) based on instantaneous load traffic
and ensuring service coverage through the remaining active
LTE macro nodes. Also, Çelebi et. al. in [29] proposed
a load-based smart-on/off scheduling strategies for SCNs,
where a certain fraction of small cell nodes are put into less
sleeping states to save energy. The authors first represent the
overall SCN traffic as a load variable and analyze its statistics
using Gamma approximation. They then propose two power-
on/off scheduling algorithms by exploiting this load variable
in centralized and distributed fashions. They showed that
50% energy savings can be achieved without sacrificing the
average throughput.

In spite of all these advances in energy management frame-
works, energy savings can be further improved by utilizing
modern approaches, especially with the increase in network
heterogeneity and densification such as in 5G UDN and
beyond. In [14], Chiaraviglio et. al. investigated energy sav-
ing in Internet networks by switching off nodes and links
while guaranteeing network connectivity and maximum uti-
lization limit. By using graph theory, the authors managed
to switch-off around 50% of nodes depending on network
size. However, this work is limited to the nature of internet
networks and can’t be applied to UDN 5G networks.

In this work, we propose an energy management frame-
work for the heterogeneous UDN 5G network with the assis-
tance of graph theory. We start by modeling the network as a
graph, then we apply graph theory methods to reduce power
consumption by switching-off/on 5G nodes and traffic migra-
tion based on node type (Macro and SC) and traffic distribu-
tion constrained to full radio coverage. Besides, we design
prioritization methods for the proposed framework based on
graph theory methods to reduce network signaling due to
traffic migration and to reduce the complexity of the energy
management algorithm. The evaluation of the management
algorithm shows that power consumption can be reduced
during peak and off-peak periods, with different network
densification scenarios, and for various dynamic to fixed node
power ratios. We have also shown that power savings can
be increased significantly if no constraints are imposed on
control plane signaling and traffic migration.

III. PRIMER ON GRAPH THEORY
Graph theory is a natural framework for the mathematical
representation of complex networks. For example, a mobile
network can be depicted as a graph G = (V ,E) composed
of vertices V representing nodes and edges E representing
connecting links. In a weighted graph, the nodes may have
various attributes attached to them such as fixed power con-
sumption of BSs, and weights on edges may represent link
capacity and traffic load. A weighted graph with n nodes can
be represented using an adjacency matrix A(G) and degree
matrix D(G). In A(G), the entry ai,j is equal to the weight
(capacity or traffic load) of edge {i, j}, otherwise 0 if not
connected. However, D(G) is an n× n diagonal matrix where
the entry dii is equal to the degree (fixed power consumption)
of vertex i. The algebraic connectivity of graph G expressed

as the second smallest eigenvalue of the Laplacian matrix
L(G) = D(G)−A(G) shows how well a network is connected
[16], [30]. The number of zero-valued eigenvalues of the
Laplacian matrix is equal to the number of connected com-
ponents in the graph G. Consequently, the second smallest
eigenvalue being 0 is equivalent to the graph having at least
two connected components and thus being disconnected.

IV. SYSTEM MODEL AND THE POWER SAVING
ALGORITHM
In this section we present our NEtwork mOdele (NEO) of
the 5G UDN with graphs. Then we explain how graph the-
ory properties are utilized to optimize power consumption
constrained to the required bandwidth. Power optimization
is achieved by putting some nodes into power-saving (sleep)
mode based on specific criteria without jeopardizing radio
coverage.

A. SYSTEM MODEL WITH GRAPHS
In NEO, the network is represented by un-directed graphG =
(V ,E), where vertices V represent core and radio nodes, and
edges E represent links between nodes. The wights of graph
edges reflect the importance of these links for connecting two
nodes expressed by link load. The vertices and edges have
a pre-set maximum capacity values that are used as limiting
boundaries for the random traffic distribution over the net-
work. The power consumption by any of these nodes consists
of static power Pstat and dynamic power Pdyn expressed as:

P = Pstat + Pdyn (1)

The static part is the baseline node power consumption (e.g.,
signal processing, site cooling, power supply and battery
backup), which depends on both the hardware and software
configurations of nodes and is independent of the traffic load,
while the dynamic part accounts for the power consumed in
RF transmission and depends on the traffic load [22]. And
thus the power consumption per unit load at any node can be
expressed as:

Pu =
Pdyn−full

C
(2)

where Pdyn−full and C are the full-load dynamic power and
the full capacity of the node, respectively.

Our system assumes a network with N nodes of which NS
are SC nodes, NM are MC nodes, and NA are aggregation
MC nodes. Each MC node MCi, i = 1, 2, . . . ,NM serves a
cluster of NS,i SCs and each aggregationMC nodeMCAj, j =
1, 2, . . . ,NA provides nodal connection for a cluster of NM ,j
MCs. An illustration of the systemmodel is shown in figure 1.
Clusters of several MCs and SCs are also shown in figure 2.
In NEO, the total power consumption can now be expressed
as:

Pt =
N∑
i=1

Pi,stat + Pi,dyn (3)
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FIGURE 1. Illustration of NEO for a network with NS = 2000 radio nodes,
NM = 200 MC nodes, and NA = 20 aggregate MC nodes.

FIGURE 2. SC and MC nodes clustering based on a discrete uniform
distribution.

where Pi,stat and Pi,dyn are the static and dynamic power
consumed by node i, respectively.
In order to optimize power consumption in NEO, the sys-

temmay power-off selected SC nodes, or transceivers (TRXs)
in MCs depending on their load. In this work, MCs guarantee
full radio coverage by providing umbrella coverage to all SC
clusters, and thus only some transceivers of each MC can
be put in power saving mode. In this case, the static power
reduces in proportional to the number of TRXs in sleepmode.
Also, traffic carried on SCs that are put in power saving
mode will be migrated to the covering MC or to neighboring
capable SCs in the same cluster provided that their capacity
limits are satisfied. Traffic migration to MCs is associated
with an increase in dynamic power consumption at MCs due
to the increase in signal transmission distance [12]. However,
the power consumption of these SCs put in sleep mode and
the dynamic power of connecting edges will be saved. None
of the edges connecting between MCs to core network or
aggregation ring is allowed to be in power saving mode, this
is vital to keep the network connected.

B. ENERGY MANAGEMENT ALGORITHM
In order to optimize power consumption in NEO, we present
our energy Saving algoriThm for 5G utrA-dense netwoRk
(STAR5). The proposed algorithm aims to maximize power
savings and thus optimize power consumption by intelli-
gently putting selected set of nodes into sleep mode. In this
work,N and I represent the set of all nodes and their indices,
respectively. STAR5 scansψN of the nodes inN sequentially

based on a predefined order Io determined by φ(). This is to
decide whether nodeNi should be put in sleep mode through
the power-off procedure, or turned-on based on the power-on
procedure. Noff is a subset of N and includes all nodes
in sleep mode. The selection of these nodes to be in sleep
mode depends on node type Ni,type and node traffic Ni,trf .
MC nodes in NEO guarantee full radio coverage by providing
umbrella coverage to all SC clusters, and thus only some
transceivers of each MC can be put in power saving mode.
I.e., in sleep mode the capacityNi,cap of MC nodeNi will be
reduced. However, for SC nodes, their full traffic is migrated
to MCs if put in sleep mode. The full process of STAR5 is
presented in Algorithm 1 where power saving is activated if
node traffic Ni,trf is less than βNi,cap. However, if Ni,trf is
greater than αNi,cap, power-on procedure is triggered. The
idea is to keep traffic of nodeNi within [β, α] of its capacity
Ni,cap. In STAR5, only ψN nodes are inspected to reduce the
amount of network signaling associated with trafficmigration
due to power-off and power-on procedures. Also, scanning
all nodes requires a lot of overhead, especially that network
densification is considered as key driver for enabling 5G.

Algorithm 1 STAR5
Input: Graph G generated by NEO
Output: G′, Noff

1 Io← φ(G)
2 for i = 1 to i = ψN do
3 l ← Io(i)
4 if Nl,type = SC then
5 if Nl,trf < βNl,cap then
6 Algo. 2: SC Power-off Procedure

7 else if Nl,trf > αNl,cap then
8 Algo. 4: SC Power-on Procedure

9 else if Nl,type = MC then
10 if Nl,trf < βNl,cap then
11 Algo. 3: MC Power-off Procedure

12 else if Nl,trf > αNl,cap then
13 Algo. 5: MC Power-on Procedure

14 G← G′

The power-off procedure for SC nodes is described in
Algorithm 2. It starts by determining the MC which provides
an umbrella radio coverage for node Nl . The index k of this
MC is determined by UMC (Nl). The SC is put in sleep mode
and traffic Nl,trf is migrated to MC provided that total MC
traffic won’t exceed βNl,cap. In this procedure, the small load
at the SC is migrated to unloaded MC. As a result of this
procedure, MC dynamic power increases and the static and
dynamic power of SC are reduced.

The power-off procedure for MCs is achieved by reducing
the number of active transceivers and making the capacity
of each MC close to its actual traffic. So for an MC node
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Algorithm 2 SC Power-Off Procedure
Input: G
Output: G′

1 k ← UMC (Nl)
2 if Nl,trf +Nk,trf ≤ βNk,cap then
3 Nk,trf ← Nk,trf +Nl,trf
4 Nl,trf ← 0
5 Noff ← {Noff ,Nl}

loaded with trafficNl,trf less than γNl,cap, the node capacity
Nl,cap is set to equal the actual traffic plus ζNl,cap. I.e., some
transceivers are put in sleep mode so that Nl,trf + ζNl,cap
MC capacity is maintained. The number of transceivers put in
sleep mode and the number of remaining active transceivers
depend on the capacity of each of the transceivers in the MC
node. I.e, transceivers will be switched off successively until
the capacity of the MC nodeNl is set toNl,trf +ζNl,cap. The
ζNl,cap capacity margin is necessary to allow for a sudden
increase in traffic. A minimum capacity of (γ + ζ )Nl,cap is
assumed at all MC nodes to maintain an overall minimum
capacity for the whole system as illustrated in Algorithm 3.
Power savings in MCs are attained by reducing the static
power of non-utilized transceivers while there will be no
change in dynamic power consumption.

Algorithm 3 MC Power-Off Procedure
Input: G
Output: G′

1 if Nl,trf > γNl,cap then
2 Nl,cap← Nl,trf + ζNl,cap

3 else
4 Nl,cap← (γ + ζ )Nl,cap

The power-on procedures for SC nodes and MC nodes
are described in Algorithm 4 and Algorithm 5, respectively.
For SC node Nl with traffic Nl,trf greater than αNl,cap,
STAR5 activates all transceivers in the MC which provides
umbrella coverage to the node. This is only if the MC is in
power saving mode and thus can carry the migrated traffic.
In this case, (α − λ)Nl,trf traffic is migrated to the MC. I.e.,
node Nl will have traffic Nl,trf close to λ of its capacity.
However, if the MC is working in full capacity (> αNl,cap),
the (α − λ)Nl,trf traffic will be offloaded to all SCs in the
same cluster with Nl and are in power-saving mode. In here,
we assumed that there is an overall increase in traffic in this
cluster and thus all SC nodes are wakened up. The indices
of these SCs are determined by USC (Nl) in Algorithm 4.
Another option would be to makeUSC (Nl) returns the indices
of a subset of the SC nodes in the same cluster withNl . This
could be based on the position, capacity, or load of these
nodes. Similarly for MC power-on procedure in Algorithm 5,
STAR5 tries first to activates the full capacity of the MC.

Algorithm 4 SC Power-On Procedure
Input: G
Output: G′

1 k ← UMC (Nl)
2 if Nk ∈ Noff then
3 Noff ← Noff \Nk
4 Nk,trf ← (α − λ)Nl,trf

5 else
6 K← USC (Nl)
7 for k in K do
8 Noff ← Noff \Nk

9 Nk,trf ←
(α−λ)
|K| Nl,trf

Algorithm 5 MC Power-On Procedure
Input: G
Output: G′

1 if Nl ∈ Noff then
2 Noff ← Noff \Nl

3 else
4 K← USC (Nl)
5 for k in K do
6 Noff ← Noff \Nk

7 Nk,trf ←
(α−λ)
|K| Nl,trf

Otherwise, (α − λ) of MC traffic is offloaded to all under-
lying SCs which are in power-saving mode. In the power-on
algorithms, nodes are activated and removed fromNoff using
the \ set operator before carrying any traffic. Also, an MC
that doesn’t belong to Noff is working in its full capacity.
At the end of each procedure an updated graph G′ is

produced with new traffic weights on edges. This G′ is used
to update the NEO graph G after every iteration in STAR5.
The total power saving Psave is then computed as

Psave = Pt,after − Pt,before (4)

where Pt,before and Pt,after are the total power consumption in
NEO before and after applying STAR5, respectively. In order
to determine Pt , the dynamic power consumption of nodeNi
can now be expressed as

Pi,dyn = Pi,u ×Ni,trf (5)

where Pi,u is the power per until load at node Ni.

C. GRAPH THEORY METHODS IN STAR5
The overall power savings of STAR5 will depend on nodes’
ordering method φ(G) and the number of nodes inspected
ψN . In this work, we propose to use graph theory to deter-
mine the order of nodes before applying power-off and
power-on procedures. The Node Degree Centrality method
will order the graph vertices (nodes) according to degree
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centrality without considering the weights (traffic) on edges
(links). The maximum node degree φMaxD(G) and minimum
node degree φMinD(G) will order nodes based on their degree
centrality in descending and ascending orders, respectively.
These methods depend on the number of links and ignore
traffic distribution. However, the Weighted Node Degree
Centrality method will order the graph vertices according to
degree centrality considering the weights (traffic) on edges
(links). The maximum weighted node degree φMaxWD(G) and
minimum weighted node degree φMinWD(G) will order nodes
based on their weighted degree centrality in descending and
ascending orders, respectively.

The proposed STAR5 should work on operation and sup-
port subsystems connected to mobile networks and fed by
statistical reports in periodic intervals. The algorithm will run
at specific intervals or each time it receives updates from the
network. As this is a centralized method, the computational
time plays an important role so that the output of STAR5 is
in response to the current network status. The complexity of
STAR5 O(f (N )) is O(n) where f (N ) is a linear function [31].
The size of the input is the number of nonzero elements in
the incidence matrix reflecting the number of vertices and
edges.

V. SYSTEM PERFORMANCE EVALUATION
In this work, we model a 5G UDN network using NEO as
described in subsection IV-A. In the 5G network modeled
here, SC and MC nodes are clustered and attached to the
network randomly. I.e., for every MC node in the network,
the number of SC nodes NS,i associated with MC node MCi
and the number ofMC nodesNM ,j attached to the aggregation
MC nodeMCAj are determined randomly based on a discrete
uniform distribution. More specifically, each MC is set to
serve a cluster ofNs,i ∈ [6, 100] SC nodes and each aggregate
MC is set to serve a cluster ofMCj ∈ [9, 15] MCs. An alter-
native option is to assume a random geographical distribution
of users and nodes and apply cell associating algorithms
[10], [32] to construct the network. However, the random
geographical distribution of devices in the latter method will
lead to a random clustering of SC and MC nodes. Also in our
network, the traffic at every node Ni,trf is the summation of
the loads at its links which are set randomly. This traffic is
the peak traffic profile of the network, and thus it is the 100%
load factor. The capacity of the MC nodes is also set to equal
10 times the capacity of SC nodesNi,cap which is set to unity
(100%). The other node configurations and power parameters
used in our model are listed in table 1.

To evaluate the proposed algorithm, we set α = 90% to
avoid operating any node above 90%of its capacity, β = 70%
so that resources at nodes with traffic greater than 70% of
their capacity are considered efficiently utilized and thus no
need to inspect for sleep mode, γ = 30% to guarantee 35%
(γ + ζ ) of MC capacity is functional in order to provide
umbrella coverage to all nodes, and ζ = 5% to provide
5% additional capacity margin for MCs over current traffic
and capacity utilization. These STAR5 parameters can be

TABLE 1. Node configurations and power parameters.

modified to comply with the requirements of network opera-
tors without affecting the procedures in STAR5.

In the following subsections we evaluate the performance
of the proposed algorithm by measuring the power saving
gain PG as the percentage of power saved in NEO after
applying STAR5 expressed as:

PG =
Psave
Pt,before

(6)

A. NODE SELECTION METHODS IN STAR5
In this subsection, we evaluate the performance of
STAR5 with the graph-theory based ordering methods pre-
sented in subsection IV-C. We compare these methods with
each other and benchmark them against the random selection
of nodes φRandom(G). It can be observed from figure 3 that
60% power savings can be achieved using STAR5 during
off-peak when the load factor is 30%. These power-saving
values depend also on the order at which nodes are inspected
for sleep mode and thus the ordering method φ(G) in STAR5.
I.e., the order at which traffic at the nodes is compared to
the threshold parameters for power-off/on procedure. It is
clear that the φMaxWD(G) and φMaxD(G) methods outperform
the other three methods. This becomes more significant
when only some of the nodes are inspected by STAR5.
In both methods, more than 50% power savings are achieved
when the procedure of the proposed algorithm is applied
to only 40% of the nodes (ψ = 40%). This is because
φMaxWD(G) and φMaxD(G) tend to save power by putting
nodes with many low-loaded links in sleep mode. It can also
be observed that φMaxWD(G) offers more power savings when
ψ ∈ [10%, 80%] as compared to φMaxD(G). This means
that putting nodes with many low-loaded links to sleep mode
offers more power savings as compared to unloaded nodes if
STAR5 is applied to ψN nodes only.

B. POWER SAVINGS AND NETWORK DENSIFICATION
In this subsection, we evaluate STAR5 for different lev-
els of network densification. In figure 4a, densification is
introduced by increasing the number of SC nodes NS while
number of MC nodes NM is fixed. The increase in NS could
be due to the increase in the number of user equipment (UE)
and Internet of Things (IoT) devices in an area covered by
the same NM MC nodes. Power savings are achieved at all
network densification scenarios in figure 4a. It can also be
observed that increasing the number of SC nodeswill increase
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FIGURE 3. Power saving gains after applying STAR5 with various graph
theory based ordering methods during off-peak when load factor is 30%.

the total consumed power and reduce PG. I.e., power savings
psave is not directly proportional to total power Pt , before.
This is because the number of MC nodes NM is kept fixed
(NM = 500) while significant power savings are attained
from putting MC nodes in sleep mode. Similarly in figure 4b,
the number of MC nodes increases while the number of SC
nodes is fixed. In this case, power savings gain pG increases
with the increase of NM . The increase in the number of
MC nodes could be to overlay more user plane and control
plane traffic in the system. In both figures, φMaxWD(G) graph
ordering method provided better power savings compared to
φMaxD(G) at different ψ values as discussed earlier. More
power savings gains for other densification scenarios are
also presented in table 2. Some of these scenarios repre-
sent ultra-dense networks covering a large geographical area
(NM > 1500) such as Scenarios 1 and 2 with N = 10000
and N = 20000 nodes. While other scenarios represent a
UDN covering a small geographical area (few MCs) such
as Scenarios 4 and 5 with N = 10000 and N = 20000
nodes. The performance of STAR5 over less dense network
is expressed in other scenarios such as Scenarios 1 and 2 with
N = 2000.

FIGURE 4. Power saving gains of different densification scenarios during
off-peak when load factor is 30%. (a) Densification of SC nodes in the
network while number of MC nodes NM is 500. (b) Densification of MC
nodes while number of nodes is fixed.

FIGURE 5. Power savings of STAR5 with φMaxWD(G) at different load
factors for UDN with N = 5000 and NM = 1000.

C. STAR5 AND NETWORK TRAFFIC PROFILES
In this subsection we evaluate the proposed algorithm at
different load factors. More than 60% power savings are
attainable during off-peak when load factor is 30% as shown
in figure 5. This reduces to 58% and 47%when the load factor
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TABLE 2. Power savings and network densification levels.

FIGURE 6. Convergence of STAR5 at different network densification levels
and many load factors.

increases to 50% and 70%, respectively. Power savings of
22% are also achievable using STAR5 during peak hours. this
means that STAR5 achieves significant power savings at any
level of traffic and traffic distribution.

FIGURE 7. Algebraic connectivity for UDN with N = 5000 nodes,
NM = 1000 MC nodes, and ψN = 1500. Algebraic connectivity of original
UDN before applying STAR5 was 0.0334.

D. CONVERGENCE OF STAR5
The performance of STAR5 improves significantly when
applied for many iterations (cycles). I.e., order the nodes
based on graph theory methods and inspecting the first ψN
nodes for power-off/on procedure. Then in the second cycle,
reorder the nodes again and apply the power-off/on procedure
to the first ψN nodes . . . etc. In figure 6a, power savings
increase by 20% in the second cycle for φMaxWD(G) dur-
ing off-peak (LF = 30%) and up to 90% after 8 cycles.
Similar results are obtained during peak hours. In both
cases, φMaxWD(G) provides more power savings compared
to random ordering method φRandom(G). Similar results are
also shown in figure 6b but for different network densification
(N = 10000). The convergence of STAR5 is evident in both
figures during peak and off-peak periods. This is because
PG increases monotonically during the first few cycles
until it saturates and converges to a specific power-saving
value.
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FIGURE 8. Power savings of STAR5 for two real-life networks using two
selection methods and different load factors. Barcelona with N = 20700
and NM = 2300 nodes. Manhattan with N = 22762 and NM = 1340 nodes.

E. NETWORK CONNECTIVITY
In this subsection, we evaluate the stability and robustness
of the UDN network after applying STAR5 by measuring
the algebraic connectivity of the graph G′. A network is
considered to be more robust if the algebraic connectivity
of the graph representing the network increases [30]. The
average algebraic connectivity of the network in figure 7 is
0.0344. It increases to 0.047 after applying STAR5 using
the φMaxWD(G) method. It increases further after applying
STAR5 for many cycles. We also observe from the fig-
ure that the algebraic connectivity of φMaxWD(G) is greater
than φRandom(G). This means that applying STAR5 with
φMaxWD(G) makes the network more robust compared to
φRandom(G).

F. STAR5 PERFORMANCE OF REAL-LIFE NETWORKS
The power savings performance of STAR5 is also evaluated
for two representative dense areas; the City of Barcelona
and the Manhattan borough of New York City. We mod-
eled the 5G UDN of these two areas using NEO, and
then applied STAR5 to improve power savings of the

FIGURE 9. Power savings of STAR5 for two real-life networks at different
load factors.

corresponding networks. According to the 5G transport net-
work blueprint and dimensioning of the city of Barcelona,
22.68 MC nodes per km2 are needed for such dense urban
scenarios [33]. And thus 2300 MC nodes (NM = 2300) are
needed to provide coverage for the city of Barcelona with a
land area of 101.4 km2. This is along with 18400 SC nodes
(NS = 18400) to provide connection service for a population
of 1.4 million inhabitants which corresponds to an average
of 8 Small Cell nodes per Macro Cell site [33]. For the
Manhattan borough with a land area of 59.1km2, 1340 MC
nodes are needed along with 21422 SC nodes (population of
1.63 million inhabitants) corresponding to an average of 16
Small Cell nodes per Macro Cell site. In figure 8 we show
that power savings up to 64% can be achieved for both cities
during off-peak when load factor is 30%. This reduces to
22.5% and 19.5% during full load periods for Barcelona and
Manhattan, respectively. Applying STAR5 for many itera-
tions (cycles) increases power savings significantly as pre-
sented in figure 9. Power saving increases up to 81% and 88%
during off-peak periods for Barcelona andManhattan, respec-
tively. Similar results are attained for both during full load
periods.
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VI. CONCLUSION
We present an energy management framework for heteroge-
neous UDG networks based on graph theory. The proposed
algorithm aims to reduce power consumption while mini-
mizing control plane signaling due to traffic migration. And
thus it is well suited for UDN 5G networks and beyond.
In this work, we model a UDN network as a graph, then
we exploit graph theory methods to minimize power con-
sumption by putting low-loaded nodes into sleep mode. The
traffic of these nodes is migrated to active neighboring nodes
through proper control plane signaling. We also show that the
order at which nodes are examined for sleep mode affects
significantly power savings. In this regard, we propose to
examine nodes sequentially according to the weighted node
degree centrality method of graph theory in descending order
(MaxWD). The pseudo-code and the parameters of the pro-
posed algorithm are also presented in this work, followed
by an extensive performance evaluation of the STAR5 algo-
rithm at different network densification and load scenarios
including two real-life networks. Evaluation results show that
significant power savings are attained through STAR5 with
MaxWD as compared to other graph theory and random
methods especially if limits are imposed on control plane
signaling (only subset of the nodes is examined for sleep
mode). Results also show that power savings are achieved
at different levels of network densification and for various
network traffic profiles. We also leverage on the proposed
algorithm so that STAR5 is executed for many cycles on a
subset of the nodes. This increased the power saving gains
at the expense of an increase in traffic due to control plane
signaling. We have also used the algebraic connectivity to
show that STAR5 increases the robustness of the network.
As an extension of this work, we are planning to integrate
the advanced sleep modes of 5G with STAR5.
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