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Abstract. The structure and function of BNS (bionanosystems) such as macromolecules,
viruses and ribosomes are strongly affected by electrostatic interactions. Yet their
supra-million atom size makes them difficult to simulate via a straightforward Poisson-
Boltzmann (PB) approach. Here we explore a multiscale approach that results in a
coarse-grained PB equation that follows rigorously from the all-atom PB equation. The
derivation of the coarse-grained equation follows from an ansatz on the dependence of
the electrical potential in two distinct ways, i.e. one reflecting atomic-scale variations
and the other capturing nanometer-scale features. With this ansatz and a series expan-
sion of the potential in a length-scale ratio, the coarse-grained PB equation is obtained.
This multiscale methodology and an efficient computational methodology provide a
way to efficiently simulate BNS electrostatics with atomic-scale resolution for the first
time, avoiding the need for excessive supercomputer resources. The coarse-grained
PB equation contains a tensorial dielectric constant that mediates the channeling of the
electric field along macromolecules in an aqueous medium. The multiscale approach
and novel salinity connections to the PB equation presented here should enhance the
accuracy and wider applicability of PB modeling.

PACS: 41.20.Cv

Key words: Poisson-Boltzmann equation, multiscale analysis, bionanostructures, viruses, ribo-
somes, macromolecules.

1 Introduction

Electrostatic interactions play a crucial role in determining the structure and dynamics
of proteins and more complex structures (e.g., enzymes, ribosomes and viruses). DNA
is overall negatively charged due to phosphate groups, and the inner surface of a viral
capsid often has a net positive charge, likely to assist in the import of genetic material
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during viral self-assembly [1]. These bionanosystems (BNS) reside in an aqueous elec-
trolyte, which affects their conformation, stability, and function due to screening and
dielectric channeling. Aqueous physiological media contain many mobile ions (e.g., Cl−,
Na+, K+, Mg++, and Ca++) which redistribute to screen the Coulomb potential of the
fixed charges on the BNS by creating layers of counter-ions. Orientable or polarizable
molecules of the host medium also serve to decrease the electrical forces that determine
the structure and function of a BNS and its interaction with other features in the system.
This accurate calculation of the electrostatic potential could enhance our understanding
of BNS [2]. One could, for example, use such calculations to estimate the solvation energy,
find pKa values [3], and titration curves for proteins. One could calculate the electrostatic
forces between biomolecules for use in molecular dynamics [4]. In carrying out molecular
mechanics computations, it is important to account for the channeling of the electric field
along a BNS due to the dielectric constant contrast between the aqueous medium and
the interior of a protein, an effect not accounted for in 1/r Coulomb computations as in
the CHARMM force field. Computational challenges are even greater when attempting
to model a whole virus or ribosome for therapeutic design or for liposome-cell surface
interaction studies associated with the analysis of nanocapsules for the delivery of drugs,
genes or siRNA to diseased cells.

The magnitude of the systems of interest can be illustrated by Fig. 1, which shows the
capsid of a native cowpea chlorotic mottle virus (CCMV) with atoms colored by charges
on them. Fractional charges are assigned according to the CHARMM27 force field. The
capsid with 432,240 atoms consists of 180 chemically identical protein subunits that form
a 286-Å-diameter icosahedral shell. Each protein subunit is composed of 190 amino acids
taking three quasi-equivalent positions on the virus surface. CCMV is one example of
the small icosahedral viruses. A typical BNS involves millions of atoms and hence di-
rect PB modeling would require billion grid node computations. Clearly novel methods
are needed. The challenge is even more acute when attempting to use PB to compute
forces in a molecular dynamics approach. The objective of this study is to investigate
methodologies for simulating such supra-million atom systems.

The PB equation has been traditionally used to find the electrostatic potential around
a macromolecule. A PB model ignores the volume of ions in the medium. Therefore,
PB equation is valid for dilute ionic solutions with several Debye lengths away from the
fixed charges on the mesostructure of interest (i.e. concentration ≤0.15M) [5]. This model
has been applied to calculate properties of molecules in solution [2]. Extensions of the PB
model to account for the mobile ions sizes and correlations have been developed [6, 7].
The PB model accounts for solvent molecules implicitly via the dielectric constant ε; ε
is low within the molecule, and is assumed to increase gradually to the unperturbed,
far field value over several angstroms away from the molecule of interest [8]. Solutions
to simple problems with spherical, cylindrical or planar symmetry are available for the
linearized PB equation [9, 10]. A closed form formula for the solution of nonlinear PB
does not seem to be possible except for the planar case [11] and the infinite cylindrical
symmetric case where only counter ions exist in the solution [12].
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Figure 1: Native CCMV capsid with atoms colored by their charges. Fractional charges are assigned according
to the CHARMM27 force field.

In attempting to use numerical methods to solve the PB equation with complicated
molecular geometries and charge distributions, a number of challenges present them-
selves. The equation is highly nonlinear due to the exponential dependence of the mo-
bile ion concentrations on the potential. The electrical potential varies on more than one
length scale. The associated characteristic lengths are the size of an atom, the Debye
length and the size of the structure of interest. In addition, the length required for the
dielectric constant to reach its far field value has a considerable effect on the potential. In
summary, one must solve highly nonlinear, multiple scale equations with thousands to
millions of spatial variations when addressing bionanosystems.

Several approaches and numerical codes to solve the linear and nonlinear PB equation
have been presented throughout the last decade. An overview of numerical techniques
commonly applied to the PB type equations is provided in [13]. For the linear PB, a ba-
sis set approach is used to express the electrostatic potential as a linear superposition of
basis functions [14]. The electrostatic energy functional is then minimized with respect
to the expansion coefficients subject to total charge conservation. The boundary element
method utilizes analytical solutions obtained in terms of Green’s functions and discretiza-
tion on the domain surface (molecular surface) are used to compute the potential in the
whole domain volume [15, 16]. One of the most common approaches used to solve the
linear and the nonlinear PB is the finite difference formulation where spatial derivatives
are approximated using neighboring points [17–19]. A successive over-relaxation method
has been used to get rapid convergence in solving the linear systems obtained from the
finite difference discretization [17]. Recently, the finite element method has been success-
fully used to solve the PB equation for larger systems. An adaptive multilevel approach
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based on tetrahedral elements to create a dense mesh to capture the dielectric discontinu-
ity across the molecular surface has been also used. Although irregular grids can be used
in a finite element approach, it is inherently less accurate than regular grid methods due
to neighboring large and small elements (unless a gradual increase in the element size is
imposed) [20]. Furthermore, one might argue that in a physically relevant model, the di-
electric discontinuity is not present; rather ε gradually increases to its unperturbed bulk
value with distance from the molecule-medium boundary [19]. Also, regular grids lead
to simpler and higher order numerical schemes and they allow implementation of multi-
grid methods [21]. Tomac and Gräslund [22] demonstrated a multigrid finite volume
method for solving a modified PB equation for spherical charged particles. The modified
PB equation agrees with the results obtained from Monte Carlo simulations on 1:1 and 2:1
ionic solutions. A pseudo-transient continuation and finite element method [23] has been
adapted to solve the nonlinear PB equation to utilize the radiation-hydrodynamic parallel
code ICF3D. The approach was demonstrated to give accurate solutions for spherically
symmetric systems.

This study is motivated by the need to have fine meshes to resolve the structure of,
and the potential distribution around a BNS as suggested in Fig. 1. A novel numerical
approach to PB simulation is reviewed in Section 2 that reduces the memory requirement
by approximately one order of magnitude in comparison to a Galerkin finite element
method. The solution of the nonlinear PB equation is obtained from the time evolution
of a diffusion-advection equation where there is no need to use Newton-Raphson-like
methods. A verification of the solution obtained from our approach is accomplished
by comparison with the solution of a charged spherical particle. Results on the CCMV
capsid illustrate the viability of our approach for large systems.

A BNS has at least two distinct characteristic lengths: (1) the typical distance between
nearest-neighbor atoms and (2) the size of a virus or other nanostructures. This separa-
tion of scales has led to the development of multiscale theories which yielded Fokker-
Planck or Smoluchowski equations for the stochastic dynamics of nanoscale structures
starting from the Liouville equation [62,63]. Most relevant of these theories in the present
context is recent work that started from an all-atom description that included the BNS in-
terior as well as that of the host medium [23–25]. The question arises as to the existence
of an analogous approach wherein a coarse-grained PB equation could be derived rig-
orously from one with all-atom detail via multiscale techniques. Such an approach is
presented in Section 3 and holds great promise for analyzing electrostatic interactions
within and among bionanostructures.

In this paper we present the following. An efficient numerical method for solving the
PB equation is outlined in Section 2, along with results on CCMV capsid and a compari-
son with other approaches. Prospects for a multiscale analysis of PB problems are given
in Section 3. A charge broadening method for accelerating the long-range correlation as-
pect of numerical calculations in presented in Section 4. An extension of the PB equation
for concentrated solutions is presented in Section 5. Conclusions are drawn in Section 6.
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2 Direct numerical approach to BNS simulation

Solving the elliptic PB equation in 3D is computationally intensive. To capture the molecule-
medium interface, and distinguish the structure of a BNS from its surroundings requires
a sufficiently fine grid (e.g., with a 0.5 Å spacing). Solution of the nonlinear PB equation
using the finite element method on a hexahedral grid via a conjugate gradient iterative
solver with compressed coefficient matrix requires approximately 250 N bytes; where N
is the number of nodes in the grid. This translates to a limiting resolution of ∼1603 on a
1 GB RAM computer.

In our approach [26], we formulate a nonlinear advection-diffusion equation which
admits the original elliptic nonlinear PB equation as the long time solution. We start with
the variational functional formulation for the elliptic PB equation

Ξ[Φ]=
∫

Ω
d3r

(

1

2
ε|~∇Φ|2−4π

∫ Φ(~r)

0
dΦ′ρ(~r,Φ′)

)

. (2.1)

The PB equation is obtained by minimizing (2.1) with respect to the electrostatic potential,
Φ, and assuming that Φ or its derivatives vanish on the boundary of the domain Ω. A
Langevin steepest descent approach with the dielectric constant spatial distribution, ε(~r),
was used as a friction coefficient to minimize Ξ

ε(~r)
∂Φ

∂t
=−

δΞ

δΦ
. (2.2)

Calculating the functional derivative of Ξ with respect to Φ and substituting in (2.2)
yields

∂Φ

∂t
=∇2Φ+

~∇ε·~∇Φ

ε
+

4πF

ε

Nions

∑
i=1

zic
∞
i exp(−ziFΦ/RT)+

4π

σ

Ncharges

∑
j=1

qjδ(~r−~rj), (2.3)

where F is Faraday’s constant. c∞
i and zi are the bulk concentration and valence of the i-th

ionic specie. qj and~rj are the charge and position of the j-th atom, respectively. Since the
PB equation has a unique solution, the steady state solution of this advection-diffusion
equation corresponds to the solution of the elliptic PB equation. Despite the simplicity
and the modest storage requirements of an explicit forward in time, centered in space
(FTCS) integration scheme for solving the advection-diffusion equation, using an FTCS
scheme is not efficient as the stability of the time integration is constrained by Courant
and Peclet numbers [20]. Therefore, one needs a large number of time steps to reach
the steady state solution. On the other hand, although a fully implicit scheme allows
one to use much larger time steps, it is memory demanding because of the need to store
a large sparse matrix. In order to get the advantages of both techniques, we adapted
an operator splitting scheme. A commonly used splitting algorithm is the alternating
direction method (ADI) which is a variation of the Crank-Nicholson scheme [24]. Details
on our discretization scheme are provided in [25].
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To demonstrate the applicability of our approach to large BNS, the CCMV capsid
is simulated in a 0.15M 1:1 electrolyte medium and its potential profile is determined
at 6253 grid nodes with a grid spacing of 0.5Å. Fig. 2 shows 3D electrostatic potential
isosurfaces of -1.0kT/e (red) and +1.0kT/e (blue) for the outer shell (a) and inner surface
(b) of the capsid. The outer electrostatic potential surface is found to be predominantly
negative with patches of positive potential concentrated at the top of the pentamers and
hexamers of protein subunits, while the inner surface is mostly positive, which justifies its
interactions with the embedded negatively charged RNA. Above results agree with those
reported by Konecny et al. [60] except that larger positive potential patches are found on
our outer potential surface. Obtaining the PB solution on CCMV capsid to an accuracy of
0.01kT/e required approximately 4 hours on 16 processors of IBM SP power4 computers
located at Indiana University. The efficiencies of our PB solver are not withstanding, there
are practical limitations. For example, it is too CPU intensive for exhaustive parameter
studies, and certainly to generate forces in a molecular dynamics simulation. However,
the methodology presented above does provide an approach to computing the coarse-
grained PB equation implied by the multiscale analysis as outlined in the next section.

3 Multiscale approach to nanosystem electrostatics

Multiscale analysis is a powerful methodology that has been applied to a broad spec-
trum of complex classical [27–38, 62–64] and quantum [39–44] many-body systems, and
to reaction/transport/mechanical phenomena in porous media [45–52]. The problems to
which it has been applied are usually governed by linear equations, although nonlinear
reacting-deforming porous media have been considered [51]. We now explore a multi-
scale approach to the PB problem designed for BNS applications, and which elucidates
the origins of dielectric channeling and the interplay of atomic and supra-nanoscale pro-
cesses in viral, ribosomal and other BNS.

The supra-million atom BNS involves at least two distinct length scales, i.e., (1) the
average size of an atom or the nearest-neighbor-atom distance, and (2) the overall (supra-
nanometer) size of the BNS and its major component parts. A natural parameter to ex-
press the multiscale character of a BNS is the ratio σ of the smaller-to-larger of these two
lengths (Figs. 1 and 3). In the following, we reformulate the PB problem in a multiscale
fashion, and explore methods to construct solutions in the limit of small σ.

Let~r be position in the system expressed in units such that as~r traverses one atom it
moves a distance of about one unit. However, as~r traverses the BNS, it moves a distance
of O(σ−1). Thus we introduce a scaled position

~R=σ~r.

As ~R traverses the BNS, it moves a distance of about one of its units. We then attempt
to construct the electrical potential Φ by expressing its distinct and simultaneous depen-
dencies on~r and ~R, and show that the smallness of σ allows one to discover these two
dependencies.
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(a)

(b)

Figure 2: 3D electrostatic potential isosurfaces of -1.0kT/e (red) and +1.0kT/e (blue) for the outer shell (a)
and inner surface (b) of the 432,240 atom CCMV capsid immersed in a 0.15M 1:1 electrolyte with a resolution

of 6253, 0.5Å grid spacing.
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BNS

1

Figure 3: A bionanostructure is O(σ−1) in size and contains millions of atoms as suggested in Fig. 1. A
multiscale approach that accounts for the widely separated characteristic lengths is developed for solving the
PB problem.

Consider the PB model expressed in the ~R spatial scale:

~∇·(ε~∇Φ)+ f =0, (3.1)

where ε is the dielectric constant and f is the discrete plus continuous charge density.
Both f and ε depend on position, reflecting the underlying fluctuating character of the
atomic scale structure, while they also account for the variation in this atomic structure
(e.g., the bionanostructure is limited in extent to a zone of size σ−1).

We consider the charge density f to be divided into a continuous part fc and a discrete
part σ−1 fd. The latter is taken to scale as σ−1 to express that near a given fixed charge,
its charge density is extremely large, i.e., about one electron charge per cubic angstrom.
As the multiscale development unfolds, this σ−1 scaling for the discrete charge density is
found to yield a self consistent formulation that captures key features of the bionanosys-
tem PB problem.

As Φ depends on both~r and ~R by our multiscale ansatz, the chain rule implies, upon

multiplying (3.1) by σ2 and letting ~∇0 and ~∇1 be~r and ~R gradients respectively,

(~∇0+σ~∇1)·[ε(~∇0 +σ~∇1)Φ]+σ2 fc(~r,~R,Φ)+σ fd(~r,~R)=0. (3.2)

Developing Φ in a power series in σ, and analyzing the equations order-by-order, we
construct Φ. To O(σ0) we obtain

~∇0 ·(ε~∇0Φ0)=0.

This implies Φ0 is independent of ~r, assuming Φ to be a constant (zero henceforth) at
infinity. To O(σ) we obtain

LΦ1+~∇0 ·(ε~∇1Φ0)+ fd =0, (3.3)

LA= ~∇0 ·(ε~∇0 A), (3.4)
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for arbitrary r-dependent function A. We find that Φ1 can be obtained in the form

Φ1 =~b ·~∇1Φ0+Ψ,

~∇0 ·(ε~∇0bα)+∂ε/∂rα =0, α=1,2,3,

LΨ+ fd =0. (3.5)

Let bα = cα−rα, where rα is the component of~r along the α direction. Then

~∇0 ·(ε~∇0cα)=0.

Since bα must be bounded as |~r| → ∞ so that Φ1 is bounded for a BNS in an infinite
medium, cα → rα as |~r|→∞. This provides the asymptotic condition that uniquely deter-
mines cα, and thus bα. For the class of problems of interest, Φ→0 as~r and ~R go to infinity,
which will be insured via the asymmetric boundary conditions imposed on Φ and the
aforementioned conditions on bα. As bα is nonzero and fluctuates near and within the
zone occupied by the BNS in response to variations in ε, Φ1 accounts for the atomic-scale
aspects of the dielectric channeling of the BNS, while Φ0 expresses the longer scale chan-
neling. This completes the O(σ) analysis.

To O(σ2) we obtain

LΦ2+~∇1 ·(ε~∇1Φ0)+~∇0 ·(ε~∇1Φ1)+~∇1 ·(ε~∇0Φ1)+ f (~r,~R,Φ0)=0. (3.6)

Integrating over~r, and using the divergence theorem and the conditions at infinity, yields

~∇1 ·
[

(~~ε∗~∇1Φ0)
]

+ f ∗(~R,Φ0)=0, (3.7)

where

f ∗(~R,Φ0)= 〈 f 〉, 〈A〉≡Ω−1
∫

d3rWA,

ε∗αα′ = 〈ε〉δαα′+

〈

ε
∂bα′

∂rα

〉

,

for system volume Ω, any~r-dependent quantity A, and W is a weight factor discussed
further below. The coarse-grained PB equation yields Φ0, the long-scale potential profile
across the BNS.

The utility of the multiscale PB approach depends on the computational requirements

for determining ~b and Φ0. Since ~b satisfies a linear equation with Dirichlet conditions
~b=~0 at the boundary of the simulations domain, it does not require the costly interaction
needed to solve the original nonlinear PB problem. Thus, the development of a multiscale
PB solver with greater efficiency than a direct PB approach has great promise. A two grid
method is suggested in Fig. 4. The coarse-grained PB equation involves a characteristic
length of the BNS size, and not the atomic scale. For a small virus (e.g., CCMV, HRV,
poliovirus, HPV) this is roughly 100 times larger in length than the size of an atom. Thus
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Figure 4: Schematic discretization grid showing the coarse grid, on which the overall potential profile Φ0 is to

be solved, and the fine grid on which the response factor ~b is to be solved.

one can simulate the system with a factor of roughly 106 fewer grid points when using the
coarse-grained equation for Φ0, than for the full PB. As CPU time increases supralinearly
with the numbers of grid points, this makes multiscale PB up to 106 times faster than a

direct PB BNS simulation. However, the computation of~b does introduce some overhead,
but this should still be much less costly than a full nonlinear, atomic-scale PB approach.

The modified dielectric factor~~ε∗ is a tensor. Its profile across the BNS and the direc-
tionality it creates because of its tensorial character account for channeling effects. Also
f ∗ is the coarse-grained charge density. As the system is almost charge neutral within
a subvolume of a few cubic nanometers, the range of the weight W in the definition of
〈···〉 affects f ∗. Through W we introduce a finite averaging range of O(σ−1) centered
on a given value of ~R. In that case the developments outlined above proceed when

a surface-to-volume argument is used to eliminate 〈~∇0 ·(ε~∇0Φ2)〉 when arriving at the

coarse-grained equations for Φ0. As Φ1 captures atomic-scale variations via~b, the mul-
tiscale approach retains both short and long scale behaviors — i.e., does not constitute a
lumped model wherein atomic-scale variations are lost from the beginning.

4 Ionic strength corrections

The finite volume of ions and the presence of multivalent ions are two main reasons for
non-ideal electrolyte behavior at sufficiently high ion concentrations. A good measure
that characterizes the range at which ionic solutions deviate from ideal behavior is given
by the ionic strength,

I =
1

2

Nions

∑
i=1

z2
i ci. (4.1)
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Traditional PB theory has been established to be valid for solutions of very low ionic
strengths [4, 53].

Many applications in biomolecular systems involve high concentrations, far from the
dilute regime. Therefore, accounting for higher ionic concentrations is crucial considering
the fact that the local ion concentrations close to a charged surface or atomic site can
exceed 10M in inhomogeneous biomolecular systems. In that regime PB theory does not
account for the strongly interacting ions near the surface of a biomolecule. It would be
only applicable in the bulk region several Debye lengths away from fixed atomic charges
on a BNS. Recall the Debye length is defined by

λDebye =

√

εRT

8πF2 I
. (4.2)

Borukhov and coworkers [54] presented an augmented PB equation that accounts for the
finite size of the mobile ions. They used this equation to investigate the adsorption of
large ions at highly charged surfaces. However, their modified equation is only derived
for 1:z and z:z electrolytes. Tomac and Gräslund [55] demonstrated a multigrid finite
volume method for solving a modified PB equation for spherical charged particles. The
modified PB equation agrees with the results obtained from Monte Carlo simulations on
1:1 and 2:1 ionic solutions. Here, we introduce a general phenomenological correction
to the PB equation that can be used for any electrolyte composition based on utilizing
experimentally measured ion activity coefficients in the electrochemical potential:

µi =µθ
i (T)+RT lnγici+ziΦ, (4.3)

where γi is the activity coefficient of the i-th ion type in the solution. In the asymptotic
limit of a dilute electrolyte, the activity coefficient is to unity. In other words, γi → 1 as
all ci → 0. Furthermore, γi depends on the concentration of the ionic specie of type i,
as well as the concentration of other ionic species. For instance, in 1M NaCl electrolyte,
the activity coefficient of Na+ is 0.767, while the activity coefficient of Cl− at the same
concentration is 0.599. Similarly, in a 1m NaBr electrolyte, the activity coefficient of Na+

is 0.684, while that of Cl− at the same concentration is 0.661 [56]. By applying the activity
corrected chemical potential formula, we account for counter-ion crowding near a given
charge by redistributing the ions according to the following new calculation algorithm:

γi(ci)ci =γ∞
i c∞

i exp

(

−
ziFΦ

RT

)

, (4.4)

which establishes an implicit nonlinear relationship between ci and Φ. Denote the solu-
tion of the above equation by cmod

i (Φ). c∞
i and γ∞

i are the bulk concentration and activity
coefficient of i-th ionic specie, respectively. The ionic strength dependence is accounted
for through, γi(ci), the measured of the activity coefficient of i-th ionic specie as a func-
tion of concentration. Despite the long-standing controversy on whether it is possible to
determine the activity coefficient of a single ion type, Vera and coworkers have argued
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a) b)

c)

Figure 5: The activity coefficient for the
constituent ions of the three electrolytes:
a) NaBr b) NaCl and c) MgCl2.

that they developed an experiential technique to do so by using an ion-selective electrode
along with a single junction reference electrode, both immersed in the aqueous electrolyte
solution of interest. This approach made the measurement of the activity coefficient of
single ions possible [56–58]. Fig. 5 shows the activity coefficients for the constituent ions
of three ionic solutions [56] for the concentration range 0.1M − 5.0M.

As an illustration, we numerically solve (4.4) for three electrolytes, MgCl2, NaCl and
NaBr. We computed cmod

i (Φ), the constituent ion concentrations as a function of the
electrostatic potential Φ by adopting an extrapolation formula that accounts for activity
coefficients at ionic strengths higher than 5.0M:

lnγi(ci)=
−Amz2

i I1/2
m

1+ I1/2
m

+
[−Bm,i Im+Dm,iI

3/2
m ]

1+ I1/2
m

, (4.5)

where Im is ionic strength of the electrolyte of type m. Am is equal to 1.1762. Bm,i and
Dm,i are adjustable parameters obtained by fitting the measured activity coefficients of
constituent ions of each solution [61]. Fig. 6 shows a comparison between the concen-
trations obtained by solving (4.3) and (4.4) with those obtained using the dilute solution
theory which is based on a Boltzmann distribution for the mobile ions. When the ab-
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a) b)

c)

Figure 6: The constituent ion concentrations
of three electrolytes, a) NaBr b) NaCl and c)
MgCl2, as a function of the electrostatic po-
tential obtained by solving equations (4.3) and
(4.4).

a) b)

Figure 7: The electrostatic potentials as a function of the radial distance from the center of a 2 Å atom
immersed in a) 150mM univalent symmetric electrolyte and b) 75mM electrolyte with divalent ions, as obtained
by solving the traditional nonlinear and linear PB as well as the modified nonlinear PB.

solute electrostatic potential is sufficiently large in magnitude (i.e., greater than 4kT/e
for NaCl and NaBr solutions, and 1kT/e for MgCl2 solution), concentrations obtained
through the original Boltzmann distribution are considerably higher near an oppositely



A. Sayyed-Ahmad, Y. Miao and P. Ortoleva / Commun. Comput. Phys., 3 (2008), pp. 1100-1116 1113

charged surface or fixed charge, suggesting that the activity corrected chemical potential
was able to account for size, valence and crowding of ions, as well as ion-ion correlations
by reducing un-physically high counter-ion concentrations.

Next, we utilize the new relationship between the electrostatic potential and the ionic
concentrations shown in Fig. 6 to solve the modified nonlinear PB equation:

∇·(ε∇Φ)=−4π

(

F
Nions

∑
i=1

zic
mod
i (Φ)+qδ(r)

)

. (4.6)

We demonstrate the solution of this model for a fixed spherical ion of radius 2 Å and
charge +1e in NaBr, NaCl and MgCl2 electrolytes with bulk concentrations of 150mM,
150mM and 75mM, respectively. The dielectric constant inside the fixed charge was
assigned a constant value, while the solution dielectric constant was 78.4. An ion-
inaccessible layer of 1.8 Å was assigned. Fig. 7 shows the differences among the elec-
trostatic potentials as a function of distance from the center of the fixed ion obtained
by solving the modified nonlinear PB equation for NaCl, NaBr and MgCl2 solutions, as
well as the original nonlinear and linear PB equations. Clearly, the electrostatic potential
obtained using the modified model is quantitatively different from the classic nonlinear
and linear PB model results. It tends to decay on a scale longer than that of the potential
obtained from the classic nonlinear PB models, and shorter than that obtained from the
solution of the classic linear PB model. Furthermore, our modified model produced elec-
trostatic potentials that are quantitatively distinguishable between the results NaCl and
NaBr. Such a distinction cannot be attained using the classic PB models.

5 Conclusions

Electrostatic interactions in a BNS can be simulated directly via a nonlinear PB solver.
However, the nonlinearity and the need for sub-angstrom-scale numerical grids makes
this approach impractical, especially for carrying out parameter studies — i.e., to deter-
mine the effect of pH, salinity or temperature on the strength of interactions. Similar
comments hold for studies on the effects of mutation or surveying the interactions with
a spectrum of putative antiviral or other drugs.

In this study, we presented results on a memory-efficient direct nonlinear PB solver.
As a demonstration the capsid of CCMV was used to generate the electrical potential with
atomic-scale resolution. To further accelerate PB simulations of a BNS, we introduced a
multiscale approach. In the approach we use the multiscale character of BNS to derive
rigorous coarse-grained PB models that can be simulated with our nonlinear PB solver. In
addition, the multiscale procedure preserves key atomic-scale features of a BNS that takes
the form of angstrom-scale spatial variations overlaid on the coarse-grained electrical
potential profile. Thus, atomic-scale resolution is preserved, unlike for lumped models
wherein subunits (e.g., peptides or nucleotides) are modeled as structureless spheres that
cannot compute interactions with a drug molecule without recalibration with each new
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application [59]. We also introduced an experimentally inspired, modified PB model that
accounts for ion sizes and correlations in a BNS. We demonstrated this approach on a
simple spherical particle. The results indicate that our approach can distinguish between
different ion types and decrease the unphysical ion crowding near a charged site that
arises from the solution of the traditional PB model.

Considering the great promise of multiscale and salinity-corrected PB modeling, we
are implementing the approaches of Sections 3 and 4 as a new simulator MS-PB. This
package will be available as free open-source software. It will be compatible with stan-
dard graphics and molecular manipulation codes, notably VMD [61] and OpenDX, in
I/O characteristics.
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