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CP. 165-42, 50 Av. F.D. Roosevelt, B-1050 Brussels, Belgium

e-mail: andre.preumont@ulb.ac.be

ABSTRACT

This note compares the force feedback and acceleration feedback implementation of the
sky-hook damper when it is used to isolate a flexible structure from a disturbance source. It is
shown that the use of a force sensor produces always alternating poles and zeros in the open-
loop transfer function between the force actuator and the force sensor, which guarantees the
stability of the closed-loop. On the contrary, the acceleration feedback produces alternating
poles and zeros only when the flexible structure is stiff compared to the isolation system; this
property is lost when the flexible modes of the sensitive payload interfere with the isolation
system.

1. INTRODUCTION

Vibration isolation is concerned with the development of an interface between a vibration
source and a vibration-sensitive equipment, which attenuates the vibration transmission above
the corner frequency of the isolation system [1]. As an example, a precision payload (such
as a telescope) must be isolated to be protected from the jitter induced by the reaction
wheel assembly of the attitude control system of a spacecraft [2]. On the other hand, the
isolation system must allow the low frequency attitude control torque to be transmitted to
the spacecraft.

Any passive isolation system consists of one or several stages of springs and dampers intro-
duced in the vibration propagation path; their parameters are adjusted to achieve a desired
corner frequency and a reasonable compromise between the amplification at the resonances
and the high frequency attenuation. The passive damping is necessary to limit the amplifi-
cation at resonance, but it tends to reduce the high frequency attenuation of the isolation
system.

Active vibration isolation aims at improving the performance of the vibration isolation by
including a force generating element in the isolation interface, a sensor at the receiving end of
the transmission path, and a feedback control law connecting them. The celebrated sky-hook
damper [3, 4] is a single stage interface which allows to combine a -40 dB/decade attenuation
rate at high frequency with a critical damping (no overshoot) at resonance.

Section 2 reviews the sky-hook damper for the single d.o.f. isolator connecting two rigid
bodies; it also discusses two sensing options (namely acceleration of the sensitive payload and
the total force transmitted by the isolator). Next, the paper compares the two sensing options
when the sensitive equipment is flexible, which is more representative of a large space structure;
in section 3 a two d.o.f. sensitive equipment is considered. In section 4, a general result is
established, which guarantees the interlacing of the poles and zeros for a force feedback.
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Section 5 considers a free free beam to illustrate the superiority of the force feedback option
over the acceleration feedback when the flexible modes of the sensitive payload interfere with
the isolation system.

2. SKY-HOOK DAMPER

Consider the single-axis isolator connecting two rigid bodies as in Fig.1 (xd and m are the
displacement and mass of the disturbance source, xc and M are the displacement and mass of
the sensitive equipment, s is the Laplace variable, g is the control gain, Xc(s) is the Laplace
transform of xc, sXc is the Laplace transform of ẋc, etc ...). The classical implementation of the
sky-hook damper is that of Fig.1.a: an acceleration sensor is placed on the sensitive equipment,
measuring its absolute acceleration ẍc (or s2Xc); the sensor signal is passed through an integral
controller (−g/s) leading to a control force proportional to the absolute velocity of the sensitive
equipment, Fa = −gsXc. The name sky-hook damper comes from the fact that this force could
conceptually be achieved with a passive damper connecting the sensitive equipment to a fixed
point in space (the sky, Fig.1.b). Since the force applied to a rigid body is proportional to
its acceleration, the feedback based on the acceleration ẍc of the sensitive equipment can
alternatively be based on the sensing of the total interface force, F = Ms2Xc (Fig.1.c). The
two control configurations are totally equivalent and they have the same open-loop transfer
function :
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Figure 1: (a) Single axis soft isolator with acceleration feedback. (b) Equivalent ”sky-hook” damper.
(c) Force feedback isolator.
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Figure 2: Root locus of the force feedback isolator connecting two rigid bodies

With the compensator H(s) = g/s, the characteristic equation of the closed-loop poles reads

1 + gH(s)G(s) = 1 + g
s

s2 + Ω2
= 0 (2)

where Ω2 = k(M+m)
mM is the natural frequency of the two-mass system; the corresponding root

locus is represented in Fig.2. The transmissibility of the force feedback isolator reads

Xc(s)

Xd(s)
=

[
M

k
s2 +

M

k
gs + 1

]−1

(3)

which exhibits a -40 dB/decade attenuation rate at high frequency; the feedback gain g can
be adjusted to achieve critical damping at the corner frequency.

We now examine the deviation between the two control strategies when the payload is
flexible.

3. FLEXIBLE PAYLOAD

Next, we consider the situation where the sensitive payload is flexible as in Fig.3 (in the
example of a spacecraft, the flexible appendage may represent a solar panel). The dynamics of
the flexible payload is no longer governed by F = ms2Xc, so that the two sensing options are
no longer equivalent. In fact, different sensor configurations correspond to different locations
of the open loop transmission zeros in the complex plane. Before establishing a fairly general
result on the stability of the force feedback, let us examine the simple example of Fig.3 with
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Figure 3: Payload with a flexible appendage.
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the following numerical values: m = 1.1kg, M = 1.7kg, k = k1 = 12000N/m, c1 = 0 (assuming
no damping, all the poles and zeros are on the imaginary axis); the mass m1 of the flexible
appendage is taken as a parameter to analyse the interaction between the flexibility of the
payload and the isolation system. When m1 is small, the frequencies of the additional pair
of poles and zeros introduced by the flexible appendage are much higher than the isolator
poles and the situation is not much different from that of a rigid body. As m1 increases, they
move along the imaginary axis towards the lower frequencies. Figure 4 shows the root locus
plots for m1 = 0.5kg; the acceleration feedback and the force feedback have similar root locus
plots, with a new pole/zero pair appearing higher on the imaginary axis; the only difference
between the two plots is the distance between the pole and the zero which is larger for the
acceleration feedback; as a result, the acceleration feedback produces a larger damping of
the higher mode. On the contrary, when m1 is large, the root locus plots are reorganized as
shown in Fig.5 for m1 = 3.5kg. In the case of force feedback (Fig.5.a), the poles and zeros still
alternate on the imaginary axis, leading to a stable root locus; this property is lost for the
acceleration feedback (Fig.5.b), leading to an unstable loop for the lower mode. In practice,
the presence of damping (c1 6= 0) moves this loop slightly to the left and allows to operate
the control system for small gains, not enough, however to achieve critical damping on the
suspension poles. Large space structures are usually very lightly damped. We now establish
the central result of this paper.

(b)(a)
Im

Re

Im

Re

Figure 4: Root locus of the isolation system with a light flexible appendage (m1 = 0.5kg). (a)Force
feedback. (b)Acceleration feedback. (Only the upper half of the locus is shown)
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Figure 5: Root locus of the isolation system with a heavy flexible appendage (m1 = 3.5kg). (a)Force
feedback. (b)Acceleration feedback.
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Figure 6: Two arbitrary flexible structures connected with a single axis soft isolator with force feedback.

4. OPEN-LOOP POLE/ZERO PATTERN OF A SOFT ISOLATOR WITH FORCE
FEEDBACK

The following result confirms the observation of the previous example.
If two arbitrary flexible, undamped structures are connected with a single axis soft isolator

with force feedback (Fig.6), the poles and zeros in the open loop transfer function F (s)/Fa(s)
alternate on the imaginary axis.

The proof stems from the property of the collocated systems with energetically conjugated
input and output variables (e.g. force input and displacement output, or torque input and
angle output): For such a system, all the residues in the modal expansion of the transfer
function have the same sign and this results in alternating poles and zeros on the imaginary
axis [5, 6].

If we now examine the transfer function between the control force Fa and the output of
the force sensor F (Fig.6), although the actuator and sensor are collocated, F and Fa are not
energetically conjugated and the preceding property does not apply. However, the total force
F transmitted by the isolator is the sum of the control force Fa and the spring force, k∆x,
where ∆x is the relative displacement of the two structures along the isolator axis,

F = k∆x− Fa

or

F (s)

Fa(s)
= k

∆X(s)

Fa(s)
− 1 (4)

Thus, the open-loop transfer function F/Fa is the sum of k∆X/Fa and a negative unit
feedthrough. The input Fa and the output ∆x involved in the transfer function ∆X/Fa are
energetically conjugated and, as a result, the transfer function ∆X/Fa has all its residues
positive and possesses alternating poles and zeros along the imaginary axis. The addition of a
feedthrough term does not affect the residues in the modal expansion; the frequency response
function (FRF) F (ω)/Fa(ω) (obtained from the transfer function by setting s = jω, and
which is purely real if the system is undamped) is obtained from the FRF ∆X(ω)/Fa(ω) by
moving it along the ordinate axis by the amount of feedthrough; this changes the location of
the zeros, without however changing the interlacing property (Fig.7). QED.
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Figure 7: FRFs k∆X(ω)
Fa(ω) and F (ω)

Fa(ω) for an undamped structure (they are purely real). ωi are the

resonance frequencies and Zi the transmission zeros. The unit feedthrough component which appears
in F/Fa alters the location of the zeros (from • to ◦) without changing the interlacing property.

5. FREE-FREE BEAM

To illustrate further the influence of the sensing configuration on the pole/zero pattern,
consider the free-free beam of Fig.8 with the following actuator/sensor configurations. This
situation can be regarded as representative of a large space structure with its attitude control
system (note that the rigid body modes are not controllable from the internal force Fa)

5.1. FREE-FREE BEAM ALONE

Consider the free-free beam of Fig.8.b with a force actuator (f) and a collocated acceleration
sensor (ÿ); the poles are ±jΩi where Ωi are the natural frequencies of the free-free modes of the
beam. According to the physical interpretation of the zeros [7], they represent the resonances
of the subsystem constrained by the sensor and the actuator. In this case, the constrained
subsystem has an additional support as in the right side of Fig.8.b; the zeros are ±jZi where
Zi are the natural frequencies of the constrained system. Since the system is collocated and
the input and output variables are energetically conjugated, the poles and zeros alternate on
the imaginary axis:

Zi < Ωi < Zi+1 (5)

5.2. COMPLETE SYSTEM WITH FORCE SENSOR

Next consider the full system including the beam and the isolator with a force sensor
(Fig.8.d). The poles are ±jωi, where ωi are the natural frequencies of the global system (beam
+ isolator) while the transmission zeros are obtained as the resonances of the constrained
subsystem, where the interface force between the isolator and the beam is constrained to be
zero; this is equivalent to releasing the isolator from the beam, which means that the zeros
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Figure 8: (a) Free-free beam and single axis isolator. The other figures illustrate the various situations
and the boundary conditions corresponding to the transmission zeros. (b) Free-free beam alone with
displacement sensor and point force actuator. (c) Free-free beam and sky-hook isolator (acceleration
sensor). (d) Free-free beam and isolator with force feedback.

are ±jΩi where Ωi are the natural frequencies of the free-free beam (same as the poles for
the configuration of Fig.8.b). We know from the previous section that the poles and the zeros
also alternate in this configuration:

ωi < Ωi < ωi+1 (6)

5.3. COMPLETE SYSTEM WITH ACCELERATION SENSOR

This is the configuration of Fig.8.c, where an acceleration sensor has been substituted to
the force sensor. The poles ±jωi are the same as in the previous case (the poles do not depend
on the sensor configuration) and the transmission zeros, corresponding to the resonances of
the constrained subsystem where the acceleration of the connecting d.o.f. is zero, are ±jZi,
identical to those of Fig.8.b. No guarantee exist as to the interlacing of the poles and zeros
for this sensor configuration, and it is easy to generate an example where this property is
violated.

To illustrate this, Fig.9 shows the result of a numerical study performed with the numerical
values given on the figure. The bending stiffness EI of the beam is taken as parameter. The
figure shows the evolution of the poles (ωi) and zeros (Ωi and Zi) of the various configurations
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Figure 9: Flexible beam with an isolator; evolution of ωi, Zi and Ωi with the flexibility of the beam.

as the flexibility of the beam increases (the frequency is made non-dimensional by dividing
by the constrained natural frequency of the isolator, ω∗ =

√
k/m). The MATLAB simulation

uses a truncated modal expansion (3 flexible modes) with the analytical mode shapes of the
free-free beam, including a quasi-static correction for the high frequency modes (e.g. [6], ch.2).

As expected, the two interlacing properties (5) and (6) are always satisfied. When the beam
is stiff, the interlacing property ωi < Zi < ωi+1 is satisfied and the stability of the sky-hook
damper is therefore guaranteed, but as the beam becomes more flexible, the values of ωi and
Zi decrease at different rates and a pole/zero flipping occurs when they both become equal to
the constrained frequency of the isolator, ω∗. Beyond this point the stability of the sky-hook
damper is no longer guaranteed. This confirms the observations of the previous sections.

6. CONCLUSION

The sky-hook damper was originally developed with an acceleration measurement on the
sensitive payload; an alternative implementation consists of measuring the total force trans-
mitted across the isolator. The two strategies are totally equivalent in the case of a single axis
isolator connecting two rigid bodies.

When the isolator connects flexible bodies, acceleration and force measurements are no
longer equivalent. It has been shown that the use of a force sensor always produces alternating
poles and zeros in the open-loop transfer function; this guarantees the stability of the closed-
loop system in all circumstances. On the contrary, acceleration feedback does not exhibit
alternating poles and zeros any longer when the flexible modes of the sensitive payload interfere
with the isolation system.
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