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 7 

 A systematic search for the location of islands of stability has been performed for 8 

the proton number 220100  Z  and the neutron number 30230  ZNZ  using the 9 

Covariant Density Functional Theory (CDFT), a Relativistic Hartree-Bogoliubov (RHB) 10 

formalism with separable pairing, for two different force parameters DD-ME2 and NL3*. 11 

Location of the islands of stability are identified by the analysis of the two neutron and the 12 

two proton separation energy, two nucleon shell gaps, vanishing neutron and proton pairing 13 

gap, energy surface and the single particle states. The results show that beyond 120292  only 14 

Z = 154 and N > 220 can be a center of new island of stability.   15 
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1.  Introduction 1 

 Exploring the limit of the nuclear charge and mass is a driving force of research in 2 

nuclear structure studies. Thus the nuclear structure studies of heavy and superheavy nuclei 3 

can be a starting point to extrapolate into the region far from the island of stability. Current 4 

experimental facilities are able to reach Z = 120, but theory should always lead the way for 5 

the scientific advancement and to predict new phenomena. 6 

The stability of a nucleus with very large proton number (Z 120 ) is mainly 7 

characterized by the shell effects. It is important to map the nuclear chart to find regions 8 

where the shell effects are strong enough to support the large numbers of protons. Thus one 9 

would expect, that the self-consistent mean field methods will be the most successful 10 

methods for extrapolating into that region. However, there have been many studies that 11 

enriched our knowledge about superheavy nuclei; using different models: Mic-Mac [1, 2] 12 

and the covariant density functional [3, 4, 5, 6, 7]. In Ref. [8] the framework of Strutinsky’s 13 

approach is used, and the authors cover a wide range of nuclei going into a region with high 14 

number of protons including 28272  Z . Most of these studies focus their attentions on 15 

spherical shapes, and perform all of the calculations. They make their predictions based on 16 

the assumption of spherical symmetry. Only recently, the Ref. [9] reexamined the structure 17 

of superheavy nuclei, using deformed relativistic Hartree-Bogoliubov (RHB) formalism, 18 

where the authors predicted a greater role of the N = 184 neutron gap instead of the N = 172 19 

neutron gap. 20 

In this work, we explore the unknown territory of the nuclear landscape, characterized 21 

by an extreme high Z value, for the search of spherical shell closure that can be the center of 22 

an island of stability for the superheavy region. Our region of interest is defined by the proton 23 



3 
 

number 220100  Z  and the neutron number 30230  ZNZ . Our choice of this 1 

region which include very large proton numbers is similar to the region ( but smaller ) studied 2 

in  [8]. We perform both the spherical and deformed calculations to make sure that we 3 

indeed get a spherical doubly magic nuclei. 4 

The Covariant density functional theory (CDFT) has been successful in describing 5 

many nuclear phenomena. It has been very successful in the description of the atomic nuclei 6 

behavior in extreme conditions such as high spin and deformation ( Super- and hyper-7 

deformation) and it predicted that 107Cd was the best candidate to observe discrete HD bands 8 

[10,11,12,13]. It was also used extensively in the description of fission barriers in actinides 9 

and superheavy regions of the nuclear chart.  The average deviation between the calculated 10 

and experimental values of the height of fission barrier in the actinide region was less than 1 11 

MeV[14] 12 

The manuscript is organized as follows; section 2 provides a description of the 13 

covariant density functional theory in the RHB framework, and the details of calculations. 14 

The results of spherical calculations are presented in section 3.1, and deformed results are 15 

discussed in section 3.2. A summary of the results and its conclusions are presented in section 16 

4. 17 

2.  Theoretical formalism and details of calculations 18 

  In the covariant density functional theory (CDFT) the nucleus is described as a 19 

system of point-like nucleons, Dirac spinors, coupled to mesons and to the photons  [15, 16, 20 

17]. The nucleons interact by the exchange of several mesons, namely a scalar meson   and 21 
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three vector particles  ,   and the photon. The starting point of the covariant density 1 

functional theory (CDFT) is a standard Lagrangian density  [18] 2 
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 which contains nucleons described by the Dirac spinors   with the mass m  and several 6 

effective mesons characterized by the quantum numbers of spin, parity, and isospin. 7 

The Lagrangian (1) contains parameters as the meson masses m , m , and m  and 8 

the coupling constants g , g , and g . e  is the charge of the protons and it vanishes for 9 

neutrons. This model has first been introduced by Walecka [17, 19]. It has turned out that 10 

surface properties of finite nuclei cannot be described properly by this model. Therefore, 11 

Boguta and Bodmer [20] introduced a density dependence via a non-linear meson coupling 12 

replacing the term 22

2

1
m  in Eq. (1) by  13 
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 The nonlinear meson nucleon coupling is represented by the parameter set NL3* [21] (see 15 

Table 1). Apart from the fixed values for the masses m , m  and m , there are six 16 

phenomenological parameters m , g , g , g , 2g , and 3g . 17 

Also one can introduce the density-dependent meson-nucleon coupling model that 18 

has an explicit density dependence for the meson-nucleon vertices. In this case there are no 19 
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nonlinear terms in the   meson, i.e. 0== 32 gg . The meson-nucleon vertices are defined 1 

as:  2 

  ,,=f)()(=)( iorxfgg isatii  (3) 3 
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 for the   meson. x is defined as the ratio between the baryonic density   at a specific 8 

location and the baryonic density at saturation sat  in the symmetric nuclear matter. The 9 

eight parameters in Eq. (4) are not independent, but constrained as follows: 1=(1)if , 10 

(1)=(1) '' 

 ff , and 0=(0)'

if . These constrains reduce the number of independent 11 

parameters for density dependence to three. This model is represented in the present 12 

investigations by the parameter set DD-ME2 [22] given in Table 1. 13 
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 In the current investigation, the axially deformed relativistic Hartree-Bogoliubov (RHB) 6 

formalism with separable pairing model is used [23, 24]. In the presence of pairing the single-7 

particle density matrix is generalized to two densities [25]: the normal density ̂  and the 8 

pairing tensor k̂ . The RHB model provides a unified description of particle-hole (ph) and 9 

particle-particle (pp) correlations on a mean-field level by using two average potentials: the 10 

self-consistent mean field that encloses all the long range ph correlations, and a pairing field 11 

̂  which sums up the pp-correlations. 12 

 13 
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Table  1: NL3* and DD-ME2 parameterizations of the RMF Lagrangia 1 
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 20 

The ground state of a nucleus is described by a generalized Slater determinant >|21 

, that represents the vacuum with respect to independent quasiparticles. The quasiparticle 22 

Parameter NL3* DD-ME2 

m  939 939 

m  502.5742 550.1238 

m  782.600 783.000 

m  763.000 763.000 

g  10.0944 10.5396 

g  12.8065 13.0189 

g  4.5748 3.6836 

2g  -10.8093 0.00000 

3g  -30.1486 0.00000 

a  0.00000 1.3881 

b  0.00000 1.0943 

c  0.00000 1.7057 

d  0.00000 0.4421 

a  0.00000 1.3892 

b  0.00000 0.9240 

c  0.00000 1.4620 

d  0.00000 0.4775 

a  0.00000 0.5647 



8 
 

operators are defined by the unitary Bogoliubov transformation of the single-nucleon 1 

creation and annihilation operators:  2 
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 for details of the numerical derivation see Ref. [24]. 1 

The CDFT equations are solved in the basis of an isotropic three-dimensional 2 

harmonic oscillator in Cartesian coordinates, with oscillator frequency 1/3

0 41= A  MeV. 3 

For details see Refs. [23, 26]. The truncation of basis is performed in such a way that all 4 

states belonging to the shells up to fermionic 20=FN  and bosonic 20=BN  are taken into 5 

account. We consider only spherical symmetry, axial and parity-conserving intrinsic states 6 

and solve the RHB-equations in spherical, and axially deformed oscillator basis [18, 27, 24, 7 

7]. 8 

The calculations are split into two parts: the first is with only spherical shape allowed, 9 

this will grant us the possibility of predicting shell closure based on the two proton and the 10 

two neutron separation energy and will be done in Sec.3.1; the second part quadrupole 11 

deformation will be allowed, thus to test the candidates from the first part if they truly have 12 

a spherical shape at ground state and will be done in Sec.3.2. 13 

We map the part of the nuclear chart specified with 220100  Z  and 14 

30230  ZNZ . Shell closures are identified with a large two nucleon separation 15 

energy, thus as a first indicator of the shell closure we calculate the following quantities:  16 

 )2,(.),(.=),(2 ZNEBZNEBZNS n   (18) 17 

 2),(.),(.=),(2  ZNEBZNEBZNS p  (19) 18 

The two-nucleon shell gaps are defined as [28, 29]:  19 

 ),()2,(=),( 222 ZNSZNSZN nnn   (20) 20 

 ),(2),(=),( 222 ZNSZNSZN ppp   (21) 21 
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 1 

For the deformed calculations, the relativistic Hartree-Bougilov (RHB) framework is 2 

used. Binding energy as a function of deformation is studied for the nuclei nominated in the 3 

previous section to ensure them being doubly magic spherical nuclei. 4 

The calculations are performed by imposing constraints on the axial mass quadrupole 5 

moments. The method of quadratic constraints uses a variation of the function  6 

2

202020 )ˆ(>ˆ< qQCH   (22) 7 

 where >ˆ< H  is the total energy, and  20Q̂  denotes the expectation values of the mass 8 

quadrupole operators  9 

 
222

20 2=ˆ yxzQ   (23) 10 

 In these equations, 20q  is the constrained value of the multipole moment, and 20C  the 11 

corresponding stiffness constants [25]. 12 

3.  Results 13 

 To completely identify a shell closure for the spherical nuclei, there are three 14 

conditions must be satisfied [30] and similar to the approach in Ref. [8]:   15 

    1.  A peak in the two-nucleon shell gaps defined by eqs. (20) and (21)  16 

    2.  It is spherical ground state  17 

    3.  Collapse of pairing at the spherical minimum  18 

 The first condition will be discussed in Sec.3.1, while the other two will be discussed 19 

in Sec.3.2  20 

3.1.  Spherical calculations  21 
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A systematic calculations of all even-even nuclei in the region defined by 1 

220100  Z  and 30230  ZNZ  are preformed. Binding energy for every nuclei is 2 

obtained and the two nucleon shell gap is calculated using eqs. (20) and (21). The results are 3 

presented in figures (1-8), using two parameterizations NL3* and DD-ME2. 4 

The neutron candidates for magic numbers are shown in Fig. 1, these candidates are 5 

divided into four categories based on the n2  values; the first one is N = 184 which has a 6 

value of 2.4 MeV, the highest among all the neutrons, thus it is the most favorable candidate 7 

for a magic number. The second category contains N = 238, 260 which has around 1.5 MeV 8 

for n2 , which is comparable to that of the 172 gap, which is known to be the magic number 9 

in the CDFT, thus these numbers are also favorable due to their similarity with N = 172. The 10 

third category contains N = 200, 216, 276, 288, 308 and 320, which has a n2  value of 11 

around 1.1 MeV. The fourth group contains 378, 406, 422 which are considered local peaks 12 

instead of a global ones. 13 

In Fig. 3 one can see a color map of the n2  value of all the nuclei studied in this 14 

investigation and can clearly see that non of these candidates is dominant over the 15 

investigated region of the nuclear chart, but they are dominant locally. For example the N = 16 

172 gap, is mainly dominant between Z = 110 - 142 for the NL3* parametrization while for 17 

the DD-ME2 it is dominant for Z = 114 - 138, the N = 184 gap is dominant between Z = 100 18 

- 128 for NL3* and between Z =100 - 130 for DD-ME2, and similar behavior can be seen for 19 

the other candidates, see Fig. 3. 20 

In a similar fashion, the protons magic number candidates are shown in Fig. 5 and 21 

Fig. 6. The proton candidates can be divided into two categories; the first category contains 22 
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Z = 154 which has around 3.0 MeV for p2 , which is comparable to that at Z = 120, which 1 

is known to be a magic number in the CDFT. Thus Z = 154 is also favorable due to its 2 

similarity with Z = 120. The second category contains Z = 132, 138,186, and 204, which has 3 

a p2  value of around 2.0 MeV. Thus we have a total of six protons candidates for the magic 4 

numbers. Contrary to the two-neutrons shell gap the two-protons shell gap has a very strong 5 

dominance across the region under considerations. For instance the Z = 120 shell gap is well 6 

pronounced in almost all of the isotope chain, as can be seen in Fig. 7 and Fig. 8. Other 7 

candidates behave similarly, as seen in these figures. 8 

The results are almost independent of parameterizations. For neutron subsystem, as 9 

seen by comparing Fig. 1 and Fig. 2, that the predicted neutron magic numbers obtained in 10 

both parameterizations are identical except for N = 422. Also, the region of dominance of 11 

each magic number is reproduced in both of them, see Figs. 3 & 4. Similarly, the proton 12 

subsystem results are reproduced exactly of same nature using both parameterizations, only 13 

one difference is the enhancement of p2  for Z = 204 in DD-ME2 as compared with NL3*. 14 

Our predictions are in partial agreement with the results obtained in Ref. [6], where 15 

both of us predict a proton magic number at Z = 120, 138 and neutron magic number at N = 16 

172,184. In our case the nuclei that we nominate to be a doubly magic are as follows: 17 

Z = 120 and N = (292,304,320,336,348,358,380) 18 

Z = 132 and N = (304,316,332,348,360,370,392,408,420) 19 

Z = 138 and N = (310,322,338,354,366,376,398,414,426,446) 20 

Z = 154 and N = (354,370,382,392,414,430,442,462,476) 21 

Z = 186 and N = (402,414,424,446,462,474,494,508,540,546) 22 
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Z = 204 and N = (442,464,480,492,512,526,558,582,610) 1 

Z = 216 and N = (454,476,492,504,524,538,570,594,622) 2 

These results are also in good agreement with Ref. [8]. It remains that we check that 3 

these nuclei indeed have a spherical shape at ground state, which will be investigated in Sec. 4 

3.2. 5 

3.2.  Deformed results 6 

  A spherical doubly magic nuclei, must has a spherical shape at ground state. 7 

However, the results in Sec. 3.1 are based on the assumption that the nuclei under 8 

consideration are spherical. Thus we shall perform an additional check assuming that these 9 

nominated magic nuclei are having axial deformation. We have performed the calculations 10 

based on axially deformed basis for all those nuclei nominated in the previous section, using 11 

two parameterizations NL3* and DD-ME2. The result we got is the following nuclei 12029212 

, 120304 , 120380 , 154370 , 154462  and 154476  which have a spherical shape minimum. For 13 

these nuclei, the binding energy as a function of 2  deformation is presented in Fig. 9 using 14 

both DD-ME2 and NL3* parameterizations. These nuclei belongs to the two isotopic chain, 15 

Z = 120 and Z = 154. 16 

We can see that, for the Z = 120 isotopes, with DD-ME2 parameterization, the 17 

spherical minimum is followed by a barrier of around 10 MeV height, which increases the 18 

stability of these minimum. However, as the number of neutrons increases, the spherical 19 

minimum becomes a local minimum, and another global minimum starts to form. For 20 

example the 120304  nucleus has a superdeformed minimum at 0.6=2 , which is followed 21 

by a smaller outer barrier as compared by the first inner barrier. According to the Ref. [31] 22 
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the second outer barrier in superheavy region of the nuclear chart is lowered by 2-3 MeV 1 

when one take into account triaxiality and octupole deformation, while the inner barrier is 2 

not affected by either of them. Thus we can safely assume that the spherical minimum is 3 

indeed the ground state minimum for these nuclei. The conclusion remains the same with 4 

NL3* parameterization except the inner barrier height (  6 MeV) here in this case is lower 5 

than the DD-ME2 parameterization. 6 

The situation is different for the Z = 154 isotopes, there is only one barrier and after 7 

the barrier there is a deep valley, which would suggest that once the nucleus reach the top of 8 

the barrier it will go into fission. The stability of these nuclei will then be characterized by 9 

the hight of the barrier. For 154370  the hight of the barrier is around 6 MeV, in both NL3* 10 

and DD-ME2 parameterizations. For 154476  the barrier height is around 6 MeV in DD-ME2, 11 

while 3 MeV in NL3*. Although there is a discrepancy between DD-ME2 and NL3*, but 12 

both of them agrees on the spherical minimum and provide some kind of stability of the 13 

nucleus. However, the main concern shows up in the calculations of 154462 , where in DD-14 

ME2 the height of the barrier is about 9 MeV while it is around 1.5 MeV in NL3*, thus it is 15 

inconclusive to say that this nucleus is doubly magic, since the barrier height is almost non-16 

existing in NL3*. It is difficult to classify 154462  as a doubly magic nuclei, while its stability 17 

against fission is questionable with NL3*. However, for DD-ME2 parameterization, we can 18 

still nominate 154462  as a candidate fo the spherical shell closure on the basis of its large 19 

barrier height and spherical ground state. 20 

Now it remains to check our third condition, that is the collapse of paring does indeed 21 

occur for these candidates. The proton and neutron pairing energy are shown in Fig. 10. 22 
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According to the Ref. [30] a closed shell must have a zero pairing energy. Thus we examine 1 

the pairing energy for our candidates as a function of 2  deformation. Only two nuclei 2 

120292  and 154370  has a collapse of pairing at spherical shape, as can be seen in the Fig. 10. 3 

Moreover, the density of the single particle states in the vicinity of the fermi-level, 4 

plays a major role in determining some properties of the nuclei. As an illustration, one can 5 

take a look at Fig. 11 and can notice the low density of the neutron single particle states near 6 

the fermi level for 292 120. Look at the other nuclei that are candidates of our search, 304120 7 

and 380120 as shown in the Fig. 11 The level density increases with the neutron numbers as 8 

we move along the isotopic chain. Clearly, the nuclei become unbound as the number of 9 

neutrons increases beyond N = 160. This can be seen from the change in the location of the 10 

fermi-level. It can be noticed that as the number of neutron increases, it reaches higher energy 11 

toward becoming unbound. Similarly, the single particle states for the proton as shown in 12 

Fig. 12 shows low density for the 292 120 in the vicinity of the Fermi level, and that the 13 

density of the states increases with the neutron numbers as shown in the Fig. 12, but they still 14 

remain bound. Thus one can make a connection between the level density of the states with 15 

the shell closure of these nuclei. The less the density of the states one can expect the 16 

occurrence of shell closure. 17 

On can do the similar analysis for other three candidates that belong to the the Z = 18 

154 isotopic chain, but unfortunately our results indicated that the candidate nucleus 370154 19 

is unbound. Thus, none of them is a possible candidate. 20 

The vanishing of the pairing energy can be attributed to the density of the states near 21 

the fermi level. The pairing energy given by eq. 16, and the two body interaction depends on 22 
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the creation and annihilation operator, that excite a nucleon into higher levels. The smaller 1 

the density of the states, the smaller the probability to contribute to the pairing energy. 2 

4.  Conclusions 3 

We mapped the region located in 220100  Z , ( 28272  Z  as in the Ref. [8]), 4 

with neutron number 30230  ZNZ , using a Relativistic Hartree-Bogoliubov (RHB) 5 

formalism with separable pairing for the spherical and the deformed calculations. The force 6 

parameter used are the density dependent finite range interaction i.e. DD-ME2 parameter, 7 

and nonlinear meson exchange interaction i.e. NL3* parameter. We summarize the procedure 8 

and results which are as follows: 9 

  10 

• The two neutron separation energy, and the two proton separation energy 11 

were calculated using spherical basis for all the nuclei in that region.  12 

• Proton numbers and neutron numbers corresponding to the peaking of p2  13 

and n2  were observed respectively, and are considered as candidates for the 14 

center of new islands of stability.  15 

• Nuclei that can be formed from proton and neutron numbers obtained using 16 

the spherical basis calculations, were studied using the axially deformed basis 17 

calculations.  18 

• On the basis of the potential energy surface study, those nuclei that were 19 

found spherical in ground state, proton and neutron pairing energy were 20 

calculated. One expects collapse of the pairing for closed shells.  21 
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• Single particle states density is directly connected to both the shell closure 1 

and vanishing of the pairing energy.  2 

• We predict that beyond Z = 120, it is very difficult to exactly identify a 3 

nucleus to be at the center of the new island of stability. However, we can 4 

predict that Z = 154, is a proton shell closure and one of the isotopes that has 5 

N > 220 might be a center of the new island of stability. 6 

• In future studies one has to take triaxiality into account. However, this will 7 

make the calculations time consuming, and it will be discussed in a separate 8 

manuscript. 9 

• The results are independent of the choice of the parameterizations.  10 

 11 

 12 

 13 
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  1 

Figure 1: Two-neutron shell gap for different isotopic chains 100<Z<220  , using NL3* 2 

 3 

 4 

    5 

Figure 2: Same as Fig1, but using DD-ME2 6 
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    1 

Figure 3: Two-neutron shell gap for all calculated nuclei using NL3* 2 
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 1 

Figure 4: Two-neutron shell gap for all calculated nuclei using DD-ME2 2 

 3 

Figure 5: Two-proton shell gap using NL3* 4 

 5 
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   1 

Figure 6: Same as Fig 5 but for DD-ME2 2 

    3 

Figure 7: Two-proton shell gap for all calculated nuclei using NL3* 4 
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 1 

Figure 8: Two-proton shell gap for all calculated nuclei using DD-ME2   2 

 3 

Figure 9: Binding energy as a function of quadrupole deformation (𝛽2 ) for  120292
, 1203044 

, 120380
, 154370

, 154462
 and 154476

.and  . Using two different parameterizations DD-ME2 5 
and NL3* 6 
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      1 

Figure 10: Pairing energy for 120292
, 120304

, 120380
, 154370

, 154462
 and 154476

. 2 
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 4 

 5 

Figure 11: Neutron single particle states for 292,304,380120,  λ is the chemical potential, 6 
using NL3* 7 
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 3 

Figure 12: Proton single particle states for 292,304,380120,  λ is the chemical potential, using 4 
NL3* 5 

 6 
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