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We give a complete functional theoretic characterization of tempered exponential dichotomies in terms of the invertibility of certain
linear operators acting on a suitable Frechét space. In sharp contrast to previous results, we consider noninvertible linear cocycles
acting on infinite-dimensional spaces. The principal advantage of our results is that they avoid the use of Lyapunov norms.

1. Introduction

The problem of characterizing hyperbolic behaviour of
dynamical systems in terms of the spectral properties of
certain linear operators has a long history that goes back to
the pioneering works of Perron [1] and Li [2]. More precisely,
Perron [1] established a complete characterization of the
exponential stability of a linear differential equation

𝑥 = 𝐴 (𝑡) 𝑥, (1)

in R𝑛 in terms of the solvability (in 𝑥) of the nonlinear
equation

𝑥 = 𝐴 (𝑡) 𝑥 + 𝑓 (𝑡) , (2)

where 𝑓 and 𝑥 belong to suitable function spaces. Similar
results for the discrete time dynamics were obtained by Li.
The condition that (2) has a (unique) solution𝑥 in some space𝑌1 for any choice of𝑓 that belongs to some (possibly different)
space 𝑌2 is commonly referred to as admissibility condition.
Clearly, this requirement can be formulated in terms of the
linear operator

(𝐿𝑥) (𝑡) = 𝑥 − 𝐴 (𝑡) 𝑥, (3)

acting between suitable function spaces.
The major contribution to this line of the research is due

to Massera and Schäffer [3]. Indeed, in contrast to the work

of Perron, they have established complete characterization (in
terms of admissibility) of the notion of (uniform) exponential
dichotomy which includes the notion of exponential stability
as a particular case. More precisely, rather than considering
only the dynamics that exhibits stable behaviour, they have
considered the case of dynamics with the property that the
phase space splits into two complementary directions, where
in one direction dynamics exhibits stable behaviour while
in the complementary direction it possesses an unstable
(chaotic) behaviour. In addition, they have developed an
axiomatic approach to the problem of constructing all pos-
sible pairs (𝑌1, 𝑌2) of function spaces with the property that
the corresponding admissibility condition is equivalent to the
existence of exponential dichotomy.

To the best of our knowledge, the first results in this
direction that deal with the infinite-dimensional dynamics
are due to Dalećkĭı and Krĕın [4]. For more recent results
devoted to continuous and discrete evolution families, we
refer to [5–15] for those dealing with uniform exponential
behaviour and to [16–20] for those that consider various
concepts of nonuniform exponential behaviour.

In the context of smooth dynamical systems, first results
are due to Mather [21] who proved that a smooth diffeomor-
phisms 𝑓 of a compact Riemannian manifold𝑀 is Anosov if
and only if the operator Γ defined by

(ΓV) (𝑥) = 𝐷𝑓 (𝑓−1 (𝑥)) V (𝑓−1 (𝑥)) (4)
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on the space of all continuous vector fields V on 𝑀 is
hyperbolic (see [22] for related results in the case of flows).
Subsequent related results consider the general case of linear
cocycles (or the so-called linear skew product flows) acting
on Banach spaces.We refer to [23–29] and references therein.
We stress that all of those works consider only uniform
hyperbolic behaviour.

In the paper [30] devoted to the roughness prop-
erty of nonuniform hyperbolicity (the so-called tempered
dichotomy) for linear cocycles on Banach spaces, the authors
posed a questions on whether it is possible to give functional
theoretic characterization of nonuniform behaviour. It turns
out that the answer to this question is positive and such
characterization was developed in [31] (see also [32]) and
applied to the above-mentioned roughness property of tem-
pered dichotomies. However, the approach developed in [31]
is far from satisfactory since the construction of appropriate
spaces on which the Mather type of operator acts is given
in terms of the so-called Lyapunov norms which transform
nonuniform behaviour into the uniform. Thus, in order to
use this characterization to detect nonuniformbehaviour, one
would first need to construct appropriate Lyapunov norms.
Hence, the results in [31] are unfortunately only of limited
applicability.

In the present paper, we propose an alternative func-
tional theoretic characterization of tempered exponential
dichotomies. More precisely, we show that the existence of
tempered exponential dichotomy (under the assumptions
of the multiplicative ergodic theorem) is equivalent to the
invertibility of Mather-type operators acting on a certain
Frechét space. Although dealing with Frechét instead of
Banach spaces is in principle harder, we feel that nevertheless
our results have an advantage over those in [31]. The reason
for this is that our Frechét space is built in terms of the
original norm and not in terms of Lyapunov norms.We stress
that our approach is close in spirit to that developed in [33]
for Lyapunov regular trajectories in the finite-dimensional
setting, associated with a smooth diffeomorphism.

In order to formulate an explicit result, let (Ω,F,P, 𝜎)
be an invertible and ergodic measure preserving dynamical
system. Moreover, let A be a linear cocycle over this system
which takes values in a family of compact and injective
operators on some Banach space. We will construct a Frechét
space 𝑌 as well as family of continuous operators M𝜔 :𝑌 → 𝑌, 𝜔 ∈ Ω, such that the following result (which is a
combination of Theorems 13 and 14) is valid.

Theorem 1. The cocycleA admits a tempered dichotomy if and
only if 𝐼𝑑−M𝜔 is an invertible operator on 𝑌 for P-a.e. 𝜔 ∈ Ω,
where Id denotes the identity operator on 𝑌.

We hope that our results will be applicable to the study of
nonuniformly hyperbolic dynamical systems. We emphasize
that since the landmark works of Oseledets [34] and in
particular Pesin [35] this theory has become one of the central
themes of the modern dynamical systems theory (see [36]
for a detailed exposition). We refer to [37–39] and references
therein for the discussions regarding the various extensions
of this theory to the infinite-dimensional setting.

2. Preliminaries

In this section we recall some notions and collect previous
auxiliary results that will be used in the following section.

2.1. Linear Cocycles and Tempered Exponential Dichotomy.
Consider a probability space (Ω,F,P) and assume that 𝜎 :Ω → Ω is an invertible, P-preserving transformation which
is ergodic. Furthermore, let 𝑋 be a separable Banach space
and denote by 𝐵(𝑋) the space of all bounded linear operators
on𝑋. Finally, let N0 = {0, 1, 2, . . .}.

We say that a mapA : Ω × N0 → 𝐵(𝑋) is a linear cocycle
over 𝜎 if

(1) A(𝜔, 0) = Id for 𝜔 ∈ Ω;
(2) A(𝜔, 𝑛 + 𝑚) = A(𝜎𝑚(𝜔), 𝑛)A(𝜔,𝑚) for 𝜔 ∈ Ω and𝑛,𝑚 ∈ N0;
(3)

∫
Ω

log+ ‖𝐴 (𝜔)‖ 𝑑P (𝜔) < ∞, (5)

where

𝐴 (𝜔) = A (𝜔, 1) , for 𝜔 ∈ Ω; (6)

(4) 𝜔 → 𝐴(𝜔)𝑥 is ameasurablemap fromΩ to𝑋 for each𝑥 ∈ 𝑋.
We recall that the map 𝐴 given by (6) is called the generator
of a cocycleA.

We also introduce the notion of a tempered random
variable. We say that a measurable map 𝐾 : Ω → (0,∞) is a
tempered random variable if

lim
𝑛→±∞

1
𝑛 log𝐾(𝜎𝑛 (𝜔)) = 0, for P-a.e. 𝜔 ∈ Ω. (7)

The following well-known result (see [40] for example) will
be useful in our arguments.

Proposition 2. Assume that 𝐾 : Ω → (0,∞) is a tempered
random variable. Then, for 𝜀 > 0, there exists a measurable
map 𝐶 : Ω → (0,∞) such that

(1) For P-a.e. 𝜔 ∈ Ω,
𝐾 (𝜔) ≤ 𝐶 (𝜔) . (8)

(2) For P-a.e. 𝜔 ∈ Ω and every 𝑛 ∈ Z, we have that

𝐶 (𝜎𝑛 (𝜔)) ≤ 𝐶 (𝜔) 𝑒𝜀|𝑛|. (9)

Finally, we recall the notion of a tempered exponential
dichotomy [30, 31]. We say that the cocycleA with generator𝐴 as in (6) admits a tempered exponential dichotomy if there
exist 𝜆 > 0, a tempered random variable 𝐾 : Ω → (0,∞),
and a family of projections 𝑃(𝜔) ∈ 𝐵(𝑋), 𝜔 ∈ Ω such that
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(1) 𝜔 → 𝑃(𝜔)𝑥 is a measurable map for each 𝑥 ∈ 𝑋;
(2) for P-a.e. 𝜔 ∈ Ω,

𝐴 (𝜔) 𝑃 (𝜔) = 𝑃 (𝜎 (𝜔)) 𝐴 (𝜔) , (10)

and the map

𝐴 (𝜔) | Ker𝑃 (𝜔) : Ker𝑃 (𝜔) → Ker𝑃 (𝜎 (𝜔)) (11)

is invertible;
(3) for P-a.e. 𝜔 ∈ Ω and every 𝑛 ∈ N,

‖A (𝜔, 𝑛) 𝑃 (𝜔)‖ ≤ 𝐾 (𝜔) 𝑒−𝜆𝑛, (12)

‖A (𝜔, −𝑛) (Id − 𝑃 (𝜔))‖ ≤ 𝐾 (𝜔) 𝑒−𝜆𝑛, (13)

where

A (𝜔, −𝑛) fl (A (𝜎−𝑛 (𝜔) , 𝑛) | Ker𝑃 (𝜎−𝑛 (𝜔)))−1 (14)

is a well-defined linear map from Ker𝑃(𝜔) to
Ker𝑃(𝜎−𝑛(𝜔)).

2.2. Multiplicative Ergodic Theorem. We now recall the ver-
sion of themultiplicative ergodic theorem established by Lian
and Lu [39]. For the sake of simplicity, we will restrict our
attention to the case of compact cocycles.

Theorem 3. Assume thatA is a linear cocycle such that 𝐴(𝜔)
is a compact and injective operator for P-a.e. 𝜔 ∈ Ω, where𝐴(𝜔) is given by (6). Then either of the following is true.

(1) There is a finite sequence of numbers

𝜆1 > 𝜆2 > ⋅ ⋅ ⋅ > 𝜆𝑘 > 𝜆∞ = −∞, (15)

and a decomposition

𝑋 = 𝐸1 (𝜔) ⊕ ⋅ ⋅ ⋅ ⊕ 𝐸𝑘 (𝜔) ⊕ 𝐸∞ (𝜔) , (16)

such that, for P-a.e. 𝜔 ∈ Ω,
𝐴 (𝜔) 𝐸𝑖 (𝜔) = 𝐸𝑖 (𝜎 (𝜔)) , 𝑖 = 1, . . . , 𝑘,
𝐴 (𝜔) 𝐸∞ (𝜔) ⊂ 𝐸∞ (𝜎 (𝜔)) ,

lim
|𝑛|→∞

1
𝑛 log ‖A (𝜔, 𝑛) 𝑥‖ = 𝜆𝑖

for 𝑥 ∈ 𝐸𝑖 (𝜔) \ {0} , 𝑖 ∈ {1, . . . , 𝑘} ,
lim
𝑛→∞

1
𝑛 log ‖A (𝜔, 𝑛) 𝑥‖ = 𝜆∞ for 𝑥 ∈ 𝐸∞ (𝜔) .

(17)

Moreover, each 𝐸𝑖(𝜔), 𝑖 = 1, . . . , 𝑘 is a finite-
dimensional subspace of𝑋.

(2) There exists an infinite sequence of numbers

𝜆1 > 𝜆2 > ⋅ ⋅ ⋅ > 𝜆𝑘 > ⋅ ⋅ ⋅ > 𝜆∞ = −∞, (18)

and for each 𝑘 ∈ N a decomposition

𝑋 = 𝐸1 (𝜔) ⊕ ⋅ ⋅ ⋅ ⊕ 𝐸𝑘 (𝜔) ⊕ 𝐹𝑘 (𝜔) , (19)

such that, for P-a.e. 𝜔 ∈ Ω,
𝐴 (𝜔) 𝐸𝑖 (𝜔) = 𝐸𝑖 (𝜎 (𝜔)) , 𝑖 = 1, . . . , 𝑘,
𝐴 (𝜔) 𝐹𝑘 (𝜔) ⊂ 𝐹𝑘 (𝜎 (𝜔)) ,

lim
|𝑛|→∞

1
𝑛 log ‖A (𝜔, 𝑛) 𝑥‖ = 𝜆𝑖,

for 𝑥 ∈ 𝐸𝑖 (𝜔) \ {0} , 𝑖 = 1, . . . , 𝑘,
lim sup
𝑛→∞

1
𝑛 log ‖A (𝜔, 𝑛) 𝑥‖ ≤ 𝜆𝑖+1, for 𝑥 ∈ 𝐹𝑘 (𝜔) .

(20)

Moreover, each 𝐸𝑖(𝜔), 𝑖 ̸= ∞, is a finite-dimensional
subspace of𝑋.

We note that the numbers 𝜆𝑖 are called Lyapunov expo-
nents of the cocycleA. In addition, subspaces𝐸𝑖(𝜔) are called
Oseledets subspaces. Now we are in position to state suffi-
cient conditions for the existence of tempered exponential
dichotomy. The following result was established by Lian and
Lu [39].

Theorem 4. Assume that A is a linear cocycle satisfying
assumptions of Theorem 3. If all Lyapunov exponents ofA are
nonzero, thenA admits a tempered exponential dichotomy.

2.3. Frechét Space. We now introduce our Frechét space that
will play a central role in our arguments. Set

𝑌 = {x = (𝑥𝑛)𝑛∈Z ⊂ 𝑋 : lim sup
|𝑛|→∞

1
|𝑛| log 𝑥𝑛 ≤ 0} . (21)

It is easy to verify that 𝑌 is a vector space. Furthermore, for
each 𝑘 ∈ N, set

𝑌𝑘 = {x = (𝑥𝑛)𝑛∈Z ⊂ 𝑋 : ‖x‖𝑘 < ∞} , (22)

where

‖x‖𝑘 = sup
𝑛∈Z

(𝑥𝑛 𝑒−|𝑛|/𝑘) . (23)

It is straightforward to show that
(i) (𝑌𝑘, ‖ ⋅ ‖𝑘) is a Banach space for each 𝑘 ∈ N;
(ii)

𝑌 = ⋂
𝑘∈N

𝑌𝑘; (24)

(iii) for each 𝑘 ∈ N

𝑌𝑘+1 ⊂ 𝑌𝑘; (25)

(iv) ‖x‖𝑘 ≤ ‖x‖𝑘+1 for every x ∈ 𝑌 and 𝑘 ∈ N.
It follows from the above properties that we can equip 𝑌with
the structure of the graded Frechét space by saying that the
sequence (x𝑙)𝑙∈N ⊂ 𝑌 converges to x ∈ 𝑌 if and only if (x𝑙)𝑙∈N
converges to x in 𝑌𝑘 for each 𝑘 ∈ N.
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2.4. Mather-Type Operator. The other crucial ingredient in
our characterization is the construction of appropriate linear
operators. LetA be a linear cocycle and consider its generator𝐴 given by (6). For 𝜔 ∈ Ω, we define
(M𝜔x)𝑛 = 𝐴 (𝜎𝑛−1 (𝜔)) 𝑥𝑛−1,

for 𝑛 ∈ Z, x = (𝑥𝑛)𝑛∈Z ⊂ 𝑋.
(26)

Obviously, M𝜔 is a linear map. Let us now establish several
auxiliary results.

Lemma 5. For P-a.e. 𝜔 ∈ Ω,
M𝜔 : 𝑌𝑘+1 → 𝑌𝑘 (27)

is a well-defined and bounded linear operator for each 𝑘 ∈ N.

Proof. It follows from (5) that there exist 𝑎 > 0 and a
tempered random variable𝐾 : Ω → (0,∞) such that

‖A (𝜔, 𝑛)‖ ≤ 𝐾 (𝜔) 𝑒𝑎𝑛, (28)

for P-a.e. 𝜔 ∈ Ω and every 𝑛 ∈ N. Fix now 𝑘 ∈ N and choose𝜀 > 0 such that 𝜀 < 1/𝑘−1/(𝑘+1). Furthermore, let𝐶 be given
by Proposition 2 and let Ω𝑘 ⊂ Ω be such that P(Ω𝑘) = 1 and
that (8), (9), and (28) hold for each 𝜔 ∈ Ω𝑘. It follows that

𝑒−|𝑛|/𝑘 (M𝜔x)𝑛 = 𝑒−|𝑛|/𝑘 𝐴 (𝜎𝑛−1 (𝜔)) 𝑥𝑛−1
≤ 𝑒−|𝑛|/𝑘𝐾(𝜎𝑛−1 (𝜔)) 𝑒𝑎 𝑥𝑛−1
≤ 𝑒−|𝑛|/𝑘𝐶(𝜎𝑛−1 (𝜔)) 𝑒𝑎 𝑥𝑛−1
≤ 𝐶 (𝜔) 𝑒𝑎−|𝑛|/𝑘+𝜀|𝑛−1| 𝑥𝑛−1
≤ 𝐶 (𝜔) 𝑒𝑎+1/𝑘𝑒(𝜀−1/𝑘)|𝑛−1| 𝑥𝑛−1
≤ 𝐶 (𝜔) 𝑒𝑎+1/𝑘𝑒−|𝑛−1|/(𝑘+1) 𝑥𝑛−1
≤ 𝐶 (𝜔) 𝑒𝑎+1/𝑘 ‖x‖𝑘+1 ,

(29)

for each 𝑛 ∈ Z, x = (𝑥𝑛)𝑛∈Z ∈ 𝑌𝑘+1, and 𝜔 ∈ Ω𝑘. We conclude
that

M𝜔x𝑘 ≤ 𝐶 (𝜔) 𝑒𝑎+1/𝑘 ‖x‖𝑘+1 , (30)

for every x ∈ 𝑌𝑘+1 and 𝜔 ∈ Ω𝑘. Set Ω = ⋂∞𝑘=1Ω𝑘. Then,
P(Ω) = 1 and it follows readily from (30) thatM𝜔 : 𝑌𝑘+1 →𝑌𝑘 is a well-defined and bounded operator for each 𝜔 ∈ Ω
and 𝑘 ∈ N.

As a direct consequence of Lemma 5, we obtain the
following result.

Proposition 6. The operator M𝜔 : 𝑌 → 𝑌 is a well-defined
and continuous operator for P-a.e. 𝜔 ∈ Ω.
Proof. By Lemma 5, there exists a full-measure set Ω ⊂ Ω
such that M𝜔 : 𝑌𝑘+1 → 𝑌𝑘 is a well-defined and bounded
linear operator for each 𝑘 ∈ N and 𝜔 ∈ Ω.

We begin by noting that M𝜔𝑌 ⊂ 𝑌 for each 𝜔 ∈ Ω.
Indeed, for any x ∈ 𝑌, we have that x ∈ 𝑌𝑘+1 for each 𝑘 ∈ N

(see (24)). Hence, Lemma 5 implies thatM𝜔x ∈ 𝑌𝑘 for every𝑘 ∈ N. We conclude thatM𝜔x ∈ 𝑌.
Let us now establish the continuity ofM𝜔. Take a sequence(x𝑙)𝑙 that converges to x in 𝑌. This implies that (x𝑙)𝑙 converges

to x in 𝑌𝑘+1 for each 𝑘 ∈ N. By (30), we have that (M𝜔x𝑙)𝑙
converges toM𝜔x in 𝑌𝑘 for every 𝑘 ∈ N and therefore also in𝑌. The proof is completed.

3. Main Results

In this section we obtain the main results of this paper; that
is, we establish the complete characterization of tempered
exponential dichotomies in terms of the invertibility of
operators Id − M𝜔 on the space 𝑌. Before we establish
several auxiliary lemmas, we will introduce some additional
notation. Assume that the cocycle A admits a tempered
dichotomy and let 𝑃(𝜔), 𝜔 ∈ Ω, be the associated family of
projections. For 𝜔 ∈ Ω, we define linear operators Γ𝑖𝜔, 𝑖 = 1, 2
by

(Γ1𝜔x)𝑛 =
∞∑
𝑚=0

A (𝜎𝑛−𝑚 (𝜔) ,𝑚) 𝑃 (𝜎𝑛−𝑚 (𝜔)) 𝑥𝑛−𝑚, (31)

(Γ2𝜔x)𝑛
= ∞∑
𝑚=1

A (𝜎𝑛+𝑚 (𝜔) , −𝑚) (Id − 𝑃 (𝜎𝑛+𝑚 (𝜔))) 𝑥𝑛+𝑚,
(32)

where x = (𝑥𝑛)𝑛∈Z.
Lemma 7. Assume that the cocycle A admits a tempered
dichotomy.Then, Γ1𝜔 : 𝑌𝑘+1 → 𝑌𝑘 given by (31) is a well-defined
and bounded linear operator for P-a.e. 𝜔 ∈ Ω and sufficiently
large 𝑘 ∈ N.

Proof. Take an arbitrary 𝑘 ∈ N satisfying 1/𝑘 < 𝜆 and choose𝜀 ∈ (0, 1/𝑘 − 1/(𝑘 + 1)). Furthermore, let 𝐶 be given by
Proposition 2 (with respect to𝐾 as in the notion of tempered
dichotomy). It follows from (8), (9), and (12) that

𝑒−|𝑛|/𝑘 (Γ1𝜔x)𝑛 ≤ 𝑒−|𝑛|/𝑘
∞∑
𝑚=0

𝐾(𝜎𝑛−𝑚 (𝜔)) 𝑒−𝜆𝑚 𝑥𝑛−𝑚

≤ 𝑒−|𝑛|/𝑘 ∞∑
𝑚=0

𝐶 (𝜎𝑛−𝑚 (𝜔)) 𝑒−𝜆𝑚 𝑥𝑛−𝑚

≤ 𝐶 (𝜔) 𝑒−|𝑛|/𝑘 ∞∑
𝑚=0

𝑒𝜀|𝑛−𝑚|𝑒−𝜆𝑚 𝑥𝑛−𝑚

≤ 𝐶 (𝜔) ∞∑
𝑚=0

𝑒(𝜀−1/𝑘)|𝑛−𝑚|𝑒(1/𝑘−𝜆)𝑚 𝑥𝑛−𝑚
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≤ 𝐶 (𝜔) ∞∑
𝑚=0

𝑒−|𝑛−𝑚|/(𝑘+1)𝑒(1/𝑘−𝜆)𝑚 𝑥𝑛−𝑚
≤ 𝐶 (𝜔)
1 − 𝑒1/𝑘−𝜆 ‖x‖𝑘+1 ,

(33)

for P-a.e. 𝜔 ∈ Ω and every 𝑛 ∈ Z and x = (𝑥𝑛)𝑛∈Z ∈ 𝑌𝑘+1.
Hence,

Γ1𝜔x𝑘 ≤ 𝐶 (𝜔)
1 − 𝑒1/𝑘−𝜆 ‖x‖𝑘+1 , (34)

for P-a.e. 𝜔 ∈ Ω and every x = (𝑥𝑛)𝑛∈Z ∈ 𝑌𝑘+1. The proof of
the lemma is completed.

The following result follows from Lemma 7 in the same
way Proposition 6 follows from Lemma 5.

Proposition 8. Assume that the cocycleA admits a tempered
dichotomy. Then, the operator Γ1𝜔 : 𝑌 → 𝑌 given by (31) is a
well-defined and continuous operator for P-a.e. 𝜔 ∈ Ω.
Proof. By Lemma 7, there exists a full-measure set Ω ⊂ Ω
such that Γ1𝜔 : 𝑌𝑘+1 → 𝑌𝑘 is a well-defined and bounded linear
operator for each 𝑘 ∈ N sufficiently large and 𝜔 ∈ Ω.

We begin by noting that Γ1𝜔𝑌 ⊂ 𝑌 for each𝜔 ∈ Ω. Indeed,
for any x ∈ 𝑌, we have that x ∈ 𝑌𝑘+1 for each 𝑘 ∈ N (see
(24)). Hence, Lemma 7 implies that Γ1𝜔x ∈ 𝑌𝑘 for every 𝑘 ∈ N

sufficiently large. Hence, (24) and (25) imply that Γ1𝜔x ∈ 𝑌.
We now prove that Γ1𝜔 is continuous. Take a sequence (x𝑙)𝑙

that converges to x in 𝑌. This implies that (x𝑙)𝑙 converges to x
in𝑌𝑘+1 for each 𝑘 ∈ N. By (34), we have that (Γ1𝜔x𝑙)𝑙 converges
to Γ1𝜔x in 𝑌𝑘 for every 𝑘 ∈ N sufficiently large. This implies
that (Γ1𝜔x𝑙)𝑙 converges to Γ1𝜔x in 𝑌.
Lemma 9. Assume that the cocycle A admits a tempered
dichotomy. Then, the operator Γ2𝜔 : 𝑌𝑘+1 → 𝑌𝑘 given by (32)
is well-defined and bounded for P-a.e. 𝜔 ∈ Ω and sufficiently
large 𝑘 ∈ N.

Proof. Using the same notation as in the proof of Lemma 7, it
follows from (8), (9), and (12) that

𝑒−|𝑛|/𝑘 (Γ2𝜔x)𝑛 ≤ 𝑒−|𝑛|/𝑘
∞∑
𝑚=1

𝐾(𝜎𝑛+𝑚 (𝜔)) 𝑒−𝜆𝑚 𝑥𝑛+𝑚

≤ 𝑒−|𝑛|/𝑘 ∞∑
𝑚=1

𝐶 (𝜎𝑛+𝑚 (𝜔)) 𝑒−𝜆𝑚 𝑥𝑛+𝑚

≤ 𝐶 (𝜔) 𝑒−|𝑛|/𝑘 ∞∑
𝑚=1

𝑒𝜀|𝑛+𝑚|𝑒−𝜆𝑚 𝑥𝑛+𝑚

≤ 𝐶 (𝜔) ∞∑
𝑚=1

𝑒−|𝑛+𝑚|/(𝑘+1)𝑒(1/𝑘−𝜆)𝑚 𝑥𝑛+𝑚

≤ 𝐶 (𝜔) 𝑒1/𝑘−𝜆
1 − 𝑒1/𝑘−𝜆 ‖x‖𝑘+1 ,

(35)

for 𝜇-a.e. 𝜔 ∈ Ω and every 𝑛 ∈ Z and x = (𝑥𝑛)𝑛∈Z ∈ 𝑌𝑘+1.
Hence,

Γ2𝜔x𝑘 ≤ 𝐶 (𝜔) 𝑒1/𝑘−𝜆
1 − 𝑒1/𝑘−𝜆 ‖x‖𝑘+1 , (36)

for P-a.e. 𝜔 ∈ Ω and every x = (𝑥𝑛)𝑛∈Z ∈ 𝑌𝑘+1. This
immediately yields the conclusion of the lemma.

Lemma 9 implies the following result whose proof is
analogous to the proof of Proposition 8.

Proposition 10. Assume that the cocycleA admits a tempered
dichotomy. Then, the operator Γ2𝜔 : 𝑌 → 𝑌 given by (32) is a
well-defined and continuous operator for P-a.e. 𝜔 ∈ Ω.
Proposition 11. Assume that the cocycleA admits a tempered
dichotomy. Then, one has the following:

(1) the operator Γ𝜔 fl Γ1𝜔 − Γ2𝜔 : 𝑌𝑘+1 → 𝑌𝑘 is well-defined
and bounded for P-a.e. 𝜔 ∈ Ω and sufficiently large𝑘 ∈ N, where Γ1𝜔 and Γ2𝜔 are given by (31) and (32),
respectively;

(2) the operator Γ𝜔 : 𝑌 → 𝑌 is a well-defined and
continuous operator for P-a.e. 𝜔 ∈ Ω.

Proof. Thefirst assertion follows from Lemmas 7 and 9, while
the second follows from Propositions 8 and 10.

The connection between Γ𝜔 and M𝜔 is given by the
following result.

Lemma 12. Assume that the cocycle A admits a tempered
dichotomy. Then,

(Γ𝜔 (𝐼𝑑 −M𝜔)) x = x, (37)

for P-a.e. 𝜔 ∈ Ω, 𝑘 sufficiently large, and every x ∈ 𝑌𝑘+1. In
particular,

(Γ𝜔 (Id −M𝜔)) x = x for x ∈ 𝑌. (38)

Proof. Observe that (recall that 𝐴 is given by (6))

((Γ1𝜔 (Id −M𝜔)) x)𝑛 =
∞∑
𝑚=0

A (𝜎𝑛−𝑚 (𝜔) ,𝑚)

⋅ 𝑃 (𝜎𝑛−𝑚 (𝜔)) 𝑥𝑛−𝑚 −
∞∑
𝑚=0

A (𝜎𝑛−𝑚 (𝜔) ,𝑚)
⋅ 𝑃 (𝜎𝑛−𝑚 (𝜔)) 𝐴 (𝜎𝑛−𝑚−1 (𝜔)) 𝑥𝑛−𝑚−1
= ∞∑
𝑚=0

A (𝜎𝑛−𝑚 (𝜔) , 𝑚) 𝑃 (𝜎𝑛−𝑚 (𝜔)) 𝑥𝑛−𝑚

− ∞∑
𝑚=0

A (𝜎𝑛−𝑚−1 (𝜔) , 𝑚 + 1) 𝑃 (𝜎𝑛−𝑚−1 (𝜔))
⋅ 𝑥𝑛−𝑚−1 = 𝑃 (𝜎𝑛 (𝜔)) 𝑥𝑛.

(39)
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Similarly, we have that

((Γ2𝜔 (Id −M𝜔)) x)𝑛 =
∞∑
𝑚=1

A (𝜎𝑛+𝑚 (𝜔) , −𝑚)
⋅ (Id − 𝑃 (𝜎𝑛+𝑚 (𝜔))) 𝑥𝑛+𝑚
− ∞∑
𝑚=1

A (𝜎𝑛+𝑚 (𝜔) , −𝑚) (Id − 𝑃 (𝜎𝑛+𝑚 (𝜔)))

⋅ 𝐴 (𝜎𝑛+𝑚−1 (𝜔)) 𝑥𝑛+𝑚−1 =
∞∑
𝑚=1

A (𝜎𝑛+𝑚 (𝜔) , −𝑚)
⋅ (Id − 𝑃 (𝜎𝑛+𝑚 (𝜔))) 𝑥𝑛+𝑚
− ∞∑
𝑚=1

A (𝜎𝑛+𝑚−1 (𝜔) , − (𝑚 − 1))
⋅ (Id − 𝑃 (𝜎𝑛+𝑚−1 (𝜔))) 𝑥𝑛+𝑚−1 = − (Id
− 𝑃 (𝜎𝑛 (𝜔))) 𝑥𝑛.

(40)

Hence,

((Γ𝜔 (Id −M𝜔)) x)𝑛 = ((Γ1𝜔 (Id −M𝜔)) x)𝑛
− ((Γ2𝜔 (Id −M𝜔)) x)𝑛

= 𝑃 (𝜎𝑛 (𝜔)) 𝑥𝑛
+ (Id − 𝑃 (𝜎𝑛 (𝜔))) 𝑥𝑛 = 𝑥𝑛,

(41)

which yields the first statement of the lemma. The second
statement is a direct consequence of the first.

Theorem 13. Assume that the cocycle A admits a tempered
dichotomy. Then, 𝐼𝑑 −M𝜔 is an invertible continuous operator
on 𝑌 for P-a.e. 𝜔 ∈ Ω.
Proof. By Lemma 12, we have that

Γ𝜔 (Id −M𝜔) = Id on 𝑌, (42)

for P-a.e. 𝜔 ∈ Ω. Let us now prove that

(Id −M𝜔) Γ𝜔 = Id on 𝑌, (43)

for P-a.e. 𝜔 ∈ Ω. Observe that (𝐴 is again as in (6))

(Γ1𝜔x −M𝜔Γ1𝜔x)𝑛 =
∞∑
𝑚=0

A (𝜎𝑛−𝑚 (𝜔) , 𝑚) 𝑃 (𝜎𝑛−𝑚 (𝜔))

⋅ 𝑥𝑛−𝑚 − 𝐴 (𝜎𝑛−1 (𝜔))
∞∑
𝑚=0

A (𝜎𝑛−𝑚−1 (𝜔) ,𝑚)

⋅ 𝑃 (𝜎𝑛−𝑚−1 (𝜔)) 𝑥𝑛−𝑚−1 =
∞∑
𝑚=0

A (𝜎𝑛−𝑚 (𝜔) , 𝑚)

⋅ 𝑃 (𝜎𝑛−𝑚 (𝜔)) 𝑥𝑛−𝑚 −
∞∑
𝑚=0

A (𝜎𝑛−𝑚−1 (𝜔) ,𝑚 + 1)
⋅ 𝑃 (𝜎𝑛−𝑚−1 (𝜔)) 𝑥𝑛−𝑚−1 = 𝑃 (𝜎𝑛 (𝜔)) 𝑥𝑛,

(44)

and thus

(Γ1𝜔x −M𝜔Γ1𝜔x)𝑛 = 𝑃 (𝜎𝑛 (𝜔)) 𝑥𝑛, (45)

forP-a.e. 𝜔 ∈ Ω, every 𝑛 ∈ Z, and x = (𝑥𝑛)𝑛∈Z ∈ 𝑌. Similarly,

(−Γ2𝜔x +M𝜔Γ2𝜔x)𝑛 = −
∞∑
𝑚=1

A (𝜎𝑛+𝑚 (𝜔) , −𝑚)
⋅ (Id − 𝑃 (𝜎𝑛+𝑚 (𝜔))) 𝑥𝑛+𝑚 + 𝐴 (𝜎𝑛−1 (𝜔))
⋅ ∞∑
𝑚=1

A (𝜎𝑛+𝑚−1 (𝜔) , −𝑚) (Id − 𝑃 (𝜎𝑛+𝑚−1 (𝜔)))

⋅ 𝑥𝑛+𝑚−1 = −
∞∑
𝑚=1

A (𝜎𝑛+𝑚 (𝜔) , −𝑚)
⋅ (Id − 𝑃 (𝜎𝑛+𝑚 (𝜔))) 𝑥𝑛+𝑚
+ ∞∑
𝑚=1

A (𝜎𝑛+𝑚−1 (𝜔) , − (𝑚 − 1))
⋅ (Id − 𝑃 (𝜎𝑛+𝑚−1 (𝜔))) 𝑥𝑛+𝑚−1 = (Id
− 𝑃 (𝜎𝑛 (𝜔))) 𝑥𝑛,

(46)

and therefore

(−Γ2𝜔x +M𝜔Γ2𝜔x)𝑛 = (Id − 𝑃 (𝜎𝑛 (𝜔))) 𝑥𝑛, (47)

for P-a.e. 𝜔 ∈ Ω, every 𝑛 ∈ Z, and x = (𝑥𝑛)𝑛∈Z ∈ 𝑌. Finally,
we observe that (45) and (47) readily imply (43).

We now establish the converse of Theorem 13.

Theorem 14. LetA be a linear cocycle with generator 𝐴 as in
(6) such that 𝐴(𝜔) is injective and compact operator for P-a.e.𝜔 ∈ Ω. Furthermore, assume that 𝐼𝑑 − M𝜔 is an invertible
operator on 𝑌 for P-a.e. 𝜔 ∈ Ω. Then, the cocycle A admits a
tempered dichotomy.

Proof. In a view of Theorem 4, it is sufficient to show that all
Lyapunov exponents ofA are nonzero. Assume the opposite,
that is, zero is a Lyapunov exponent ofA and let𝐸0(𝜔) denote
the corresponding Oseledets subspace. Then, Theorem 3
implies that

lim
𝑛→±∞

1
𝑛 log ‖A (𝜔, 𝑛) V‖ = 0,

for P-a.e. 𝜔 ∈ Ω, 0 ̸= V ∈ 𝐸0 (𝜔) .
(48)

Fix 0 ̸= V ∈ 𝐸0(𝜔) and consider a sequence x = (𝑥𝑛)𝑛∈Z ⊂ 𝑋
defined by

𝑥𝑛 = A (𝜔, 𝑛) V, 𝑛 ∈ Z. (49)

By (48), x ∈ 𝑌. It is easy to verify that (Id −M𝜔)x = x. Since
x ̸= 0, we obtain the contradiction with the invertibility of
Id −M𝜔.
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We note that Theorem 1 follows directly from Theorems
13 and 14.

Remark 15. We remark thatTheorems 3 and 4 are in fact valid
under weaker assumption that the cocycleA is quasicompact
and that 𝐴(𝜔) given by (6) is injective for P-a.e. 𝜔 ∈ Ω.
Consequently, all the results of this paper are also valid in
this setting. We have decided to present our results for the
particular case of compact cocycles in order to focus on
the novelties of the present paper and to avoid introducing
background on quasicompact cocycles (which can be found
in [39, 41, 42]). We note that the notion of a quasicompact
cocycle is not hard to introduce but it is quite challenging to
verify in practice that the cocycle possesses this property.

Furthermore, in principle, the assumption on the injec-
tivity of operators 𝐴(𝜔) could be eliminated. Indeed, the
most recent versions of the multiplicative ergodic theorem
(see [41, 42]) require that the cocycle A is quasicompact
and there are no requirements on the injectivity of operators𝐴(𝜔). Regarding Theorem 4, it is known that in the finite-
dimensional setting it holds without injectivity assumptions
(see [43, Theorem 2]). We believe that those ideas, when
combinedwith the tools developed in [38], could be extended
to the general case of quasicompact cocycles on Banach
spaces. However, we refrain from doing so since it would
require many technical arguments that would completely
overshadow main results of our paper.
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[15] N. Van Minh, F. Räbiger, and R. Schnaubelt, “Exponential sta-
bility, exponential expansiveness, and exponential dichotomy
of evolution equations on the half-line,” Integral Equations and
Operator Theory, vol. 32, no. 3, pp. 332–353, 1998.
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[32] L. Barreira, D. Dragcević, and C. Valls, “Characterization of
nonuniform exponential trichotomies for flows,” Journal of
Mathematical Analysis and Applications, vol. 434, no. 1, Article
ID 19793, pp. 376–400, 2016.
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