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Abstract. We present a framework to study the properties of measures
as they occur in various areas of databases and data mining such as
aggregation in queries, measurement of data uniformity, and frequency
calculation. The framework is a generalization of the theory of math-
ematical measures. In particular, our framework is built on principles
that relax the additivity principle for mathematical measures. Besides
using our framework to classify measures, we derive general bounds and
rules they must satisfy. By considering the analogue of first and second
derivatives of functions, in our case the first and second finite differences
of measures, we obtain inference systems that allow us to reason about
constraints that exist between data objects relative to measurements.
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1 Introduction

Measures frequently occur in database and data mining applications.
In database queries and in data cube computations, measures such as
count, max, min, sum, and average are commonly used [18]. In query
processing and optimization, histograms, which are synthesized fre-
quency objects naturally emerge [25]. In data mining applications
such as the frequent item sets problem, the frequency of occurrences
set of items in a collection of baskets is central [1].> Other areas of
information processing where measures are used include information
retrieval [6], web searching [8], and bibliometrics [13].

The main contribution of our paper is the introduction of an
axiomatic framework to define and study the properties of such ad-
ditive measures. Conceptually, our framework is to additive measures
what first-order logic is to queries. To the database and data mining
theory community, our approach offers a platform for the system-
atic study of a significant class of measures. To the database and
data mining community at large, our approach can be interpreted
for specific measures, and provides a tool to study their properties.

Our framework for measures is inspired by the mathematical
framework for measures over finite sets [10]. In that framework, given
a finite set S, a nonnegative function m : 25 — R, is called a mea-
sure if for each pair Y and Z of disjoint subsets of S (i.e., YNZ = (),
we have that

m(YUZ)=m(Y)+m(Z).

This property is called additivity. It can easily be seen that, as a
consequence, mathematical measures also satisfy the following two
properties:

m(X) <m(XUY); (1)
mYUZ)+m(YNZ)=m(Y)+m(2). (2)

The first property is called isotonicity, the second modularity.*

3 Most of these measures are of an additive nature: the measure of a data object can
be estimated by summing the measures of its sub-objects.

* The modularity property clearly is an instance of the generalized inclusion-exclusion
principle [20].
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Whereas mathematical measures satisfy the pair of inequality (1)
and equality (2), many measures only satisfy weaker conditions. Con-
sider, for example, the max function defined over finite sets of non-
negative numbers. This function clearly has the isotonicity property
since max(X) < max(X UY), but it does not have the modularity
property, since, in general, it is not the case that max(Y U Z) +
max(Y N Z) = max(Y) + max(Z) (take Y = {1,2} and Z = {1, 3} to
see this). Thus max is not a mathematical measure. However, as can
be easily shown, max satisfies the weaker condition

max(Y U Z) +max(Y N Z) < max(Y) + max(Z).

which we will call submodularity.

Given the insights above, a more general framework for measures
could be based on the isotonicity and submodularity properties.®
Such a framework would be too narrow, however. Too see this, con-
sider the min function over finite sets. Obviously, a framework for
measures that encompasses max should also encompass min. Unfor-
tunately, min is neither isotone, nor submodular. However, min is
anti-isotone, since min(X) > min(X UY), and min is “anti-” sub-
modular (henceforth called supermodular), i.e.,

min(Y U Z) +min(Y N Z) > min(Y) + min(Z).

Therefore, functions that are anti-isotone and supermodular will also
be considered measures.

In summary, at the core of our framework for measures are the
concepts of isotonicity, anti-isotonicity, submodularity, and super-
modularity for nonnegative (finite) set-based functions. These con-
cepts and their properties are summarized in Section 2. It turns out
that many measures occurring in databases and data mining can be
accommodated in our framework. This will be pursued in Section 3
and will serve as justification for the appropriateness of the approach
we chose.

Many other useful properties of measures can be derived in the
framework. As a simple example, for an isotone measure M, it is

5 Observe that it follows from the previous discussion that each mathematical measure

(on finite sets) will be a measure in our framework, but clearly not the other way
around.



the case that max(M(Y), M(Z)) < MY UZ) < M(Y) + M(Z).
This property and others are derived in Section 4. Arguably, the
most interesting properties derived there provide upper and lower
bounds on the measures of sets in terms of the measures of certain
of their subsets. The main proposition in the section relates measures
to average functions, which can be shown to be increasing and con-
cave for isotone measures, and decreasing and convex for anti-isotone
measures.

A natural issue that arises when considering measures is their rate
of change. For a measure M, we consider the rate of change at a set
X, with displacement Y, to be the quantity M(XUY)—M(X). Ob-
serve that there is a direct analogy to the theory of finite differences
[17]. Our rate of change corresponds to the first finite difference.
A high value for this difference signals strong independence (anti-
correlation) between X and X UY (relative to M), whereas a low
value indicates strong interdependency (correlation) between X and
X UY.) For instance, when the rate is zero, i.e., M(X) = M(XUY),
one has that the measure at X UY is entirely determined by the mea-
sure at X, i.e, X completely determines Y relative to M. In addition
to considering the rate of change of M, it turns out that studying
the rate of change of the rate of change of M (i.e., the second finite
difference) is also significant. The first and the second rate of change
functions of measures, which we call measure differentials, are stud-
ied in Sections 5. In particular we derive a series of inequalities that
hold between measure differentials.

These inequalities become useful when we consider them in the
context of the study of constraints on measures. The most natu-
ral constraints occur when certain measure differentials are zero.
We consider this issue in Section 6. In that section, using the in-
equalities on measure differentials, we obtain inference rules for such
constraints. The inference systems thus obtained are very similar in
form to inference systems that have appeared in the literature, such
as the Armstrong axioms for functional dependencies in relational
databases [4]. We conclude Section 6 by interpreting our constraints
for various measures discussed in Section 3. In Section 7, finally, we
exploit these interpretations to prove the completeness of some of
our inference systems for measure constraints.



2 Measures

In this section, we define various kinds of measures and relate them to
each other. We also make a comparison with probabilistic measures

[24].
2.1 Basic definitions and properties

In the rest of the paper, S denotes a finite set, M and N denote
nonnegative real functions over 2°, and the variables U, V, X, Y,
and Z range over 2°. Furthermore, XY is short for X UY.

Definition 1. The function M is

isotone if M(X) < M(XY);
anti-isotone  if M(X) > M(XY);
submodular if M(YZ)+ MY NZ) < M(Y)+ M(Z);
supermodular if M(YZ) + M(Y N Z) > M(Y) + M(Z).

If M is isotone or anti-isotone, then M is called a weak measure. If
M is isotone and submodular, respectively anti-isotone and super-
modular, then M is called a measure.

The following, obvious proposition justifies our terminology.
Proposition 1. A measure is also a weak measure.

The following proposition (the proof of which is straightforward)
will allow us to primarily focus on isotone weak measures and mea-
sures only.

Proposition 2. Let M and N be related as follows as follows:
N(X) = M(S) + M(B) — M(X).
Then

1. N is isotone if and only if M is anti-isotone, and vice-versa;
2. N is submodular if and only if M is supermodular, and vice-
versa.



Submodular and supermodular functions [15] have been studied
extensively because they are the discrete analogues of concave and
convex functions, respectively, and because they emerge in many
combinatorial optimization problems.

The following proposition gives a useful characterization of mea-
sures.

Proposition 3. 1. The function M 1is an isotone measure if and
only if M(XYZ)+ M(X) < M(XY)+ M(XZ).

2. The function M is an anti-isotone measure if and only if M(XY Z)+
M(X) < M(XY)+ M(XZ).

Proof. We only prove the first statement. By applying Proposition 3,
the second statement easily follows.

We first consider the if. Thus, suppose the condition stated above
holds. The isotonicity condition can be obtained from it by equating
Z with Y. Similarly, the submodularity condition can be obtained
by equating X with Y N Z.

We now turn to the only if. Thus, suppose M is both isotone
and submodular. Because of submodularity,

M(XYZ)+ M(XY NXZ)< M(XY)+ M(XZ).

Because of isotonicity, X C XY N XZ implies M(X) < M(XY N
XZ). Therefore,

M(XY Z) + M(X) € M(XY) + M(XZ).

Submodularity alone does not imply isotonocity, and hence not
the condition in Proposition 3. Arguably, the best known examples
of functions that are submodular and not isotone are cut functions
of graphs [15]. Let G = (S, E) be a finite directed graph. For V' C S,
define the cut of V, denoted 6(V), as follows:

6(V)={(v,w)€ E|lveV and w ¢ V}.
The cut function f : 25 — R?° of the graph G is defined as follows®:
FV)=16(V)I.

6 Usually the cut function of a graph is defined in the context of a capacity function.
This function associates with each edge in the graph a weight (its capacity). Here
we use the capacity function that associates with each edge the value 1.



It can be shown that f is a submodular function, i.e.,
FVW)+ f(VnW) < F(V) + fF(W).

However, f is not necessarily isotone. For example, let S = {a, b}
and £ = {(a,b)}. Then f({a}) =1, but f({a,b}) = 0. Consequently,
this function f is not a measure in the sense of Definition 1.

2.2 Relationship to probabilistic measures

A finite probability space is defined as a triple (S, 27, p), where S is
the sample space, 2° the set of events, and p : 2° — [0, 1] a function
such that

1. p(S) =1; and
2.pYZ)=p(Y)+p(Z)ifYNZ=0.

In particular, it follows that p is a probabilistic measure. It is an easy
exercise that probabilistic measures are always isotone and submod-
ular, and therefore isotone measures according to Definition 1. Thus,
each probabilistic measure is a submodular measure.

The opposite is of course not true. However, for a non-constant
submodular measure M, we can define the function

M(X) - M(0)
M(S) = M(0)

PM(X) =

Clearly, prs : 2° — [0, 1] is a monotone function satisfying

1. pm(S) =1; and
2. pm(YZ) <pm(Y)+pm(2) Y N Z = 0.

Thus, with each submodular function we can associate a function
that has certain characteristics of probabilistic measures.

3 DMeasures in database and data mining
applications

In the following subsections, we describe a variety of application
areas in databases and data mining where (weak) measures occur



8

naturally. We identify these and fit them in the framework specified
in Section 2.

In the area of databases, we consider aggregation functions, and,
in the area of data uniformity in relational databases, we consider
the probability-based Gini index and the Shannon entropy measure.
In the area of data mining, we focus on measures occurring in the
context of the frequent item set problem.

3.1 Databases - aggregation functions

Computations requiring aggregation functions occur frequently in
database applications such as query processing, datacubes [18], and
spreadsheets. Among the most often used aggregation functions are
count, sum, min, max, and order statistics. Each of these functions
operates on finite sets. Except in the case of count, we assume that
the sets on which they work consist of nonnegative integers. We show
that all of these functions are either weak measures or measures.

1. Let count(X) be the cardinality of X. By Proposition 3, count
is an isotone measure, since

count(XYZ) + count(X) < count(XY) + count(X Z).

2. Let sum(X) =3 v, for X # 0, and sum(()) = 0. By Proposi-
tion 3, sum is an isotone measure, since

sum(XY Z) + sum(X) < sum(X UY) + sum(X 7).

3. Let max(X) be the largest integer in X, for X # (), and let max(0)
be the smallest element in S. Now, either max(XY Z) = max(XY')
or max(XYZ) = max(XZ). In the former case, it follows from
max(X) < max(XZ) that

max(XY7Z) + max(X) < max(XY) + max(X 7).

In the latter case, the inequality above follows from max(X) <
max(XY') and max(XYZ) = max(XZ). By Proposition 3, max is
an isotone measure.

4. Let min(X) be the smallest integer in X, for X # 0, and let
min(@) be the largest element in S. With an argument running
along the same lines as in the previous case, one can easily see
that min is an anti-isotone measure.



5. Order statistics are used to determine the sth smallest element of
a set. For example, the second order statistic, denoted min2(X),
returns the second smallest element in X. More precisely, min2(X)
min(X — {min(X)}). Clearly, min2 is anti-isotone. However, it is
not supermodular: the supermodularity condition in Definition 1
fails for Y = {1,10,11} and Z = {2,10,11}. In general, order
statistics are weak measures.

Aggregate functions derived from the above are not necessar-
ily measures or weak measures however. For example, consider the
average function defined by avg(X) = sum(X)/count(X), if X is
nonempty, and avg(@)) = 0. This function is not isotone (X = {1}
and Y = {0,1} in the defining condition in Definition 1) and not
anti-isotone (X = {1} and Y = {1,2}). From this example, it fol-
lows, that, in general, the quotient of two measures is not necessarily
a measure or even a weak measure. Similarly, the variance and me-
dian functions are not weak measures.

3.2 Databases—data uniformity

Consider the values occurring in an attribute of a relation. These
values can occur uniformly (e.g., the values “male” and “female” in
the gender attribute of a census), or skewed (e.g., the values for the
profession attribute in the same census). Measuring these degree of
uniformity can influence how data of these types are stored or pro-
cessed, or both. When data are numeric, a common way to measure
uniformity is the variance statistic. This statistic computes the aver-
age of the distances between data values and their average. To mea-
sure data uniformity for categorical data, however, it is more useful
to consider probability-based measures. Here, we consider two such
measures: the Gini inder and the Shannon entropy measure. The
Gini index was introduced in economics to study the distribution of
incomes [16].” The Shannon entropy measure was introduced to mea-
sure uniformity in communication data [27]. Unlike variance, these
functions are specified in terms of probability distributions defined
over the data sets.

" A closely related measure is the Simpson diversity measure was introduced to study
the concept of diversity in ecologies and is defined as 1 minus the Gini index [29].
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The Gini index Let o be a nonempty finite relation over the re-
lation schema S, and let p be a probability distribution over p sat-
isfying p(t) # 0 for all ¢ in p. For X C S, define px to be the
marginal probability distribution of p on X. Thus, for z € 7x (o),

px (%) = D iepiix)=c) P(1)- Now define

6X)= ¥ px(@)(1-px@)=1- 3 pk(2)

zemx(0) z€Tx (0)

Notice that G(#) = 0. The function G is known as the Gini indez.
We first show that G is isotone. Therefore, let X and Y be subsets
of S, and put Z = XY. Since X C Z, we have that, for each x € X,

Px (%) = 2 cryp(00) P2(2), Where o = ox—(0). Therefore,

2

px@) =1 Y pz(2)| > X py(2).

z€mz(0c) 2€nz(0c)
Hence,
GX)=1- » px@)<1- > ¥ pz(?)
zemx (o) z€Tx(0) 2€mz(02)
=1- > pz(2)=6(2) =G(XY).
z€mz(0)

Observe that the double summation collapses to a single summation
because {7z(0;) | * € mx(0)} is a partition of 74(p).

We next show that G is submodular. Let U = YNZ and V =Y Z.
We have to prove that G(U) + G(V) < G(Y) + G(Z). Thereto, let
u € my(0). The contribution of u to both terms of the left-hand side
of the inequality is

pu()(1 —pu(u)) + > pv(v)(1—py(v))

VETY (0u)
=) =)+ T (v() =)
= -[ S ww]+ T - T e
vey (ou) veTy (0u) very (ou)
—ww-|[ T ww] ¢ T )
vETY (0u) vETY (0u)
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The contribution of u to both terms of the right-hand side of the
inequality is

Y. px@)(1—-px(x)+ > pr(y)A—pr(y))

€T X (Qu) YETY (0u)
= ¥ [m@-B@]+ ¥ [n@)-no]
zE€Tx(0u) yeTy (0u)
= Y px(x)— Y px@+ X o - X @)
z€TX (0u) z€T X (0u) yEmy (0u) yETy (0u)
=)~ | ¥ A@+ ¥ )]
z€mx(0u) yEny (0u)

= 2py(u) — [

z€mx (0u) ~vETV (0x) yeTy (0u) ~vETV (0y)

Since each term in the quadratic expansion of

2

Sy w4 S [Sener®)]

z€Mx (0u) ~VETY (0z) YETy (0u)

occurs, in an injective way, in the quadratic expansion of

[ S ww]+ T s

vETy (Qu) vETY (Qu)

the submodularity inequality (Definition 1) holds relative to . Since
u was arbitrary, the submodularity inequality holds.
Hence, the Gini index is an isotone measure in our setting.

The Shannon entropy measure Define

H(X)=— > »px(z)logpx(z).

zemx (0)

The function H is known as the Shannon entropy measure. It was
proved in [21, 14] that H is isotone and submodular. A simple proof
can be found in [12]. Hence, the Shannon entropy measure is an
isotone measure in our setting.

Sy ww+ [ 8 ww)]
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3.3 Data mining—frequent item sets

An important problem in data mining is discovering frequent item
sets. In this problem, a set of baskets is given. Each basket contains a
set of items. In practice, the items may be products sold at a grocery
store, and baskets correspond to items bought by its customers. The
frequent item sets problem is to find the item sets that occur fre-
quently together within the baskets. In the example, these frequent
item sets can guide how items are placed strategically in the store.
The notion of frequency associated with this problem turns out to be
an anti-isotone measure in our setting. The anti-isotonicity principle
known as the apriori rule is at the heart of the apriori algorithm for
solving the the frequent item sets problem [1]. This algorithm only
considers a set to be a candidate frequent item set if all its subsets
are already found to be frequent. In turn, the apriori algorithm is
used to obtain association rules which establish predictions about
how buying certain items implies buying other items.

More formally, let S be a set of items and let B be a nonempty
finite set of baskets, each containing a set of items (i.e., a subset
of S). Define B(X) = {B | X C B and B € B}. Observe that
B(YZ)=B(Y)NB(Z) and that B(Y N Z) D B(Y) U B(Z). Define

freq(X) = %

Clearly, freq(X) > freq(XY'), whence freq is anti-isotone. It is
also supermodular, since

IBY N Z)| = |B(Y)UB(Z)|
= [BY)|+B(Z)| = [B(Y) N B(Z)|
= [B(Y)|+B(Z)| - [BY U Z)].

Hence, freq is an anti-isotone measure.

4 Additional inequalities for measures

In this section, we deduce other useful inequalities from the defini-
tions of measures. Not surprisingly, some of these inequalities have
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already been used in applications for specific measures. As an ex-
ample, consider rule 2 in Proposition 4, which states that, for each
isotone measure M, M(S) + M((Z)) M(X) + M(X). When M
is the Shannon entropy measure®, this rule states that the entropy
of S is smaller than the sum of the entropies of the components of
a decomposition of S into two disjoint subsets [11]. As a second ex-
ample, consider the analogon for anti-isotone measures of rule 1 in
Proposition 4. When is M the freq measure of Section 3.3, this rule
translates into the aprior: rule, which states that if an item set is
frequent then it subsets are also frequent.®

In addition to the bounds specified in Proposition 4, we con-
sider bounds expressed in terms of certain average functions asso-
ciated with measures. We will show that for an isotone measure
(anti-isotone measure), that these associated average functions are
increasing and concave (decreasing and concave, respectively).

Proposition 4. Let Y be a nonempty set of subsets of S. If M s
an isotone measure, then the following inequalities hold:

maxycy M(XY) < M(XUUJY);

miIlyEy M(X N Y) 2 M(X N ﬂy),

MX)+ M) < MXNY)+M(XNY);

M(S) + M(D) < M(X) + M(X);

MXUUY) <3y ey MXY) = (Y] - YM(X);

MXNNY) = M(S)+MD)+(|Y[-1M(X) =2y ey M(X NY).

S G oo~

If M is an anti-isotone measure, then the above inequalities hold with
the inequality signs reversed and with max and min interchanged.

Proof. Because of Proposition 2, it suffices to consider the case where
M is an isotone measure.
Inequalities 1 and 2 follow from the isotonicity of M.
Inequality 3 is established using submodularity, as follows:

M(X)+ M(@) = M(X N (YY))+ M(0)

8 Observe that, for the Shannon measure, M () = 0.

9 More advanced work on inequalities related to the freq measure occurs in [9]. The
inequalities obtained there are derived from the inclusion-exclusion principle for
counting finite sets.
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=M((XNY)UXNY)+M(XNY)N(XNY))
<SMEXEXNY)+M(XNY).
Inequality 4 is a special case of inequality 3 for X = S.
Inequality 5 can be proved by induction on |Y|. For |Y| =
the inequality holds trivially. This is the basis for our induction. Let
k > 2, and assume as induction hypothesis that inequality 5 holds
for |Y| = k — 1. We now prove inequality 5 for |Y| = k. Let Y € ).
By the submodularity of M,
MXUUY) =MXY U XU —{Y})) S MXY) + MX U - {Y}))
- MXY N XU - {¥}))
SM(XY)+ MXUD —{Y}))
—M(X)

Inequality 5 then follows, since, by the induction hypothesis,

MEXVUD = {2}) < Xyey 7y MXY) = (|Y = {Z} = YM(X)
<D vey(zp MEXY) = (Y] = 2)M(X)

Inequality (6) can be deduced easily from inequalities 4 and 5
using De Morgan’s laws:

M(Xmmy> M (Uyey XUY)
M(S) + M(B) = M(Uyey X UY)

M(S) + M(0) = Yy ey MX UY) + (Y] = HM(X)
= M( )+ M(@) + ([¥] - DM(X) = Xyey MX NY).
It is useful to consider Proposition 4 as providing lower and upper

bounds for the measures of finite unions and intersections. In the case

of isotone measures (when X = ), X = S for inequalities (5) and
(6) respectively), the bounds are as follows:

max M(Y) S M(UY) < Xyey M) = (¥ = M(0)
min M(Y) > M(NY) > [YIM(@) + M(S) = Eyey M)

In the case of anti-isotone measures, lower bounds and upper bounds
must be swapped.
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As shown in Proposition 4, useful bounds on measures of sets
can be given in terms of measures of certain associated sets. In the
rest of this section, we continue on this theme by considering how
sums and averages of certain families of measures of sets are related.
Thereto, consider the following definition:

Definition 2. Let X be a subset of S and let ) be a set of subsets
of S such that S = X U (J)Y. Let n = ||, and let 0 < k < n. Define

S(X, V)= > MXuU2Z);

ZCYA|Z|=k

A(X,Y) = ésk(x, V).

Notice that Ay(X,Y) = So(X,Y) = M(X) and A,(X,)) =
Su(X,Y) = M(S).

We are mainly interested in A (X, )), which is the average value
of M(X U |JZ) over all relevant choices of Z, and, more in par-
ticular, how this quantity behaves as a function of k. In the next
propositions, we show that, for fixed values of X and Y, A (X,))
is increasing (decreasing) when M is an isotone (anti-isotone) weak
measure, and concave (convex) when M is an isotone (anti-isotone)
measure.

Proposition 5. Let M be an isotone weak measure, let X C S, and
let Y be a set of subsets of S such that S =X U |JY. Let n = |Y|.
Then A (X,Y) is an increasing function, i.e., for each k, 0 < k < n,

Ap(X, V) < Ap1(X, D).

If M is an anti-isotone weak measure, then A (X,)) is a decreasing
function.

Proof. As usual, we only consider the case that M is isotone. Propo-
sition 5 holds trivially if n = 0. When n > 1, Proposition 5 follows
if we can prove that, for each k£, 0 < k < n,

(kil)Sk(X’ y) < (Z)Skﬂ(X, y),

or equivalently,
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For each Z C Y with |Z| = k, and for each Y € Y — Z, we have
that
MXUYUZ)SMXU|JZUY),

by the isotonicity of M. Therefore,
m—kMXUUZ)< > MIXUUYUZUY).

Yey-2Z

Summing the lefthand and righthand sides of this inequality over all
Z C Y with | 2| =k, yields

(n=k)S(X, V)< > >, MEIUVUZUY) = (k+1)Se(X, D),

ZCYN|Z|=k Yey—-2Z

since there are k + 1 different ways to write a subset of Y of size k
as ZUY, with Z=kandY €)Y — Z.

Proposition 6. Let M be an isotone measure, let X C S, and let

Y be a set of subsets of S such that S = XU JY. Let n = |Y|. Then

A (X,Y) is a concave function, i.e., for each k, 0 < k < n,
Ap1(X,Y) + A1 (X, )

If M is an anti-isotone measure, then A (X, Y) is a convezx function.

Proof. As usual, we only consider the case that M is isotone. The
proposition is trivially true for n < 1. Therefore, assume n > 2. Let
Z C Y with |Z] = k—1, and let Y] and Y5 be two different elements
of Y — Z. These elements exist, since n > 2 and | Z| < n— 2. By the
submodularity of M, it follows that

MXUUZU)+M (XUl ZUY,) > M(XUul Z2)+M(XU Z UY1UY,).
As in the proof of Proposition 5, it follows that
Y MXUUZUY) =EkS(X, D).

ViEV—Z ZCYA|Z|=k-1

Since, given Z and Y7, there remain n — k possible choices for Y5, we
furthermore have that

Y MEXUUZ UYL = (n—k)kSu(X, ).

Y1,Y26Y-ZAYi£Ys ZCYA|Z|=k—1
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By symmetry, summing the entire lefthand side of the inequality
above over all possible combinations of Z, Y;, and Y; yields the
result 2(n — k)kSp(X, ).

With regard to the righthand side of the inequality, similar ar-
guments as the ones used for the lefthand side yield that

> MXUUZ) = (n—k+1)(n—k)Sk_1(X, DY),

Y1,Yo€Y-ZAY1£Ys ZCYA ‘Z‘:k—l
and that

> Y, MXuZunuys) = (k+1)kSi41(X, ).

Y1,Ya€Y—ZAY1£Ys ZCYA|Z|=k-1

Hence, summing the righthand side of the inequality over all possible
Z, Y1, and Y, yields the result (n —k +1)(n — k)Sy_1(X, V) + (k +
1)kSki1(X, ).

Thus, we obtain the inequality

2h(n—k)Sp(X, V) > (n—k+1)(n—k)Sp_1 (X, V) +(k+1)kSes1 (X, V).

Rewriting this inequality in terms of the averages yields the desired
inequality.

We can use Proposition 5 and Proposition 6 to obtain lower and
upper bounds on measure averages.

Proposition 7. Let M be an isotone measure, let X C S, and let
Y be a set of subsets of S such that S = X U [JY. Let n = |Y|.
Then, for each k, 0 < k < n,

Ap(X, V) < Ap1(X, V) <24,(X,Y) — A1 (X, D).

It follows from Proposition 7 that, if there exists k, 0 < k < n,
such that .Ak_1(X, y) = .Ak(X, y), then .Ak(X, y) = .Ak_|_m(X, y)
for all m such that k+m < n, i.e., as soon as the function A (X,))
stops increasing (decreasing) strictly, it becomes constant.



18
5 Measure differentials

5.1 Finite differences and differentials

A natural problem that arises for measures as for other functions is
to calculate their rate of change and the rate of change of their rate of
change. For functions over continuous domains, these quantities are
represented by the first and second derivatives, respectively. In our
framework for measures, we are dealing with discrete, set-based func-
tions, and thus reasoning about derivatives must be done by using
the methods of finite differences and finite difference equations [17].

Definition 3. Let f : 2° — R be a (finite) set-based function into
the reals. Then the first finite difference of f is the function Af :
2% x 25 — R defined by

Af(X,Y) = f(XY) = f(X).

For a fixed value of Y, the function Af(.,Y):25 = R:V
Af(V,Y)is again a (finite) set-based function into the reals, of which
we can take again the first finite difference. This is then the second
finite difference of f.

Definition 4. Let f: 2° — R be a (finite) set-based function into
the reals. Then the second finite difference of f is the function A?f :
25 x 29 x 25 — R defined by

Af(X,Y, Z) = AAf(.,Y)(X, 2).
Expanding the above equation yields

Af(X,Y,Z) = AAf(.,Y)(X, Z)
=f(XYZ) - [(XZ) - [(XZ) + f(X).
Notice that the above expression is invariant under swapping Y

and Z.
The following proposition is now straightforward.

Proposition 8. 1. The first finite difference of a weak measure is
nonnegative if it is 1sotone and nonpositive if it 1s anti-isotone.
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2. The first finite difference of a measure is nonnegative if it is iso-
tone and nonpositive if it is anti-isotone. The second finite differ-
ence of a measure is nonpositive if it is isotone and nonnegative
if it is anti-isotone.

Thus, observe that the signature of an isotone (anti-isotone) weak
measure is that of an increasing (a decreasing) function, and that of
a isotone (an anti-isotone) measure is that of an increasing, concave
(a decreasing, convex) function.

We will use the concept of finite differences to reason about mea-
sures. Intuitively, these differences should calculate, when applied to
sets, a value of how dependent/independent the measure of a set is
with respect to a change. As an example, the first difference for the
max measure would calculate the degree of change of max (X)) with re-
spect to max(XY'). A small value for this difference would imply that
the measure of set X is largely independent of a change of X by Y.
In particular, when this difference is zero, i.e., max(XY) = max(X),
this can be interpreted as the value of the max(X) reaching an ex-
treme point with respect to the maximum of the set Y. In fact, the
condition max(XY) = max(X) is equivalent to max(X) > max(Y).

We wish to present properties in the form of inequality rules for
the first and second finite differences of (weak) measures. As may
already be expected, this is a somewhat awkward, because we always
have to distinguish between the isotone and the anti-isotone case.
The following proposition serves as an example for this awkwardness.

Proposition 9. 1. If M is an isotone (weak) measure, then
AM(X, Y1) > AM(X,Ys) if Yo C Yy

If M is an anti-isotone (weak) measure, then the above inequality
holds with the inequality sign reversed.
2. If M is an isotone measure, then

NM(X,Y, Zy) < N M(X,Y, Zo) if Zy C Zy;

If M 1is an anti-isotone measure, then the above inequality holds
with the inequality sign reversed.

Proof. We only consider the isotone case; the anti-isotone case is
completely analogous.
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1. We prove the inequality by expansion:

AM(X,Y3) = AM(X, )=M(XY:) — M(X) = M(XY3) + M(X)
=M(XY}) — M(XY3) > 0,

by isotonicity.
2. We prove the inequality by expansion. Let U = X Z,.

N2M(X,Y, Zs) — 2M(X,Y, 7))
= M(XYZy) — M(XY) — M(XZy) + M(X)
- M(XYZ)+ M(XY)+M(XZ) - M(X)
= M(XYZy)+ M(XZ)) — M(XY Z,) — M(XZy)
=MUY)+ MU(Z, - Z3)) - MUY (Z1 — Z3)) = M(U) = 0,

by Proposition 3.

As Proposition 9 clearly illustrates, rules formulated in terms
of finite differences have the awkwardness that the inequality sign is
different for isotone and anti-isotone (weak) measures. Therefore, we
introduce first and second finite differentials. These are the absolute
values of the related finite differences. Their introduction has the
advantage that subsequent rules for them are the same for both
isotone and anti-isotone (weak) measures. The notation introduced
for first and second finite differences in Definition 5 below reflects an
analogy with database dependencies which will be made explicit in
Section 6.

Definition 5. Let f : 2° — R be a (finite) set-based function into
the reals.

1. The first finite differential of f is the function f’:2% x 25 = R
defined by
FV,W) = |Af(V, W),

which will be denoted as f'(V — W).
2. The second finite differential of f is the function f” : 25 x 25 x
2% — R defined by

f"(Va W17 WZ) = |A2f(‘/7 Wl: W2)|a

which will be denoted as f"(V — W;|Ws).
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As an example to illustrate the advantage of finite differentials
over finite differences, we restate Proposition 9 in terms of finite
differentials.

Proposition 10. 1. If M is a (weak) measure, then
MX -Y)>M(X =Y, if CY
2. If M is a measure, then
M'(X > Y|2) > M'(X - Y|Zy) if ZsC Zh.

Clearly, Proposition 10 is much more elegant and workable than
Proposition 9. In the remaining subsections, we present rules for
first differentials, rules for second differential, and mixed rules, re-
spectively.

5.2 Properties of first differentials

In this subsection, we specify equalities and inequalities for the first
differentials of (weak) measures.

Proposition 11. Let M be a (weak) measure. Then the first finite
differential of M satisfies the following inequalities:

MX-Y)=0if YCX (triviality);

MX->Y)>M(XU—-VY) if VCUCXY
(weak augmentation);

M(X SY)+ MY 5 Z2)>M(X - 2Z) if XCZ
(weak transitivity).

Proof. As usual, we only consider the case that M is isotone. Trivi-
ality follows, since if X C Y, then

M(X -Y)=MXY) - M(X)=M(X) - M(X)=0.
Weak augmentation follows, since, by the isotonicity of M,

M(XU = VY) = M(XUVY) — M(XU)
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Weak transitivity follows, since M'(X — Y) + M'(Y — Z) —
M'(X — Z) is equal to

M(XY) = M(X) + M(YZ) = M(Y) = M(XZ) + M(X)
= M(XY) + M(YZ) — M(Y) — M(XZ)
= M(XY) = M(Y) + M(YZ) — M(Z) >0,

by isotonicity.
For measures, Proposition 11 can be strengthened, as follows.

Proposition 12. Let M be a measure. Then the first finite differ-
ential of M satisfies the following inequalities:

M(X->Y)=0 if YCX (triviality);
M(X —-Y)> M (XU —-VY) if V CU (augmentation);
M(X =Y)+ MY — Z) > M'(X — Z) (transitivity).

Proof. As usual, we only consider the case that M is isotone. Trivi-
ality follows from Proposition 11. Augmentation follows from

M (XU - VY) = M(XUVY) - M(XU) < M(XY) - M(X) =M (X -Y),

where Proposition 3 with Z set to U is used to justify the inequality.
Transitivity follows, since by Proposition 3 and isotonicity,

M(X = Y)+ MY = Z) = M(XY) = M(X)+ MY Z) -~ M(Y)
> M(XY Z) = M(X)
> M(XZ) - M(X)
=M'(X — Z).

Example 1. An example of an isotone weak measure that is not
a measure is max2, which returns the second largest element of a
set. This measure does not satisfy augmentation and transitivity
(Proposition 12). For example, if X = {2,3}, Y = {1,6}, and
U = {3,5} then augmentation does not hold. However, weak aug-
mentation (Proposition 11) holds when U C XY (e.g., X = {2,3},
Y = {1,6}, and U = {2,6}). Similarly max2 is not transitive (e.g.,
X ={1,6}, Y = {2,3}, and Z = {1,2,5}). However, weak tran-
sitivity holds when X C 7 (e.g., X = {1,2}, Y = {2,3}, and
Z ={1,2,5}).
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5.3 Properties of second differentials

Proposition 13. Let M be a measure. Then the second finite dif-
ferential of M satisfies the following inequalities:

M'(X —>Y|Z)=0 if YCZ (triviality);
M'N(X »Y|Z)=M"'"(X - Z|Y) (symmetry);
M'(X = Y|Z)> M'(XU - YV|Z) if VCUCXYZ
(weak augmentation);
M'(X = Y|ZU) + M"(Y - Z|XU) > M"(X - Z - Y|YT)
(weak transitivity).

Proof. As usual, we only consider the case that M is isotone. Trivi-
ality and complementation follow directly from Definition 5.

To prove weak augmentation we first prove the seemingly weaker
rule below:

M'(X >Y|Z2) > M"(XU »YV|Z)ifVCUCXY orVCUCXZ.
By expanding, we find that

M"(X - Y|Z) = M"(XU —» YV|2)
=MXY)+ M(XZ) - M(X) - M(XYZ)- M(XUYV)
—~M(XUZ)+ M(XU)+ M(XUYVZ)
=MXY)+ M(XZ) - M(X) - M(XYZ)—- M(XUY)
—M(XUZ)+ M(XU)+ M(XUYZ),

taking into account that V' C U. The last expression is invariant
under interchanging Y and Z. We may therefore assume, without
loss of generality, that U C XY. Thus,

MXY)+ M(XZ) - M(X) - M(XYZ)—- M(XUY)
- MXUZ)+ M(XU)+ M(XUYZ)
=MXY)+M(XZ) - M(X) - MXYZ) - M(XY)
- M(XUZ)+ M(XU)+M(XYZ)
=M(XZ) - M(X)-M(XUZ)+ M(XU),

which is nonnegative by Proposition 3. We now bootstrap our inter-
mediate result to what we actually want to prove. Thus, assume that
VCUCXYZ andlet Vy =VNXY, Uy =UNXY,V, =VNXZ,
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and U; = UnN XZ. Clearly, V4'V;, = V and UyU,; = U. Since
Vy C Uy C XY, the intermediate result above guarantees that

M"(X - Y|Z) > M"(XUy - YV |2).

Since V; C Uz C XUy Z, our intermediate result also guarantees
that

M”(XUY - YVY|Z) 2 M”(XUyUZ - YVYVZ|Z)

Combined both inequalities above yield the desired result.
Weak transitivity can be proved as follows.

M"(X = Y|ZU) + M"(Y — Z|XU) = M"(X » Z — Y|YU)
> M'(X - Y|ZU) + M"(Y - Z|XU) = M"(X - Z|YU)
= M(XY) + M(XZU) — M(X) — M(XY ZU) + M(Y Z)
+ MY XU) — M(Y) = M(XY ZU) — M(XZ)
— M(XYU) + M(X) + M(XY ZU)
= M(XY) + M(XZU) + M(Y Z) = M(Y) — M(XY ZU)
—~ M(XZ).

By applying Proposition 3 to the first and third terms of the
above expression, we find that

M(XY) + M(XZU) + M(YZ) = M(Y) = M(XY ZU) — M(X Z)
> M(Y) + M(XZU) + M(XY Z) — M(Y) — M(XY ZU) — M(X Z)
= M(XZU) + M(XYZ) - M(XY ZU) — M(XZ) > 0,

again by Proposition 3.

An important special case of the second finite differential M" (X —
Y|Z) occurs when Z = S — XY, where S is the universe over which
M is defined. We therefore introduce the notation M"(X — Y) as
shorthand for M"(X — Y'|S — XY'). The following proposition now
follows easily.

Proposition 14. Let M be a measure. Then the second finite dif-
ferential of M satisfies the following inequalities:

M'(X—>Y)=0 if YCX (triviality);
M(X—>Y)=M"(X - S—-XY) (complementation);
M'(X >Y)>M'(XU »YV) if VCU (augmentation);
M'(X YY)+ M"Y - Z) > M"(X - Z —Y) (transitivity).
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Proof. We only prove transitivity, since the other rules immediate
follow from Proposition 13. Let U = S — XY Z. By Proposition 10,
M'Y —» Z|XU) > M"Y - Z —Y|XU). Therefore, M"(X —
Y)+M'"(Y - Z) > M'(X - Y|(Z-Y)U)+ M"(Y - Z-Y|XU).
By weak transitivity, this sum is at least M"(X - Z —Y).

5.4 Mixed inequalities

In the final proposition of this section, we state mixed inequalities
between first and second differentials.

Proposition 15. Let M be a measure. Then the first and second
finite differentials of M satisfy the following inequalities:

M(X -Y)>M'(X »Y|Z) (replication);
M'(X Y| Z)+ MY — Z) > M'(X — Z —Y) (coalescence).

Proof. As usual, we only consider the case that M is isotone. Repli-
cation follows by straightforwardly expanding M'(X — Y)-M"(X —
Y|Z) and applying isotonicity.

Coalescence can be proved as follows.

M(X->Y|IZ)+ MY - 2)-M(X —-Z-Y)
>M'(X Y| Z)+ MY - Z)-— M (X — 2)
=MXY)+ M(XZ) - M(X)-MXYZ)+ M((YZ)
- MY)-M(XZ)+ M(X)
=MXY)-MXYZ)+ MYZ)-M(Y) >0,

by Proposition 3.

Corollary 1. Let M be a measure. Then the first and second finite
differentials of M satisfy the following inequalities:

MX-Y)>M'(X —-Y) (replication);
M'(X >Y)+ MY — Z2) > M'(X — Z -Y) (coalescence).

Proof. The replication rule in Corollary 1 is a straightforward trans-
lation of the replication rule in Proposition 15. To prove the co-
alescence rule of Corollary 1, first observe that M"(X — Y) >
M'(X Y| Z-Y)and M'(Y — Z) > M'(Y — Z-Y), by Propo-
sition 10. The coalescence rule of Corollary 1 now follows straight-
forwardly from the coalescence rule of Proposition 15.
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6 Measure constraints

In this section, we consider the situations in which the first and
second differentials are zero. This leads us to introduce primary and
secondary constraints and to derive inference rules for them.

Satisfaction of constraints by particular measures discussed in
Section 3 yields conditions in terms of satisfaction of constraints in
databases and data mining.

6.1 Primary constraints

Definition and inference rules

Definition 6. Let M be a (weak) measure. Then M satisfies the
primary constraint X — Y it M'(X —-Y) =0.

Propositions 11 and 12 yield the following inference rules for pri-
mary constraints.

Proposition 16. The following inference rules hold for primary con-
straints with respect to (weak) measures:

X—-Y if YCX (triviality);
X =Y implies XU - YV if VCU C XY (weak augmentation);
X =Y andY — Z imply X — Z if X C Z (weak transitivity).

With respect to measures, these inference rules can be strengthened,
as follows:

X—=Y if YCX (triviality);
X =Y implies XU - YV if V CU (augmentation);
X—=YandY — Z imply X — Z (transitivity).

We now interpret primary constraints for various measures dis-
cussed in Section 3.

Databases—aggregate functions The use of aggregate functions
in databases was described in Section 3.1. In particular, we showed
that count, sum, max, and min are measures. We now interpret sat-
isfaction of primary constraints by these measures.
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1. The sum measure satisfies the primary constraint X — Y if and
only if Y C X. It is readily seen that inclusion satisfies the trivi-
ality, augmentation, and transitivity rules.

2. The count measure satisfies the primary constraint X — Y if
and only if Y C X (very similar to sum).

3. The max measure satisfies the primary constraint X — Y if and
only if max(X) > max(Y’). Again it can be readily verified that
the latter constraint satisfies the triviality, augmentation, and
transitivity rules.

4. The min measure satisfies the primary constraint X — Y if and
only if min(X) < min(Y’). Again it can be readily verified that
the latter constraint satisfies the triviality, augmentation, and
transitivity rules.

Databases—data uniformity Shannon’s entropy measure and
the Gini index were described in Section 3.2. Primary measure con-
straints can be used to capture database constraints, as shown below.

1. Let S be a relation scheme, let X and Y be subsets of S, and let o
be a relation instance over S. Let p be a probability distribution
over p satisfying p(t) # 0 for all ¢ in p. The corresponding Gini
index G satisfies the primary constraint X — Y if and only if o

satisfies the functional dependency X By,
To see this, let Z = XY. To show that G(X) = G(Z), we have to

show that
> k(@)= X pz(?)

z€mx(0) 2€mz(0)

Now, let 9, = o0x—.(0). From the calculations in Section 3.2, we
recall that

2
=] ¥ me)] > T #e)
2€mz(0z) 2€mz(0z)
By our additional assumption on the probability distribution p,
equality holds if and only if |7z(0;)] = 1. We also showed in
Section 3.2 that summing up left-hand and right-hand side of the
above inequality yields

g(X) = G(2).
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Hence, equality holds if and only if |74(0;)] = 1 for all z in
mx(0). This is clearly equivalent with saying that o satisfies the

functional dependency X My,
Notice that, in this case, the triviality, augmentation, and tran-
sitivity rules correspond to the well-known reflexivity, augmenta-
tion, and transitivity rules for functional dependencies [4].

2. Under the same assumptions as above, the Shannon entropy mea-
sure H satisfies the primary constraint X — Y if and only if o

satisfies the functional dependency X My,
To see this, let 0, = 0x—4(0). Then H(XY) = H(X) is equivalent
to

> px(@)logpx(®)— X D eny(o) Pxv(zy)logpxy(zy) = 0.

z€Tx (0) z€Tx (0)

Using that px(z) = Zyewy(gm)pXY(ﬂcy), the above equality can
be rewritten as

Y Y enyion Pxv (@y)(log px (z) — log pxy (2y)) = 0.

zemx (0)

Since each term in the sum is nonnegative, the last equality is
equivalent to px(z) = pxy(zy), for all z in 7x(p) and for all
y in 7wy (0z). Clearly, this condition is equivalent to p satisfying

x 8y

Data mining—frequent item sets The use of the freq measure
to measure frequent item sets in data mining was described in Sec-
tion 3.3 The freq measure satisfies the primary constraint X — Y if
and only if freq(X UY') = freq(X) if and only if B(XUY) = B(X)
if and only if there is a pure association rule from X to Y in B [1]. (A
pure association rule is an association rule with confidence 100%.) In
this context, the triviality, augmentation, and transitivity rules for
primary constraints can be interpreted as properties and as inference
rules of pure association rules.

6.2 Secondary constraints

Definition and inference rules
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Definition 7. Let M be a measure. Then

1. M satisfies the secondary constraint X — Y|Z if M"(X —
Y|Z) =0

2. M satisfies the strong secondary constraint X — Y if it satisfies
the secondary constraint X — Y|S —Y.

Propositions 13 and 14 yield the following inference rules.

Proposition 17. The following inference rules hold for secondary
constraints with respect to measures:

X—>Y|Z if YCX (triviality);
X = Y|Z implies X - Z|Y (symmetry);
X = Y|Z implies XU - VY|Z if VCUCXYZ
(weak augmentation);
X > Y|ZU and Y — Z|XU imply X - Z — Y|YU (weak transitivity).

For strong secondary constraints, these inference rules can be strength-
ened, as follows:

X—-»Y if YCX (triviality);

X —» Y implies X - S =Y (complementation);
X = Y implies XU - YV if V C U (augmentation);

X —>Y andY — Z imply X — Z — Y (transitivity).

We also present some mixed inference rules for primary and sec-
ondary constraints.

Proposition 18. The following inference rules hold for primary and
secondary constraints with respect to measures:

X =Y implies X » Y|Z (replication);
X —>»Y|Z andY — Z imply X — Z — Y (coalescence).

For primary and strong secondary constraints, these inference rules
become as follows:

X =Y implies X - Y (replication);
X >Y andY — Z imply X — Z — Y (coalescence).

We now interpret secondary constraints for various measures dis-
cussed in Section 3.
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Databases—aggregate functions We briefly revisit aggregate
functions in databases and interpret satisfaction of secondary con-
straints by these measures, in particular for count and max.

1. Let X, Y, and Z be subsets of the set S. Then the count mea-
sure satisfies the secondary constraint X — Y|Z if and only if
count(XY) + count(X Z) = count (XY Z) + count(X), which is
true if and only if Y N Z C X. This implies a notion of indepen-
dence between Y and Z. For example, in the case where X = §),
it follows that Y; and Y5 must be disjoint.

2. Let X, Y, and Z be subsets of the set of nonnegative numbers
S. Then the max measure satisfies the secondary constraint X —
Y|Z if and only if max(XY) +max(XZ) = max(XY Z) + max(X),
which holds if and only if max(X) > max(Y') or max(X) > max(Z).
Observe that, in the case where X = (), either Y or Z must be
the empty set.

Databases—data uniformity Shannon’s entropy measure and
the Gini index were described in Section 3.2. Secondary measure con-
straints can also be used to capture database constraints, as shown
below.

1. Let S be a relation scheme, let X and Y be subsets of S, and let
0 be a nonempty relation instance over S. Let p be a probability
distribution over p satisfying p(t) # 0 for all ¢ in p. The corre-
sponding Gini index G satisfies the secondary constraint X — Y
if and only if, for all z in 7x(0), 0 = ox—.(0) satisfies either
the functional dependency X M ¥ or the functional dependency
x4 5-Xxv.

To see this, we first assume that X and Y are disjoint.

Observe that G satisfies X — Y if and only if G(XY)+G(X Z) —
G(XYZ)-G(X)=0,with Z=5 - XY.

Next, for all z in wx(p), let ¢® = 75_x (o). We define the prob-
ability distribution p* on o* by p*(t) = p(at)/px(x) for all ¢ in
o”. Notice that p® satisfies p®(t) # 0 for all ¢ in ¢®. Let G® be the
corresponding Gini index.
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Now, let U be an arbitrary subset of S disjoint from X. We have
that

GXU)=1- ¥ piolzu)

zu€mxy(o)

=1- > X px(@)py(@)

zemx(0) uETy(0z)

=1- ¥ rk@+ X rk@|1- X i)

zemx(p) ze€mx(0) uETY (0z)
=G(X)+ X pk@)G°U).
zenx(0)
Hence,
G(XY)+G(X G(XYZ) - G(X)

Z) -
= EZ( ) px(2) [G*(Y) + G7(Z) - G°(S — X) — G*(D)].
rTCETX 0

Notice that, for all z in 7x(p), G*(Y) + G*(Z) — G*(S — X) —
G*(0) > 0, since G is an isotone measure. Consequently, G(XY)+
G(XZ)—-G(XYZ)—G(X)=0if and only if, for all z in 7x (o),
G* (¥)+G*(2)~G*(S—X)~G*(D) = G*(¥')+G*(Z)—G*(S—X) =
0, or equivalently,

>t + X pEiR) — X pT(t) —1=0.

yEmy (0%) z€mz(0%) tEp®

If we rewrite the above equality using

> ww= ¥ [ T s

yemy (%) yEmy (0%) ~t€® At[Y]=y
2
Y o= X | X pw], and
z€mz(g%) z€emz(g®) “tep® At Z]=2
2
=z rel.
tEp®

we obtain, after simplification, that

>, P (t) =

tt €™ AY A [Y] At[Z)£V[Z]
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Notice, however, that p*(¢) # 0 for all ¢ in ¢”. Hence, the above
sum contains no terms. In other words, for all ¢, in ¢%, either
tlY] = t'[Y] or t|Z] = t[Z']. This condition can only be satisfied
if either |my(0®)| = 1 or |1z(0")| = 1, or, in other words, if g,
satisfies either X 4V or X 4 7.

For the case that X and Y are not disjoint, notice that, from the
rules in Proposition 14, it follows that G satisfies X —» Y — X.
Hence, for all z in mx(g), o, satisfies either X My _Xor
X 8 S — XY. In the former case, o, also satisfies X 5 Y, by
the augmentation rule for fds.

Finally, we observe that the condition that, for all z in 7x (o),
ox—z(0) satisfies either X My or X8 Zis not equivalent to o

satisfying either X Yy ox 4z Indeed, the relation p given

as
ABC

_= = O
_ oo O O
o O = O

satisfies neither A % Bnor A % C, but o =0(p) satisfies A X B
and o 4—1(p) satisfies A X

Inexpressibility result We show that we cannot capture a mul-
tivalued dependency using any linear combination of the measure
of its attributes using the Gini index measure. It is sufficient to
show that any linear combination of the above cannot character-
ize the multivalued dependency ) —» A|B. The equation we must
satisfy is aG(A) + bG(B) + cG(AB) = 0. We can assume for all
practical purposes that ¢ = 1. We show in Figure 1 three examples
of the MVD §) - A|B. Now using the first two examples, we solve
for the uknowns and then test our results on the third example.
From the first example, we have G(AB) = 3, G(A) = G(B) = 3

thus we get %a + %b + % = 0. From the second example, we ha\?e
G(AB) = G(A) = %, G(B) = 0, thus we get za+ 0+ 3z = 0.
Solving these two equations we get that a = —1,b = —%. This
means for an relation to satisfy the MVD () - A|B we must have

—G(A)+—1G(B)+G(AB) = 0. However, When applying this on
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the third example, with G(AB) = G(B) = 3, G(A) = 0, we get
_Tl + % # 0. Thus a multivalued dependency cannot be expressed
an any linear combination of a measure of its arributes when that
measure is the Gini index.

Fig. 1. Examples of MVD §) —» A|B

. Let S be a relation scheme, let X and Y be subsets of S, and
let o be a nonempty relation instance over S. Let p be the uni-
form probability distribution over p, satisfying p(t) = 1/|g| for
all £ in p. The corresponding Shannon entropy measure H sat-
isfies the secondary constraint X — Y if and only if p satisfies

the multivalued dependency X ! Y. (This fact was previously
announced by Malvestuto [23], and rediscovered by Lee [30], and
by Dalkilic and Robertson [12]. Related work can be found in
[32]. We provide a proof of it here mainly to keep the paper self-
contained.)

To see this, we first assume that X and Y are disjoint.

Observe that H satisfies X — Y if and only if H(XY)+H(X Z)—
H(XYZ)—H(X)=0,with Z =5 - XY.

Next, for all z in 7x (o), let 0* = 15 x(0;). As before, we define
the probability distribution p® on ¢ by p*(t) = p(xt)/px(x) for
all ¢ in o”. Notice that p*(t) = 1/|¢%| for all ¢ in ¢*, whence p®
is the uniform probability distribution over ¢®. Let H* be the
corresponding Shannon measure.

Now, let U be an arbitrary subset of S disjoint from X. We have
that

HXU)=- > pxv(zu)logpxy(zu)

zueTxy(0)

=— X X px(@)pi(u)loglpx (z)pf(u)]

zemx (0) ueTy(0®)



34

== % pxl@)lospxa) 3 i)

z€Tx (0) u€ny (o

— > px(z) X2 pp(u)logpg(u)

zeTx(0) ueny(0%)

=HX)+ X px(@)H*(U)

zeTx(0)
Hence,

H(XY) +H(XZ) — H(XY Z) — H(X)
= > px(@)[H(Y)+H(Z) - H(S — X) —H(D)].

z€Tx(0)

Notice that, for all z in 7x (o), H*(Y) + H*(Z) — H*(S — X) —
H* (@) > 0, since H” is an isotone measure. Consequently, H(XY)+
H(XZ)—H(XYZ)—H(X) = 0if and only if, for all z in 7x(p),
H*(Y) + H*(Z) — H*(S — X) — H*(0) = H*(Y) + H*(Z) —
H®(S — X) = 0. From the literature on Shannon’s entropy mea-
sure [5,11], it follows that the last equality holds if and only if,
for all y in 7y (¢”) and for all z in 74(0%), Pp*(oy=y02=:(0")) =
P*(0y=y(0"))p"(02=.(0")). Using that p” is the uniform probabil-
ity distribution on p%, the last equality can be rewritten as

L _ lovaule)] loz=i()
o] |0*] o]

I

or |0"| = |oy=y(0")| |0 2=-(0")|. Summing lefthand and righthand
sides of the latter equality over all possible values of y and z
yields

XX lel=] X dovm@l] | X lezm(e)],
yemy (0*) z€mz(0%) yeny (0®) z€mz(0®)
or |my(0%)] |mz(0%)] |0®| = |6" [, or |7y (0®)[ I72(0%)| = |¢®|- This
mvd
condition expresses exactly that g, satisfies X — Y. Further-
mvd
more, o satisfies X — Y if and only if, for all z in 7x(p), 0

mvd
satisfies X — Y.
For the case that X and Y are not disjoint, notice that, from the
rules in Proposition 14, it follows that H satisfies X — Y — X.
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mvd
Hence, p satisfies X TY-X. By the augmentation rule for
mvd
mvds, it follows that p also satisfies X —» Y.

Inexpressibility result We show that we cannot capture a
a cyclic join dependency using any linear combination of the
measure of its attributes using the Entorpy measure. We show
this by counter example. That is for a a given cyclic join de-
pendency, it is not the case that >° /4 p oy aiH(u) = 0. Con-
sider the three cyclic join dependencies given in Figure 2. Ob-
serve that H(A) = H(B) = H(C) and H(AB) = H(BC) =
H(AC) for all three relations (thus the coresponding constants
for these measures are equal too). Thus we must satisfy the in-
equality aH(A) + bH(AB) + H(ABC) = 0. For relation 1, we
have H(A) = 3log 4 + 0.5, H(AB) = 2, and H(ABC) = 2. For
relation 2, we have H(A) = 1, H(AB) = 2, and H(ABC) = 3.
Thus with this information we can solve for a and b to get the in-
equality, 4.08H(A) —3.54H(AB)+H(ABC) = 0. When applying
this inequality to the third cyclic join dependency (where H(A) =
2log 2+ 21log5, H(AB) = 2log 2 +2log5, and H(ABC) = log5)
we get 4.08 % 1.37 — 3.54 % 1.92 4+ log 5 # 0. Thus a cyclic join de-
pendency cannot be expressed an any linear combination of a
measure of its arributes when that measure is the Shannon En-
tropy measure.

ABC ABC ABC
111 111 111
112 112 112
121 121 121
211 122 211
211 333
212
221
222

Fig. 2. Examples of cyclic join dependencies

Data mining—frequent item sets The frequency measure freq
was described in Section 3.3, and in Section 6.1, it was shown that its
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associated primary constraints correspond to pure association rules.
Its associated secondary constraints can be characterized as follows.
For item sets X, Y, and Z, and basket set B, X — Y|Z holds for
freq if and only if B(X) C B(Y) U B(Z). Indeed, X — Y|Z if
and only if freq”(X — Y|Z) = 0, which is the case if and only if
freq(XYZ) + freq(X) = freq(XY) + freq(XZ). This statement
is equivalent to the following: |B(XY Z)| + |B(X)| = |B(XY)| +
|B(X Z)|, or equivalently, |B(X)NB(Y)NB(Z)|+|B(X)| = |[B(X)nN
B(Y)| + |B(X) N B(Z)|. The latter statement is equivalent with the
condition B(X) C B(Y) U B(Z). We therefore call X — Y|Z a dis-
junctive association rule. Consequently, the strong secondary con-
straint X — Y holds if and only if B(X) C B(Y) U B(S — XY).

7 Completeness

In Section 6, we introduced measure constraints and specified infer-
ence rules. Their formal similarity to inference rules for functional
and multivalued dependencies [4, 7] is apparent. Also in Section 6, we
related satisfaction of measure constraints by some particular classes
of measures to satisfaction of database constraints. We will exploit
this to prove the completeness of some combinations of these rules
for the inference of primary and strong secondary constraints.

Proposition 19. The triviality, augmentation, and transitivity rules
i Proposition 16 are sound and complete for the inference of pri-
mary constraints with respect to measures.

Proof. Soundness follows from Proposition 12. To prove complete-
ness, let D be a set of primary constraints, let X — Y be a primary
constraint, and assume that each measure satisfying all constraints
in D also satisfies X — Y. Now, let p be an arbitrary relation satis-
fying all functional dependencies in Dy = {V My |V =Y € D}.
If p is empty, o trivially satisfies X My 1f 0 is not empty, we pro-
ceed as follows. Let p be the uniform probability distribution on p.
By the observations above, the Shannon measure H corresponding
to p satisfies all constraints in D. By assumption, H also satisfies

X — Y. Hence, p satisfies X My We have thus proved that the
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functional dependency X My s logically implied by the set of func-

tional dependencies Dgg. As shown by Armstrong [4], X Xy can be
inferred from D¢y by the reflexivity, augmentation and transitivity
rules for functional dependencies. Hence, X — Y can be inferred
from D by the triviality, augmentation, and transitivity rules for
primary constraints.

Proposition 20. The triviality, augmentation, and transitivity rules
for primary constraints in Proposition 16, together with the trivial-
ity, complementation, augmentation, and pseudotransitivity rule for
strong secondary constraints in Proposition 17 are sound and com-
plete for the inference of primary and strong secondary constraints
together with respect to measures.

The proof is completely analogous to the proof of Proposition 19,
except that we do no longer have the choice between using the Gini
index or the Shannon measure: we must use the latter, now.

8 Future directions

A possible direction for future work is to consider other measures
that fit in our setting. One class of such measures is that based on
Tsallis’ entropy [31]. These measures generalize both the Gini index
and the Shannon entropy measure and were studied in the context
of databases by Simovici and Jaroszewics [28]. In that work, the
concept of conditional entropy arose and we plan to relate our work
to it.

In many cases, the definition of a measure occurs in the context
of another structure, for example, a relation in the definition of the
Gini index and the Shannon measure, and a collection of baskets in
the definition of the frequency measure. In such cases, one can think
of a measure as a two-parameter function M(X,s) wherein X is a
subset of S and s is some structure over S. In this view, it is natural
to study such measures letting the parameter s vary. Hilderman and
Hamilton[19] conducted such as study for measures including the
Simpson and Shannon measures, for the case wherein X is chosen to
be S. It would be useful to consider situations wherein both X and
s vary simultaneously.
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As is well known, the theory of relational design is centered
around functional and multivalued dependencies. Concepts such as
keys, closures, normal forms, etc. can be defined in terms of them
[22]. Since primary and secondary constraints are generalizations of
these constraints, it is natural to re-interpret these concepts in the
more general setting.'®

Finally, this paper considers measures that are defined in terms
of properties of their first and second finite differentials. An obvious
idea is to study measures in terms of properties of their higher-order
finite differentials. Initial work in that direction, related to inference
systems, was reported in [26].

Acknowledgments: We thank Paul Purdom and Edward Robert-
son for helpful discussions on topics covered in this paper.
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