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Nomenclature

F, Excitation harmonic force
" Disturbance source dirty body mass
Disturbed body displacement

X
_\; Isolated clean body mass

% Clean body displacement

k Passive elastomer stiffness

¢ Passive elastomer damping

F Reading of the force sensor

é Displacement of piezoelectric actuator
k, Spring stiffness of the actuator

rads  Radians per second

Hz Hertz

Pl Proportional plus Integral

FRF Frequency Response Function
B&K  Bruel and Kjaer company

8 Integral pain

a Proportional gain
W, Natura] frequency
e Comer frequency
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discusses different effective ways to

of wvibrations transmitted to the
hand-held machine. This

This research
reduce the influence

workers hand from a rotating
can be done cither by attenuating the vibration modes of

the system or by reducing the comer frequency o
increase the isolation performance. In order to obtain
high performance from the vibration isolator, the comer
frequency should be as low as possible [4]. This leads
the researchers to reduce the frequency by the following

ways:

o Increasing the mass of the equ
isolated or to reducc the sti
isolation mounts either in single or two stages [5]).

o Using a hybrid, soft and stiff mounts, with velocity
feedback using phase lag and phase lead

compensators on the unity gain points [6].

« Using totally stiff mount isolator with proportional

plus integral feedback compensator [7].

Increasing the mass or inertia is problematic
specifically in hand-held machine applications to enable
workers to hold the tool with the least effort. On the
other hand, reducing the amount of stiffness leads to
difficulties in stability of the systems under normal
loads and reduces the effect of the working force

exerted on the tool to make the job.

ipment needed to be
ffness to have soft

II. Active-Passive Isolator Using Simple
Integrator

Fig. 1 shows a schematic drawing of a hand-held
drilling machine where the drilling bit acts with a force
F,; on the mass M of the mechanical and electrical parts
of the drilling machine causing a displacement xg.
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Fig. 1. Schematic drawing of active-passive drilling machine

The clean body handle of the machine represented by
the mass A is also excited by this force with the
displacement x.. In order to reduce the effect of
vibrations transmitted from the disturbance source to
the clean handle, an active-passive isolator is suggested
to be integrated in the system in the form of active-
passive interface that consists of a passive elastomer
(rubber) and an active strut in parallel. The passive
elastomer is represented in Fig, 1 by a spring with a
constant & and a damper with a damping coefficient c.
The active strut here consists of a force sensor to
measure the force signal F and piezoelectric actuator,
the actuator is represented by the extension
displacement of its piczoelectric stacks & and the
stiffness of its internal spring £,

I1.1.  Modeling and Simulation

Equations of motion governing the system are shown
as follows. Disturbance equation (where s is Laplace
variable):

ms’x; =

ky(xg-x, +5)+k(xd—xc)+cs(xd—xv)+Fd

0

Isolated body equation:
Ms?x, =k(x;—x)+es(xy—x )+ F )
Force sensor equation:
F=k,(xy-x +0) 3)

The system has been simulated using Matlab
software and Fig. 2 depicts the frequency response
function between the extension of the actuator as an
input and the force measured by force sensor as an
output. The distance between the zero and the pole of
the system shows a good controllability of the system
when increasing the closcd-loop gain.

Fig. 3 shows the root locus of the system with a

simple integrator compensator connected to  the
feedback control loop.
This root locus proves that the system is

unconditionally stable and damping can be introduced
to the system by increasing the control gain.
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Fig. 2. Open-loop transfer function between the extension of the
piczoelectric actuator and the force measurcd by the force sensor
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Fig. 3. Root locus of the system

In the shown situation critical damping can be
reached, theoretically, by increasing the gain to a
specific value but in practical situation this is difficult to
apply because the gain value is restricted by the high-
pass filters need to be added to the control loop to
prevent low frequency signals from propagating into the
system deteriorating the control performance.

Another restriction for this controller is the difficulty
to push the transmission zeros of the system to low
vulqcs because the system needs a minimum amount of
static stiffness to withstand the static loads in the case of
acive system failure. This justifies the reason for
adc%mg a passive isolator (elastomer) in parallel with the
active strut, although it is known that passive isolation
dccrcasgs the roll-off slope of the high frequency
attenuation of any vibration isolation system [8]. This
cgntroller is similar to the sky-hook damper technique
discussed by Karnopp is [9] with the difference that it
uses the force signal in the feedback control loop
nstead of the absolute acceleration.
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Fie. 4 Transmissibility FRF between the disturbed mass displacement
g 4

4 the clean mass displacement, with control (dashed line) and
= without control (solid line)

This technique proved robustness and stability over
(he traditional sky-hook technique when the clean body
(payload) is flexible [4], [8]. o

Fig 4 shows the transmissibility frequency response
funct;on between the displacement of the disturbed
mass vz and the displacement of the clean body mass x..
The dashed line shows the passive isolation effect on
the system where the disturbance is amplified near the
comer frequency of the system while it is well isolated
at high frequency.

The nfluence of the active damping is clear in the
sohd line where the overshoot at the comer frequency is

reduced significantly with keeping the high frequency
attenuation.

IIL  Single Axis Isolator Using
Proportional plus Integral
Compensator

v F'()nsider the schematic drawing shown in Fig. 5.
Ihis figure represents a vibration isolation interface
with the disturbance source, the sensitive clean body, a
¢¢ sensor and a piezoelectric actuator, Pl feedback
COmf‘)llcr 15 used here 1o reduce the corner frequency
and mprove the response.

for
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€ aotiye l_eu“t: dxtxllmg maclnfxe shm.m in Fig. whs:rc
¢ signg] “'lcas:;lc‘\ controller is applied by acquiring
ek g e v red by the force sensor and feeding it
Com electric actuator after being filtered and
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Fig. 5. Single axis piezoclectric isolator with PI feedback

The goveming equa

tion of motion for the system in
Laplace transform is gi N

ven by:
Ms?x, = -ms?y, = k(xg-x)=F C))
Knowing that:
S=x, =X, S)

The open-loop FRF between the extension of the

Piezoelectric stack in the piczoelectric actuator & and the
output of the force sensor /7 reads:

F Mms?
e e, {
5 ©)

Mms?® + k (M + m)

Applying a force feedback control strategy using a

proportional plus integral compensator, the control law
reads:

§=>(1+as)F @)

& foe

or:

6= 1(5 + ga]F ®)
k\s '

Here ga is the proportional gain and g is the integral
gain. The root locus for the closed-loop poles of this
system is shown in Fig. 6; it shows that increasing the
loop gain decreases the frequency of the closed-loop
poles. If the proportional term is used alone, the poles
will move on the imaginary axis towards the origin but
this means the risk of destabilizing the system at any
instant,

The use of the integral controller here pushes these
poles deeper to the left half plane increasing the
stability.

From the analytical calculation, the intermediate
displacement x, is:

sx,+g(as+1)xy
Xy

9
0 stg(as+) e
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Fig. 6. Root locus of single axis piczoclectric isolator with PI feedback

Frorp the foregoing equations, one can calculate the
transmissibility FRF  between the disturbance

displacement and the payload displacement, and is
equal to:

% o : (10)

E— sz[(1+ga)/a),f]+s[g/a)3]+l

where w, is the natural frequency of the system.

This implies that the comer frequency @, of the
system is determined by the proportional gain of the
compensator:

1 l+ga
—2= ) (11)
w!.‘ a)ﬂ

The damping of the system is determined by the gain
g of the compensator

£.Z (12)
D, ¢

@+ ga
L
o (13)
ga__1 _ 1
ko Mo Kk

Here (1% ) is the closed-loop flexibility of the
system and is proportional to the gain. From the
foregoing analysis, onc can see that the closed-loop
stiffness of the system is inversely proportional to the
control gain; in other words, if one increases the
proportional gain, the stiffness is reduced.

1. 1. Simulation Results

The system shown in Fig. 5 has been simulated using
Matlab software. The simulation was based on the
previous analysis of the system taking the mass m as 1.1
kg, the mass M as 1.7 kg and the stiffness of the
piezoelectric actuator k as 1x 10’ N/m.
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Fig. 7. Root locus prediction

Fig. 7 depicts the root locus prediction that the poles
should follow when the control loop is closed. The oot
locus shows that the poles will remain in the left hand
side of the s-plane which means that the system is
unconditionally stable. On the other hand, the loop of
the plot is not moving in a circular shape which means
that when the gain of the controller is increased, the
distance between the pole and the origin will be shorter
leading to slow down the poles or to reduce the
frequency of the corresponding mode.

Theoretically, the poles will move till reaching
critical damping but in real time work this is impossible
as will be shown in the experimental verification part.
Fig. 8 shows the transmissibility FRF (x. / x) before
and after stiffness reduction using PI controller.
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Fig. 8. Predicted transmissibility from simulation results
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Fig. 10. Active member consists of piczoelectric actuator, a force
sensor and two flexible joints
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1.2, Experimental Verification

D’-.SCUSSIOII in this part will be concentrated on a
practical setup based on using the PI controller to
rcduae. the stiffness of the structure as discussed
theon?ucany in the previous section Consider the
¢Xperimenta] set-up shown in Fig. 9. It consists of two
masses connected to each other by an active member.

The active member (sec Fig. 10) consists of a
CEDRAT APA50 piezoelectric actuator, a B&K 8200
Plezoelectric force sensor with charge output and two
flexible joints to avoiq the side effect of the lateral
modes of the system by decoupling these modes
meChz.mically from the axial studied mode.

-SINg an external shaker, the system has been
excited with a random signal ranging from 1 to 800 Hz
and the transmissibility FRF between the displacement
of the disturbance source body and that of the clean
body mass is measured (see Fig. 11). The resonance of
the system is found at 500 Hz. A feedback system with
a PI control law is applied to the system and the same
FRF measured again, Fig. 12 shows the two measured
FRFs: the open-loop (before stiffness reduction) and the
closed-loop (after stiffness reduction).  The natural
frequency of the system has been reduced by 50%; from
500 Hz to 250 Hz. The maximum reduction has been
obtained by increasing the gain of the proportional part
of the compensator, but this leads to the risk of walking
along the imaginary axis which can lead to instability if
the surrounding conditions change slightly. Thus, there
is a need to increase the integral gain too at the same
time to increase the stability margin of the system and
to reduce the overshoot in the resonance vicinity.

IV. Discussion and Conclusions

The foregoing text discussed two techniques of
active vibration isolation for the hand-held rotating
tools to avoid the syndrome and bad effect of these
vibrations on the human workers. The first technique is
based on using integral force feedback technique which
is a type of sky-hook damper but with force feedback.
This type of control proved having a high authority on
single degree of freedom systems by reducing,
significantly, the amplification near the natural
frequency of the system but it does not isolate signals at
low frequency. Adding proportional term to the
controller in addition to the integrator has a great
influence on reducing the comer frequency of the
isolator which enables the isolator to have higher impact
on the low frequency vibrations as shown in the
experimental work. The natural frequency of the system
has been reduced by 50%; from 500 Hz to 250 Hz. The
maximum reduction has been obtained by increasing the
gain of the proportional part of the compensator, but
this leads to the risk of instability. Therefore, increasing
the integral gain of the controller results in modifying
the stability margin of the system.
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