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In this article, we study stability and bifurcation of a fourth order rational dif-
ference equation. We give condition for local stability, and we show that the
equation undergoes a Neimark-Sacker bifurcation. Moreover, we consider the
direction of the Neimark-Sacker bifurcation. Finally, we numerically validate
our analytical results.
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1 INTRODUCTION

In addition to their importance in their own right, difference equations have important applications in different fields
including, but not limited to, economics, biology, and physics. Consequently, this field of research attracts an increasing
number of researchers. As closed form of solutions to nonlinear difference, equations are difficult to obtain in most cases,
there is a lot of work on the qualitative behavior of solutions of rational difference equations.

Camouzis et al1 gave an analytical description of the local stability of the positive equilibrium point of the rational
difference equation

xn+1 = 𝜎xn−2 + xn−3

A + xn−3
, (1)

with positive parameters 𝜎 and A and nonnegative initial conditions. Moreover, the authors investigated the global attrac-
tivity of the positive equilibrium point and proved that the positive fixed point is locally stable if 𝜎3 + 𝜎2 − (2A2 + 4A +
2)𝜎 +A3 +A2 −A− 1 < 0 and unstable if 𝜎3 + 𝜎2 − (2A2 + 4A+ 2)𝜎 +A3 +A2 −A− 1 > 0. Moreover, if A− 1 < 𝜎 ≤ A+ 1
then every positive solution of Equation 1 converges to the positive equilibrium point.

Zhang and Ding2 studied the existence and direction of Neimark-Sacker bifurcation of the same equation. The authors
proved that if 𝜎 > A− 1 and if 𝜎 satisfies 𝜎3 +𝜎2 −(2A2 + 4A+ 2)𝜎+A3 +A2 −A− 1 = 0 then Neimark-Sacker bifurcation
occurs.

Camouzis3 studied the global character of solutions of the third order rational difference equation

xn+1 = 𝛽xn + 𝛿xn−2

A + Bxn + Cxn−1
, (2)

where the parameters 𝛽, 𝛿,A are nonnegative 𝛽 + 𝛿 > 0,B,C > 0 and the initial conditions x−2, x−1, x0 are nonnegative
real numbers. Using an appropriate change of variables, Equation 2 becomes

xn+1 = 𝛽xn + xn−2

A + Bxn + xn−1
, (3)
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FIGURE 1 Bifurcation diagram of Equation 5 in (A,X) plane [Colour figure can be viewed at wileyonlinelibrary.com]

where A ≥ 0, 𝛽 > 0,B > 0. The author concentrated on studying the boundedness of solutions of Equation 3. In the
same line of research, He and Qiu4 investigated the existence of Neimark-Sacker bifurcation of the third order difference
equation

xn+1 = 𝛽xn + 𝛼xn−2

1 + xn−1
, (4)

with positive parameters 𝛼, 𝛽 and nonnegative initial conditions x−2, x−1, x0. It has been shown in Camouzis and Ladas5

that the unique positive equilibrium x∗ = 𝛼 + 𝛽 − 1, 𝛼 + 𝛽 > 1 is locally asymptotically stable when 𝛽 > 𝛽∗ and unstable
when 𝛽 < 𝛽∗ where 𝛽∗ = (𝛼2−𝛼)∕(𝛼+1). The authors in He and Qiu4 proved the existence of Neimark-Sacker bifurcation
for Equation 4 as 𝛽 passes through the critical value 𝛽∗.

Motivated by the above work, we consider the fourth order rational difference equation

Xn+1 = 𝛽Xn + Xn−3

A + Xn−1
, (5)

with positive parameters 𝛽 and A and nonnegative initial conditions x−3, x−2, x−1, x0. In Camouzis and Ladas,5 the authors
conjectured that the difference equation

xn+1 = 𝛽xn + 𝜀xn−3

A + Cxn−1

has unbounded solutions in some range of its parameters and for some initial conditions. We will not prove this conjecture
in this paper. Equation 5 is a special case of the previous equation when 𝜖 = C = 1. Numerical simulations showed that
for the range of parameter A < A∗ in Figure 1, the solution of Equation 5 is unbounded. This resulted in the absence of
parabolic shape near the bifurcation value. Notice that, in Equation 1, xn+1 depends on xn−2 and xn−3 only, whereas in our
Equation 5, Xn+1 depends on Xn,Xn−1 and Xn−3. Although the calculation involves the same steps to prove the existence
of Neimark-Sacker bifurcation, including the proof of existence of a complex conjugate pair of eigenvalues of modulus
one and studying the direction of the bifurcation, the calculations are, however, different. The details of the calculations
are interesting and can be used to study similar equations. Equation 5 has a unique positive equilibrium X∗ = 𝛽 − A + 1
when 𝛽+1 > A. In the next section, we study local stability of this equilibrium. Then, by considering A as a parameter, we
show that this equation undergoes a Neimark-Sacker bifurcation as A crosses a certain critical value A∗. Then, we study
the direction of the bifurcation. Finally, we present some numerical simulation that supports our theoretical findings.

2 LOCAL STABILITY AND SOME PRELIMINARY RESULTS

Consider Equation 5 with positive parameters 𝛽 and A and nonnegative initial conditions x−3, x−2, x−1 and x0. This
equation has one positive equilibrium point X∗ = 𝛽 −A+ 1. We assume that 𝛽 + 1 > A. Let un = Xn, vn = Xn−1,wn = Xn−2
and zn = Xn−3. Then, Equation 5 is equivalent to the following first order system

http://wileyonlinelibrary.com
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un+1 = 𝛽un + zn

A + vn

vn+1 = un

wn+1 = vn

zn+1 = wn.

(6)

The Jacobian matrix of (6) at the positive equilibrium point is

J =
⎛⎜⎜⎜⎝

𝛽

𝛽+1
−(𝛽−A+1)

𝛽+1
0 1

𝛽+1
1 0 0 0
0 1 0 0
0 0 1 0

⎞⎟⎟⎟⎠
.

The characteristic polynomial of the Jacobian matrix is

P(𝜆) = 𝜆4 − 𝛽

𝛽 + 1
𝜆3 + 𝛽 − A + 1

𝛽 + 1
𝜆2 − 1

𝛽 + 1
. (7)

To investigate the local stability of the positive equilibrium point, we need the following theorem:

Theorem 2.1. The polynomial F(𝜆) = 𝜆4 + a3𝜆
3 + a2𝜆

2 + a1𝜆+ a0 has roots in the unit circle if the following conditions
are satisfied5:

|a1 + a3| < 1 + a0 + a2, |a1 − a3| < 2(1 − a0), a2 − 3a0 < 3,

a0 + a2 + a2
0 + a2

1 + a2
0a2 + a0a2

3 < 1 + 2a0a2 + a1a3 + a0a1a3 + a3
0.

The following couple of theorems will be used:

Theorem 2.2. (Descartes theorem6)
The number of positive roots (counted considering their multiplicity) of a polynomial Pn(x) with real coefficients is either
equal to the number of sign alterations between consecutive nonzero coefficients or is less than it by a multiple of 2.

Applying Descartes theorem to Pn(−x), we obtain a similar theorem for the negative roots of the polynomial Pn(x). So
the number of negative roots of a polynomial Pn(x) is equal to the number of positive roots of the polynomial Pn(−x).

Theorem 2.3. (Viète theorem6)
Let 𝛼, 𝜎, 𝛾, 𝛿 be the roots of the polynomial p(x) = ax4 + bx3 + cx2 + dx + e then

𝛼 + 𝜎 + 𝛾 + 𝛿 = −b
a

𝛼𝜎 + 𝜎𝛾 + 𝛾𝛿 + 𝛼𝛾 + 𝛼𝛿 + 𝜎𝛿 = c
a

𝛼𝜎𝛾 + 𝛼𝛾𝛿 + 𝛼𝜎𝛿 + 𝜎𝛾𝛿 = −d
a

𝛼𝜎𝛾𝛿 = e
a
.

Theorem 2.4. The positive fixed point of Equation 5 is locally asymptotically stable if A >
4(𝛽+1)
(𝛽+2)2

and unstable if

A <
4(𝛽+1)
(𝛽+2)2

.

Proof. For the polynomial (7), a0 = −1
𝛽+1

, a1 = 0, a2 = 𝛽−A+1
𝛽+1

, a3 = −𝛽
𝛽+1

. The condition |a1 + a3| < 1 + a0 + a2 is
satisfied if and only if A < 𝛽+1, which is equivalent to 𝛽−A+1 > 0 and the last inequality is satisfied by assumption.
The second condition |a1−a3| < 2(1−a0) is satisfied if and only if 𝛽+4 > 0, which is trivially satisfied for every 𝛽. The
third condition a2−3a0 < 3 is equivalent to 2𝛽+A−1 > 0. The last inequality holds for every 𝛽, since 1−2𝛽 < A < 𝛽+1.

The fourth condition is

a0 + a2 + a2
0 + a2

1 + a2
0a2 + a0a2

3 < 1 + 2a0a2 + a1a3 + a0a1a3 + a3
0.



SHAREEF AND ALOQEILI 5193

Which is satisfied if and only if(
−1

𝛽 + 1

)(
1 + 𝛽2

(𝛽 + 1)2

)
+ 1

(𝛽 + 1)2

(
1 + 𝛽 − A + 1

𝛽 + 1

)
+ 𝛽 − A + 1

𝛽 + 1

< 1 − 2(𝛽 − A + 1)
(𝛽 + 1)2 − 1

(𝛽 + 1)3 .

Multiplying by (𝛽 + 1)3 and simplifying, we find that the last inequality is equivalent to

A > 4 (𝛽 + 1)
(𝛽 + 2)2 ∶= A∗.

Note that A∗ < 1. We conclude that if A > A∗ then the eigenvalues of the characteristic equation will lie within the
unit circle; hence, the fixed point is stable.

3 NEIMARK-SACKER BIFURCATION

In this section, we show that Equation 5 undergoes a Neimark-Sacker bifurcation. Firstly, we show in the next theorem
that the Jacobian matrix has a pair of complex conjugate eigenvalues of modulus one.

Theorem 3.1. If A = A∗ = 4(𝛽+1)
(𝛽+2)2

then the characteristic polynomial (7) has 2 complex conjugate roots that lie on the
unit circle. Moreover, the Neimark-Sacker bifurcation conditions are satisfied.

Proof. First, we show that Equation 7 has 2 complex conjugate roots, using Descarte and Viète theorem. Applying
Descartes theorem to (7), the alteration in sign is (+−+−), so it has one positive root or 3 positive roots. Also applying
Descartes theorem to P(−𝜆), the alteration of sign is (+ + +−), so P(𝜆) has one negative root. Note that

P(−1) = 3𝛽 − A + 1
𝛽 + 1

> 0, P(0) = −1
𝛽 + 1

< 0, P(1) = 𝛽 − A + 1
𝛽 + 1

> 0.

Therefore, P(𝜆) has 2 real roots say 𝜇1 ∈ (0, 1) and 𝜇2 ∈ (−1, 0). Moreover,

P′(𝜆) = 𝜆

(
4𝜆2 − 3𝛽

𝛽 + 1
𝜆 + 2(𝛽 − A + 1)

𝛽 + 1

)
.

It follows that P′(𝜆) = 0 if 𝜆 = 0 or if 4𝜆2(𝛽 + 1) − 3𝛽𝜆 + 2(𝛽 − A + 1) = 0. The second equality gives

𝜆 =
3𝛽±

√
9𝛽2 − 32(𝛽 − A + 1)(𝛽 + 1)

8(𝛽 + 1)
.

But the discriminant of the previous quadratic equation is negative since,

Δ = −23𝛽2 − 64𝛽 − 32 + 32A(𝛽 + 1) < −23𝛽2 − 64𝛽 − 32 + 32(𝛽 + 1) = −23𝛽2 − 32𝛽 < 0.

So P′(𝜆) has one real root, hence, P(𝜆) changes its direction only once. To show that the positive real root is simple, by
the way of contradiction suppose it has multiplicity equal 3, then by Viète theorem,

3𝜇1 + 𝜇2 = 𝛽

𝛽 + 1
(8)

3𝜇1𝜇2 + 3𝜇2
1 = 𝛽 − A + 1

𝛽 + 1
(9)

3𝜇2𝜇
2
1 + 𝜇3

1 = 0 (10)

𝜇3
1𝜇2 = −1

𝛽 + 1
. (11)
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From Equation 10𝜇1 = −3𝜇2, substitute in (11), we get

𝜇2 = 1
4
√

27(𝛽 + 1)
> 0.

A contradiction. So Equation 7 has 2 real roots and 2 conjugate complex roots. The next step is to show that |𝜆1,2| = 1
by applying Viète theorem. Let 𝜇1,2 be the real roots of (7), and 𝜆2 = �̄�1

𝜇1 + 𝜇2 + 𝜆1 + 𝜆2 = 𝛽

𝛽 + 1
(12)

𝜇1𝜇2 + 𝜇2𝜆1 + 𝜆1𝜆2 + 𝜇1𝜆1 + 𝜇1𝜆2 + 𝜇2𝜆2 = 𝛽 − A + 1
𝛽 + 1

(13)

𝜇1𝜇2𝜆1 + 𝜇1𝜆1𝜆2 + 𝜇1𝜇2𝜆2 + 𝜇2𝜆1𝜆2 = 0 (14)

𝜇1𝜇2𝜆1𝜆2 = −1
𝛽 + 1

. (15)

Equation 15 gives

𝜇1𝜇2𝜆1𝜆2 = 𝜇1𝜇2 = −1
𝛽 + 1

. (16)

Substitute for 𝜇1𝜇2 into Equation 14, we get

1
𝛽 + 1

(𝜆1 + 𝜆2) = 𝜇1 + 𝜇2. (17)

Plugging this value of 𝜇1 + 𝜇2 into (12), we find that

𝜆1 + 𝜆2 = 𝛽

𝛽 + 2
. (18)

Equations 13, 16, and 17 imply that

(𝜆1 + 𝜆2)(𝜇1 + 𝜇2) =
1 − A
𝛽 + 1

.

Using (17), the last equation gives

(𝜆1 + 𝜆2)2 = 1 − A.

It follows from Equation 18 that (
𝛽

𝛽 + 2

)2

= 1 − A.

Hence,

A = 1 −
(

𝛽

𝛽 + 2

)2

= 4(𝛽 + 1)
(𝛽 + 2)2 = A∗.

Since the roots are uniquely determined, the above argument implies the existence of conjugate pair of complex roots
on the unit circle. Let 𝜆 = ei𝜃 then

P(ei𝜃) = e4i𝜃 − 𝛽

𝛽 + 1
e3i𝜃 + 𝛽 − A + 1

𝛽 + 1
e2i𝜃 − 1

𝛽 + 1
= 0.

Separate the real and imaginary parts

cos 4𝜃 − 𝛽

𝛽 + 1
cos 3𝜃 + 𝛽 − A + 1

𝛽 + 1
cos 2𝜃 − 1

𝛽 + 1
= 0

sin 4𝜃 − 𝛽

𝛽 + 1
sin 3𝜃 + 𝛽 − A + 1

𝛽 + 1
sin 2𝜃 = 0.
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Rewrite these equations in the form

cos 4𝜃 − 𝛽

𝛽 + 1
cos 3𝜃 = −𝛽 − A + 1

𝛽 + 1
cos 2𝜃 + 1

𝛽 + 1

sin 4𝜃 − 𝛽

𝛽 + 1
sin 3𝜃 = −𝛽 − A + 1

𝛽 + 1
sin 2𝜃.

Squaring, adding up, and simplifying, we finally get

cos2𝜃 − 2𝛽(𝛽 + 1)
4(𝛽 − A + 1)

cos 𝜃 + 2𝛽(𝛽 + 1)
4(𝛽 − A + 1)

− 𝛽 − A + 3
4

= 0. (19)

From Equation 18, we get

cos 𝜃 = 𝛽

2(𝛽 + 2)
.

Note that this is a root of Equation 19. At A = 4(𝛽+1)
(𝛽+2)2

, let 𝜃0 = arccos
(

𝛽

2(𝛽+2)

)
. Then, 0 < cos 𝜃0 <

1
2

and 𝜃0 ∈ (0, 𝜋
2
).

Note that 𝜃0 ≠ 0,± 𝜋

2
,± 3𝜋

2
, 𝜋, it follows that eik𝜃0 ≠ 1 for k ∈ {1, 2, 3, 4}.

For the transversality condition, we show that d|𝜆|2
dA

|A∗,𝜃0 ≠ 0

d|𝜆|2
dA

= 𝜆

(
𝜕P(�̄�)
𝜕A

.
𝜕�̄�

𝜕P(�̄�)

)
+ �̄�

(
𝜕P(𝜆)
𝜕A

.
𝜕𝜆

𝜕P(𝜆)

)

= 𝜆

⎛⎜⎜⎝
−�̄�2

𝛽 + 1
.

1
4�̄�3 − 3𝛽

𝛽+1
�̄�2 + 2(𝛽−A+1)

𝛽+1
�̄�

⎞⎟⎟⎠ + �̄�

⎛⎜⎜⎝
−(𝜆)2

𝛽 + 1
.

1
4𝜆3 − 3𝛽

𝛽+1
𝜆2 + 2(𝛽−A+1)

𝛽+1
𝜆

⎞⎟⎟⎠
=

−�̄�
[
4(𝛽 + 1)𝜆3 − 3𝛽𝜆2 + 2(𝛽 − A + 1)𝜆

]
+ (−𝜆)

[
4(𝛽 + 1)�̄�3 − 3𝛽�̄�2 + 2(𝛽 − A + 1)�̄�

]
[
4(𝛽 + 1)(�̄�)3 − 3𝛽(�̄�)2 + 2(𝛽 − A + 1)�̄�

] [
4(𝛽 + 1)(𝜆)3 − 3𝛽(𝜆)2 + 2(𝛽 − A + 1)𝜆

] .

Finally, we find that
d|𝜆|2
dA

|𝜃0,A∗ = −16(𝛽 + 1)cos2𝜃0 + 6𝛽 cos 𝜃0 + 4(𝛽 + A∗ + 1)
L

,

where

L = 16(𝛽 + 1)2 + 9𝛽2 + 4(𝛽 − A∗ + 1)2 − (12𝛽(𝛽 + 1) + 6𝛽(𝛽 − A∗ + 1))(2 cos 𝜃0)+

8(𝛽 − A∗ + 1)(𝛽 + 1)(2cos2𝜃0 − 1).

It can be shown that d|𝜆2|∕dA|𝜃0,A∗ ≠ 0 since

−16(𝛽 + 1)cos2𝜃0 + 6𝛽 cos 𝜃0 + 4(𝛽 + A∗ + 1) = 7𝛽2 + 12𝛽 + 8
(𝛽 + 2)2 > 0.

This completes the proof.

We have shown that system (3) undergoes a Neimark-Sacker bifurcation. Now, we determine the direction of sta-
bility of the invariant closed curve that bifurcates from the positive fixed point. We follow the normal form theory of
Neimark-Sacker bifurcation as in Kuznetsov.7 Shift the fixed point to the origin by taking xn = un − u∗, yn = un − u∗, tn =
vn − v∗ and wn = zn − z∗. Then Equation 6 becomes

⎛⎜⎜⎜⎝
xn+1
𝑦n+1
tn+1
wn+1

⎞⎟⎟⎟⎠
=
⎛⎜⎜⎜⎝

𝛽(xn+X∗)+wn+X∗

A+𝑦n+X∗ − X∗

xn
𝑦n
tn

⎞⎟⎟⎟⎠
. (20)

Which can be written as

Yn+1 = JYn + G(Yn), (21)
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where G(Y ) = 1
2

B(Y ,Y ) + 1
6

C(Y ,Y ,Y ) + O(||Y ||4), Yn =
⎛⎜⎜⎜⎝

xn
𝑦n
tn
wn

⎞⎟⎟⎟⎠
,

B(Y ,Y ) =
⎛⎜⎜⎜⎝

B1(Y ,Y )
0
0
0

⎞⎟⎟⎟⎠
, and C(Y ,Y ,Y ) =

⎛⎜⎜⎜⎝
C1(Y ,Y ,Y )

0
0
0

⎞⎟⎟⎟⎠
,

such that

Bi(x, 𝑦) =
n∑

𝑗,k=1

𝜕2Yi(𝜉)
𝜕𝜉𝑗𝜕𝜉k

|𝜉=0(x𝑗𝑦k),

and

Ci(x, 𝑦, z) =
n∑

𝑗,k,l=1

𝜕3Yi(𝜉)
𝜕𝜉𝑗𝜕𝜉k𝜕𝜉l

|𝜉=0(x𝑗𝑦kzl),

B1(𝜙,𝜓) = −𝛽
(𝛽 + 1)2 (𝜙2𝜓1 + 𝜙1𝜓2) + 2𝛽 − A + 1

(𝛽 + 1)2 𝜙2𝜓2 +
−1

(𝛽 + 1)2 (𝜙2𝜓4 + 𝜙4𝜓2),

C1(𝜙,𝜓, 𝜂) = −6(𝛽 − A + 1)
(𝛽 + 1)3 𝜙2𝜓2𝜂2 +

2𝛽
(𝛽 + 1)3 (𝜙2𝜓2𝜂1 + 𝜙1𝜓2𝜂2 + 𝜙2𝜓1𝜂2)

+ 2
(𝛽 + 1)3 (𝜙2𝜓2𝜂4 + 𝜙4𝜓2𝜂2 + 𝜙2𝜓4𝜂2).

Let Jq = ei𝜃0 q , JT𝑝∗ = e−i𝜃0𝑝∗ where q and p∗ are the eigenvectors corresponding to the eigenvalues ei𝜃0 and e−i𝜃0 ,
respectively. We obtain q ∼

(
1, e−i𝜃0 , e−2i𝜃0 , e−3i𝜃0

)T . Similarly, the eigenvector p∗ of JT is given by

𝑝∗ ∼
(

1,− 𝛽

𝛽 + 1
+ e−i𝜃0 ,

e2i𝜃0

𝛽 + 1
,

ei𝜃0

𝛽 + 1

)T

.

To normalize p∗ and q so that ⟨p∗, q⟩ = 1, where ⟨., .⟩ is the standard scalar product in C3. Let

𝜂 = ⟨𝑝∗, q⟩ = 2 − 𝛽

𝛽 + 1
e−i𝜃0 + 2 e−4i𝜃0

𝛽 + 1
.

So let p = 𝜂−1p∗, where 𝜂−1 = 1∕𝜂. The critical real eigenspace Tc corresponding to 𝜆1,2 is 2-dimensional and is spanned
by {Re(q), Im(q)}. The real eigenspace Ts corresponding to the real eigenvalues of J is 2-dimensional. Any vector x ∈ R4

may be decomposed as

x = zq + z̄q̄ + 𝑦,

where z ∈ C1, and z̄q̄ ∈ Tc, 𝑦 ∈ Ts. The complex variable z is a coordinate on Tc. We have

z = ⟨𝑝, x⟩,
𝑦 = x − ⟨𝑝, x⟩q − ⟨�̄�, x⟩q̄.

In these coordinates, the map (21) takes the form

z̃ = ei𝜃0 z + ⟨𝑝,G(zq + z̄q̄ + 𝑦)⟩,
�̃� = J𝑦 + G(zq + z̄q̄ + 𝑦) − ⟨𝑝,G(zq + z̄q̄ + 𝑦)⟩q − ⟨�̄�,G(zq + z̄q̄ + 𝑦)⟩q̄.

The previous system can be written in the form

z̃ = ei𝜃0 z + 1
2

G20z2 + G11zz̄ + 1
2

G02z̄2 + 1
2

G21z2z̄ + ⟨G10, 𝑦⟩z + ⟨G01, 𝑦⟩z̄,
�̃� = J𝑦 + 1

2
H20z2 + H11zz̄ + 1

2
H02z̄2 + 1

2
H21z2z̄.
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Where G20 = ⟨𝑝,B(q, q)⟩,G11 = ⟨𝑝,B(q, q̄)⟩,G02 = ⟨𝑝,B(q̄, q̄)⟩,G21 = ⟨𝑝,C(q, q, q̄)⟩, and

H20 = B(q, q) − ⟨𝑝,B(q, q)⟩q − ⟨�̄�,B(q, q)⟩q̄,H11 = B(q, q̄) − ⟨𝑝,B(q, q̄)⟩q − ⟨�̄�,B(q, q̄)⟩q̄,
with

⟨G10, 𝑦⟩ = ⟨𝑝,B(q, 𝑦)⟩, ⟨G01, 𝑦⟩ = ⟨𝑝,B(q̄, 𝑦)⟩,
and the scalar product in C3 is used. From the center manifold theorem, there exists a center manifold Wc, which can be
approximated as

Y = V(z, z̄) = 1
2

w20z2 + w11zz̄ + 1
2

w02z̄2,

where ⟨q,wij⟩ = 0. The vectors wi𝑗 ∈ C3 can be found from the linear equations

w20 = (e2i𝜃0 I3 − J)−1H20,

w11 = (I3 − J)−1H11,

w02 = (e−2i𝜃0 I3 − J)−1H02.

So z can be expressed as

z̃ = ei𝜃0 z̄ + 1
2

G20z2 + G11zz̄ + 1
2

G02z̄2

+1
2
(G21 + 2⟨𝑝,B(q, (I − J)−1H11)⟩ + ⟨𝑝,B(q̄, (e2i𝜃0 I − J)−1H20)⟩)z2z̄.

Taking into account the identities

(I − J)−1q = 1
1 − ei𝜃0

q, (e2i𝜃0 I − J)−1q = e−i𝜃0

ei𝜃0 − 1
q,

and

(I − J)−1q̄ = 1
1 − ei𝜃0

q̄, (e2i𝜃0 I − J)−1q̄ = e−i𝜃0

ei𝜃0 − 1
q̄.

We can express z using the map

z̃ = ei𝜃0 z +
∑

k+l≥2

1
k!𝑗!

gk𝑗 z
kz̄𝑗 ,

where g20 = ⟨𝑝,B(q, q)⟩, g11 = ⟨𝑝,B(q, q̄)⟩, and g02 = ⟨𝑝,B(q̄, q̄)⟩.
g21 = ⟨𝑝,C(q, q, q̄)⟩ + 2⟨𝑝,B(q, (I − J)−1B(q, q̄))⟩ + ⟨𝑝,B(q̄, (e2i𝜃0 I − J)−1B(q, q))⟩ + · · · .

Equivalently, z̃ can be written as

z̃ = ei𝜃0 z(1 + d(A∗))|z2|,
where the real number 𝛽(A∗) = Re(d(A∗)) that determines the direction of bifurcation of a closed invariant curve can be
computed via

𝛽(A∗) = Re(
e−i𝜃0 g21

2
) − Re( (1 − 2ei𝜃0)e−2i𝜃0

2(1 − ei𝜃0 )
g20g11) −

1
2
|g11|2 − 1

4
|g02|2 (22)

g20 = ⟨𝑝,B(q, q)⟩ and B(q, q) =
⎛⎜⎜⎜⎝

−2𝛽e−i𝜃0+2(𝛽−A+1)e−2i𝜃0−2e−4i𝜃0

(𝛽+1)2
0
0
0

⎞⎟⎟⎟⎠
.
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It follows that ⟨𝑝,B(q, q)⟩ = −2𝛽e−i𝜃0+2(𝛽−A+1)e−2i𝜃0−2e−4i𝜃0

(𝛽+1)(2(𝛽+1)−𝛽e−i𝜃0+2e−4i𝜃0 )
.Moreover,

B(q, q̄) =
⎛⎜⎜⎜⎝

−2𝛽 cos 𝜃0+2(𝛽−A+1)−2 cos 2𝜃0
(𝛽+1)2

0
0
0

⎞⎟⎟⎟⎠
.

So

g11 = ⟨𝑝,B(q, q̄)⟩ = −2𝛽 cos 𝜃0 + 2(𝛽 − A + 1) − 2 cos 2𝜃0

(𝛽 + 1)(2(𝛽 + 1) − 𝛽e−i𝜃0 + 2e−4i𝜃0)
.

On the other hand,

B(q̄, q̄) =
⎛⎜⎜⎜⎝

−2𝛽ei𝜃0+2(𝛽−A+1)e2i𝜃0−2e4i𝜃0

(𝛽+1)2

0
0
0

⎞⎟⎟⎟⎠
.

Then,

g02 = ⟨𝑝,B(q̄, q̄)⟩ = −2𝛽ei𝜃0 + 2(𝛽 − A + 1)e2i𝜃0 − 2e4i𝜃0

(𝛽 + 1)(2(𝛽 + 1) − 𝛽e−i𝜃0 + 2e−4i𝜃0
.

Now, we find the terms in the formula for g21 that are required to calculate 𝛽(A∗).

C(q, q, q̄) =
⎛⎜⎜⎜⎝

−6(𝛽−A+1)e−i𝜃0+2𝛽(2+e−2i𝜃0 )+2(ei𝜃0+2e−3i𝜃0 )
(𝛽+1)3

0
0
0

⎞⎟⎟⎟⎠
⟨𝑝,C(q, q, q̄)⟩ = −6(𝛽 − A + 1)e−i𝜃0 + 2𝛽(2 + e−2i𝜃0 ) + 2(ei𝜃0 + 2e−3i𝜃0)

(𝛽 + 1)2(2(𝛽 + 1) − 𝛽e−i𝜃0 + 2e−4i𝜃0 )
.

To find ⟨𝑝,B(q, (I − J)−1B(q, q̄))⟩

(I − J)−1 =

⎛⎜⎜⎜⎜⎜⎝

𝛽+1
𝛽−A+1

A−𝛽
𝛽−A+1

1
𝛽−A+1

1
𝛽−A+1

𝛽+1
𝛽−A+1

1
𝛽−A+1

1
𝛽−A+1

1
𝛽−A+1

𝛽+1
𝛽−A+1

1
𝛽−A+1

𝛽−A+2
𝛽−A+1

1
𝛽−A+1

𝛽+1
𝛽−A+1

1
𝛽−A+1

𝛽−A+2
𝛽−A+1

𝛽−A+2
𝛽−A+1

⎞⎟⎟⎟⎟⎟⎠
,

(I − J)−1B(q, q̄) =

⎛⎜⎜⎜⎜⎜⎜⎝

−2𝛽 cos 𝜃0+2(𝛽−A+1)−2 cos 2𝜃0
(𝛽+1)(𝛽−A+1)

−2𝛽 cos 𝜃0+2(𝛽−A+1)−2 cos 2𝜃0
(𝛽+1)(𝛽−A+1)

−2𝛽 cos 𝜃0+2(𝛽−A+1)−2 cos 2𝜃0
(𝛽+1)(𝛽−A+1)

−2𝛽 cos 𝜃0+2(𝛽−A+1)−2 cos 2𝜃0
(𝛽+1)(𝛽−A+1)

⎞⎟⎟⎟⎟⎟⎟⎠
.

To find ⟨𝑝,B(q̄, (e2i𝜃0 I − J)−1)B(q, q)⟩, we calculate (e2i𝜃0 I − J)−1, which is given by

1
D

⎛⎜⎜⎜⎜⎜⎜⎝

e6i𝜃0 1
𝛽+1

− B∗e4i𝜃0 e2i𝜃0

𝛽+1
e4i𝜃0

𝛽+1

e4i𝜃0 e6i𝜃0 − 𝛽e4i𝜃0

𝛽+1
1

𝛽+1
e2i𝜃0

𝛽+1

e2i𝜃0 e4i𝜃0 − 𝛽e2i𝜃0

𝛽+1
e6i𝜃0 − 𝛽e4i𝜃0

𝛽+1
+ B∗e2i𝜃0 1

𝛽+1

1 e2i𝜃0 − 𝛽

𝛽+1
e4i𝜃0 − 𝛽e2i𝜃0

𝛽+1
+ B∗ e6i𝜃0 − 𝛽e4i𝜃0

𝛽+1
+ B∗e2i𝜃0

⎞⎟⎟⎟⎟⎟⎟⎠
.
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Where D = (𝛽+1)e8i𝜃0−𝛽e6i𝜃0+(𝛽−A+1)e4i𝜃0−1
𝛽+1

and B∗ = 𝛽−A+1
𝛽+1

(e2i𝜃0 I − J)−1B(q, q) =

⎛⎜⎜⎜⎜⎜⎜⎝

−2𝛽e5i𝜃0+2(𝛽−A+1)e4i𝜃0−2e2i𝜃0

(𝛽+1)((𝛽+1)e8i𝜃0−𝛽e6i𝜃0+(𝛽−A+1)e4i𝜃0−1)
−2𝛽e3i𝜃0+2(𝛽−A+1)e2i𝜃0−2

(𝛽+1)((𝛽+1)e8i𝜃0−𝛽e6i𝜃0+(𝛽−A+1)e4i𝜃0−1)
−2𝛽ei𝜃0+2(𝛽−A+1)−2e−2i𝜃0

(𝛽+1)((𝛽+1)e8i𝜃0−𝛽e6i𝜃0+(𝛽−A+1)e4i𝜃0−1)
−2𝛽e−i𝜃0+2(𝛽−A+1)e−2i𝜃0−2e−4i𝜃0

(𝛽+1)((𝛽+1)e8i𝜃0−𝛽e6i𝜃0+(𝛽−A+1)e4i𝜃0−1)

⎞⎟⎟⎟⎟⎟⎟⎠
,

and B(q̄, (e2i𝜃0 I − J)−1B(q, q̄)) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−𝛽
(𝛽+1)3

(
−2𝛽(e6i𝜃0+e3i𝜃0 )+2(𝛽−A+1)(e5i𝜃0+e2i𝜃0 )−2(e3i𝜃0+1)

(𝛽+1)((𝛽+1)e8i𝜃0−𝛽e6i𝜃0+(𝛽−A+1)e4i𝜃0−1)

)
+ 2(𝛽−A+1)

(𝛽+1)3

(
−2𝛽e4i𝜃0+2(𝛽−A+1)e3i𝜃0−2ei𝜃0

(𝛽+1)((𝛽+1)e8i𝜃0−𝛽e6i𝜃0+(𝛽−A+1)e4i𝜃0−1)

)
− 1

(𝛽+1)3

(
−2𝛽(1+e6i𝜃0 )+2(𝛽−A+1)(e−i𝜃0+e5i𝜃0 )−4 cos 3𝜃0
(𝛽+1)((𝛽+1)e8i𝜃0−𝛽e6i𝜃0+(𝛽−A+1)e4i𝜃0−1)

)
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Now, ⟨𝑝,B(q̄, (e2i𝜃0 I − J)−1B(q, q̄))⟩ =
a0e6i𝜃0 + a1e5i𝜃0 + a2e4i𝜃0 + a3e3i𝜃0 + a4e2i𝜃0 + a5e−i𝜃0 + a6ei𝜃0 + a7

(𝛽 + 1)2
(
(𝛽 + 1)e8i𝜃0 − 𝛽e6i𝜃0 + (𝛽 − A + 1)e4i𝜃0 − 1

) (
2(𝛽 + 1) − 𝛽e−i𝜃0 + 2e−4i𝜃0

) ,
where a0 = 2𝛽2 + 2𝛽, a1 = −2𝛽(𝛽 − A + 1) − 2(𝛽 − A + 1)a2 = −4(𝛽 − A + 1), a3 = 2𝛽2 + 2𝛽 + 4(𝛽 − A + 1)2a4 =
−2𝛽(𝛽 − A + 1), a5 = −2(𝛽 − A + 1), a6 = −4(𝛽 − A + 1), a7 = 4𝛽 + 4cos3𝜃0

𝛽(A∗) = Re
(

e−i𝜃0 R
)
,

where

R = 1
2
⟨𝑝,C(q, q, q̄)⟩ + ⟨𝑝,B(q, (I − J)−1)B(q, q̄)⟩ + 1

2
⟨𝑝,B(q̄, (e2i𝜃0 I − J)−1B(q, q))⟩.

Let R1 = Re
(

1
2

e−i𝜃0⟨𝑝,C(q, q, q̄)⟩), then

R1 = Re
(
−3(𝛽 − A + 1)e−2i𝜃0 + 𝛽(2e−i𝜃0 + e−3i𝜃0 ) + (1 + 2e−4i𝜃0)

(𝛽 + 1)2(2(𝛽 + 1) − 𝛽e−i𝜃0 + 2e−4i𝜃0 )

)
.

Multiply and divide by the denominator's conjugate , the numerator becomes

2e4i𝜃0 + 4(𝛽 + 1)e−4i𝜃0 + 4𝛽e3i𝜃0 + (2𝛽(𝛽 + 1) − 2𝛽)e−3i𝜃0 + (−6(𝛽 − A + 1))e2i𝜃0+

(−6(𝛽 + 1)(𝛽 − A + 1) − 𝛽2)e−2i𝜃0 + 2𝛽ei𝜃0 + (4𝛽(𝛽 + 1) + 3𝛽(𝛽 − A + 1))e−i𝜃0 + 2(𝛽 + 1) − 2𝛽2 + 4.

Taking the real part and denoting it by C1

C1 = b4 cos 4𝜃0 + b3 cos 3𝜃0 + b2 cos 2𝜃0 + b1 cos 𝜃0 + b0.

Where b0 = 2(𝛽 + 1) − 2𝛽2 + 4, b1 = 3𝛽(𝛽 − A + 1) + 4𝛽(𝛽 + 1) + 2𝛽)b2 = −6(𝛽 − A + 1) − 6(𝛽 + 1)(𝛽 − A + 1) − 𝛽2, b3 =
2𝛽2 + 4𝛽, b4 = 4(𝛽 + 1) + 2. Multiply the denominator by its conjugate and denote it by C2

C2 = 4(𝛽 + 1)2 + 𝛽2 + 4 + 8(𝛽 + 1) cos 4𝜃0 − 4𝛽 cos 3𝜃0 − 4𝛽(𝛽 + 1) cos 𝜃0

R1 = C1

(𝛽 + 1)2C2
.
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Let R2 = Re(e−i𝜃0⟨𝑝,B(q, (I − J)−1)B(q, q̄)⟩). It follows that

R2 = Re
(
−𝛽Le−i𝜃0 + (𝛽 − 2A + 1)Le−2i𝜃0 − Le−4i𝜃0

(𝛽 + 1)(2(𝛽 + 1) − 𝛽e−i𝜃0 + 2e−4i𝜃0 )

)
,

and let
R3 = Re

(1
2
⟨𝑝,B(q̄, (e2i𝜃0 I − J)−1B(q, q))⟩) .

Then, we have
𝛽(A∗) = R1 + R2 + R3.

The calculations of R2 and R3 are long and will be omitted, they are available upon request from the authors. We can find
𝛽(A∗) using Equation 22. If 𝛽 = 1,A = 0.889, then 𝛽(A∗) = 0.01, and the closed invariant curve is subcritical (unstable).

Theorem 3.2. If 𝛽(A∗) < 0 (respectively, > 0), then the Neimark- Sacker bifurcation at A = A∗ is supercritical
(respectively, subcritical) and there exists a unique invariant closed curve that bifurcates from the fixed point, which is
asymptotically stable (respectively, unstable).

4 NUMERICAL SIMULATION

In this section, we present some numerical simulations that supports our theoretical results. In Figure 1, we have bifur-
cation diagram in the (A, xn+1) plane. In this figure, 𝛽 = 1, so the critical value of A at which Neimark-Sacker bifurcation
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FIGURE 2 Phase portrait of Equation 5 in (x(n), x(n − 3)) plane [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 3 Phase portrait of Equation 5 in (x(n), x(n − 3)) plane [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 4 Phase portrait of Equation 5 in (x(n), x(n − 3)) plane [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 5 Direction of bifurcation [Colour figure can be viewed at wileyonlinelibrary.com]

occurs is A∗ = 8∕9, and the initial conditions are X−3 = X−2 = X−1 = X0 = 1. The positive fixed point is asymptotically
stable if A > 8∕9. In Figure 2, we plot phase portrait by assigning the values A = 0.98, 𝛽 = 1,X−3 = X−2 = X−1 = X0 = 1.6.
Note that, for this value of A, the positive equilibrium point is asymptotically stable. In Figures 3 and 4, we plot phase
portraits by assigning values of A in the vicinity of the bifurcation value. In Figure 3, A = 0.88, 𝛽 = 1,X−3 = X−2 = X−1 =
X0 = 0.1 while in Figure 4, A = 0.889, 𝛽 = 1,X−3 = X−2 = X−1 = X0 = 0.1 . Notice the birth of the closed invariant curve
that is subcritical (unstable) because the curve disappears as we move away from the fixed point. By virtue of Theorem 2.4,
supported by Figure 1, the unique positive equilibrium (1.12, 1.12, 1.12, 1.12) in Figure 3 is unstable whereas in Figure 4,
it is in stable. We conjecture that the closed invariant curve is subcritical (unstable), which means that 𝛽(A∗) > 0 for any
𝛽 > 0. Figure 5 supports our conjecture.
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