INVESTIGATIONS ON NITRIFICATION OF AMMONIA RICH WASTEWATER IN ACTIVATED SLUDGE SYSTEMS

R. Al-Sa'ed

Institut für Stadtbauwesen, Tech. Univ. Braunschweig, Pockelsstr. 4, Postfach 3329, 3300 Braunschweig, Federal Republic of Germany

ABSTRACT

Performance of four laboratory single-stage activated sludge units treating a synthetic highly nitrogenous (100-1200 mg N l⁻¹) wastewater with low BOD₅ (100 mgl⁻¹) concentration is presented.

Nitrifiers fraction (Fn) and nitrification rates increased with decreasing BOD/N ratio. At sludge ages (SRT) above 10 days, BOD/N ratio played no role in nitrification process and complete ammonium oxidation was obtained.

Nitrifiers biomass (Xvn) decreased with decreasing sludge age. However, volumetric nitrification rates (qn) remained constant at Xvn greater than 150 mg VSSI⁻¹ in all units. At sludge ages below 10 days and BOD/N ratio (1:1) above 0.16 initiated sludge bulking.

Nitrification efficiency of 86% was achieved in reactor A at NH₄-N loading of 0.25 kgNkgoTS 1 *d $^{-1}$, while reactor B, C and D this exceeded 95% at 0.45 kgNkgoTS 1 *d $^{-1}$ at a 10 days sludge age. Complete nitrification could be achieved at a wide range of pH between 7 and 9 under optimal operating conditions. The inhibitory effects of NH₃ and HNO₂ were observed at NH₄-N sludge loadings above 0.45 kgN * kgoTS $^{-1}$ *d $^{-1}$.

KEYWORDS

Activated sludge; Nitrification; λ mmonia rich wastewater; Sludge age; Nitrifiers fraction; bulking.

INTRODUCTION

The aesthetic, economic and health considerations involved in the uncontrolled discharge of nitrogen into receiving water bodies has been well recognized.

Among the engineered biological systems are nitrification-denitrification processes the most promissing one for nitrogen control. There have been several models proposed to control and quantify nitrification process kinetic for single-stage activated sludge mode (Eckama and Marais, 1984; IAWPRC Task Group, 1986; Kayser, 1983).

Model suggestions for highly nitrogenous wastewater with low BOD content are still lacking. The results of this study discuss the effects of BOD/N ratio, sludge age, NH₄-N and BOD sludge loading on nitrification performance. Furthermore, the influence of pH as well as possible inhibitory effects of NH₃ and HNO₂ on nitrification will be presented.

MATERIALS AND METHODS

Four identical bench-scale, completely mixed and continuous flow single-stage activated sludge units were operated in parallel. A schematic view of the experimental apparatus is depicted in Fig. 1. The working volume of the aeration basin and the integral clarifier are 14 1 and 7 1 respectively. Using stone air diffusers, the bulk dissolved oxygen was always above 2 mgl⁻. The pH was automatically controlled at 7.5 using a 10% $Na_2CO_3/NaHCO_3$ solution. All units were run at room temperature (20 + 5°C).

The feed consisted of a synthetic wastewater amended with glucose, ammonium chloride, and trace elements {Cd, Cu, Ma, etc.}. In most cases BOD₅ and NH₄-N amounted to 100 and 1200 mgl⁻¹ respectively to achieve the desired BOD/N ratio. Starting-up, chemical, microbiological and kinetic determination were reported previously (Al-Sa'ed, 1987). The concentrations of all nitrogen forms are expressed in mgl⁻¹ as N. Table 1 shows the operating conditions for each unit.

1

RESULTS and DISCUSSION

The experimental data of this study were obtained from the operation of four bench-scale activated reactors designated A,B,C and D. The units were operated for six months at different BOD/N-ratios of 78:106 Unit (A); 93:34 Unit (B); 93:592 Unit (C) and 91:1200 Unit (D) and at the same sludge age (20 - 5 days). Average values from four periods of steady-state operation are summarized in Table 2. The duration of each period was 6 weeks to ensure that representative steady-state data were obtained.

Utilizing the equations described by Eckama and Marais (1984) und EPA (1975), the nitrifiers fraction (Fn) and biomass (Xvn) were determinated. Figures 2 and 3 show that Fn (%) and nitrification reate per gram volatile suspended solids (qoTSn) per day increased with decreasing BOD/N ratio. Average values of Fn for reactors A (BOD/N = 0,75:1), B (BOD/N = 0,30:1), C (BOD/N = 0,16:1) and reactor D (BOD/N = 0,08:1 were 26%, 49%, 63% and 79% at an average sludge age of 10 days. Figure 3 shows the same tendency. Literature nitrification rate for domestic wastewater is usually expressed in terms of total biomass and this is generally very low. Nitrification rate (qoTSn) obtained in this study compaired with those expressed in terms of Xvn (K_T) are presented in Table 3. The effect of sludge age (SRT) on nitrifiers biomass (Xvn) is illustrated in Fig. 4a. Xvn decreased with decreasing SRT in all units. However, at a critical sludge age (SRT = 8 days the minimum Xvn was about 150 mgVSS1⁻⁻ below which partial ammonium oxidation was observed. Nearly constant volumetric nitrification rates (qn) were achieved at Xvn above 150 mg VSS1⁻⁻ and at a SRT greater than 8 days (Fig. 4b). Therefore, BOD₅/N ratio (1:1) showed no effect on nitrification performance at SRT above 8⁻⁻ days.

Almost complete nitrification took place at high sludge age (SRT = 10 days), while nitrificaton efficiency decreased rapidly at small SRT values. This is clearly shown in Fig. 5.

At lower sludge ages (below 10 days) and higher BOD/N ratios above (0.16 : 1) caused sludge bulking (reactor A, B and C). Our data are in agreement with those reported in the literature (Fig. 6).

Alleman (1984) reviewed several conditions which could lead to nitrite buildup in biological nitrification systems. In this study it was found that NH₄loading above 0.45 kgN * kgoTS⁻¹*d⁻¹ and SRT below 10 days caused accummulation of ammonium and nitrite more than 5 mg NI⁻¹ in the aeration tank. Under such process conditions, NH₃ concentraitons (Fig. 7) ranged between 0.1 and 83 mgl⁻¹, which might enhance ammonium and nitrite build up occurrence in the nitrified effluent.

These results are in consistent with those reported by Antonisen (1976) and Nyhuis (1985). Al-Sa'ed (1987) reviewed the possible concentration of NH₃ and HNO, reported in the literature which caused nitrification inhibition in several nitrification systems. However, under following process conditions (BoTSn = 0.37 kgN*kgoTS *d , BoTSc = 0.14 kg BOD*kgoTS *d ; SRT 21 days and 20°C), complete nitrification was obtained at pH range of 7 and 9. Figures 8 and 9 show the effect of pH on nitrification_rate (qn) and efficiency (qnp). It is clear that above pH 7 about 500 mgN * 1 *d could be achieved and nitrification efficiency exceeded 95% under steady state conditions lasted for two months.

In summary, this work centered on bench-scale experiments showed that nitrifiers biomass fraction increased with decreasing BOD/N ratio. This ratio played an essential role at sludge ages below 10 days.

Fig. 1. Schematic of the bench scale single-stage activated sludge system.

1.Influent wastewater	7.Clarifier	13.HCl or Na ₂ CO ₃					
2.Pump	8.Filter	14.Air pump					
3.Aeration basin	9.Effluent	15.Moistened air					
4.Sludge wastage	10.pH Controller	16.Air diffuser					
5.Dissolved oxygen detector	11.pH Probe	17.Air controller					
6.Dissolved oxygen probe	12.Pump	18.Air diffuser					

TABLE 1 Operating Design Parameters of All Reactors

							React	or					
			A			В			С			D	
Parameter	Dimension	i.M.	Min.	Max.	1.M.	Min.	Max.	1.M.	Min.	Max.	1.M	Min.	Max.
Q	(1/d)	35			11.62			5.88	-	-	2.94	-	
HRT	(d)	0.4	-	-	1.20	-		2.88		-	4.76	-	
tTS	(d)	11.9	5.3	20	12.44	6.3	20	12.4	6.2	20	13.	6.9	20
T*C	(°C)	20	16	24	20	16	24	20	16	20	20	16	20
pH	(-)	7.8	7.4	9	7.57	6.2	8.4	7.55	6	9.4	7.62	6	8.4
DO	(mg0 ₂ /1)	2.9	2.	6	3.05	1.8	5	3.3	1.4	6.6	3.5	2	7
MLSS	(gTSS/1)	1.81	0.62	2.99	0.98	0.28	1.91	0.82	0.29	2	0.83	0.3	1.97
MLVSS	(goTS/1)	1.57	0.38	2.53	0.83	0.19	1.61	0.68	0.25	1.73	0.64	0.19	1.55
GV	(1)	86	61	98	87	67	98	80.6	58	95	74.7	49	92
qr	(d ⁻¹)	2.5	-	-	0.83	-	-	0.42	-	-	0.21	-	-
BR_	(kgBOD ₅ /m ³ *d)	0.20	0.08	0.36	0.08	0.03	0.14	0.04	0.01	0.06	0.02	0.01	0.03
BoTS	(kgBOD_/kgoTS*d)	0.15	0.04	0.41	0.12	0.05	0.37	0.07	0.03	0.14	0.04	0.01	0.11
BR	(kgN/ m ³ *d)	0.26	0.24	0.35	0.26	0.22	0.30	0.25	0.21	0.27	0.25	0.17	0.41
BoTS	(kgN/kgoTS*d)	0.22	0.10	0.73	0.46	0.16	1.43	0.49	0.15	1.03	0.52	0.16	1.12
BOD5/NH4-N	(-)	0.75	0.22	1.39	0.30	D.16	0.54	0.16	0.05	0.23	0.08	0.03	0.12

237

100

R. AL-SA'ED

and a bunnerry of paperimental Results	TABLE 2	Summary	of Experimental	Resul	ts
--	---------	---------	-----------------	-------	----

									Re	actor							
			A				ß				с				D		
Parameter	Dimension	i . M.	Min.		Max.	i.M.	Min.		Max.	і.И.	Min.		Max.	1.м.	Min.		Max.
NHA-INE.	(mgN/1)	100	94	÷	140	311	261	-	365	592	490	-	640	1200	828	-	1930
NH, -Bulk	(mgN/1)	14.9	3.5	Ξ.	20.6	43.3	3.8	7	96	22.8	3.3	-	50	47.6	9.5	-	123
NH, -Eff.	(mgN/1)	15	0.18	÷	80	7.8	0.13	÷.	94	45.2	0.22		380	59	0.25		415
NOInf.	(mgN/1)	0.45	0.0	ŝ	6.9	0.11	0.0	$\frac{1}{2}$	0.61	0.16	0.0		1.08	0.09	0.0	2	0.53
NO,-Bulk	(mgN/1)	55.8	28.6	-	83	19.5	8.9	-	30	6.61	1.6	-	11.62	37.2	14.5	-	60
NOEff.	(mgt4/1)	10.7	0.17	-	79	3.8	0.19	-	27	13.5	0.07	-	87.2	12.9	0.08	-	116
NO3-Inf.	(mgN/1)	0.44	0.0	-	1.67	0.64	0.0	-	2.2	0.73	0.01	-	2.1	0.81	0.04	÷	2.1
NO2-Eff.	(mgN/1)	121	91.5		171	380	121	•	666	700	260	-	1278	1210	404	÷.	2460
Xvn	(mgVSS/1)	171	35		290	198	118	$\hat{\tau}$	319	185	21		292	201	66		432
qn	(mjN/1=d)	227	75	-	276	251	216	2	292	230	46	-	268	240	125	-	405
axvn	(mgN/gXvn*d)	1530	930		2613	1372	916	ų,	2023	1382	912	4	2191	1315	908	-	1909
aub	(%)	86.2	27.3		99.8	97.7	74.2	\square	99.9	91.8	22.5	-	99.9	94.6	58.9	-	99.9
)URX vn	(mgO_/gXvn*d)	164	88	-	356	163	104	ě	334	156	87.8	-	429	185	69	-	590
BOD5/N	(-)	0.75	0.22	-	1.39	0.30	0.10	-	0.54	0.16	0.05	-	0.23	0.08	0.03		0.12
'n	(1)	25.8	13.3	•	55.5	49	33.5	-	62.8	62.8	24.4		93.8	78.8	63		92

Fig. 2. Relationship between $\text{BOD}_5/\text{NH}_4-\text{N}$ ratio and nitrifier fraction (Fn).

Fig. 3. Effect of BOD_5/NH_4-N ratio on nitrification rate (qoTS_n).

TABLE 3 Kinetic Data Analysis of Nitrification Process

		Reactor															
			A				в				с				D		
Parameter	Dimension	i.M.	Min.		Max.	i.M.	Min.		Max.	i.M.	Min.		Max.	i.M.	Min.		Max.
tTS	(d)	11.9	5.3	-	20	12.4	6.3	-	20	12.4	6.2	-	20	13	6.9	-	20
tTS.n	(d)	10.3	4.5	-	18.3	11.6	5.9	ŧ.	19	11.0	5.3	-	19	12.1	6.3		20.6
SF	(-)	1.41	1.18	÷	1.73	1.46	1.24		1.76	1.46	1.22	-	1.75	1.48	1.26	-	1.78
tTS-1	(d^{-1})	0.1	0.05	Щ.	0.19	0.09	0.05	$\frac{1}{2}$	0.16	0.09	0.05	-	0.16	0.09	0.05	4	0.14
Urun	(d^{-1})	0.15	0.09	1	0.26	0.14	0.09	2	0.2	0.14	0.09	2	0.22	0.13	0.09	4	0.19
Umt	(d ⁻¹)	0.15	0.09	-	0.26	0.14	0.09	-	0.21	0.14	0.09	-	0.23	0.13	0.09	-	0.20
Unt	(d^{-1})	0.13	0.07	5	0.22	0.11	0.06	÷	0.17	0.1	0.05	÷	0.18	0.10	0.05	-	0.15
Dot	(d ⁻¹)	0.04				0.04				0.04				0.04			
Y, theo.	(mg/mg*d)	0.1				0.1				0.1				0.1			
goTS	(mgN/goTS*d)	171	85	2	610	437	155		1417	434	149	÷	1029	474	158	-	1045
kn	(mgN/1)	0.08	0.05	=	0.13	0.07	0.05	-	0.10	0.07	0.05	Ξ	0.11	0.07	0.05	-	0.10
KnT	(mgN/1)	0.08	0.05	÷	0.13	0.07	0.05	e.	0.10	0.07	0.05	-	0.12	0.07	0.04	-	0.10
K _{mT}	(mgN/gXvn*d)	1504	947	-20	513	1359	906	+	2105	1367	904	÷	2304	1321	864	-	2004
KT	(mgN/gXvn*d)	1327	779	-	2607	1203	811		2023	1298	899		2245	1241	805	-	1996
Gn	(d)	4.9	2.6	2	7.3	5.4	3.3	-	7.7	5.4	3.0	-	7.7	5.5	3.5	4	8.0

Fig. 4b. Plot of nitrifier biomass(Xvn) against nitrification rate (qn) in all reactors.

R. AL-SA'ED

240

Fig. 8 . Effect of pH on nitrification rate (qn).

Fig. 9. Effect of pH on nitrification efficiency.

Symbol	Environment	Reference							
A	Submerged filter	Haug and McCarty (1971)							
в	Activated sludge at 20°C	This study (1987)							
C	Activated sludge at 20°C	Sawyer and Others (1973)							
D	Pure culture of <u>Nitrosomonas</u>	Meyerhof (1917)							

NOMENCLATURE

	NORENCEATORE	
BOD5	Biological oxygen demand	(mg/1)
BRc	BOD5- Volumetric loading	$(kg/m^3 *d)$
BR	NH4- Volumetric loading	(kgN/m ³ *d)
Bots	BOD ₅ - Sludge loading	(kg/kgoTS*d)
BoTS	NH4- Sludge loading	(kgN/kgoTS*d)
DO	Dissolved oxygen concentration	(mg0 ₂ /1)
Fn	Nitrifier fraction	(8)
GV	Ignition value	(%)
HRT	Hydraulic retention time	(d)
SVI	Sludge volume index	(ml/gMLSS)
KT	Specific nitrification tate (Monod equation)	(mgN/gXvn*d)
KmT	Maximum nitrification rate (Monod equation)	(mgN/gXvn*d)
Kor	Half saturation constant	(mgN/l)
MLSS	Mixed liquor (total) suspended solids	(gTSS/1)
MLVSS	Mixed liquor (volatile) suspended solids	(goTS/1)
OURXvn	Oxygen uptake rate (nitrifier)	(mg0 ₂ /gXvn*d
qn	Nitrification rate (volumetric)	(mgN/1*d)
qnp	Nitrification efficiency	(8)
qoTS _n	Nitrification rate interms of MLVSS	(mgN/goTS*d)
qXvn	Nitrification rate interms of Xvn	(mgN/gXvn*d)
dr	Influent flow rate	(d ⁻¹)
SF	Factor of safety	(-)
tTS	Sludge age (solids retention time)	(d)
tTS	Minimum sludge age	(d)
T	Temperature	(°C)
UpT	Specific nitrifier growth rate	(a ⁻¹)
UnmT	Maximum nitrifier growth rate	(d^{-1})
Xvn	Nitrifier biomass	(maVSS/1)

Nitrifiers biomass decreased inversly proportional to sludge age. Sufficient Xvn lead to complete ammonium oxidation at a critical SRT of 8 days, a safety factor of 1.45 should be recommended to achieve 90% nitrification (Al-Sa ed. 1987). Under optimal design and operational conditions the pH value between 7 and 9 showed no inhibitory effects.

REFERENCES

Alleman, J.E. (1984). Elevated nitrite occurrence in biological wastewater treatment systems. Wat. Sci. Techn., 17, 409-419.

Al-Sa'ed, R. (1987). Investigations on nitrification process of ammonia-rich wastewater in activated sludge systems. <u>Doctoral</u> <u>Diss. (in preparation)</u>. Tech. Univ. Braunschweig, 3300 Braunschweig, Fed. Rep. of Germany. Al-Sa'ed, R. (1987). Ergebnisse von Laborversuchen zur

Nitrfikation mit verschiedenen C/N-Verhältnissen. <u>Veröffentl</u>. <u>Inst. f. Stadtbauwesen, Heft 42</u>, TU Braunschweig, <u>S. 166-195</u>. Anthonisen, A.C. and Others (1976). Inhibition of nitrification by

ammonia and nitrous acid. Jour. Water Pollut. Control Fed., 12, 185-195.

Bisogni, J.E. and A.W. Lawrence (1971). Relationship between biological solids retention time and settling characteristics of

activated sludge. Water Res. 5, 753-763. Chao, A. and T.M. Keinath (1979). Influence of process loading intensity on sludge clarification and thickening characteristics

Water Res., 13, 1213-1223. Ekama, G.A. and G.v.R. Marais. (1984). Nitrification. In Water Res., Comm.. (Ed.), Theory, Design and Operation of Nutrient Removal Activated Sludge Processes. Pretoria 0001. Chap. 5, pp. 1 - 17.

IAWPRC: Task Group on Mathematical Modelling for Design and Operation of Wastewater Treatment. Activated Sludge Model No. 1, Final Repot, July 1986.

Haug, R.T. and P.L. McCarty (1971). Nitrfication with submerged filters. <u>Tech. Rep. No. 148</u>, Dept. Civil Eng. Stanford Univ.

Stanford, California Kayser, R. (1983). Ein Ansatz zur Bemessung einstufiger Belebungsanlagen für Nitrifikation-Denitrifikation. gwf-Wasser-Abwasser, 124, (9), 419-427.

Lovett, D.A., B.V. Kavanagh, and L.S. Herbert (1983). Effect of sludge age and substrate composition on the settling and dewatering characteristics of activated sludge. Water Res., 15, 1511-1515.

Meyerhof, O. (1917). Untersuchungen über den Atmungsvorgang nitrifizierender Bakterien. IV, Die Atmung des Nitritbildners und ihre Beeinflussung durch chemische Substanzen. <u>Pflug. Arch.</u> <u>ges. Physiol. 166,</u> 240-280. Nyhuis, G. (1985). Beitrag zu den Möglichkeiten der Abwasserbe-

handlung bei Abwässern mit erhöhten Stickstoffkonzentrationen Veröffent. Inst. Siedlungswasserwirtschaft und Abfalltechnik. Heft 61, Uni. Hannover, 3000 Hannover. wyer, C.N., H.E. Wild and T.C. McMahon (1973). Nitrification and

Sawver. denitrification facilities, wastewater treatment. <u>Prepared for</u> the EPA Technology Transfer Programm, August, 1973, pp. 1-33.

ACKNOWLEDGEMENT

The author wishes to acknowledge the financial support provided by the Deutsche Forschungsgemeinschaft (DFG), Grant N°: Ka 348/14-1.