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The nodal structure of the density distributions of the single-particle states occupied in rod-
shaped, hyper- and megadeformed structures of non-rotating and rotating N ∼ Z nuclei has been
investigated in detail. Because of (near)axial symmetry and large elongation of such structures, the
wave functions of the single-particle states occupied are dominated by a single basis state in cylin-
drical basis. This basis state defines the nodal structure of the single-particle density distribution.
The nodal structure of the single-particle density distributions allows to understand in a relatively
simple way the necessary conditions for α-clusterization and the suppression of the α-clusterization
with the increase of mass number. It also explains in a natural way the coexistence of ellipsoidal
mean-field type structures and nuclear molecules at similar excitation energies and the features of
particle-hole excitations connecting these two types of the structures. Our analysis of the nodal
structure of the single-particle density distributions does not support the existence of liquid phase
for the deformations and nuclei under study.

PACS numbers: 21.10.Gv, 21.10.Pc, 21.60.Jz, 27.20.+n, 27.30.+t, 27.40.+z

I. INTRODUCTION

Recent years are characterized by the revival of the in-
terest (both experimental and theoretical) to the study
of cluster and extremely deformed structures in light nu-
clei (see Refs. [1–7] and references quoted therein). Many
of these structures are described in terms of clusters, the
simplest one being the α-particle [8, 9]. Cluster or simi-
lar type models provide an important insight into cluster
dynamics of nucleus. However, the initial assumptions
about clusters represent a limitation of this type of mod-
els and many shell model configurations are beyond of
their reach. It is also important to remember that the
cluster description does not correspond to clearly sep-
arated α-particles, but generates the mean-field states
largely by antisymmetrization [9].

Alternative way of the description of exotic cluster con-
figurations is within the framework of density functional
theory (DFT) [4, 10]. This type of models does not as-
sume the existence of cluster structures but allows simul-
taneous treatment of cluster and mean-field-type states
[4, 10–13]. In this framework, the formation of clusters
proceeds from microscopic single-nucleon degrees of free-
dom via many-body correlations. Let us mention some
recent studies of cluster and extremely deformed struc-
tures in the DFT framework. A linear chain of three α
clusters, leading to “rod-shaped” nucleus and suggested
about 60 years ago [14], was recently studied in the
cranked relativistic mean field (CRMF) theory in Ref.
[15]; its density distribution is presented in Fig. 1a. This
exotic structure (“Hoyle” state) plays a crucial role in
the synthesis of 12C from three 4He nuclei in stars [16].
Another example of rod-shaped nucleus is linear chain
configuration of four α-clusters in 16O. Recently the re-
lationship between the stability of such states and an-
gular momentum was investigated using Skyrme cranked

Hartree-Fock (HF) method in Ref. [17] and CRMF ap-
proach in Ref. [13]. The cranked Skyrme HF framework
was employed for the study of the stability of rod-shaped
structures in highly-excited states of 24Mg in Ref. [5].

However, the phenomenon of clusterization is not lim-
ited to the α-particles. Larger nuclei could play a role
of building blocks of the clustered configurations. In
particular, the nuclear configurations consisting of the
N = Z clusters with no or extra few valence nucleons
could play an important role in the nuclei near the N = Z
line [8]. For example, the wave function of the superde-
formed (SD) [2,2]1 band in 32S contains a significant ad-
mixture of the molecular 16O + 16O structure [9, 18]. Ex-
tremely deformed structures such as super-, hyper- (HD)
and megadeformed (MD) configurations as well as nu-
clear molecules have been systematically studied in the
rotating A = 28− 50 N ≈ Z nuclei in the CRMF frame-
work (Refs. [7, 19]). A number of the configurations with
cluster structures have been found in these calculations.
Fig. 1(b-f) show some examples of such structures with
different pattern of density distribution. The best exam-
ple of nuclear molecule is the MD [421,421] configuration
in 42Sc (Fig. 1f) followed by the MD [42,42] configura-
tion in 40Ca (Fig. 1e) and the MD [31,31] configuration
in 36Ar (Fig. 1d). These three configurations show pro-
nounced neck. On the other hand, the HD [2,2] config-
uration in 28Si shows the clusterization at spin zero but
with less pronounced neck (Fig. 1b). The rotation some-
what hinders these features and suppresses the neck in
this configuration (see Fig. 1c and Ref. [19]).

In the DFT framework, the formation of clusters pro-
ceeds from microscopic single-nucleon degrees of freedom

1 The notation of the configurations is discussed in Sec. II.
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FIG. 1. (Color online) Total neutron densities [in fm−3] of specified configurations in 12C, 28Si, 36Ar, 40Ca and 42Sc at indicated
spin values. The plotting of the densities starts with yellow color at 0.001 fm−3. The densities presented in panels (b-f) are
based on the results of the calculations of Ref. [7].

via many-body correlations. Although this fact is wildly
recognized, in reality very little attention has been paid
to the detailed study of the role of the single-particle
states in clusterization. In that context, mostly the im-
pact of the underlying single-particle and shell structure
on the clusterization has been investigated. For example,
the impact of underlying single-particle structure on the
transition from spheroidal superdeformed configurations
to doubly spherical configurations, which are analogs of
cluster configurations, and the connection between the
magic numbers at both shapes has been investigated in
Ref. [20]. Even less attention has been paid to the struc-
ture of the single-particle wave functions and related
single-particle densities and their impact on clusteriza-
tion in the DFT framework. To our knowledge this has
been discussed only in two publications. The formation
of the total density of 8Be nucleus from single-particle
densities of occupied states has been discussed in Ref.
[10]. The contribution of the single-particle densities of
the [220]1/2 states into buildup of the ground state den-
sities of 20Ne has been presented in Ref. [4].

To address this gap in our knowledge of clusteriza-
tion we perform systematic investigation of the densities
of the single-particle states and their nodal structure in
clustered and extremely deformed configurations of the
N = Z 12C, 28Si and 40Ca nuclei. The selection of these
nuclei is dictated by several factors. First, typical single-
particle orbitals, which play a role at hyper- and megade-
formation in the N ≈ Z nuclei with Z = 6− 24, have to
be considered. Second, the impact of reasonable changes
of the nucleonic potential in axial and radial directions
on the nodal structure of single-particle density distribu-
tions have to be investigated. Since nucleonic potential

depends on total nucleonic density, this is achieved by
considering nuclei which differ substantially in that re-
spect. Note that the single-particle densities bear a clear
fingerprint of underlying single-particle wave functions.
Third, such choice of nuclei allows to see how signifi-
cant is the impact of the lowering of the position of the
single-particle orbital in nucleonic potential on the single-
particle density distributions. In this paper we consider
rotating and non-rotating nuclei and define which single-
particle states favor the α−clusterization, which states
suppress this type of clusterization and which particle-
hole excitations are important for the creation of nuclear
molecules.

The difficulty in investigating cluster and extremely
deformed states at spin zero is that they are generally
unbound and lie at high excitation energies at low spins
[8, 22]. Moreover, they are either formed on the shoulder
or in very shallow minima of potential energy surfaces
[10, 23]; thus, they are inherently unstable. The high
density of nucleonic configurations at these energies and
possible mixing among them is another factor hindering
their experimental observation. As shown in Ref. [7], the
rotation could help to overcome these obstacles. This is
because extremely deformed configurations are favored
by rotation at high spins (Refs. [7, 23, 24]) so that only
such states could be populated above some specific spin
values in the mass region of interest [7].

In the present paper the analysis is performed within
the framework of covariant density functional theory
(CDFT) [25]. It provides a fully self-consistent descrip-
tion of many nuclear phenomena. The CDFT well de-
scribes the experimental proton density distributions in
spherical nuclei [26, 27], the deformations of superde-
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formed nuclei [28–31] and charge radii [32–34] across the
nuclear chart. In addition, it provides good description
of the changes in deformation and charge radii with the
change of the configuration/particle number. These two
facts strongly suggest that the CDFT properly repro-
duces the single-particle density contributions on which
these observables depend. This is an important fac-
tor in the context of the present investigation since the
total density distribution (which could point either to
α-clusterization or nuclear molecule) is built as a sum
of the single-particle density distributions of occupied
single-particle states. Note also that covariant (relativis-
tic) energy density functionals (CEDFs) show more pro-
nounced clusterization of the density distribution as com-
pared with non-relativistic ones because of deeper single-
nucleon potentials [4].

The studies of the single-particle densities in the
present paper are also related to the general problem of
the nucleon localization in finite nuclei. This problem
was considered in Refs. [12, 21, 35], however, only total
nucleon densities were used in the discussion of the lo-
calization. It was described in terms of different param-
eters reflecting different aspects of nuclear many-body
problem. The α parameter representing the ratio of the
spatial dispersion of the wave function to the average
internucleon distance has been introduced in Ref. [21].
This parameter generally increases with the number of
nucleons. Based on that, it was concluded that cluster
states are more easily formed in light nuclei and that the
transition from localized clusters to liquid state occurs
for nuclei with A ≈ 30. An alternative localization mea-
sure has been employed in Refs. [12, 35]. It is defined
as a conditional probability of finding a nucleon within a
distance δ from a given nucleon at point r with the same
spin and isospin. This measure has been applied both to
light and very heavy nuclei.

The paper is organized as follows. Section II describes
the details of the calculations. The basic features of the
nodal structure of the single-particle wave function (and
thus of its density distribution) in the case of extremely
elongated prolate shapes are discussed in Sec. III. Secs.
IV, V and VI analyse the densities and their nodal struc-
tures obtained in the CDFT calculations for the single-
particle states occupied in rod-shaped structure of 12C,
hyperdeformed band of 28Si and megadeformed structure
of 40Ca. Sec. VII summarizes the general features of the
nodal structure of the single-particle density distributions
and analyse how they affect the α-clusterization and the
formation of nuclear molecules. Finally, Sec. VIII sum-
marizes the results of our work.

II. THE DETAILS OF THE CALCULATIONS

The calculations are performed in the cranked rela-
tivistic mean field (CRMF) framework [25, 28] using the
NL3* CEDF [36]. Note that one-dimensional rotation
is along the x-axis in this framework. The pairing is

neglected in the calculations since it has very little im-
pact on the configurations of interest [7]. The CRMF
equations are solved in the basis of an anisotropic three-
dimensional harmonic oscillator in Cartesian coordinates,
for details see Refs. [28, 37]. The truncation of basis is
performed in such a way that all states belonging to the
major shells up to NF = 14 fermionic shells for the Dirac
spinors and up to NB = 20 bosonic shells for the meson
fields are taken into account. This truncation scheme
provides sufficient numerical accuracy (see Ref. [23] for
details).

The calculated configurations are labeled by shorthand
[n1(n2)(n3),p1(p2)(p3)] labels, where n1, n2 and n3 are
the number of neutrons in the N = 3, 4 and 5 in-
truder/hyperintruder/megaintruder orbitals and p1, p2

and p3 are the number of protons in the N = 3, 4 and
5 intruder/hyperintruder/megaintruder orbitals. If some
of these orbitals are not occupied, the respective numbers
are omitted in the configuration labels.

To give a full 3-dimensional representation of the
single-particle density distributions, they are plotted in
the figures below in the xz and yz planes at the positions
of the Gauss-Hermite integration points in the y and x
directions closest to zero. The density cross-section in
the xy plane is taken at the Gauss-Hermite integration
point in the z-coordinate which gives the largest den-
sity. The numerical values of these x and y coordinates
are given in figure captions, while the value of the z co-
ordinate is shown in middle panels of the figures which
present single-particle density distributions. Note that
some graphical results of the calculations are provided in
the Supplemental Material with this article as Ref. [40].

III. THE NODAL STRUCTURE OF THE
SINGLE-PARTICLE WAVE FUNCTION

Considering that the structures under investigation are
characterized by the extreme prolate deformation and
near axial symmetry (see Ref. [7]), the expansion of the
wave functions of the single-particle states in terms of
quantum numbers specific for asymptotic Nilsson quan-
tum numbers (see Sec. 8.2 of Ref. [38]) is the most appro-
priate. Thus, the wave function Ψ[NnzΛ]Ω of the single-

particle state denoted by the Nilsson quantum number2

[NnzΛ]Ω is expanded into the basis states |N ′n′zΛ′Ω′ >
by

Ψ[NnzΛ]Ω =
∑

N ′,n′
z,Λ

′,Ω′

cN ′n′
zΛ′Ω′ |N ′n′zΛ′Ω′ > (1)

Here, the basis states are characterized by principal quan-
tum number N ′, the number n′z of nodes in the axial di-

2 We use here the standard notation in which the single-particle
states are labeled by the asymptotic quantum numbers [NnzΛ]Ω
(Nilsson quantum numbers) of the dominant component of the
wave function.
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rection (z-direction) and the projections of orbital (Λ′)
and total (Ω′) single-particle angular momenta on the
axis of symmetry. The sum in Eq. (1) runs over all al-
lowable combinations of the quantum numbers N ′, n′z,Λ

′

and Ω′.
Since the single-particle density ρ[NnzΛ]Ω of the Nilsson

state [NnzΛ]Ω is given by

ρ[NnzΛ]Ω =
∑

N ′,n′
z,Λ

′,Ω′

c2N ′n′
zΛ′Ω′ < N ′n′zΛ

′Ω′|N ′n′zΛ′Ω′ >

(2)

the weights c2N ′n′
zΛ′Ω′ define the contributions of the basic

states |N ′n′zΛ′Ω′ > into the single-particle density.
The nodal structure of the single-particle wave func-

tion Ψ[NnzΛ]Ω and thus of its density distribution is de-
fined by the spatial part of the wave function. The spa-
tial parts of the basis states are expressed in cylindrical
(r, φ, z) coordinates in the following way (see Ref. [39]
and Sec. 8.2 of Ref. [38])

|N ′n′zΛ′ >∼ Hn′
z

(
z

bz

)
L
|Λ′|
n′
r

(
r2

b2⊥

)(
r

b⊥

)|Λ′|

e
− 1

2

(
z2

b2z
+ r2

b2⊥

)
eiΛ

′φ (3)

where H and L are the Hermite and associated Laguerre
polynomials. The bz and b⊥ are oscillator lenghts in ax-
ial and radial directions and n′r is the number of radial
nodes. The condition N = n′z+2n′r+|Λ′| defines the pos-
sible combinations of the quantum numbers n′r, n

′
z and Λ′

and thus the nodal structure of the density distribution
of the basis state.

The nodal structure in the axial direction of the wave
function (Eq. (3)) and thus of related single-particle den-
sity distribution is defined by the zeros of the Hermite
polynomials. In general, the nodal structure of density
distribution in radial direction is defined by zeros in as-

sociated Laguerra polynomials and in the
(
r
b⊥

)|Λ′|
term.

It turns that all basis states (see Table I), providing the
most important contributions to the wavefunctions of the
single-particle states of interest, have nr = 0 for which

L
|Λ′|
0

(
r2

b2⊥

)
= 1. With a single exception these states

also have only two possible values of Λ′, namely, 0 and
1. Thus, for these states the node at the axis of symme-

try (r = 0) emerges only at Λ′ = 1 from the
(
r
b⊥

)|Λ′|

term. As a result, when considering the pattern of the
density distribution only two types of the basis states
are important, namely, the |N,N, 0 > and |N,N −1, 1 >
states. The density distributions of the basis states with
|NN0 > will be axially symmetric with the maximum of
density located at the axis of symmetry. The basis states
with |N,N − 1, 1 > structure will have a zero density at
the axis of symmetry.

However, as follows from Eq. (1) the basis states are ex-
pected to be mixed in the structure of the single-particle

wave function. As a result, the single-particle wave func-
tions may not have a well pronounced nodal structure
specific for basis states. However, a number of factors
leads to the reduction of such mixing in extremely de-
formed structures of light nuclei. First, the quality of
asymptotic quantum numbers is improving with the in-
crease of the elongation of the nuclear system (see Sec.
8.2 in Ref. [38]). In addition, such mixing depends on the
energy distance between the basis states and the number
of possible counterparts with which appreciable mixing
could take place. At the bottom of nucleonic potential,
these energy distances are large and the number of coun-
terparts is quite limited (see Fig. 2). This leads to ap-
preciable suppression of the mixing.

This is illustrated in Table I in which the weights
c2N ′n′

zΛ′Ω′ of the three largest components of the wave

functions of the single-particle states occupied in the
megadeformed [42,42] configuration of 40Ca are pre-
sented. One can see that the single-particle wave func-
tions are dominated by a single very large component
which in turn will define the spatial distribution of the
single-particle density. This domination is especially pro-
nounced at no rotation and for the single-particle or-
bitals located at the bottom of the nucleonic poten-
tial. Note that the [440]1/2 and [211]1/2 orbitals with
r = −i strongly interact in substantial frequency range
near Ωx ∼ 1.8 MeV (see Fig. 2b). This leads to an in-
crease of the fragmentation of the wave function of these
two states at Ωx = 1.8 MeV (Table I). However, such in-
teraction is absent in the [440]1/2 and [211]1/2 orbitals
with r = +i. As a result, their wave functions are sub-
stantially less fragmented (Table I).

IV. ROD-SHAPE STRUCTURE IN 12C

One of the examples of the cluster structures is the
linear chain of three α-particles in 12C [8]. These rod-
shape structures in rotating 12C and neighboring nuclei
have been investigates in the framework of cranked rela-
tivistic mean field theory in Ref. [15]. The total neutron
density distribution for this configuration in 12C is pre-
sented in Fig. 1a and its routhian diagram is shown in
Fig. 2a. The proton and neutron single-particle states
with structure [000]1/2, [110]1/2 and [220]1/2 of both
signatures are occupied in this configuration. Note that
proton routhians are very similar to neutron ones; how-
ever, they are less bound (by roughly 8 MeV) because of
the Coulomb interaction.

Single-particle density distributions of these states are
shown in Fig. 3. One can see that they are almost axi-
ally symmetric (see density cross-sections in the xy-plane
which is perpendicular to the symmetry axis z ). The
density distributions for opposite signatures of the spe-
cific orbital are almost the same. The same is also true
for single-particle density distributions for the proton
and neutron states with the same structure. Thus, it is
sufficient to consider only neutron states with signature



5

FIG. 2. (Color online) Neutron single-particle energies (routhians) in the self-consistent rotating potential as a function of
the rotational frequency Ωx. They are given along the deformation path of the rod-shaped structure in 12C and yrast MD
configuration [42,42] in 40Ca. Long-dashed, solid, dot-dashed and dotted lines indicate (π = +, r = +i), (π = +, r = −i),
(π = −, r = +i) and (π = −, r = −i) orbitals, respectively. At Ωx = 0.0 MeV, the single-particle orbitals are labeled by the
asymptotic quantum numbers [NnzΛ]Ω (Nilsson quantum numbers) of the dominant component of the wave function. Solid
circles indicate the occupied orbitals. Large shell gaps are indicated in the right panel.

r = +i as it is done in Fig. 3.

The density distributions of these states are almost
axially symmetric with the maximum of density inside
of each cluster located at the axis of symmetry. This is
because their wave functions do not have nodes in radial
direction. However, they show different nodal structure
along the axis of symmetry since nz is changing from 0
in the [000]1/2 state via 1 in the [110]1/2 state to 2 in
the [220]1/2 state.

The density distribution of the [000]1/2 state, which
is emerging from spherical 1s1/2 subshell, is the ellip-
soid of revolution with the maximum of the density lo-
cated at the center of nucleus. The density distribution
of the [110]1/2 state, emerging from the spherical 1p1/2

subshell, is formed by two spheroids located symmetri-
cally with respect of z = 0. The [220]1/2 orbital, emerg-
ing from spherical 1d5/2 subshell, shows three spheroidal
clusters in density distribution; one of them is located at
the center of nucleus and two others symmetrically with
respect of it. Among these states, the highest localiza-
tion of the wave function is seen in the [000]1/2 state.
With increasing principal quantum number N (and the
number of density clusters) the localization of the wave
function and the maximum density in the center of the
density cluster decreases.

The asymptotic Nilsson labels are quite good ap-
proximate quantum numbers at the extreme deforma-
tions of interest (see also the discussion in Sec. 8.2
of Ref. [38]). For example, the lowest state in the
routhian diagram has the structure 96.0%|000, 1/2 >
+ 3%|200, 1/2 > + 0.5%|220, 12 > + ... at rota-
tional frequency Ωx = 0.0 MeV. Here and below we
show only three largest squared components (in the for-
mat c2N ′n′

zΛ′Ω′%|N ′n′zΛ,′ Ω′ >) of the single-particle wave

function. The rotation only somewhat modifies the struc-
ture of its wave function which at Ωx = 3.2 MeV has
the structure 92.5%|000, 1/2 > + 3.0%|200, 1/2 > +
2.8%|220, 1/2 > + ... for the r = −i branch. The
same is true for other states of interest. The lowest
negative parity state has the structure 94.6%|110, 1/2 >
+ 4.0%|310, 1/2 > + 0.4%|101, 1/2 > + ... and
87.1%|110, 1/2 > + 3.4%[310, 12 > + 3.1%|101, 3/2 >
+ ... (for the r = −i branch) at Ωx = 0.0 and
Ωx = 3.2 MeV, respectively. The lowest N = 2 state
has the structure 89.7%|220, 1/2 > + 5.8%|420, 1/2 >
+ 1.5%|211, 1/2 > + ... and 72.3%|220, 1/2 > +
8.9%|211, 1/2 > + 6.6%|211, 3/2 > +... (for the r = −i
branch) at Ωx = 0.0 and Ωx = 3.2 MeV, respectively.
Two general trends in the structure of the wave function
are clearly seen on these examples. These are the increase
of the fragmentation of the wave function (with related
decrease of the dominant component of the wave func-
tion) with the raise of the position of the single-particle
state with respect of the lowest state in the nucleonic po-
tential and with increasing rotation of the nucleus. The
first effect brings the state of interest into the region of
increased density of the single-particle states and thus to
the region where the interactions of the states are more
abundant. The second is a consequence of the Coriolis
interaction.

V. THE HYPERDEFORMED [2,2]
CONFIGURATION IN 28SI

Next we consider the hyperdeformed [2,2] configura-
tion in 28Si. The structure of this nucleus has been stud-
ied in detail in Ref. [7] where it was shown that this con-
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TABLE I. The squared amplitudes c2N′n′
zΛ′Ω′ of three largest components of the wave functions of the single-particle states

occupied in the megadeformed [42,42] configuration of 40Ca. The states are shown from the bottom of nucleonic potential in
the same sequence as they appear in the routhian diagram of this configuration (see Fig. 1b). The results are shown at no
rotation (Ωx = 0.0 MeV) and at rotational frequency Ωx = 1.8 MeV which corresponds to spin I = 25~. If not indicated
otherwise, the orbitals have signature r = −i. Note that the [550]1/2 state is not occupied in this configuration.

State Ωx [MeV] Wave function
[000]1/2 0.0 92.7%|000, 1/2 > + 6.7%|220, 1/2 > + 0.4%|200, 1/2 >

1.8 90.4%|000, 1/2 > + 8.7%|220, 1/2 > + 0.3%|200, 1/2 >
[110]1/2 0.0 89.6%|110, 1/2 > + 9.6%|330, 1/2 > + 0.4%|101, 1/2 >

1.8 87.3%|110, 1/2 > + 9.6%|330, 1/2 > + 1.3%|101, 3/2 >
[220]1/2 0.0 85.1%|220, 1/2 > + 6.5%|000, 1/2 > + 6.2%|440, 1/2 >

1.8 73.2%|220, 1/2 > + 8.9%|000, 1/2 > + 6.9%|440, 1/2 >
[101]3/2 0.0 92.9%|101, 3/2 > + 6.7%|321, 3/2 > + 0.3%|301, 3/2 >

1.8 82.9%|101, 3/2 > + 9.4%|321, 3/2 > + 3.4%|101, 1/2 >
[330]1/2 0.0 75.7%|330, 1/2 > + 8.5%|110, 1/2 > + 6.8%|321, 1/2 >

1.8 65.5%|330, 1/2 > + 8.9%|101, 1/2 > + 5.8%|101, 3/2 >
[211]3/2 0.0 92.5%|211, 3/2 > + 6.9%|431, 3/2 > + 3.6%|202, 3/2 >

1.8 78.4%|211, 3/2 > + 7.2%|431, 3/2 > + 6.1%|220, 1/2 >
[101]1/2 0.0 90.2%|101, 1/2 > + 5.0%|330, 1/2 > + 4.4%|321, 1/2 >

1.8 76.7%|101, 1/2 > + 7.2%|321, 1/2 > + 6.5%|330, 1/2 >
[211]1/2 0.0 81.4%|211, 1/2 > + 9.6%|431, 1/2 > + 5.2%|440, 1/2 >

1.8 65.3%|211, 1/2 > + 22.1%|440, 1/2 > + 5.4%431, 3/2 >
[211]1/2 0.0 81.4%|211, 1/2 > + 9.6%|431, 1/2 > + 5.2%|440, 1/2 >
(r = +i) 1.8 82.9%|211, 1/2 > + 6.8%|431, 1/2 > + 3.2%|211, 3/2 >
[321]3/2 0.0 85.7%|321, 3/2 > + 6.1%|101, 3/2 > + 6.0%|541, 1/2 >

1.8 57.6%|321, 3/2 > + 9.1%|330, 1/2 > + 7.1%|312, 5/2 >
[440]1/2 0.0 77.4%|440, 1/2 > + 10.7%|211, 1/2 > + 4.1%|660, 1/2 >

1.8 36.0%|440, 1/2 > + 20.3%|431, 1/2 > + 15.3%|211, 1/2 >
[440]1/2 0.0 77.4%|440, 1/2 > + 10.7%|211, 1/2 > + 4.1%|660, 1/2 >
(r = +i) 1.8 63.3%|440, 1/2 > + 15.2%|431, 3/2 > + 6.0%|220, 1/2 >

[550]1/2 0.0 79.3%|550, 1/2 > + 6.8%|541, 1/2 > + 6.7%|770, 1/2 >
1.8 46.9%|550, 1/2 > + 23.9%|541, 3/2 > + 5.9%|770, 1/2 >

figuration is calculated at relatively low excitation energy
at spins above 10~. Its total neutron density distribution
is shown at spins I = 0~ and I = 12~ in Fig. 1(b-c). The
HD [2,2] configuration shows clear signatures of cluster-
ization which are especially pronounced at I = 0~ (Fig.
1b). Although the rotation somewhat hinders these sig-
natures (Fig. 1c), they are still present at I = 12~.

The length of the rod-shape structure in 12C and the
HD [2,2] configuration in 28Si is almost the same in ax-
ial (z-) direction. However, the density of the HD [2,2]
configuration is broader in the radial direction as com-
pared with the one seen in rod-shape structure of 12C.
As follows from the discussion below, these differences
are traced back mainly to the density distributions of
the orbitals by which these two configurations differ.

The [000]1/2, [110]1/2 and [220]1/2 states are occu-
pied both in the HD configuration of 28Si and rod-shape
structure of 12C. Their density distributions and nodal
structure are very similar in both nuclei (compare Fig.
3 with Figs. 1, 2 and 3 in the Supplemental Material
[40]). However, the density distributions of these states
in the HD [2,2] configuration of 28Si are slightly less elon-
gated in axial direction and somewhat more stretched
out in radial direction as compared with the ones in rod-
shape structure of 12C. This is a consequence of two facts.

First, the difference in total density distributions (rod-
shape in 12C versus ellipsoid like in 28Si, Figs. 1(a-c))
affects the nucleonic potential. The sizes of the nuclei
and thus of nucleonic potentials have also an impact.
The charge radii of 12C and 28Si in the ground state are
∼ 2.8 fm and ∼ 3.15 fm, respectively (see Fig. 23 in Ref.
[33]). However, these differences are compensated to a
degree by the fact that these states are located deeper
in the nucleonic potential of 28Si (at single-particle en-
ergies εi = −50.22,−40.20 and -26.56 MeV at Ωx = 0.0
MeV for the [000]1/2, [110]1/2 and [220]1/2 states, re-
spectively) as compared with the ones in 12C (Fig. 2a)
which leads to their smaller effective radius as compared
with the radius of the ground state.

In addition, the Nilsson [101]3/2, [330]1/2, [211]3/2
and [101]1/2 orbitals are occupied in this configuration
(see Fig. 2b). Their density distributions are presented in
Figs. 4, 5 and 6 as well as in Fig. 4 of the Supplemental
Material (Ref. [40]) at no rotation (Ωx = 0.0 MeV) and at
rotational frequency Ωx = 1.8 corresponding to spin I ∼
12~. The density distributions of these single-particle
orbitals are characterized by different nodal structure.

The density distribution of the [330]1/2 orbital is simi-
lar in structure to the one seen for the [NN0]1/2 orbitals
in 12C and 28Si: there are four density clusters located
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FIG. 3. (Color online) The single-neutron density distributions due to the occupation of the indicated Nilsson states with
signature r = −i in the rod-shape configuration of 12C. The colormap shows the densities as multiplies of 0.001 fm−3. The
plotting of the densities starts with yellow color at 0.001 fm−3. The results of the calculations are shown at rotational frequency
Ωx = 3.2 MeV which corresponds to spin I = 8.77~. For each state, the cross-sections in the yz and xz planes are plotted
at x = 0.234 fm and y = 0.234 fm, respectively. The shape and size of the nucleus are indicated by black solid line which
corresponds to total neutron density line of ρ = 0.001 fm−3. In addition, the current distributions jn(r) produced by these
states are shown by arrows. The currents in panels (a),(d) and (g) are plotted at arbitrary units for better visualization. The
currents in other panels are normalized to the currents in above mentioned panels by using factor F.

along the axis of symmetry with the maximum of the
density in each cluster located at the axis of symmetry.
The largest clusters with the highest density in the center
are located in the polar region.

The orbitals with the Nilsson labels [101]3/2, [101]1/2
and [211]3/2 belong to the group of the states the wave-
functions of which are dominated by the basis states of
the |N,N − 1, 1 > type (see Table I). These basis states
produce zero density at the axis of symmetry (see Sec.
III). Significant reduction of the density on approach-
ing the axis of symmetry is seen in the density distribu-
tions of these Nilsson states (see Figs. 5 and 6 in the
manuscript and Fig. 4 in the Supplemental Material
[40]). However, not always we see zero density at or
close to the axis of symmetry. This is due to two rea-
sons. First, there are the contributions into the wave
functions emerging from the basis states of the |NN0 >
type (see Table I) which build the density at the axis of
symmetry. Second, because of calculational features the

plots are made at the cross-sections which are located
slightly off the axis of symmetry.

The [101]1/2 (Figs. 5(a-c)) and [101]3/2 (Figs. 4(a-c)
in the Supplemental Material [40]) Nilsson states show
very similar density distributions of doughnut type in
which the maximum of the density is located in the equa-
torial plane. These two states at spin zero differ only in
the orientation of the single-particle spin along the sym-
metry axis which has only moderate impact on the den-
sity distribution. As a result, their densities are similar
at spin zero (compare Figs. 5(a-c) with Figs. 4(a-c) in the
Supplemental Material [40]); minor differences are due to
different single-particle energies and different projections
Ω of the total single-particle angular momentum on the
axis of symmetry which leads to the interaction of the
single-particle states within the groups with different Ω
(see Table I).

The wave function of the [211]3/2 Nilsson state is dom-
inated by the |211, 3/2 > basis state the density of which
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FIG. 4. (Color online) The same as Fig. 3 but for the [330]1/2(r = −i) orbital in the HD [2,2] configuration of 28Si. The
densities in the yz and xz planes are taken at x = 0.326 fm and z = 0.375 fm, respectively. Top and bottom panels show the
results at Ωx = 0.0 MeV and Ωx = 1.8 MeV, respectively.

has one node in radial direction and two nodes in axial
direction. As a result, the density distribution of this
Nilsson state is the combination of two circular axially
symmetric density rings located symmetrically with re-
spect of equatorial plane (Figs. 6(a-c)).

As illustrated in Table I the rotation leads to the modi-
fication of the structure of the wave function typically re-
ducing the weight of its dominant component. Its impact
depends on the state. For some states these modifications
are rather small, for others they may be substantial. In
general, the impact of the rotation on the single-particle
densities can be characterized (i) by the change of their
nodal structure, (ii) by the degree of delocalization of the
wave function and (iii) by the change of their azimuthal
dependence. For the states in the HD [2,2] configuration
of 28Si, the nodal structure of the single-particle density
distributions is not affected by rotation. The rotation
leads to some delocalization of the wave function which
reflects itself in some increase of the space of the nucleus
occupied by the particle [with related decrease of average
density] and by some decrease of the maximum density in
the density cluster (compare Figs. 4(a-c) and Figs. 4(d-
f), compare upper, middle and bottom rows of Fig. 5 and
of Fig. 4 in the Supplemental Material [40], compare up-
per and bottom rows in Fig. 6 and in Figs. 1, 2 and 3
of the Supplemental Material [40]). The changes in the
azimuthal distribution of the densities induced by rota-
tion are rather small for the [NN0]1/2 Nilsson states (see
Fig. 4 and Figs. 1, 2 and 3 in the Supplemental Material
[40]). On the other hand, they are quite substantial for
the [101]1/2 (Fig. 5) and [101]3/2 (Fig. 4 in the Sup-
plemental Material [40]) states. This is a consequence
of the fact that the rotation leads to a different redistri-

bution of the neutron matter for the r = ±i branches
of the single-particle orbital resulting in an asymmetric
doughnut density distributions in which the density de-
pends on azimuthal angle. For example, the matter is
moved away from the xz plane in the ±y directions for
the [101]1/2(r = −i) orbital [compare upper and middle
panels of Fig. 5]. For the [101]1/2(r = +i), this redis-
tribution proceeds from the yz plane in the ±x direction
[compare upper and bottom panels of Fig. 5]. Similar
effect is also seen for the [101]3/2(r = ±i) states (Fig.
4 in the Supplemental Material [40]), but here it is in-
verted for (r = ±i) signatures as compared with the case
of the [101]1/2(r = ±i) states. It is interesting that for
the [101]1/2 and [101]3/2 states the rotation leads to the
increase of maximum density in density cluster.

The observed features of the single-particle density
distributions allow to understand in a simple way the
transition from the rod-shape total neutron density in
12C to the ellipsoid-like density distribution with two-
pronounced clusters in 28Si (Fig. 1). In 28Si, six neu-
trons in the [000]1/2, [110]1/2 and [220]1/2 orbitals build
the density distribution which is quite similar (slightly
shorter in axial direction and slightly wider in radial di-
rection) to the one seen in the rod-shape structure of
12C (compare Fig. 7(b) with Fig. 7(a)). Thus, the ’rod-
shape’ cluster structure of 12C (but with less pronounced
central cluster) is still present in the HD [2,2] configu-
ration of 28Si. The addition of two neutrons into the
[330]1/2 orbital will lead to some increase of the elon-
gation of this substructure. However, the addition of six
neutrons into the [101]1/2, [101]3/2 and [221]3/2 orbitals
will lead to build up of the density at the radial coor-
dinate away from the axis of symmetry located not far
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FIG. 5. (Color online) The same as Fig. 4 but for the [101]1/2(r = ±i) orbitals. The top panels show the results for the
(r = −i) orbital at Ωx = 0.0 MeV. Because the density distributions in both signatures of the [101]3/2 orbital are identical at
Ωx = 0.0 MeV, the results for the [101]3/2(r = +i) orbital are not shown here. Middle and bottom panels show the densities
and currents at Ωx = 1.8 MeV for the [ 101]1/2(r = −i) and [101]1/2(r = +i) orbitals, respectively.

away from the equatorial plane. While the orbitals of the
[NN0]1/2 type show the clusterization of the wavefunc-
tion with substantial concentration of the density in at
least one density cluster, the occupation of the [101]1/2,
[101]3/2 and [221]3/2 orbitals with single radial node,
leading to either doughnut or double axial ring struc-
tures, acts against α-clusterization. This is because they
occupy substantial space of nucleus and are characterized
by low density which even at its maximum is only slightly
more than half of the maximum of the density seen in the
density clusters produced by the orbitals of the [NN0]1/2
type. In addition, there is no a center of the density dis-
tribution in the [101]1/2, [101]3/2 and [221]3/2 orbitals
which could be associated with α-particle.

VI. MEGADEFORMED [42,42]
CONFIGURATION IN 40CA.

Megadeformed [42,42] configuration in 40Ca becomes
yrast in the CRMF calculations at spin I = 23~ [7].
It is more elongated with narrower neck than the HD
[2,2] configuration in 28Si (compare Fig. 1(e) with Figs.

1(b,c)). Despite these differences, the nodal structure of
the densities of the single-particle states occupied below
the N = 14 shell gap and their pattern of density dis-
tribution is the same for these two configurations in two
nuclei (compare Figs. 4, 5, and 6 in the paper and Fig.
4 in the Supplemental Material (Ref. [40]) with Figs. 5
and 6 in the Supplemental Material [40]). Thus, we fo-
cus in this Section on the [211]1/2, [321]3/2 and [440]1/2
states which are located above the N = 14 shell gap and
which are occupied in the MD [42,42] configuration of
40Ca (Fig. 2).

In analogy to the case of the [101]1/2 and [101]3/2
states (see discussion in Sec. V), the density distributions
of the [211]3/2 and [211]1/2 states are very similar at no
rotation (compare Fig. 6 with Fig. 7 in the Supplemental
Material [40]). The rotation affects the wave functions of
the (r = ±i) branches of the [211]1/2 state in different
way (see Table I). The wave function of the r = +i or-
bital is only weakly affected by rotation so apart of the
modification of azimuthal dependence the nodal struc-
ture of its density distribution is the same as the one
at no rotation (compare upper and bottom rows of Fig.
7 in the Supplemental Material [40]). On the contrary,
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FIG. 6. (Color online) The same as Fig. 4 but for the [211]3/2(r = −i) orbital.
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FIG. 7. (Color online) Total neutron densities produced by six neutrons occupying the lowest orbitals of the nucleonic potential,
namely, [000]1/2, [110]1/2 and [220]1/2 in considered configurations of 12C, 28Si and 40Ca. The plotting of the densities starts
with yellow color at 0.001 fm−3.

at Ωx = 1.8 MeV the r = −i orbital is strongly mixed
with substantial admixture of the |440, 1/2 > basis state
(Table I). This leads to the emergence of the additional
density cluster at axis of symmetry near z ∼ ±6 fm (see
middle row of Fig. 7 in the Supplemental Material [40]).

The wave function of the [321]3/2 state is dominated
by the |321, 3/2 > basis state which has one node in ra-
dial direction and two nodes in axial direction. As a
result, the density distribution of this state is given by
three density rings (Fig. 8); one is located in the equa-
torial plane and other two symmetrically with respect of
this plane. At no rotation, these rings are almost axially
symmetric. The rotation induces the dependence of the
density on the azimuthal angle (azimuthal asymmetry);
this is clearly seen in Fig. 8. For the r = −i branch of
this state, the density is mostly localized around the xz-
plane and its vicinity (Fig. 8). The situation becomes
reversed for the r = +i branch, for which most of the
density becomes localized around the yz-plane and its
vicinity.

Fig. 9 displays the single-particle densities of the
[440]1/2(r = ±i) orbitals and illustrates the impact of
state mixing on the single-particle densities. The wave
function of the (r = +i) branch is dominated by the basis
|440, 1/2 > state (Table I). As a consequence, its den-
sity distribution closely follows to that expected for the
[NN0]1/2 states, namely, five density clusters (which is
a consequence of four (nz = 4) nodes in axial direction
for the |440, 1/2 > basis state) with the maximum of the
density in each of them at the axis of symmetry (the
consequence of no node in radial direction). The density
distribution of the (r = −i) branch is different since it
is built from three spheroidal clusters (one at center and
two in the polar regions) separated by the ring struc-
ture. The later comes from substantial admixture of the
|221, 1/2 > basis state which has this kind of density dis-
tribution (see, for example, Fig. 6 and bottom row in Fig.
5 of the Supplemental Material (Ref. [40]) as well as the
discussion of the [221]3/2 state in 28Si (Sec. V)).
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FIG. 8. (Color online) The same as Fig. 3 but for the [312]3/2(r = −i) orbital in the MD [42,42] configuration of 40Ca at
rotational frequency Ωx = 1.8 MeV corresponding to spin I = 25~. The densities in the yz and xz planes are taken at x = 0.329
fm and z = 0.329 fm, respectively.
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FIG. 9. (Color online) The same as Fig. 8 but for the [440]1/2(r = ±i) orbitals at Ωx = 1.8 MeV. Top and bottom panels show
the results for the (r = −i) and (r = +i) branches, respectively. Note that the density distribution at Ωx = 0.0 MeV is very
similar to what is seen in bottom panels.

VII. MAIN CONSEQUENCES OF THE NODAL
STRUCTURE OF THE SINGLE-PARTICLE

WAVE FUNCTIONS.

The analysis of the results of the CRMF calculations
performed for extremely elongated shapes including hy-
perdeformed ones in 28Si, megadeformed shapes in 40Ca
and rod-shape structures in 12C reveals the following gen-
eral features

• The buildup of such shapes from individual con-
tributions of particles is defined by two groups of
the single-particle states in the light nuclei with
mass number A up to around 40. The states with
the [NN0]1/2 structure belong to the first group3

The second group is represented by the states with

3 Low energy structures in relatively light nuclei can be described

the [N,N−1, 1]1/2 and [N,N−1, 1]3/2 structures;
note that the spatial distribution of the wave func-
tion (density) almost does not depend on Ω and is
almost entirely defined by [N,N − 1, 1].

• With relatively few exceptions, the wave functions
of the single-particle states occupied in such ex-
tremely deformed shapes are dominated by a sin-
gle basis state. This is because the mixing of the
basis states is suppressed at the bottom of nucle-
onic potential since the energy distances between
the basis states which could mix are large and the

in terms of molecular bonding [8]. For covalent bonding, a neg-
ative parity orbital perpendicular to the α-α axis is called a
π-orbital, whereas a σ-orbital denotes a positive parity orbital
parallel to the α-α direction. Thus, the [101]3/2 and [220]1/2
Nilsson states are the examples of the π- and σ-orbitals, respec-
tively.
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number of possible counterparts with which appre-
ciable mixing could take place is limited. Indeed,
the fragmentation of the wave function (with re-
lated decrease of the dominant component of the
wave function) typically increases with the raise of
the position of the single-particle state with respect
of the lowest state in the nucleonic potential.

• As a consequence, the nodal structure of the wave
function (and thus of density distribution) of the
single-particle state is defined solely by the nodal
structure of the dominant basis state. However, the
nodal structure of the density distribution of these
basis states is determined by their quantum num-
bers. As a result, three basic types of single-particle
density distributions, namely, spheroidal/elipsoidal
shapes, doughnut and ring shapes, play an impor-
tant role in forming the nuclear shapes at large
elongation.

– The density distributions of the Nilsson
states with [NN0]1/2 quantum numbers
are nearly axially symmetric with N + 1
spheroidal/elipsoidal like density clusters the
maximum of the density of which is located
at the axis of symmetry. With the exception
of the N = 0 case, the clusters with highest
densities are located in polar regions of the nu-
clei. This structure of the density distribution
is the consequence of the nodal structure of
the dominant basis state: no nodes in radial
direction and nz = N nodes in axial direction.

– The doughnut shapes are formed by the
[N01]Ω states since the densities of their dom-
inant basis states have one node in radial di-
rection and no nodes in axial direction.

– Finally, the states with the structure [N,N −
1, 1]Ω form multiply (two for nz = 1 and three
for nz = 2) ring shapes for N = 2 and 3.

• Another source of increased fragmentation of the
single-particle wave function is Coriolis interaction.
It leads to some reduction of the weight of the dom-
inant basis state in the single-particle wave function
and to some delocalization of single-particle den-
sity. However, even with these effects accounted
the single-particle states of interest for the rota-
tional frequencies under study are dominated by
a single basis state and their density distributions
have the same nodal structure as the one at no
rotation. Note that the rotation introduces some
azimuthal dependence of the density distribution;
this effect is especially pronounced for the states of
the [N,N − 1, 1] type.

• The localization of the wave function strongly de-
pends on its nodal structure. Only the states with
low number of nodes in axial direction and with

no nodes in radial direction could be well local-
ized. The highest localization of the wave function
is reached for the lowest states of the [NN0]1/2
type with N = 0, 1 and 2; that is a reason why
these states are so important in α-clusterization.
Subsequent increase of N and/or the number of the
nodes in radial direction substantially decreases the
level of the localization of the wave function. The
rotation also reduces somewhat the localization of
the wave function.

The structure of the clusters forming the nucleus is
frequently defined in the DFT framework by comparing
the density distributions of possible clusters with total
density of the nucleus. Although some useful informa-
tion can be obtained in that way, especially, with the
use of the localization functions defined in Refs. [12, 35]
such an approach has its own limitations. The present
analysis suggests an alternative way in which the single-
particle densities forming the total density of the nucleus
and its constituent clusters are compared. Since single-
particle densities bear a clear mark of the underlying
single-particle wave functions, such way of the compar-
ison can provide a more microscopic understanding on
how the nucleus is formed from the clusters. The work
on that type of the analysis is in the progress and the
results will be presented in a forthcoming publication.

A. Nodal structure of the single-particle densities
and the transition to liquid phase

The analysis of Ref. [21] based on the consideration of
total nucleonic densities and harmonic oscillator poten-
tial has suggested that the nuclei heavier than A ∼ 30
consist of largely delocalized nucleons. As a result, the
transition from coexisting cluster and mean-field states
to a Fermi liquid state should occur for nuclei with
A ≈ 20 − 30 [21]. Note that for solid phase, the nu-
clear configurations are characterized by the situation in
which each particle is localized with respect of its neigh-
bours [41]. On the contrary, the individual particles are
delocalized in a quantum liquid [41, 42]. By definition
the quantum liquid is many-body system whose behavi-
uor is defined by the effects of both quantum mechanics
and quantum statistics [43]. The latter enters into the
game through the requirement of the indistinguishability
of the constituent particles ([43]) which defines the type
of quantum statistics (Fermi or Bose). This requirement
cannot be satisfied in finite nuclei if the occupied states
are localized and have different spatial distributions.

The analysis of the single-particle densities performed
in the present paper suggests that the transition to quan-
tum liquid does not happen in the considered nuclei.
Although with the increase of particle number the oc-
cupation of the single-particle orbitals with lower level
of localization becomes dominant, none of these states
can be described as delocalized. They still preserve their
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nodal structure and typically occupy less than half of the
volume of the nucleus.

B. α-clusterization and its evolution with particle
number

The observed features of the single-particle density dis-
tributions emerging from the nodal structure of the wave-
functions allow to understand in a relatively simple way
the necessary conditions for α-clusterization. Two fac-
tors play an important role here: the degree of the lo-
calization of the wavefunction and the type of the den-
sity clusters formed by single-particle orbital. It is clear
that for the α-clusterization the single-particle density
clusters should be compact (well localized), should have
spheroidal or slightly elipsoidal density distribution and
overlap in space. These conditions are satisfied only for
the lowest states of the [NN0]1/2 type with N = 0, 1 and
2 which are active in the α-cluster structures of very light
nuclei [4, 8, 15, 20, 44]. With increasing particle number
the orbitals with doughnut and multiply ring type density
distributions become occupied. These states are substan-
tially less localized; the maximum of the density in such
structures is typically much smaller than the maximum
of the density in the lowest [NN0]1/2 orbitals. In ad-
dition, such density distributions (doughnuts and rings)
are incompatible with α-clusters.

Based on these considerations it is clear that α-
clustering in highly elongated nuclear structures for typ-
ical deformations considered here should be an impor-
tant mode only in very light nuclei in which the states
of the [NN0]1/2 type are occupied. Although the α-
cluster substructures still survive in heavier nuclei (Fig.
7), their contribution to the total wave function of the nu-
cleus is substantially lower than in light nuclei because
of the contribution of mean-field like structures. Indeed,
the antisymmetrized molecular dynamics calculations of
Ref. [9] and their comparison with mean field results
based on the Skyrme DFT indicate that the contribu-
tion of α-clusters to the structure of total wave function
decreases with the increase of mass number. This fea-
ture has been attributed in Ref. [9] to the growing effects
of spin-orbit coupling and Coulomb interaction. On the
contrary, we attribute this effect to the modification of
the nodal structure of the single-particle density distri-
butions with the increase of the particle number.

C. Building nuclear molecules by means of
particle-hole excitations

The coexistence of ellipsoidally shaped structures and
nuclear molecules in the same nucleus has been seen in
the CRMF calculations of Ref. [7] for similar elongations
of nuclear shape. It turns out that the configurations
of these two types of the shapes are connected by char-
acteristic particle-hole excitations. A specific feature of

the nuclear molecules is the existence of two fragments
connected by the neck. The MD configurations [31,31]
in 36Ar, [42,42] in 40Ca and [421, 421] in 42Sc (Fig. 1d-
f) are the examples of nuclear molecules (Ref. [7]). To
build nuclear molecules from typical elipsoidal density
distributions one has to move the matter from the neck
(equatorial) region into the polar regions of the nucleus.
This can be achieved by specific particle-hole excitations4

removing particles from (preferentially) doughnut type
orbitals or from the orbitals which have a density ring in
a equatorial plane into the orbitals (preferentially of the
[NN0]1/2 type) which build the density mostly in the
polar regions of the nucleus.

The results presented in Ref. [7] give a number of exam-
ples of such particle-hole excitations leading to the transi-
tions from elipsoidal nuclear shapes to nuclear molecules.
One such an example is the transition from the HD [4,4]
configuration in 36Ar, which has ellipsoidal density distri-
bution [see Fig. 24b in Ref. [7]]), to the MD [31,31] con-
figuration which is an example of nuclear molecule [see
Fig. 24c in Ref. [7] and Fig. 1d in the present paper]. This
transition involves the proton and neutron particle-hole
excitations from the 3/2[321] orbital (which has triple
ring density distribution) into the [440]1/2(r = −i) or-
bital. Another example is the transition from the [41,41]
configuration in 42Sc, which has ellipsoidal density dis-
tribution (see Fig. 8a in Ref. [7]), to the MD [421,421]
configuration which is a very good example of nuclear
molecule (Fig. 1f). This transition is achieved in pro-
ton and neutron subsystems by the particle-hole excita-
tions from the [202]5/2 (which has doughnut type den-
sity distribution) and [321]3/2 (which has triple ring den-
sity distribution) orbitals into the [440]1/2(r = +i) and
[550]1/2(r = +i) orbitals. The latter orbitals have the
largest and most dense density clusters in the polar re-
gions of the nucleus (see Fig. 9 and Fig. 8 in the Supple-
mental Material [40]).

D. The currents and rigid rotation of the system

Fig. 10 compares microscopically calculated kinematic
moments of inertia J (1) with the rigid body moments of
inertia Jrig for the configurations under study. J (1) is
calculated fully self-consistently via

J (1)(Ωx) =
J

Ωx
, (4)

where J is the expectation value of the total angular mo-
mentum along the x-axis and Ωx is rotational frequency

4 Note that particle-hole excitations are a powerful tool of the mod-
ification of the density distribution in finite nuclei. For example,
they can substantially modify the radial dependence of matter
distribution in spherical nuclei [45] or introduce a deformation
into nuclear system [38].
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FIG. 10. (Color online) The calculated moments of inertia for
the indicated configurations.

along the same axis. In the CRMF framework, J is de-
fined as a sum of the expectation values of the single-
particle angular momentum operators ̂x of the occupied
states

J =
∑
i

〈i|̂x|i〉. (5)

Note that the effects of the time-odd mean fields, which
are extremely important for the moments of inertia (see
Refs. [46, 47]), are included fully self-consistently in the
CRMF calculations.

The rigid body moment of inertia Jrig is obtained in
one-dimensional cranking approximation with the rota-
tion defined around the x-axis from the calculated density
distribution ρ(r) by

Jrig =

∫
ρ(r)(y2 + z2)d3r (6)

An interesting feature of the rotating bands in the
nuclei under consideration is the fact that their micro-
scopic kinematic moment of inertia J (1) changes very lit-
tle with the increase of rotational frequency. Indeed, the
variation of J (1) over calculated rotational frequency is
only 0.47%, 2.4% and 0.4% of its total value in rota-
tional bands of 12C, 28Si and 40Ca, respectively5. The
rigid body moment of inertia is rather close to the mi-
croscopic one; it deviates from J (1) by −5.3% (+7.8%),
−6.9% (−7.8%) and −3.0% (+1.3%) of the J (1) value at
the lowest (highest) calculated frequencies for the rota-
tional bands of 12C, 28Si and 40Ca, respectively. Note
that similar analysis for the hyperdeformed bands in the
Z = 40−58 region shows that microscopic and rigid body
moments of inertia differ typically by less than 5% (Ref.

5 This is not general feature since the kinematic moments of inertia
show pronounced variations in a number of configurations (see
Fig. 35 in Ref. [7]).

[47]). This difference is bigger in 12C and 28Si most likely
due to smaller number of the single-particle orbitals in-
volved as a result of which their individual features still
play a prominent role in the definition of the total prop-
erties of the configuration. In any case, these differences
between microscopic and rigid body moments of inertia
are significantly smaller than those expected in normal-
deformed bands (see Ref. [47]). Thus, the bands under
study behave in a first approximation like rigid rotors.

The distributions of the total neutron currents in the
yz plane are shown in Fig. 10. These currents are built as
a sum of the individual currents of the occupied orbitals;
the latter are shown in the figures with single-particle
density distributions (see Figs. 3, 4, 5, 6, 8, 9, and the
figures in the Supplemental Material [40]). Note that the
yz plane is perpendicular to the axis of the rotation. As
a result, in general the currents in this plane are substan-
tially larger than the ones in the xz and xy planes and
they show the vortices. Note that the localization, the
strength, and the structure of the current vortices created
by a particle in a specific single-particle state depend on
its nodal structure (for more details see Sec. V in Ref.
[47], Ref. [48] and Sec. III C in Ref. [49]). All single-
particle states are characterized by the weak current in
the surface area.

It is well known that there are no currents in the intrin-
sic frame if the rigid nonspherical body rotates uniformly
(rigid rotation) (see Sec. IV A-V in Ref. [50]. The pres-
ence of strong current vortices in Fig. 11 demonstrates
the dramatic deviation of the currents from rigid rota-
tion. This is despite the fact that the moments of inertia
of considered configurations are close to the rigid-body
value. Note that all considered configurations shown in
Fig. 11 are characterized by the weak current in the sur-
face area. On the contrary, the average intrinsic current
flows mainly in the nuclear surface in the semiclassical de-
scription of current in normal and superfluid nuclei [51].
This underlines the importance of quantum mechanical
treatment of the currents.

VIII. CONCLUSIONS

In conclusion, the nodal structure of the density dis-
tributions of the single-particle states occupied in ex-
tremely deformed structures (such as rod-shaped, hyper-
and megadeformed ones) of non-rotating and rotating
N ∼ Z nuclei has been investigated in detail. Such
structures are either axial or nearly axial in the CRMF
calculations and they are present in light nuclei with
Z = 4 − 24 [7, 13, 15, 19]. This simplifies the situation
and with relatively few exceptions the wave functions
of the single-particle states occupied in such extremely
deformed shapes are dominated by a single basis state.
As a consequence, the nodal structure of the wave func-
tion (and thus of the density distribution) of the single-
particle state is defined solely by the nodal structure of
this dominant basis state, the structure of which is given
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FIG. 11. (Color online) Total neutron currents jn(r) in the yz plane plotted at x = 0.234 fm, x = 0.326 fm and x = 329 fm
for the considered configurations in 12C, 28Si and 40Ca, respectively. They are given at spin values indicated in Fig. 1. The
currents in panel (a) are plotted at arbitrary units for better visualization. The currents in other panels are normalized to the
currents in above mentioned panels by using factor F.

by the Nilsson label [NnzΛ]Ω. Two types of the states,
namely, [NN0]1/2 and [N,N −1, 1]1/2 (N,N −1, 1]3/2)
define the features of extremely deformed configurations
in the nuclei under study.

The observed features of the single-particle density dis-
tributions emerging from the nodal structure of the wave-
functions allow to understand in a relatively simple way
the necessary conditions for α-clusterization and the sup-
pression of the α-clusterization with the increase of mass
number. In addition, it allows to understand the coexis-
tence of ellipsoidal mean-field type structures and nuclear
molecules at similar excitation energies and the features
of particle-hole excitations connecting these two types of
the structures.

Our investigation shows that although with increasing
the particle number the occupation of the single-particle

orbitals with low level of localization of the single-particle
densities becomes dominant, the states sitting deep in
the nucleonic potential still remain well localized. In ad-
dition, neither of the occupied states loose their nodal
structure and become delocalized. Thus, for the defor-
mations and nuclei under study no transition to liquid
phase has been observed.
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