Feature Selection Using Binary Particle Swarm Optimization
with Time Varying Inertia Weight Strategies

Majdi Mafarja
Department of Computer Science, Birzeit University
Birzeit
mmafarja@birzeit.edu

Sobhi Ahmad

Department of Computer Science, Birzeit University
Birzeit
sahmed@birzeit.edu

ABSTRACT

In this paper, a feature selection approach that based on Binary Par-
ticle Swarm Optimization (PSO) with time varying inertia weight
strategies is proposed. Feature Selection is an important prepro-
cessing technique that aims to enhance the learning algorithm (e.g.,
classification) by improving its performance or reducing the pro-
cessing time or both of them. Searching for the best feature set is
a challenging problem in feature selection process, metaheuristics
algorithms have proved a good performance in finding the (near)
optimal solution for this problem. PSO algorithm is considered a
primary Swarm Intelligence technique that showed a good perfor-
mance in solving different optimization problems. A key component
that highly affect the performance of PSO is the updating strategy
of the inertia weight that controls the balance between exploration
and exploitation. This paper studies the effect of different time vary-
ing inertia weight updating strategies on the performance of BPSO
in tackling feature selection problem. To assess the performance of
the proposed approach, 18 standard UCI datasets were used. The
proposed approach is compared with well regarded metaheuris-
tics based feature selection approaches, and the results proved the
superiority of the proposed approach.

CCS CONCEPTS

« Computing methodologies — Feature selection;

KEYWORDS

Binary Particle Swarm Optimization, PSO, Feature Selection, Clas-
sification, Inertia Weight, Optimization

ACM Reference Format:

Majdi Mafarja, Radi Jarrar, Sobhi Ahmad, and Ahmed A. Abusnaina. 2018.
Feature Selection Using Binary Particle Swarm Optimization with Time
Varying Inertia Weight Strategies. In Proceedings of . ACM, New York, NY,
USA, 9 pages.

1 INTRODUCTION

The performance of the classification algorithms is highly sensitive
to data dimensionality [29]. Having a large number of features in a
dataset increases the chance to mislead the learning algorithm (e.g.,

2018. ACM ISBN 978-x-xxxx-xxxx-X/YY/MM. .. $15.00

Radi Jarrar
Department of Computer Science, Birzeit University
Birzeit
rjarrar@birzeit.edu

Ahmed A. Abusnaina

Department of Computer Science, Birzeit University
Birzeit
aabusnaina@birzeit.edu

classifier) and thus decrease its performance. Feature Selection (FS)
is a crucial preprocessing step that can contribute to improving the
performance of classification algorithms by eliminating redundant,
irrelevant and noisy features [12]. Besides enhancing the perfor-
mance of classification algorithms, FS contributes to reducing the
required computational time.

When designing an FS algorithm, two main issues must be taken
into consideration; the first is how to search for the best feature sub-
set, while the second is how to define the goodness of a subset [31].
Considering the goodness of a feature subset, there are two main
models that have been widely used in FS literature; filter and wrap-
per models. In filters, the evaluation process depends mainly on the
relations between the features and the dependencies between those
features and the class. Some examples of the filter approach are
F-score, Information Gain (IG) and Principal Component Analysis
(PCA) [26]. In wrapper approaches, the evaluation process depends
mainly on the performance of a learning algorithm (e.g., classifi-
cation) that should be involved in the evaluation process. Since a
learning algorithm is involved when evaluating each feature subset,
then the optimization process of the wrapper approaches would
be slower than filter approaches, however, the wrappers are more
appropriate when the performance of a specific learning algorithm
is the target.

The second aspect of FS methods is how to search for the best
feature subset. Three main strategies can be used; exhaustive (com-
plete), random and heuristic search strategies [31]. On one hand,
complete search strategy tends to find all possible feature subsets,
evaluate them, and then select the best one. This is obviously a
complicated and time-consuming strategy. Formally speaking, if
we have a dataset with N features, then 2™V subsets should be gen-
erated and evaluated. So, when dealing with large size datasets, this
strategy becomes impractical. On the other hand, random search is
another strategy to search the features subsets, but, in the worst
case, it may try as many solutions as the complete search does
without finding the target solution. The third possible strategy that
may be used with FS problem is the heuristic search.

This strategy is known to be moderate between the complete and
the random search strategies. It starts from a randomly generated
solution, then a heuristic value guides the search process towards
the target subset. The main aim of heuristic algorithms is to find
the (near) optimal solution in a reasonable time [22].

Many taxonomies were used to classify Metaheuristics (MH)
algorithms, one popular taxonomy is following the nature of inspi-
ration [49]. Two main categories are well studied in the literature;
Evolutionary Algorithms (EA), Swarm Intelligence (SI). In all EAs,
an initial population is randomly generated at the beginning of
the optimization process, then this population is updated in an
evolutionary manner until satisfying a stopping criterion. The most
popular examples of EAs are Genetic Algorithm (GA) [24] and
Differential Evolution (DE) [47].

SIalgorithms are nature inspired algorithms that mimic the social
and self-organization behaviors of the creatures that usually live in
groups like fish, birds, particles, etc. [15]. SI algorithms are similar
to EAs since they are population-based MH algorithms, where
an initial population should be initiated at the beginning of the
optimization process, then a certain behavior of the creature that the
algorithm was originally inspired from is simulated to update the
population. For example, Particle Swarm Optimization (PSO) [14],
is a primary SI algorithm that inspires the swarming behavior of
the folks of birds. In PSO, each solution in the population represents
a particle in the swarm, and the swarming behaviors of the birds
were simulated to update the population until satisfying a stopping
condition. Ant Colony Optimization (ACO) [13], is another example
of SI algorithms that simulate the food foraging behavior of ants
in nature. Moreover, the behavior of bees in identifying the food
sources and collecting their food in nature was the main inspiration
of the Artificial Bees Colony (ABC) algorithm [25].

Recently, many nature-inspired algorithms were proposed to
solve various optimization problems. Mussels Wandering Optimiza-
tion (MWO) algorithm [7] is inspired ecologically by mussels move-
ment behavior seeking nutrition. Flower Pollination Algorithm
(FPA) is another algorithm that simulates flower pollination be-
havior in nature [55]. The MWO and FPA algorithms and their
enhanced variants have been applied successfully in the supervised
training of both neural networks generations; Artificial Neural Net-
works [1, 2, 4, 45] and Spiking Neural Networks [3, 5]. Grey Wolf
Optimizer (GWO) [44] is a recent SI algorithm that mimics the hier-
archical organization of the grey wolves in nature. GWO has been
widely used in FS methods with much success. A GWO based FS
approach was proposed by [17]. In this approach, an evolutionary
operator (i.e., crossover) was incorporated into the GWO process.
Whale Optimization Algorithm (WOA), is another SI algorithm
that was recently proposed by Mirjalili and Lewis [43]. WOA was
successfully applied in many FS methods. Mafarja and Mirjalili pro-
posed two FS methods that employed improved WOA algorithm,
the first approach proposed a hybridized the WOA with Simulated
Annealing (SA) algorithm [41], while the second proposed an en-
hanced WOA algorithm by employing some evolutionary operators
like crossover and mutation [39]. Another FS method that based
on Antlion Optimizer (ALO) was proposed in [38]. More recntly, a
FS that adopted Salp Swarm Algorithm (SSA) as a selection mech-
anism was proposed in [19]. For more filter and wrapper feature
approaches, readers can refer to [6, 32-37, 40]

PSO is a primary SI algorithm that has been widely used to
solve many optimization problems with much success [42]. Since
PSO was originally proposed to solve the continuous optimization
problems, a binary version of PSO was proposed in [27] to tackle
the binary optimization problem called BPSO. BPSO was used as

Majdi Mafarja, Radi Jarrar, Sobhi Ahmad, and Ahmed A. Abusnaina

a search strategy in many FS approaches. Xue et al. [52] proposed
FS approaches that based on BPSO with different initialization
and updating strategies. A recent FS that is based on an enhanced
BPSO with a crossover operator was proposed in [11]. In [9], a
wrapper FS approach that is based on BPSO as a search strategy and
C4.5 classifier as an evaluator was proposed. In all the previously
mentioned approaches, PSO proved its superior performance in
comparison to similar FS approaches that use SI and EAs based
algorithms.

In any population-based metaheuristic algorithm (e.g., PSO, GWO,
ALO), there are two main phases that the optimization process
should pass in; exploration (diversification) and exploitation (in-
tensification) [49]. In exploration, the algorithm tries to explore
the whole search space with the aim of finding the promising re-
gions that may contain the global optima. However, in exploitation,
the algorithm tries to search the neighborhood of each solution
found in the exploration phase. Thus, it’s important to have more
exploration than exploitation at the early stages of the optimization
process, while the exploitation becomes more important at the last
stages to increase the probability of discovering better solutions,
close to those found in the previous phase. Having a good balance
between exploration and exploitation has a high impact on the
performance of the algorithm.

In PSO, there is only one parameter, called inertia weight (w),
that controls the balance between exploration and exploitation.
Using a large value for w facilitates exploration, while a small value
facilitates exploitation. Thus, a proper adjustment for w is a key
issue that affects the performance of BPSO algorithm. In literature,
many studies were performed to assess the influence of the updating
strategies for such parameters [48]. Harrison et al. [23] empirically
investigated different updating strategies for the inertia weight
parameter.

In this paper, a wrapper FS approach was proposed, where five
different updating strategies (i.e., linear, nonlinear coefficient, de-
creasing, oscillating and algorithmic) were employed to control the
inertia weight parameter in BPSO. In the proposed approach, k-NN
classifier was used as an evaluator, the classification accuracy and
the number of selected features were incorporated in the fitness
function. The proposed approaches were benchmarked using 12
well-known UCI datasets [30]. The experimental results showed a
varying performance of BPSO according to the employed updating
strategy of w. The produced results proved the effect of using differ-
ent updating strategies with BPSO and the algorithm’s performance.
The non-linear updating strategy with coefficient based approach
showed the best performance in terms of classification accuracy
and the fitness value. Followed by the linear-based approach and
which ranked in the first place in terms of the number of selected
features. This finding proves that the updating strategies that grad-
ually decrease w are able to balance between the exploration and
exploitation mechanisms in BPSO.

The remaining sections of this paper are organized as follows:
In Section 2, an overview of PSO algorithm is presented, followed
by a description of the proposed approach in Section 3. Section 4
presents the experimental results. Finally, a conclusion and a future
direction are provided in Section 5.

Feature Selection Using Binary Particle Swarm Optimization with Time Varying Inertia Weight Strategies ys

2 PARTICLE SWARM OPTIMIZATION

Particle Swarm Optimization is a population-based metaheuristic
algorithm that is motivated by the simulation of social behavior
such as of the flock of birds and school of fish [46]. PSO is a quite
simple algorithm and a new solution from a previous one can be
obtained using only two rules [8]. Although it is simple, PSO was
found to converge to the optimum in a wide range of optimization
problems and is computationally feasible approach [8, 10]. The
fundamental concept of PSO is that knowledge is optimized not
only by the personal experience but from the social interaction in
the population [51].

In PSO, every single particle (i.e., candidate solution) is a point in
the d-dimensional search space. Particles have their own memories
that record their best experience in the search space along with the
best experience encountered by the swarm as a whole to find the
best solution [50]. Each individual solution in PSO moves in the
search space with a dynamically adjusted velocity that is affected
by its own experience and the global experience of other particles.

The initial population of the particles in the swarm is distributed
randomly over the search space. The position of each particle is
denoted as a vector where D is the dimensionality of the search
space. As each particle moves x; = (xj1, X3, - - ., X;p) in the search
space to find the optimal solution, the velocity of the search v; =
(vi1,vig, ..., vip). During the movement, particles update their po-
sitions and velocity according to their experience and that of their
neighbors. Each particle has a memory to record the position where
it encountered its best experience and is denoted as pbest. The global
best, which is the best encounter among all particles, is denoted as
gbest. The position and velocity are updated for each particle. Both
pbest and gbest help in updating the position and velocity of each
particle according to the following equations

xig(t +1) = x;q(t) + v;q(t + 1) (1)

Vig(t+1) = wxv;g(t)+c1xr1#(pig —x;q(8)) +ca%ry *(pgd —x;4(1))
@)

t'" iteration in the process of evolution.

where t represents the
d € D is the d*" dimension in the search space. Variable w is the
inertia weight that controls the impact of the previous velocities on
the current velocity. The variables ¢; and ¢y are the acceleration (i.e.,
learning) constants. r1, rz € [0, 1] are uniformly distributed random
numbers. Variable p;, is the local best (i.e., pbest) and variable pgy
is the global best (i.e., gbest) in the d'" dimension.

The velocity is constrained by a predefined maximum velocity
(i.e., Vmax) and the new velocity vit{;'l € [-Ymax>Ymax). The al-
gorithm stops when a predefined stopping criterion is met. The
stopping criterion might be a good fitness value or a predefined
maximum number of iteration [51].

2.1 Binary Particle Swarm Optimization

PSO was originally applied to solve problems in continuous-numbers
search space. However, feature selection, as in many other opti-
mization problems, occur in discrete search spaces. Kennedy and
Eberhart [27] developed a binary version of the particle swarm

algorithm (BPSO) to tackle optimization problems in discrete do-
mains. In BPSO, the velocity is still updated in the same fashion as
in the standard PSO. However, variables x;4, p;4, andpgd can only
have the values 0 or 1. In doing so, velocity would indicate the
probability of a particle in the position vector to take the value 1
[53].

In BPSO, the position of the current particle is updated as in Eq.
(3) based on the probability value T (V;) obtained from Eq. (4).

1 Ifrand < S(ov(t+1
x(t+1) = ran < (v(t + 1)) 3)
0 Otherwise
where S(v(t)) is the Sigmoid function as depicted in Fig. 1
= —F 4
S@) = @

where rand is a random number € [0, 1].

Figure 1: Sigmoid Transfer function

2.2 Binary Particle Swarm Optimization for
Feature Selection

In this paper, a wrapper FS ‘that employs BPSO algorithm as a
search strategy and k-NN classifier as an evaluator is proposed. To
formulate the FS problem as an optimization problem, two issues
must be considered. The first issue is the solution representation.
Since FS is a binary optimization problem, then we choose to repre-
sent the solution with a binary vector, where the 1 values indicate
that the corresponding feature is selected, otherwise it is not se-
lected. The solution size is the number of features in each dataset.
The second issue is designing the fitness function since we adopted
the wrapper approach, then in addition to the number of selected
features, the classification accuracy must be taken into considera-
tion. Thus, the proposed fitness function is considered both number
of selected features and the classification accuracy (see Eq. 5). Since
the classification accuracy is to be minimized, the classifier error
rate, which is the complement of the classification accuracy, is used
in the fitness function.

R
Fitness = ayr(D) + [3% (5)

where yr(D) shows the classifiers error rate, |R| represents the
number of selected features the feature subset, |C| represents di-
mensionality of the dataset, and a € [1,0], § = (1 — «) are two
variables to address the importance of each objective (i.e., error rate
and selection ration). The values of @, and were adopted from
literature [6, 17].

3 THE PROPOSED APPROACH

In every population-based MH algorithm, the optimization process
consists of two primary stages; exploration and exploitation. Having
a good balance between those two stages enables the algorithm to
converge towards the global optima in a reasonable time. The ideal
situation for any algorithm is to employ the exploration operator
more than the exploitation operator at the beginning of the search
process. This enables the algorithm to explore many regions in
the search space, then those regions need to be searched carefully
hoping to find the global optima. Usually, in each algorithm, there
is one or more parameter(s) that plays this role. Fortunately, PSO
has only one parameter that controls this balance; called inertia
weight (w).

To achieve this goal, the value of w should be gradually decreased
over the course of time (i.e., iteration number) instead of using a
fixed value. Different updating mechanisms with different behavior
were used in literature. In this paper, five different update strategies
that are based on different mechanisms were tested and evaluated
as follows:

o Inertia weight with linearly decreasing strategy
Shi and Eberhart [46] presented this method based on the
assumption that exploration is favored at early stages of the
optimization process, while exploitation is favored at the
end. w at each iteration is defined as in Eq.(6).

w(t) = Wmax — (Wmax — Wmin)% (6)

In this strategy, w is decreased linearly from w4y at the
early iterations to wp,n at the later. Fig (2a) shows the be-
havior of this strategy.

o Inertia weight with non-linear coefficient decreasing strategy
The non-linear coefficient decreasing strategy was proposed
by Yang et al. [54] to improve the performance of PSO that
uses linear updating strategy, w at each iteration is defined
as in Eq.(7).

w(t) = Wmax — (Wmax — Wmin)(%) (7)

where « is suggested by the authors to be a = # . Fig (2b)
shows the behavior of this strategy.

o Inertia weight with decreasing strategy
Fan and Chiu [18] proposed this strategy to update the inertia
weight as a nonlinear fashion over the iterations as in Eq.(8).

9 0.3
w(t) = (;) ®)

Fig (2c) shows the behavior of this strategy.

Majdi Mafarja, Radi Jarrar, Sobhi Ahmad, and Ahmed A. Abusnaina

o Inertia weight with oscillating strategy
The oscillating decreasing strategy employs a sinusoidal
function to update w during the search process instead of
monotonically decreasing it [28]. The inertia weight (w) at
each iteration is defined as in Eq.(9).

WinintWw Wmax — Wmin 27 t(4k+6) . 3T
wy = L —max cos ift <=
w(t)= t 2 2 (T f 4
Wmin otherwise
9)

where k is set by the authors to 7. Fig (2d) shows the behavior
of this strategy.

o Inertia weight with logarithmic strategy
Gao et al. [21] presented a logarithmic decreasing strategy
to update the w value in the course of iterations according
to Eq. (10).

10t
W(t) = Wmax + (Wmin — Wmax) X 10g10 (a + T) (10)

where a is a constant that set to 1 by the authors. Fig (2e)
shows the behavior of this strategy.

4 EXPERIMENTAL SETUP AND RESULTS

In this section, the results obtained from the proposed approaches
were presented and discussed. To assess the performance the pro-
posed approaches we used a set of the well-known datasets from
UCI repository [30]. The details of the used datasets are presented
in Table 1. The parameters that have been used in all experiments
are listed in Table 2. All parameter values have been set either
based on some preliminary results or based on previous researches.
The proposed approaches were implemented using Matlab, and all
experiments were executed on a PC with Intel Core i5 processor,
2.2 GHz CPU and 4 GB of RAM. A KNN (with K = 5 [39]) clas-
sifier was used to measure the fitness of each feature subset. All
datasets were divided into two parts; 80% of the instances were
devoted to training and 20% of the instances were used to test the
approaches [20]. The presented approaches were evaluated based
on several criteria; average classification accuracy (see Eq. 11), av-
erage selection size (see Eq. 13), average fitness values (see Eq. 12),
and finally the average running time (see Eq. 14).

181 &
AvgAccuracy = i Z N Z (Ci =Li) (11)
==

where M is the number of runs for an algorithm to find the optimal
subset of features, N is the number of dataset instances, C; is the
predictive class, and L; is the actual class in the labeled data.

M
. 1 i
AvgFitness = i Z Fit} (12)
Jj=1
where M is the number of runs, F it}; is the fitness value of the best
solution in the i*" run

Feature Selection Using Binary Particle Swarm Optimization with Time Varying Inertia Weight Strategies

08
1 o7t
1 osf |l
o5t

08F \
04l \

0.6
03r R

0.3

0.4 o
02} .
02 |

L 02f
0.1 4 o1

0 20 40 60 80 20 40 60 80 40 60 80 100

(a) Linear Updating Strategy (b) Non-Linear Updating Strategy
0.9 T T T T T

0.9

(c) Decreasing Updating Strategy

0.8 1 08r

0.7 1 07p
06 1 06F
05F 1 o0sf
04r 04r
03F 1 03f
0.2 1 02r

01 1 01p

0 20 40 60 80

(d) Oscillating Updating Strategy

100

0

0 20 40 60 80 100

(e) Logarithm Updating Strategy

Figure 2: Different Time Varying Updating Strategies for Inertia Weight Parameter in BPSO

d;
(13)

U|~ *

lM
AvgSize = —
vgSize M;

where M is the number of runs, d :‘ is the number of selected features
in the best solution from the i*" run, and D is the total number of

Table 2: The parameter settings

Parameter Value

Population size 10

Number of iteration 100

features in the original dataset. Dimension Number of features
M Number of runs for each technique 30
AvgTime = % Z RT; (14) «a in fitness function 0.99
i=1 B in fitness function 0.01
where]\/i his the number of runs, RT; is the running time required 2in GWO (20]
for the i*" run to be completed.
Wmin 0
Table 1: The used UCI benchmark datasets Wmax 2

Dataset Number of Features Number of Samples
To study the influence of w using different updating strategies
Breastcancer d 699 on the performance of BPSO algorithm, a comparison between the
BreastEW 30 569 f dati - ided in thi . din additi
Exactly? 13 1000 ve updating strategies is provided in this section and in addition to
Lymphography 18 148 the results of two state-of-the-art FS methods (i.e., BGWO [17] and
M-ofon 13 1000 BALO [16]). Note that the best results are highlighted in boldface
PenglungEW 3925 73 in the following tables.
SonarEW 60 208 Inspecting the classification accuracy results in Table 3, it can
SpectEW 22 267 be seen that, in general, the BPSO based approaches obtained the
KrvskpEW 36 3196 best results compared with BGOW and BALO based approaches.
Tic-tac-toe 9 958 Both BGWO and BALO obtained the best result in one out of 12
Vote 16 300 datasets while BPSO based approaches obtained the best results on
WaveformEW 40 5000

the remaining datasets. Considering BPSO based together, it can
be seen that using BPSO with non-linear with coefficient updating

mechanism outperformed other approaches in 42% of the datasets,
followed by the linear and the logarithmic based BPSO approaches
that obtained the best results in three datasets. Note that those
three approaches employ a decreasing inertia weight that depends
on the ratio of the current iteration () to the maximum number
of iteration (T). Decreasing (which is a variant of the non-linear
updating mechanism) based approach comes in the third place. This
approach decreases the inertia weight during the search process,
but the maximum number of iteration is not involved in the updat-
ing process. From Fig. (2c), it can be noticed that w is decreased
faster than other approaches, which means more exploitation than
exploration is performed during the search process while the other
approaches have a better balance between the exploration and ex-
ploitation. The oscillation based approach comes in the last place in
terms of optimizing the classification accuracy. This can be justified
due to the behavior of this function where the optimization process
oscillates between exploration and exploitation phases in the early
iterations. The exploitation phase is emphasized in the last quartile
of the iterations.

Table 3: Average classification accuracy for all approaches

Dataset Linear Non-linear Decreasing Oscillating Logarithm bGWO bALO
coefficient
Breastcancer 0.957 0.984 0.958 0.964 0.957 0.960 0.943
BreastEW 0.932 0.918 0.942 0.928 0.940 0.944 0.936
Exactly2 0.700 0.702 0.653 0.704 0.735 0.682 0.727
Lymphography ~ 0.740 0.832 0.808 0.798 0.854 0812 0.774
M-of-n 1.000 1.000 1.000 1.000 1.000 0.950 0.998
penglungEW 0.931 0.962 0.964 0.772 0.967 0.841 0.993
SonarEW 0.948 0.900 0.874 0.933 0.911 0.890 0.887
SpectEW 0.717 0.746 0.879 0.803 0.745 0.780 0.814
KrvskpEW 0.970 0.976 0.969 0.970 0.966 0.945 0.974
Tic-tac-toe 0.823 0.702 0.807 0.740 0.759 0.799 0.806
Vote 0.981 0.984 0.928 0.803 0.949 0.955 0.936

WaveformEW 0.745 0.755 0.742 0.747 0.746 0.735 0.730

Besides the good performance of the linear and non-linear based
approaches on the classification accuracy, they recorded the best
results in selecting the minimal number of features as can be seen
in Table 4. The linear based approach was ranked the first among
where it outperformed other approaches on 60 % of the datasets,
followed by the non-linear based approach. The decreasing and
logarithmic based approaches come in the third place by obtaining
the best results in 2 datasets only. The obtained results prove the
ability of the linear and non-linear based approaches to select the
most informative features that reveal the highest classification
accuracy.

Table 4: Average selection size for all approaches

Dataset Linear Non-linear Decreasing Oscillating Logarithm bGWO bALO
coefficient

Breastcancer 5.00 5.40 6.90 4.00 6.00 5.00 3.53
BreastEW 10.73 13.80 13.60 13.90 12.47 18.00 20.93
Exactly2 6.77 5.20 4.50 6.97 6.97 7.50 9.03
Lymphography 6.73 7.20 6.80 7.87 733 10.60 1247
M-of-n 6.00 6.00 6.00 6.00 6.00 9.03 6.97
penglungEW 114.77 120.40 136.80 133.77 129.30 154.57 160.17
SonarEW 24.27 25.97 24.90 24.53 26.03 36.17 43.53
SpectEW 6.37 8.27 7.50 8.43 7.17 12.03 12.87
KrvskpEW 20.63 18.33 21.20 20.83 21.50 29.30 27.57
Tic-tac-toe 6.00 5.00 9.00 9.00 6.17 8.20 6.20
Vote 3.17 3.53 4.10 3.50 4.30 6.87 8.37
WaveformEW 22.13 2243 21.40 21.67 20.93 34.20 35.03

Majdi Mafarja, Radi Jarrar, Sobhi Ahmad, and Ahmed A. Abusnaina

Table 5 shows the average fitness values for all approaches. It
can be clearly seen that the best fitness values were obtained by
the BPSO based approaches in comparison to others. Moreover, the
linear-based approach outperformed other approaches. Next to it
is the non-linear and decreasing approaches which come in the
second place. Note that BGWO and BALO did not outperform the
BPSO approaches in any dataset.

Table 5: Best fitness value for all approaches

Dataset Linear Non-linear Decreasing Oscillating Logarithm bGWO bALO
coefficient
Breastcancer 0.020 0.008 0.023 0.012 0.022 0.029 0.026
BreastEW 0.024 0.021 0.019 0.020 0.026 0.032 0.035
Exactly2 0.233 0.229 0.188 0.209 0.198 0.247 0.241
Lymphography 0.139 0.048 0.062 0.042 0.024 0.137 0.139
M-of-n 0.005 0.005 0.005 0.005 0.005 0.061 0.009
penglungEW 0.004 0.004 0.004 0.189 0.004 0.132 0.005
SonarEW 0.004 0.044 0.060 0.021 0.018 0.074 0.061
SpectEW 0.076 0.082 0.077 0.101 0.168 0.159 0.105
KrvskpEW 0.029 0.022 0.023 0.025 0.026 0.047 0.024
Tic-tac-toe 0.173 0.182 0.145 0.171 0.193 0.169 0.180
Vote 0.002 0.002 0.003 0.002 0.017 0.021 0.037
WaveformEW 0.210 0.201 0.214 0.204 0.203 0.221 0.219

The run-time of the algorithms is another important factor to
be considered especially when dealing with the large datasets. In
Table 6, it is clear that BPSO methods require lower average run-
time to obtain the best results in comparison to the other methods.
The comparison of convergence rates is also provided in Fig. 3.

From Fig. 3, it can be observed that the non-linear based approach
has a superior convergence rate besides obtaining the best results
in terms of fitness and accuracy on 50% of the datasets. Moreover,
it has a competitive performance on the remaining datasets. In
other words, it takes BPSO fewer iterations to converge and find
the (near) optimal solution in comparison to BGWO and BALO.

Table 6: Average running time for all approaches

Dataset Linear Non-linear Decreasing Oscillating Logarithm bGWO bALO
coefficient
Breastcancer 22.88 2299 37.62 38.63 48.69 39.58 43.22
BreastEW 20.87 20.13 31.20 32.22 44.25 37.49 42.99
Exactly2 28.69 3436 36.38 35.00 54.25 40.20 59.85
Lymphography 33.09 32.56 25.12 22.76 39.22 2492 3529
M-of-n 51.28 43.02 33.91 32.67 53.49 36.87 55.95
penglungEW 37.46 41.67 23.93 22.57 41.53 53.12 37.89
SonarEW 33.00 39.89 22.69 21.21 36.32 35.12 37.53
SpectEW 35.80 41.14 25.10 20.30 31.74 38.64 34.34
KrvskpEW 278.34 249.07 164.17 22593 237.40 417.86 350.02
Tic-tac-toe 48.42 51.89 30.54 53.46 53.20 65.94 41.47
Vote 37.30 36.49 20.35 39.69 38.23 38.44 25.00
WaveformEW 681.91 595.56 580.10 615.04 640.08 941.50 793.24

Taking the results in this section together, it showed that the
updating strategy of the inertia weight parameter (w) influences
the robustness and the convergence of BPSO algorithm. In the
proposed approaches, five updating strategies were employed to
update the inertia weight parameter of the BPSO algorithm. Four
strategies depend on decreasing the inertia weight gradually in the
course of iterations to allow more exploration than exploitation
in the early iterations, while the exploitation is emphasized in the
later iterations. The fifth strategy converts between exploration
and exploitation in the first 0.75 % of the iterations and the ex-
ploitation are employed in the last 0.25 % of the iterations. The

Feature Selection Using Binary Particle Swarm Optimization with Time Varying Inertia Weight Strategies

0.035 0.06 03
Tnear Linear Linear
Non-linear Non-linear Non-linear
003 Decreasing [0.05 Decreasing 0.25 Decreasing|
Oscillating Oscillating Oscillating [~
Logarithm | Logarithm Logarithm [~
0.025 bGWO bGWO bGWO —
\¥ bALO 0.04 bALO 02 bal0 |
° o o
2 3 £
g oo s s
ry @ 0.03 0015
a 2 @
2 @ @
£ 0015 £ 5
T i i
0.02 0.1
0.01
0.01 0.05
0.005
0 0 0
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Iteration Number Iteration Number Iteration Number
(a) Breastcancer (b) BreastEW (c) Exactly2
012 0.25 0.2
Linear Linear Linear
oa1r Non-finear Non-finear 0.18 Non-finear
Decreasing Decreasing Decreasing
0.1f Oscillating 02 Oscillating 0.16 Oscillating
Logarithm Logarithm Logarithm
0.09 bGWO bGWO 014 bGWO |
| bALO bALO bALO
S o008 So1s 3 0124
]]]
> > >
0 007 o @ 01
@ @ @
s =} =}
T 0.06 T o1 i 008
l
0.06
0.04
0
0.02f
0.02 . . . : 1 ° n n n n]
0 20 40 60 80 100 0 20 40 60 80 100
Iteration Number Iteration Number Iteration Number
(d) Lymphography (e) M-of-n (f) penglungEwW
03 0.14 0.25
Linear Linear Linear
Non-linear Non-linear Non-linear
0251 Decreasing 012 Decreasing N Decreasing
Oscillating Oscillating 02 Oscillating
Logarithm Logarithm N~ Logarithm
bGWO 01 bGWO —] bGWO
0.2 bALO bALO bALO -
o o o
0.15
3 = 0.08 3
> > >
© 015 @ @
@ @ @
5 £ 006 I
i i i o1
0.1
0.04
005 0.05
: 0.02
0 0 : : . n 1 °
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Iteration Number Iteration Number Iteration Number
(g) SonarEW (h) SpectEW (i) KrvskpEW
025 0.2 03
Linear Linear Linear
Non-linear 0.18 Non-linear [~ Non-linear
Decreasing Decreasing 0.25 Decreasing
Oscillating | 0.16 Oscillating \\ Oscillating
Logarithm Logarithm NS Logarithm
bGWwo | 0.14 bGWO ————— bGWO
bALO bALO 0.2 bALO
E So12 e
] o o
> > >
@ @ 01 © 015
@ @ @
s =} =}
T i 0.08 T
0.1
0.06
0.04
t\ 0.05
\
0.02]L ——
0 0 0
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Iteration Number Iteration Number Iteration Number
(j) Tic-tac-toe (k) Vote (1) WaveformEW

Figure 3: Convergence curves for BPSO with Different Updating Strategies for the Inertia Weight Parameters.

results showed that the updating strategies that used to decrease
the value of w gradually performed better than the oscillating one.
Moreover, the non-linear updating strategy was able to outperform
other approaches in terms of classification accuracy and fitness
values, while it obtained competitive results in terms of the num-
ber of selected features. Here, we can remark that the enhanced
performance of the proposed approach is because the non-linear
update strategy enhanced the ability of BPSO algorithm to bal-
ance between exploration and exploitation. Also, the results of this
section showed the superior performance of the presented BPSO
approaches when compared to the state-of-the-art approaches.

5 CONCLUSIONS

In this paper, a wrapper FS approach using BPSO algorithm was
presented. In PSO, there is only one parameter (called inertia weight
w) that controls the balance between exploration and exploitation.
Having a good balance between these two phases is a key issue in
enhancing the performance of any population-based metaheuristic
algorithm. In this paper, the influence of using five different updat-
ing strategies for w was investigated. For evaluation purposes, 12
UCI benchmark datasets were used. The reported results showed
that BPSO methods have shown superior results in comparison to
other similar methods by means of average classification accuracy,
average selection size, the best fitness value, and the average run-
ning time. The extensive analysis of the reported results revealed
that the updating strategies that gradually decrease the inertia
weight parameter in linear and non-linear fashions could improve
the exploration and exploitation behaviors of BPSO for FS tasks.

REFERENCES

[1] Ahmed A Abusnaina and Rosni Abdullah. 2013. Mussels wandering optimization
algorithmn based training of artificial neural networks for pattern classification.
Proceedings of the 4th International Conference on Computing and Informatics,
ICOCI, 78-85.

Ahmed A Abusnaina, Rosni Abdullah, and Ali Kattan. 2014. Enhanced MWO
training algorithm to improve classification accuracy of artificial neural networks.
In Recent advances on soft computing and data mining. Springer, 183-194.

[3] Ahmed A. Abusnaina, Rosni Abdullah, and Ali Kattan. 2015. The Application
of Mussels Wandering Optimization Algorithm for Spiking Neural Networks
Training. In Ist International Engineering Conference (IEC2014) On Developments
in Civil and Computer Engineering Applications. 197-204.

[4] Ahmed A Abusnaina, Rosni Abdullah, and Ali Kattan. 2018. Self-Adaptive Mus-
sels Wandering Optimization Algorithm with Application for Artificial Neural
Network Training. Journal of Intelligent Systems (2018).

[5] Ahmed A Abusnaina, Rosni Abdullah, and Ali Kattan. 2018. Supervised Training
of Spiking Neural Network by Adapting the E-MWO Algorithm for Pattern
Classification. Neural Processing Letters (2018), 1-22.

[6] Sobhi Ahmed, Majdi Mafarja, Hossam Faris, and Ibrahim Aljarah. 2018. Feature
selection using salp swarm algorithm with chaos. (2018).

[7] Jing An, Qi Kang, Lei Wang, and Qidi Wu. 2013. Mussels wandering optimization:
an ecologically inspired algorithm for global optimization. Cognitive Computation
5,2 (2013), 188-199.

[8] Julio Barrera and Carlos A Coello Coello. 2009. A review of particle swarm
optimization methods used for multimodal optimization. In Innovations in swarm
intelligence. Springer, 9-37.

[9] Lucija Brezo¢nik. 2017. Feature selection for classification using particle swarm
optimization. In Smart Technologies, IEEE EUROCON 2017-17th International Con-
ference on. IEEE, 966-971.

[10] Girish Chandrashekar and Ferat Sahin. 2014. A survey on feature selection

methods. Computers & Electrical Engineering 40, 1 (2014), 16-28.

Yonggang Chen, Lixiang Li, Jinghua Xiao, Yixian Yang, Jun Liang, and Tao Li. 2018.

Particle swarm optimizer with crossover operation. Engineering Applications of

Artificial Intelligence 70 (2018), 159-169.

[12] M. Dash and H. Liu. 1997. Feature selection for classification. Intelligent data
analysis 1, 3 (1997), 131-156.

&,

[11

Majdi Mafarja, Radi Jarrar, Sobhi Ahmad, and Ahmed A. Abusnaina

[13] Marco Dorigo, Mauro Birattari, and Thomas Stutzle. 2006. Ant colony optimiza-

tion. IEEE computational intelligence magazine 1, 4 (2006), 28-39.

Russell Eberhart and James Kennedy. 1995. A new optimizer using particle swarm

theory. In Micro Machine and Human Science, 1995. MHS’95., Proceedings of the

Sixth International Symposium on. IEEE, 39-43.

Russell C Eberhart, Yuhui Shi, and James Kennedy. 2001. Swarm intelligence.

Elsevier.

Eid Emary, Hossam M Zawbaa, and Aboul Ella Hassanien. 2016. Binary ant lion

approaches for feature selection. Neurocomputing 213 (2016), 54-65.

[17] Eid Emary, Hossam M Zawbaa, and Aboul Ella Hassanien. 2016. Binary grey

wolf optimization approaches for feature selection. Neurocomputing 172 (2016),

371-381.

Shu-Kai S Fan and Yi-Yin Chiu. 2007. A decreasing inertia weight particle swarm

optimizer. Engineering Optimization 39, 2 (2007), 203-228.

[19] Hossam Faris, Majdi M. Mafarja, Ali Asghar Heidari, Ibrahim Aljarah, AladaAZ M.
Al-Zoubi, Seyedali Mirjalili, and Hamido Fujita. 2018. An efficient binary
Salp Swarm Algorithm with crossover scheme for feature selection problems.
Knowledge-Based Systems 154 (2018), 43 — 67. https://doi.org/10.1016/j.knosys.
2018.05.009

[20] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. 2001. The elements of
statistical learning. Vol. 1. Springer series in statistics New York.

[21] Yue-lin Gao, Xiao-hui An, and Jun-min Liu. 2008. A particle swarm optimization
algorithm with logarithm decreasing inertia weight and chaos mutation. In
Computational Intelligence and Security, 2008. CIS’08. International Conference on,
Vol. 1. IEEE, 61-65.

[22] Fred W Glover and Gary A Kochenberger. 2006. Handbook of metaheuristics.
Vol. 57. Springer Science & Business Media.

[23] Kyle Robert Harrison, Andries P Engelbrecht, and Beatrice M Ombuki-Berman.
2016. Inertia weight control strategies for particle swarm optimization. Swarm
Intelligence 10, 4 (2016), 267-305.

[24] John H. Holland. 1992. Adaptation in natural and artificial systems. MIT Press.

211 pages.

Dervis Karaboga and Bahriye Basturk. 2007. A powerful and efficient algo-

rithm for numerical function optimization: artificial bee colony (ABC) algorithm.

Journal of global optimization 39, 3 (2007), 459-471.

Alexandr Katrutsa and Vadim Strijov. 2017. Comprehensive study of feature

selection methods to solve multicollinearity problem according to evaluation

criteria. Expert Systems with Applications 76 (2017), 1-11.

[27] James Kennedy and Russell C Eberhart. 1997. A discrete binary version of the

particle swarm algorithm. In Systems, Man, and Cybernetics, 1997. Computational

Cybernetics and Simulation., 1997 IEEE International Conference on, Vol. 5. IEEE,

4104-4108.

Kyriakos Kentzoglanakis and Matthew Poole. 2009. Particle swarm optimization

with an oscillating inertia weight. In Proceedings of the 11th Annual conference on

Genetic and evolutionary computation. ACM, 1749-1750.

Ohbyung Kwon and Jae Mun Sim. 2013. Effects of data set features on the

performances of classification algorithms. Expert Systems with Applications 40, 5

(2013), 1847-1857.

[30] M. Lichman. 2013. UCI Machine Learning Repository. (2013). http://archive.ics.
uci.edu/ml

[31] Huan Liu and Hiroshi Motoda. 2012. Feature selection for knowledge discovery

and data mining. Vol. 454. Springer Science & Business Media.

Majdi Mafarja and Salwani Abdullah. 2011. Modified great deluge for attribute

reduction in rough set theory. In Fuzzy Systems and Knowledge Discovery (FSKD),

2011 Eighth International Conference on, Vol. 3. IEEE, 1464-1469.

Majdi Mafarja and Salwani Abdullah. 2013. Investigating memetic algorithm

in solving rough set attribute reduction. International Journal of Computer

Applications in Technology 48, 3 (2013), 195-202.

Majdi Mafarja and Salwani Abdullah. 2013. Record-to-record travel algorithm

for attribute reduction in rough set theory. J Theor Appl Inf Technol 49, 2 (2013),

507-513.

[35] Majdi Mafarja, Salwani Abdullah, and Najmeh S Jaddi. 2015. Fuzzy population-
based meta-heuristic approaches for attribute reduction in rough set theory.
World Academy of Science, Engineering and Technology, International Journal of
Computer, Electrical, Automation, Control and Information Engineering 9, 12 (2015),
2462-2470.

[36] Majdi Mafarja, Ibrahim Aljarah, Ali Asghar Heidari, Abdelaziz I. Hammouri,

Hossam Faris, AlaAAZM. Al-Zoubi, and Seyedali Mirjalili. 2018. Evolutionary

Population Dynamics and Grasshopper Optimization approaches for feature

selection problems. Knowledge-Based Systems 145 (2018), 25 — 45. https://doi.

0rg/10.1016/j.knosys.2017.12.037

Majdi Mafarja and Derar Eleyan. 2013. Ant colony optimization based feature

selection in rough set theory. (2013).

Majdi Mafarja, Derar Eleyan, Salwani Abdullah, and Seyedali Mirjalili. 2017.

S-shaped vs. V-shaped transfer functions for ant lion optimization algorithm in

feature selection problem. In Proceedings of the International Conference on Future

Networks and Distributed Systems. ACM, 14.

[14

[15

[16

[18

[25

[26

[28

[29

[32

[33

[34

@
=

[38

https://doi.org/10.1016/j.knosys.2018.05.009
https://doi.org/10.1016/j.knosys.2018.05.009
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.1016/j.knosys.2017.12.037
https://doi.org/10.1016/j.knosys.2017.12.037

Feature Selection Using Binary Particle Swarm Optimization with Time Varying Inertia Weight Strategies ys

[39] Majdi Mafarja and Seyedali Mirjalili. 2018. Whale optimization approaches for global optimization 11, 4 (1997), 341-359.

wrapper feature selection. Applied Soft Computing 62 (2018), 441-453. [48] Mojtaba Taherkhani and Reza Safabakhsh. 2016. A novel stability-based adaptive
[40] Majdi M Mafarja, Derar Eleyan, Iyad Jaber, Abdelaziz Hammouri, and Seyedali inertia weight for particle swarm optimization. Applied Soft Computing 38 (2016),

Mirjalili. 2017. Binary dragonfly algorithm for feature selection. In New Trends 281-295.

in Computing Sciences (ICTCS), 2017 International Conference on. IEEE, 12-17. [49] El-Ghazali Talbi. 2009. Metaheuristics: from design to implementation. Vol. 74.
[41] Majdi M Mafarja and Seyedali Mirjalili. 2017. Hybrid Whale Optimization Algo- John Wiley & Sons.

rithm with simulated annealing for feature selection. Neurocomputing 260 (2017), [50] Gerhard Venter and Jaroslaw Sobieszczanski-Sobieski. 2003. Particle swarm

302-312. optimization. AIAA journal 41, 8 (2003), 1583-1589.

Seyedali Mirjalili and Andrew Lewis. 2013. S-shaped versus V-shaped transfer
functions for binary particle swarm optimization. Swarm and Evolutionary
Computation 9 (2013), 1-14.

Seyedali Mirjalili and Andrew Lewis. 2016. The whale optimization algorithm.
Advances in Engineering Software 95 (2016), 51-67.

Seyedali Mirjalili, Seyed Mohammad Mirjalili, and Andrew Lewis. 2014. Grey
wolf optimizer. Advances in engineering software 69 (2014), 46-61.

Moh’d Khaled Yousef Shambour, Ahmed A Abusnaina, and Ahmed I Alsalibi.
2018. Modified Global Flower Pollination Algorithm and its Application for
Optimization Problems. Interdisciplinary Sciences: Computational Life Sciences
(2018), 1-12.

Yuhui Shi and Russell C Eberhart. 1999. Empirical study of particle swarm
optimization. In Evolutionary computation, 1999. CEC 99. Proceedings of the 1999
congress on, Vol. 3. IEEE, 1945-1950.

Rainer Storn and Kenneth Price. 1997. Differential evolution-a simple and
efficient heuristic for global optimization over continuous spaces. Journal of

Bing Xue, Mengjie Zhang, and Will N Browne. 2013. Particle swarm optimiza-
tion for feature selection in classification: A multi-objective approach. IEEE
transactions on cybernetics 43, 6 (2013), 1656-1671.

Bing Xue, Mengjie Zhang, and Will N Browne. 2014. Particle swarm optimi-
sation for feature selection in classification: Novel initialisation and updating
mechanisms. Applied Soft Computing 18 (2014), 261-276.

Bing Xue, Mengjie Zhang, Will N Browne, and Xin Yao. 2016. A survey on
evolutionary computation approaches to feature selection. IEEE Transactions on
Evolutionary Computation 20, 4 (2016), 606-626.

Chengwei Yang, Wei Gao, Nengguang Liu, and Chongmin Song. 2015. Low-
discrepancy sequence initialized particle swarm optimization algorithm with
high-order nonlinear time-varying inertia weight. Applied Soft Computing 29
(2015), 386-394.

Xin-She Yang. 2012. Flower pollination algorithm for global optimization. In
International conference on unconventional computing and natural computation.
Springer, 240-249.

	Abstract
	1 Introduction
	2 Particle Swarm Optimization
	2.1 Binary Particle Swarm Optimization
	2.2 Binary Particle Swarm Optimization for Feature Selection

	3 The proposed approach
	4 Experimental Setup and Results
	5 Conclusions
	References

