
On the Value of User Preferences in Search-Based

Software Engineering: A Case Study in Software

Product Lines

Abdel Salam Sayyad Tim Menzies Hany Ammar

Lane Department of Computer Science and Electrical Engineering

West Virginia University

Morgantown, WV, USA

asayyad@mix.wvu.edu tim@menzies.us hany.ammar@mail.wvu.edu

Abstract—Software design is a process of trading off competing

objectives. If the user objective space is rich, then we should use

optimizers that can fully exploit that richness. For example, this

study configures software product lines (expressed as feature

maps) using various search-based software engineering methods.

As we increase the number of optimization objectives, we find

that methods in widespread use (e.g. NSGA-II, SPEA2) perform

much worse than IBEA (Indicator-Based Evolutionary

Algorithm). IBEA works best since it makes most use of user

preference knowledge. Hence it does better on the standard

measures (hypervolume and spread) but it also generates far

more products with 0% violations of domain constraints. Our

conclusion is that we need to change our methods for search-

based software engineering, particularly when studying complex

decision spaces.

Index Terms—Software Product Lines, Feature Models,

Optimal Feature Selection, Multiobjective Optimization,

Indicator-Based Evolutionary Algorithm, Search-Based Software

Engineering.

I. INTRODUCTION

As software changes from product-based to app-based, this
changes the nature of software engineering. Previously, in
product-based methods, vendors tried to retain their user base
via some complete solution to all their anticipated needs (e.g.
Microsoft Office). Such large software platforms are very
complex and, hence, very slow to change.

With smart phones and tablet-based software, users can
choose from large numbers of small apps from different
vendors, each performing a specific small task. In app-based
software engineering, vendors must quickly and continually
reconfigure their apps in order to retain and extend their
customer base. This new style of software engineering
demands a new style of feature-based analysis. For example,
feature maps are a lightweight method for defining a space of
options as well as assessing the value of a particular subset of
those options.

Feature models allow visualization, reasoning, and
configuration of large and complex software product lines
(SPLs). Common SPLs now consist of hundreds (even
thousands) of features, with complex dependencies and
constraints that govern which features can or cannot live and
interact with other features. For instance, according to [3], the
Linux model has 6320 features, of which 86% declare
constraints of some sort, and most features refer to 2-4 other

features. Such level of complexity surely requires automated
reasoning and configuration techniques, especially if the
intricacies of the feature model are combined with further user
preferences and priorities, such as those related to cost and
reliability. In that case, the job of offering product variants with
guaranteed conformance to the feature model and efficiency
according to user preferences becomes monumental, requiring
tool assistance.

The automation of optimal feature selection in SPLs has
been attempted before, but never with multiobjective
evolutionary optimization algorithms (MEOAs). Previous
approaches will be highlighted in section II.

The logical structure of feature models poses a challenge to
evolutionary techniques, since those techniques depend on
random crossover and mutation which invariably destroy
feature dependencies and constraints. In [12], this hurdle is
overcome by introducing a repair operator to “surgically”
make each candidate solution fully-compatible with the feature
model after each round of crossover and mutation. In our
opinion, this approach fails to take advantage of the automatic
correction afforded by the metaheuristic algorithms via
“survival of the fittest”. As we show in this paper, conformance
with the feature model can be achieved by the evolutionary
algorithms (especially IBEA) without resorting to a repair
operator or special crossover and mutation operators. We
demonstrate how logical correctness can be obtained by
generating a range of solutions (i.e. a Pareto front) which
include fully-correct and marginally-incorrect solutions
(solutions with a very small number of rule violations), as well
as totally intolerable ones. We believe that by shedding light on
marginally-incorrect solutions we provide wider configuration
options to product managers, and might inspire software
developers to rethink the feature model and the relationships
defined therein.

More importantly, the main contribution of this paper is
true, high-dimensional multiobjective search, which puts each
user preference in focus without aggregation, and then
incorporates the user preferences in the Pareto dominance
criteria, using the Indicator-Bases Evolutionary Algorithm
(IBEA). We show remarkable results obtained with IBEA
compared to six other multiobjective evolutionary optimization
algorithms (MEOAs). Up to 5 optimization objectives are used,
namely: to maximize logical (syntactic) correctness, maximize
richness of feature offering, minimize cost, maximize code

978-1-4673-3076-3/13 c© 2013 IEEE ICSE 2013, San Francisco, CA, USA

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

492

reuse and minimize known defects. We demonstrate how
popular algorithms such as NSGA-II and SPEA2 become
useless as we increase the number of objectives, a result that
was shown in other domains [27] but never before in software
engineering.

The uniqueness of IBEA comes from the way it calculates
dominance as a value, which incorporates the user preferences
(i.e. optimization objectives), thus providing an “amount” of
dominance. All other algorithms rank solutions in the objective
space according to absolute dominance, with second preference
given to diversity of solutions. The glaring superiority of IBEA
at higher dimensions shown in this work gives software
engineers this take-home message:

“If your user preference space is rich, then use an
MEOA that can exploit that richness.”

The rest of the paper is organized as follows: section II
reviews related work in automated software product
configuration, as well as the use of multiobjective evolutionary
optimization algorithms (MEOAs) in software engineering.
Section III provides background material on software product
lines and MEOAs. Sections IV and V describe the
experimental setup and the results of the experiments. In
sections VI, we discuss the findings and their implications.
Section VII presents the threats to validity. And in the final
section, we present our conclusions and future work.

II. RELATED WORK

A. Automated Software Product Configuration

First, we discuss related work in the area of automated

product configuration and feature selection.

In our previous work [26], we analyzed feature models

using a data mining technique, which runs over thousands of

randomly-generated product variants and identifies the most

critical feature choices that amount to the most constraint

violations. Based on that, we offered recommendations as to

where the configuration task should begin in order to avoid

related errors. In the present work we augment the feature

models with quality attributes and seek to find the optimal

product variants based on the desired preferences.

The idea of extending (or augmenting) feature models with

quality attributes was proposed by many, among them Zhang

et al. [32]. The following papers used a similar approach and

synthetic data to experiment with optimizing feature selection

in SPLs.

Benavides et al. [1] provided automated reasoning on

extended feature models. They assigned extra-functionality

such as price range or time range to features. They modeled

the problem as a Constraint Satisfaction Problem, and solved it

using CSP solvers to return a set of features which satisfy the

stakeholders’ criteria.

White et al. [28] mapped the feature selection problem to a

multidimensional multi-choice knapsack problem (MMKP).

They apply Filtered Cartesian Flattening to provide partially

optimal feature configuration.

Also White et al. [29] introduced the MUSCLE tool which

provided a formal model for multistep configuration and

mapped it to constraint satisfaction problems (CSPs). Hence,

CSP solvers were used to determine the path from the start of

the configuration to the desired final configuration. Non-

functional requirements were considered such as cost

constraints between two configurations. A sequence of

minimal feature adaptations is calculated to reach from the

initial to the desired feature model configurations.
The limitations of these methods are obvious, given the

small models that they experimented with. As SPLs become
larger the problem grows more intractable. More recently, a
Genetic Algorithm was used to tackle this problem [12].
Although the problem is obviously multiobjective, the various
objectives where aggregated into one and a simple GA was
used. The result is to provide the product manager with only
one “optimal” configuration, which is only optimal according
to the weights chosen in the objective formula. Also, they used
a repair operator to keep all candidate solutions in line with
the feature model all throughout the evolutionary process. We
contend with this, as discussed in the introduction.

B. Use of MEOAs in Software Engineering

We now review broadly-related work in the area of

multiobjective optimization applied to various problems in

Software Engineering.

Historically, the field of Search-Based Software

Engineering (SBSE) has seen a slow adoption of MEOAs.

Back in 2001, when Harman and Jones coined the term SBSE

[14], all surveyed and suggested techniques were based on

single-valued fitness functions. In 2007, Harman commented

on the current state and future of SBSE [13], and in the “Road-

map for Future Work” section he suggested using

multiobjective optimization. Then in 2009, Harman et al. [16]

were able to cite several works in which multiobjective

evolutionary optimization techniques were deployed. Still,

most of the work reviewed therein, as well as work done

thereafter, optimized two objectives only, while higher

numbers appeared only occasionally. Also, the typical

tendency was to use algorithms that are popular in other

domains, such as NSGA-II and SPEA2. To support these two

assertions, Table 1 lists examples of papers that used MEOAs

in various software engineering problems, along with number

of objectives and the algorithms used.
Among the papers in Table 1, the paper by Bowman et al.

[4] is noted for using 5 objectives, and achieving good results
with SPEA2. We attribute that to the moderate size of the
model, and lack of complexity within. In our experiment,
SPEA2 does not perform well with 5 objectives when applied
to the relatively large E-Shop feature model.

A literature survey of Pareto-Optimal Search-Based
Software Engineering [25] confirms these tendencies after
studying 51 related papers. For example, 70% of the papers
only applied a single multiobjective algorithm to their
problems. Most researchers chose their algorithms based on
popularity (especially NSGA-II); often time not stating any
reasons for their choice. It also shows that most papers tackled
two or three optimization objectives. Very few examples were
found where the researchers analyzed the suitability of certain
algorithms for the problems at hand. Consequently, the field of
SBSE is ripe for much reconsideration of algorithms,
reformulation of problems, and performance comparisons.

493

TABLE 1: EXAMPLES OF USE OF MEOAS IN SOFTWARE ENGINEERING

Reference Application
Number of
Objectives

MEOA Used

Zhang et al., 2007 [31] Next release problem 2 NSGA-II, Pareto GA
Lakhotia et al., 2007 [15] Test data generation 2 NSGA-II
Yoo and Harman, 2007 [30] Test case selection 2, 3 NSGA-II, vNSGA-II
Gueorguiev et al., 2009 [11] Software project planning for robustness and completion time 2 SPEA2
Bowman et al., 2010 [4] Class responsibility assignment problem 5 SPEA2
Colanzi et al., 2011 [5] Generating integration test orders for aspect-oriented software 2 NSGA-II, SPEA2
Heaven and Letier, 2011 [17] Optimizing design decisions in quantitative goal models 2 NSGA-II

III. BACKGROUND

A. Software Product Line Engineering (SPLE)

Increasingly, software engineers spend their time creating

software families consisting of similar systems with many

variations [6]. Many researchers in industry and academia

started using a feature-oriented approach to commonality and

variability analysis after the Software Engineering Institute

introduced Feature-Oriented Domain Analysis (FODA) in

1990 [18]. Software product line engineering is a paradigm to

develop software applications using platforms and mass

customization. Benefits of SPLE include reduction of

development costs, enhancement of quality, reduction of time

to market, reduction of maintenance effort, coping with

evolution and complexity [24], and identifying opportunities

for automating the creation of family members [6].

B. Feature Models and the SXFM format

A feature is an end-user-visible behavior of a software
product that is of interest to some stakeholder. A feature model
represents the information of all possible products of a software
product line in terms of features and relationships among them.
Feature models are a special type of information model widely
used in software product line engineering. A feature model is
represented as a hierarchically arranged set of features
composed by:
1. Relationships between a parent feature and its child

features (or subfeatures).
2. Cross-tree constraints that are typically inclusion or

exclusion statements in the form: if feature F is included,
then features A and B must also be included (or excluded).

Figure 1, adapted from [2], depicts a simplified feature
model inspired by the mobile phone industry.

The Simple XML Feature Model (SXFM) format was
defined by the SPLOT website [21], which was launched in
May 2009. SPLOT is host to a feature model repository which
adheres to the SXFM format. Figure 2 shows the SXFM format
for the mobile phone feature model from Figure 1. It shows the
root feature (marked with :r), the mandatory features (marked
with :m), the optional features (marked with :o), and the group
features (marked with :g). The cross-tree constraints are listed
at the bottom in Conjunctive Normal Form (CNF).

The full set of rules in a feature model can be captured in a
Boolean expression, such as the one in Figure 3, which shows
the expression for the mobile phone feature model. From it we
can conclude that the total number of rules in this feature
model is 16, including the following:

 The root feature is mandatory.

 Every child requires its own parent.

Figure 1: Feature model for mobile phone product line

Figure 2: Mobile Phone feature model in SXFM format

Figure 3: Mobile phone feature model as a Boolean expression

<feature_model name="Mobile-Phone">
<meta>
<data name="description">Mobile Phone</data> …
</meta>
<feature_tree>
:r Mobile Phone(root)
 :m calls(calls)
 :o GPS(gps)
 :m screen(screen)
 :g (_g_1) [1,1]
 : basic(basic)
 : color(color)
 : high-resolution(hi_res)
 :o media(media)
 :g (_g_2) [1,*]
 : camera(camera)
 : mp3(mp3)
</feature_tree>
<constraints>
constraint_1: ~gps or ~basic
constraint_2: camera or ~hi_res
</constraints>

</feature_model>

FM = (Mobile Phone ↔ Calls)
 ˄ (Mobile Phone ↔ Screen)
 ˄ (GPS → Mobile Phone)
 ˄ (Media → Mobile Phone)
 ˄ (Screen ↔ XOR (Basic, Color, High resolution))
 ˄ (Media ↔ Camera ˅ MP3)
 ˄ (Camera → High resolution)

˄ ¬(GPS ˄ Basic)

494

 If the child is mandatory, the parent requires the child.

 Every group adds a rule about how many members can be
chosen.

 Every cross-tree constraint (CTC) is a rule.
The total number of rules will be used as the “full

correctness” score in this experiment, thus making
“correctness” one of the optimization objectives.

The feature models used in this study were downloaded
from SPLOT, and were further augmented with properties
pertaining to cost and reliability to allow for multiobjective
optimization, as will be explained in section IV.

C. Multiobjective Evolutionary Optimization Algorithms

(MEOAs)

Many real-world problems involve simultaneous

optimization of several incommensurable and often competing

objectives. Often, there is no single optimal solution, but

rather a set of alternative solutions. These solutions are

optimal in the wider sense that no other solutions in the search

space are superior to them when all objectives are considered

[34].

Formally, we define two types of Pareto Dominance:

Boolean Dominance is defined as follows: A vector
 is said to dominate a vector if

and only if u is partially less than v, i.e.

 , (1)

whereas Continuous Dominance is measured with a

continuous function, such as equation 2 in Figure 4.

The Pareto Front is defined as the set of all points in the

objective space that are not dominated by any other points.

Many algorithms have been suggested over the past two

decades for multiobjective optimization based on evolutionary

algorithms that were designed primarily for single-objective

optimization, such as Genetic Algorithms, Evolutionary

Strategies, Particle Swarm Optimization, and Differential

Evolution.

The algorithms we used in this study were already

implemented in the jMetal framework [8]. They are:

1- IBEA: Indicator-Based Evolutionary Algorithm [33].

2- NSGA-II: Nondominated Sorting Genetic Algorithm,

version 2 [7].

3- ssNSGA-II, a “steady-state” version of NSGA-II [9].

4- SPEA2: Strength Pareto Evolutionary Algorithm, version

2 [35].

5- FastPGA: Fast Pareto Genetic Algorithm [10].

6- MOCell: A Cellular Genetic Algorithm for Multiobjective

Optimization [23].

7- MOCHC: A Multiobjective version of CHC, which stands

for: Cross generational elitist selection, Heterogeneous

recombination, Cataclysmic mutation [22].

Table 2 provides a brief comparison among the 7

algorithms, highlighting their major properties.

D. Indicator-Based Evolutionary Algorithm

Of the 7 algorithms listed above, IBEA is unique in terms

of its dominance criteria. All other algorithms followed a

ranking approach according to Boolean dominance (equation

1), while favoring diversity in the Pareto-optimal set of

solutions. They only gave each solution a place in the ranking.

IBEA, on the other hand, makes more use of the preference

criteria. Equation 2 in Figure 4 shows IBEA's continuous

dominance criteria where each solution is given a weight

based on quality indicators, thus factoring in more of the

optimization objectives of the user. The authors of IBEA,

Zitzler and Kunzli, designed the algorithm such that

“preference information of the decision maker” can be

“integrated into multiobjective search.” In Figure 4, we

provide an outline of the IBEA algorithm. The details can be

found in [33].

Figure 4: Outline of IBEA

 () ∑ ()

 ()

Input: α (population size)
N (maximum number of generations)
κ (fitness scaling factor)

Output: A (Pareto set approximation)

Step 1: Initialization: Generate an initial
population P of size α; and an initial mating pool
P’ of size α; append P’ to P; set the generation
counter m to 0.
Step 2: Fitness assignment: Calculate fitness

values of individuals in P, i.e., for all x1 ∈ P set

Where I(.) is a dominance-preserving binary

indicator.

Step 3: Environmental selection: Iterate the
following three steps until the size of population
P does not exceed α:

1. Choose an individual x∗ ∈ P with the smallest

fitness value, i.e., F(x∗) ≤ F(x) for all x ∈ P.

2. Remove x∗ from the population.

3. Update the fitness values of the remaining
individuals, i.e.

F(x) = F(x) + () for all x ∈ P.

Step 4: Termination: If m ≥ N or another stopping

criterion is satisfied then set A to the set of
decision vectors represented by the
nondominated individuals in P. Stop.
Step 5: Mating selection: Perform binary
tournament selection with replacement on P in
order to fill the temporary mating pool P’.
Step 6: Variation: Apply recombination and
mutation operators to the mating pool P’ and add
the resulting offspring to P. Increment the
generation counter (m = m + 1) and go to Step 2.

495

TABLE 2: COMPARISON OF MULTIOBJECTIVE EVOLUTIONARY OPTIMIZATION ALGORITHMS

Algorithm Population Operators Domination criteria Goal of domination criteria

IBEA Main +

archive

Crossover, mutation,

environmental selection

Calculates domination value (i.e. amount of dominance)

based on indicator (e.g. hypervolume). Favors those
dominating by far.

Favor objectives, i.e. user

preferences

NSGA-II One Crossover, mutation,
tournament selection

Calculates distance to closest point for each objective.
Fitness is product of these distances. Favors higher fitness,

i.e. more isolated points.

Favor absolute domination
and more spread out

solutions.

ssNSGA-
II

One Crossover, mutation,
tournament selection

Same as NSGA-II. But, only one new individual inserted
into population at a time.

Favor absolute domination
and more spread out

solutions.

SPEA2 External &

internal

Crossover, mutation,

tournament selection

Strength of an external point is number of points

dominated by it or equal to it. Strength of an internal point
is sum of strengths of points dominating or equal.

Minimize strength to minimize crowding.

Favor absolute domination

and more spread out
solutions.

FastPGA One Crossover, mutation,

tournament selection,
dynamic population

sizing

The fitness of the nondominated solutions is calculated

using the crowding distance as in NSGA-II. The fitness of
dominated solution is the number of solutions it

dominates, similar to SPEA2. Ranking by both domination

and fitness.

Favor absolute domination

and more spread out
solutions.

MOCell Main +
archive

Crossover, mutation,
tournament selection,

random feedback

The solutions are ordered using a ranking and a crowding
distance estimator similar to NSGA-II. Bigger distance

values are favored.

Favor absolute domination
and more spread out

solutions.

MOCHC One Crossover, cataclysmic

mutation, ranking &
crowding selection

The solutions are ordered using a ranking and a crowding

distance estimator similar to NSGA-II. Bigger distance
values are favored.

Favor absolute domination

and more spread out
solutions.

E. Quality of Pareto Front

Quality indicators can be calculated to assess the

performance of multiobjective metaheuristics. In this study,

we used two indicators:

1- Hypervolume: defined in [34] as a measure of the size of

the space covered, as follows: Let (x1, x2, …, xk) be a set of

decision vectors. The hypervolume is the volume enclosed by

the union of the polytopes (p1, p2, …, pk) where each pi is

formed by the intersections of the following hyperplanes

arising out of xi, along with the axes: for each axis in the

objective space, there exists a hyperplane perpendicular to the

axis and passing through the point (f1(xi), f2(xi), …, fn(xi)). In

the two-dimensional (2-D) case, each pi represents a rectangle

defined by the points (0,0) and (f1(xi), f2(xi)). In jMetal, all

objectives are minimized, but the Pareto front is inverted

before calculating hypervolume, thus the preferred Pareto

front would be that with the most hypervolume.

2- Spread: defined in [7], measures the extent of spread in

the obtained solutions. It is found with the formula:

 ∑ ̅

 () ̅
 ()

Where:

N is the number of points in the Pareto front,

di is Euclidean distances between consecutive points,

 ̅ is Average of di’s, and

df and dl are the Euclidean distances between the extreme

solutions and the boundary solutions of the Pareto front.

Other quality indicators are used elsewhere, namely:

generational distance, inverted generational distance, epsilon,

and generalized speed. These indicators weren’t used here

since they compare the calculated Pareto Front to a

previously-known “true Pareto Front”, which we do not have

in this case.

An indicator that is particular to this problem is the

percentage of correct solutions, since correctness is an

optimization objective that allows product configurations to

evolve into full conformance with the feature model. We are

interested in points within the Pareto front that have zero

violations, and thus a full-correctness score. The importance of

this indicator will become very clear in this experiment.

IV. SETUP

A. Setting Up Feature Models

The two feature models used in this study belong to the

feature model repository at SPLOT website [21], a popular

repository used by many researchers. We chose “Web Portal”,

a moderate-size feature model, and “E-Shop”, the largest

feature model in that repository. Table 3 shows the feature

models, along with size information and the references where

the feature models are described. For an explanation of

“features”, “CTCs”, and “total rules”, please refer to section

III, subsection B.

Further, we augmented the feature models with 3 attributes

for each feature: COST, USED_BEFORE, and DEFECTS. The

choice of values was considered yet arbitrary. COST takes real

values distributed normally between 5.0 and 15.0,

USED_BEFORE takes Boolean values distributed uniformly,

and DEFECTS takes integer values distributed normally

between 0 and 10. This approach of using synthetic data for

experimentation was used by many researchers before us, see

for instance tables II through XI in [16].

496

TABLE 3: FEATURE MODELS USED IN THIS STUDY

Feature

model

Features CTCs Total

rules

Reference

Web

portal
43 6 63

Mendonca et al., 2008

[20]

E-Shop 290 21 419 Lau, 2006 [19]

The only dependency among these qualities is:

 if (not USED_BEFORE) then DEFECTS = 0 (4)

This provides three of the five optimization objectives: to

minimize total cost, to maximize feature that were used

before, and to minimize the total number of known defects.

The two remaining objectives are: to maximize correctness,

i.e. minimize rule violations, and to maximize the number of

offered features.

Table 4 shows a sample of the attributes given to the “Web

Portal” feature model.

TABLE 4: SAMPLE ATTRIBUTES ADDED TO FEATURE MODELS

Feature USED_BEFORE DEFECTS COST

add_services FALSE 0 5.0

site_stats TRUE 7 15.0

Logging TRUE 6 9.8

db TRUE 5 11.4

B. Setting Up the Multiobjective Evolutionary Optimization

Algorithms (MEOAs)

1) Framework: We used algorithms implemented in jMetal
[8], an open-source Java framework for multiobjective
optimization. We actually used those algorithms that supported
binary solution type. As detailed in section II, subsection C; the
algorithms used in this study are: IBEA, NSGA-II, ssNSGA-II,
SPEA2, FastPGA, MOCell, and MOCHC.

Initially, we also experimented with PAES, PESA-II, and
DENSEA. PAES and PESA-II took prohibitively longer than
other algorithms at 5 objectives, while the results (i.e. Pareto
fronts) were not encouraging. DENSEA caused infinite loops
in some runs, and didn’t produce good results when it finished.
For these reasons, PAES, PESA-II, and DENSEA were
excluded from the experiment.

Other algorithms are available in jMetal framework that
only support real-valued solutions, and were not thus far
adapted to support binary solution type. Such algorithms
include CellDE, GDE3, MOEA/D-DE (based on Differential
Evolution), OMOPSO, SMPSO (based on Particle Swarm
Optimization), and AbYSS (based on scatter search)1. These
algorithms were not used in this study, but may be pursued in
future work.
2) Parameter settings: Table 5 lists the configuration
parameters that are common to most of the algorithms we used,
while table 6 lists exceptions and configurations particular to
certain algorithms. The settings used here were mostly the
default setting in jMetal. The focus was on comparing MEOAs
to one another, rather than tuning the parameters to achieve the

1 A complete list of implemented algorithms is available at:

http://jmetal.sourceforge.net/algorithms.html

best performance in each algorithm, which could be explored
in future work.

TABLE 5: PARAMETER SETTINGS FOR MEOAS

Parameter Setting

Population size 100
Crossover type Single-Point Crossover
Crossover probability 0.9
Mutation type Bit-Flip Mutation
Mutation probability 0.05

TABLE 6: EXCEPTIONS AND SPECIAL CONFIGURATIONS

Algorithm Exceptions/special configurations

FastPGA a = 20, b = 1, c = 20, d = 0
IBEA Archive size = 100
MOCell Archive size = 100, feedback = 10
MOCHC Initial Convergence Count = 0.25, preserved

population = 5%, convergence value = 3

3) Problem encoding: The feature models were represented
as binary strings, where the number of bits is equal to the
number of features. If the bit value is TRUE then the feature is
selected, otherwise the feature is removed.

C. Defining the Optimization Objectives

In this work we optimize the following objectives:
1- Correctness; i.e. compliance to the relationships and
constraints defined in the feature model. Since jMetal treats all
optimization objectives as minimization objectives, we seek to
minimize rule violations.
2- Richness of features; we seek to minimize the number of
deselected features.
3- Features that were used before; we seek to minimize the
number of features that weren’t used before.
4- Known defects; which we seek to minimize.
5- Cost; which we seek to minimize.

Next we explain the variety of “number of objectives” used
throughout the experiment:
1- In the two-objective run, we optimize objectives 1 and 2
above, i.e. correctness and number of features.
2- In the three-objective run, we optimize objectives 1, 2 and
5 above.
3- In the four-objective run, we optimize objectives 1, 2, 3
and 5 above.
4- In the five-objective run, we optimize all the objectives
mentioned above.

V. RESULTS

In this section we summarize the results of running 7
algorithms on our augmented feature models. First we compare
the run times, and then quality indicators over two, three, four,
and five optimization objectives, as explained in the previous
section. Second, we make further runs for IBEA on E-Shop
with 5 objectives. Then we closely study an example of the
obtained Pareto Fronts to explore the usefulness of the offered
solutions. We register our observations in this section and then
offer our reasoning in section VI.

A. Run Time Comparison

We show here representative run time figures, since there

can be no precise run time measurement when it comes to any

type of randomized algorithms. Table 7 shows run times for

497

all algorithms applied to the E-Shop feature model with

50,000 objective function evaluations.

TABLE 7: RUN TIME COMPARISON

ALGORITHM 2 Objs. 3 Objs. 4 Objs. 5 Objs.

IBEA 6.9 sec 7.9 sec 9.0 sec 12.3 sec
NSGA-II 2.2 sec 2.3 sec 2.5 sec 2.4 sec
ssNSGA-II 14.3 sec 17.7 sec 21 sec 24 sec
SPEA2 3.7 sec 7.2 sec 10.8 sec 13.3 sec
FastPGA 1.8 sec 4.4 sec 4.9 sec 5.3 sec
MOCell 1.7 sec 3.6 sec 4.7 sec 6.5 sec
MOCHC 1.2 sec 1.6 sec 1.7 sec 1.9 sec

B. Quality Indicator Comparison

Table 8 shows our results. The algorithms are sorted on
Hypervolume (HV) in the 5-objective, E-Shop measurements.
In the 50-K runs, each algorithm run is repeated 10 times, each
time making 50,000 evaluations of the objective functions. The
median of the quality indicators (HV and spread) is reported.
Also reported is the percentage of fully-correct solutions in the
Pareto fronts, i.e. solutions that have zero violations, which is
the first optimization objective. In the 50-M runs, each
algorithms is run only once with 50 Million evaluations. Black
cells with white font indicate results where IBEA performed
much better than other algorithms, as discussed below.

All quality indicators in Table 8 are better when greater

(see section III, subsection E). We do not have any reference

measurements to compare to; therefore we only compare the

different runs against one another.

Looking at the results in Table 8, we make the following

observations:

 IBEA stands out in terms of HV, spread, and percentage of

fully-correct solutions, as can be seen in the black cells with

white font. The remarkable gains with this algorithm become

obvious with the bigger, more complex E-Shop feature model,

and with more objectives.

 We pay special attention to the better spread results that

IBEA achieves, although IBEA does not incorporate crowd

pruning measures in its dominance criteria. It outperforms the

very algorithms that depend on crowd pruning.

 The remaining algorithms (NSGA-II, ssNSGA-II, SPEA2,

FastPGA, MOCell, and MOCHC) perform moderately with

the smaller Web Portal feature model with 2 and 3 objectives.

With 4 or 5 objectives, or when applied to the bigger E-Shop

feature model, these algorithms do not perform nearly

acceptably when compared with the IBEA results. The least

performing among these were MOCHC and SPEA2,

especially with 4 and 5 objectives.

 In the 2-objective run for E-Shop, with 50 Million

evaluations, all algorithms seem to yield the same results, with

100% of the Pareto front having zero violations, except for

MOCHC, which fails miserably. After examining the resulting

Pareto fronts, we find that IBEA outperforms in this category

as well; since IBEA is able to find 3 solutions, each having

zero violations and only one missing feature. Other algorithms

only found one or two solutions, and some solutions had two

missing features.

TABLE 8: COMPARISON OF QUALITY INDICATORS, SORTED ON HV IN 5-OBJ, E-SHOP 50M EVALS.

FM
ALGO

RITHM

5 Objectives 4 Objectives 3 Objectives 2 Objectives

HV SPREAD
%

CORRE
CT

HV SPREAD
%

CORR
ECT

HV SPREAD
%

CORR
ECT

HV SPREAD
%

CORR
ECT

Web
Portal
(50K
evals)

IBEA 0.34 0.79 73% 0.43 1.18 56% 0.56 1.33 82% 1.00 1.04 14%

NSGA-II 0.27 0.68 8% 0.39 0.74 8% 0.57 1.03 24% 1.00 1.04 14%

MOCell 0.27 0.65 4% 0.38 0.68 8% 0.57 1.07 27% 1.00 0.95 20%

ssNSGAII 0.27 0.70 6% 0.40 0.73 8% 0.57 1.15 31% 1.00 1.04 14%

FastPGA 0.27 0.68 7% 0.40 0.71 9% 0.57 1.13 34% 1.00 1.04 14%

SPEA2 0.27 0.54 0% 0.40 0.62 2% 0.57 0.86 13% 1.00 1.04 14%

MOCHC 0.28 0.68 6% 0.42 0.65 7% 0.55 0.94 25% 1.00 0.95 20%

E-
Shop
(50K
evals)

IBEA 0.21 0.77 0% 0.28 0.78 0% 0.40 1.01 0% 0.98 0.99 0%

NSGA-II 0.17 0.72 0% 0.20 0.72 0% 0.34 0.71 0% 0.98 0.99 0%

MOCell 0.16 0.70 0% 0.19 0.71 0% 0.32 0.70 0% 0.98 0.99 0%

ssNSGAII 0.16 0.69 0% 0.20 0.68 0% 0.34 0.70 0% 0.98 0.99 0%

FastPGA 0.16 0.67 0% 0.19 0.69 0% 0.33 0.71 0% 0.98 0.99 0%

SPEA2 0.14 0.48 0% 0.19 0.55 0% 0.32 0.61 0% 0.98 0.99 0%

MOCHC 0.14 0.66 0% 0.20 0.69 0% 0.31 0.72 0% 0.97 1.00 0%

E-
Shop
(50M
evals)

IBEA 0.28 0.88 52% 0.37 1.15 42% 0.52 1.08 80% 1.00 1.00 100%

NSGA-II 0.23 0.75 1% 0.25 0.81 1% 0.42 0.93 1% 1.00 1.00 100%

MOCell 0.23 0.82 1% 0.25 0.86 1% 0.43 0.76 1% 1.00 1.00 100%

ssNSGAII 0.22 0.73 1% 0.24 0.86 1% 0.41 0.87 1% 1.00 1.00 100%

FastPGA 0.22 0.82 0% 0.25 0.81 1% 0.42 0.85 1% 1.00 1.00 100%

SPEA2 0.20 0.55 0% 0.23 0.64 0% 0.39 0.60 0% 1.00 1.00 100%

MOCHC 0.19 0.66 0% 0.23 0.70 0% 0.35 0.72 0% 0.97 0.99 0%

498

C. Further Runs with IBEA

In order to get a rough idea about how soon IBEA arrives
at fully-correct solutions, we performed further runs on the E-
Shop feature model with 5 objectives. The results are shown in
Table 9.

The quickest results were 3 compliant configurations

obtained within 8 minutes. Such results can be useful when a

reasoned argument is needed quickly (e.g. at a meeting).

Longer runs would be needed to get more optimized and better

diversified results. While IBEA achieved 3 acceptable

configuration in about 8 minutes, other algorithms took 50

million evaluations (about 3 hours) to find just one acceptable

configuration.

TABLE 9: VARIOUS RUNS WITH IBEA ON E-SHOP, 5 OBJECTIVES

Evals. Run Time HV Spread % Correct

50,000 12.3 sec 0.21 0.77 0%

1 Million 4 min 0.25 0.77 0%

2 Million 8 min 0.25 0.98 3%

5 Million 20 min 0.27 1.00 16%

10 Million 38 min 0.28 0.86 16%

20 Million 81 min 0.28 0.91 30%

50 Million ~ 3 hours 0.28 0.88 52%

D. Usefulness of the Pareto Fronts

We now closely study an example of the resulting Pareto

Fronts to demonstrate their usefulness to product managers

and software developers. These are the values that matter more

to the end users than aggregate measures such as

Hypervolume and Spread.

Table 10 shows portions of the Pareto front resulting from

applying IBEA to the E-Shop feature model with five

objectives. The values shown are those values to be

minimized, as explained in section IV, subsection C. The rows

are sorted on violations from smallest to largest.

TABLE 10: PORTIONS OF PARETO FRONT FOR IBEA ON E-SHOP, 5 OBJS.

Violations
Missing

Features

Not Used

Before
Defects Cost

1 0 63 103 602 2204
2 0 65 101 604 2189

3 0 65 124 480 2122

4 0 67 123 471 2106
5 0 78 89 613 2033

… … … … … …

51 0 220 40 126 653
52 0 220 42 116 649

53 1 119 63 532 1587

54 1 123 62 509 1568

… … … … … …

64 2 231 28 147 554
65 2 235 26 135 516

66 3 209 31 242 750

67 3 211 31 227 724
… … … … … …

98 10 279 5 17 86

99 12 280 5 9 78

We first note that, out of 99 points on the Pareto front, 52

points had zero rule violations; 8 points had only 1 violation, 5

points had only 2 violations, and so forth. This result is

especially remarkable compared to other algorithms. NSGA-

II, ssNSGA-II, and MOCell each resulted in only one point

with zero violations. SPEA2, FastPGA and MOCHC did not

result in any points with zero violations.

The major advantage of this set of feature configurations is

that the product manager has 52 choices that are fully

compliant with the feature model. Each one of these

configurations is Pareto-optimal; i.e. no solution exists that

can beat it in one objective while keeping the remaining

objectives the same.

E. Fully-Correct vs. Marginally-Incorrect Results

Table 10 also shows quite a few solutions that are

marginally-incorrect; i.e. solutions with a small number of

violations. By nature of the Pareto front, and by examining

these solutions against solutions with zero violations, one can

assert that the other objectives (especially COST, DEFECTS)

are either improved or at least not made worse. If the

improvement in certain objectives is deemed significant,

software developers can mitigate or work around the one or

two rule violations in question, thus providing product

managers with an even broader range of configuration choices.

VI. DISCUSSION

In this section, we reason about the findings of the

experiment and their implications.

A. Indicator-Based Evolutionary Algorithm (IBEA) vs. Other

MEOAs

We first tend to the question: why does IBEA perform so

well? And why does it outperform commonly used

algorithms? An explanation is provided in [27], where it is

experimentally demonstrated with real-valued benchmark test

functions that the performance of NSGA-II and SPEA2

rapidly deteriorates with increasing dimension, and that other

algorithms like ε-MOEA, MSOPS, IBEA and SMS-EMOA

cope very well with high-dimensional objective spaces. It was

found that NSGA-II and SPEA2 tended to “increase the

distance to the Pareto front in the first generations because the

diversity-based selection criteria favor higher distances

between solutions. Special emphasis is given to extremal

solutions with values near zero in one or more objectives.

These solutions remain non-dominated and the distance cannot

be reduced thereafter.” All other algorithms used in this study

(except IBEA) depend on evaluation criteria similar to NSGA-

II or SPEA2, thus inheriting the same handicap at higher

dimension; they tended to prune out solutions that crowded

towards the much-desired zero-violation point, thus achieving

low scores on the %correct measure.

IBEA, on the other hand, calculates a dominance value

based on quality indicators that depend primarily on the user

preferences. Thus IBEA has no need for a secondary

evaluation criterion such as diversity of solutions. This

499

enabled IBEA to explore the various optimal solutions with

zero-violations of model constraints.

This actually highlights IBEA’s ability to find correct as

well as optimal solutions. Other algorithms focused on finding

optimal and diversified solutions, but failed in both, because

they couldn’t explore the fully-correct solution space.

Evolutionary search algorithms are not only meant for

optimization, although they’re mostly used for that, but they’re

also meant to find feasible solutions from a large space of

possible combinations that may or may not conform to model

constraints and dependencies.

B. Method for Achieving Product Correctness

In this experiment, we were able to generate many

acceptable configurations with the help of evolutionary

algorithms. Other researchers [12] included a repair operator

to guarantee that each candidate solution conforms with the

feature model before evaluating it for promotion to the next

generation. They refrained from designing the objective

function so that invalid solutions always score lower than

valid solutions, because it was hard to do so with a single-

objective fitness function. Having attempted the inclusion of

correctness within another objective in order to guarantee

correctness, we recognize this hardship. It was much easier for

us to obtain correct solutions (especially with IBEA) by

defining correctness as an objective of its own.

The results from this experiment show that our method is

sufficient, but they do not preclude further research into other

methods, including the possibility of designing new crossover

and mutation operators which “know” the feature model and

avoid tampering with its constraints while altering the decision

string.

VII. THREATS TO VALIDITY

One issue with our analysis is the use of synthetic data as
attributes of features, i.e. COST, DEFECTS, and
USED_BEFORE. The data were generated randomly based on
distributions seen in historical data sets. The difficulty of
obtaining real data comes from the fact that such numbers are
usually associated with software components, not features.
When available, such data is often proprietary and not
published. Nevertheless, the results we obtained have such a
large margin of superiority achieved by IBEA over other
algorithms which couldn’t possibly be biased by the synthetic
data. Future work should attempt to collect real data for use
with IBEA and other MEOAs to best optimize product
configuration.

Also, the various parameter settings of the MEOAs were
fixed according to the default settings in jMetal. The focus was
on comparing algorithms to one another while using the same
parameter settings. A more thorough investigation might
explore the effects of parameter fine-tuning.

A threat to external validity is that we are unable to
generalize our findings to other software engineering problems.
Nevertheless, we do provide a discussion of the problem
characteristics that make IBEA perform best for the software
product line domain, and we anticipate the same performance
advantage when applying IBEA to problems with similar
complexity and dimensionality.

VIII. CONCLUSIONS AND FUTURE WORK

The greatest conclusion of this experiment is the clear

advantage IBEA search algorithm because of the way it

exploits user preferences. This is the first time in software

engineering research that IBEA is used, and it is shown to

succeed and outperform often-used algorithms such as NSGA-

II. In fact, we show that IBEA can arrive at acceptable

configurations for the large E-Shop model with 5 objectives in

as little as 8 minutes, while some absolute-dominance type

algorithms found one acceptable configuration after 3 hours,

and some couldn’t find any.

The solution diversity results, indicated by the spread

values, were also superior for IBEA, although it is the one

algorithm that does not include crowd pruning as a strategy.

The reliance on crowd pruning by other algorithms not only

caused stagnation afar from the true Pareto front, but also

lesser diversity in the end result. This effect is worthy of

further exploration both theoretically and experimentally.

The E-Shop problem was especially complex in the

decision space, since a string of 290 decisions had to comply

with 419 rules. Also, the objective space was 5-dimensional,

which is rare in SBSE literature. Consequently, the results of

this paper should propel the field into exploring the

performance of IBEA compared to older results in various

problems; attempting harder, more complex problems with

this powerful tool; and holding more comparisons among

available MEOAs applied to software engineering problems.

The other major finding is the ability to generate Pareto-

optimal, feature-model-compliant configurations through an

evolutionary algorithm (IBEA), by treating correctness as one

of the optimization objectives and letting the optimizer “learn”

its way into compliance. There was no need for a repair

operator or special evolutionary operators that are custom-

tailored to this domain. Still, the question may arise regarding

the speed of convergence or the savings in computing power

when this method is used as opposed to other methods, which

may be the subject of future exploration.
Other directions for future work may be:

1- Examining scalability of the remarkable results obtained

with IBEA with larger Feature Model, and possibly more

optimization objectives.

2- Investigating the effects of parameter tuning with IBEA

and other MEOAs.

3- Exploring minor differences among MEOAs reflected in

the data collected here but not further investigated.

ACKNOWLEDGMENT

This research work was funded by the Qatar National
Research Fund (QNRF) under the National Priorities Research
Program (NPRP) Grant No.: 09-1205-2-470.

REFERENCES

[1] D. Benavides, A. Ruiz-Cortés, and P. Trinidad, "Automated

Reasoning on Feature Models," in Proc. CAISE, 2005, pp. 491-

503.

[2] D. Benavides, S. Segura, and A. Ruiz-Cortes, "Automated

analysis of feature models 20 years later: A literature review,"

500

Information Systems, vol. 35, no. 6, pp. 615-636, 2010.

[3] T. Berger, S. She, R. Lotufo, A. Wasowski, and K. Czarnecki,

"Variability Modeling in the Real: A Perspective from the

Operating Systems Domain," in Proc. ASE, Antwerp, Belgium,

2010, pp. 73-82.

[4] M. Bowman, L.C. Briand, and Y. Labiche, "Solving the class

responsibility assignment problem in object-oriented analysis

with multi-objective genetic algorithms," IEEE Transactions on

Software Engineering, vol. 36, no. 6, pp. 817-837, 2010.

[5] T. E. Colanzi, W. Assuncao, S. R. Vergilio, and A. Pozo,

"Generating Integration Test Orders for Aspect-Oriented

Software with Multi-objective Algorithms," in Latin American

Workshop on Aspect-Oriented Software Development, 2011.

[6] J. Coplien, D. Hoffman, and D. Weiss, "Commonality and

Variability in Software Engineering," IEEE Software, vol. 15,

no. 6, pp. 37-45, 1998.

[7] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, "A fast and

elitist multiobjective genetic algorithm: NSGA-II," IEEE

Transactions on Evolutionary Computation, vol. 6, no. 2, pp.

182-197, 2002.

[8] J. J. Durillo and A. J. Nebro, "jMetal: A Java framework for

multi-objective optimization," Advances in Engineering

Software, vol. 42, pp. 760-771, 2011.

[9] J.J. Durillo, A.J. Nebro, F. Luna, and E. Alba, "On the effect of

the steady-state selection scheme in multi-objective genetic

algorithms," in 5th International Conference on Evolutionary

MultiCriterion Optimization, 2009, pp. 183-197.

[10] H. Eskandari, C. D. Geiger, and G. B. Lamont, "FastPGA: A

dynamic population sizing approach for solving expensive

multiobjective optimization problems," in Proceedings of EMO,

2007, pp. 141-155.

[11] S. Gueorguiev, M. Harman, and G. Antoniol, "Software Project

Planning for Robustness and Completion Time in the Presence

of Uncertainty using Multi Objective Search Based Software

Engineering," in Proc. GECCO, 2009, pp. 1673-1680.

[12] J. Guo, J. White, G. Wang, J. Li, and Y. Wang, "A genetic

algorithm for optimized feature selection with resource

constraints in software product lines," Journal of Systems and

Software, vol. 84, no. 12, pp. 2208–2221, December 2011.

[13] M. Harman, "The Current State and Future of Search Based

Software Engineering," in Proc. FOSE, 2007, pp. 342-357.

[14] M. Harman and B. F. Jones, "Search based software

engineering," Information and Software Technology, vol. 43, no.

14, pp. 833–839, December 2001.

[15] M. Harman, K. Lakhotia, and P. McMinn, "A Multi-Objective

Approach to Search-based Test Data Generation," in Proc. of

GECCO, London, UK, 2007, pp. 1098–1105.

[16] M. Harman, S. A. Mansouri, and Y. Zhang, "Search Based

Software Engineering: A Comprehensive Analysis and Review

of Trends Techniques and Applications," King’s College,

London, UK, Technical Report TR-09-03, 2009.

[17] W. Heaven and E. Letier, "Simulating and Optimising Design

Decisions in Quantitative Goal Models," in Proc. RE, 2011, pp.

79-88.

[18] K. Kang, J. Lee, and P. Donohoe, "Feature-Oriented Product

Line Engineering," IEEE Software, vol. 19, no. 4, pp. 58-65,

Jul/Aug 2002.

[19] S. Q. Lau, "Domain analysis of e-commerce systems using

feature-based model templates," Dept. Electrical and Computer

Engineering, University of Waterloo, Canada, Master's Thesis

2006.

[20] M. Mendonca, T. Bartolomei, and D. Cowan, "Decision-making

coordination in collaborative product configuration," in ACM

Symposium on Applied Computing, 2008.

[21] M. Mendonca, M. Branco, and D. Cowan, "S.P.L.O.T. -

Software Product Lines Online Tools," in Proc. OOPSLA,

Orlando, USA, 2009.

[22] A.J. Nebro et al., "Optimal antenna placement using a new

multi-objective CHC algorithm," in Proceedings of the 9th

annual conference on Genetic and evolutionary computation,

New York, NY, USA, 2007, pp. 876-883.

[23] A.J. Nebro, J.J. Durillo, F. Luna, B. Dorronsoro, and E. Alba,

"Mocell: A cellular genetic algorithm for multiobjective

optimization," Int. J. Intelligent Systems, vol. 24, no. 7, pp. 726-

746, 2009.

[24] K. Pohl, G. Böckle, and F. J. van der Linden, Software Product

Line Engineering. New York: Springer-Verlag, 2005.

[25] A. S. Sayyad and H. Ammar, "Pareto-Optimal Search-Based

Software Engineering: A Literature Survey," in Proc. RAISE,

San Francisco, USA, 2013.

[26] A. S. Sayyad, H. Ammar, and T. Menzies, "Feature Model

Recommendations using Data Mining," in Proc. RSSE, Zurich,

Switzerland, 2012.

[27] T. Wagner, N. Beume, and B. Naujoks, "Pareto-, Aggregation-,

and Indicator-Based Methods in Many-Objective Optimization,"

in Proc. EMO, LNCS Volume 4403/2007, 2007, pp. 742-756.

[28] J. White, B. Dougherty, and D. C. Schmidt, "Selecting highly

optimal architectural feature sets with Filtered Cartesian

Flattening," Journal of Systems and Software, vol. 82, no. 8, pp.

1268–1284, August 2009.

[29] J. White, B. Dougherty, D. C. Schmidt, and D. Benavides,

"Automated reasoning for multi-step feature model

configuration problems," in Proc. SPLC, San Francisco, USA,

2009, pp. 11-20.

[30] S. Yoo and M. Harman, "Pareto efficient multi-objective test

case selection," in Proc. ISSTA, 2007, pp. 140-150.

[31] Y. Zhang, M. Harman, and S. A. Mansouri, "The Multi-

Objective Next Release Problem," in Proc. GECCO, 2007, pp.

1129-1136.

[32] G. Zhang, H. Ye, and Y. Lin, "Using Knowledge-Based Systems

to Manage Quality Attributes in Software Product Lines," in

Proc. SPLC, 2011.

[33] E. Zitzler and S. Kunzli, "Indicator-based selection in

multiobjective search," in Parallel Problem Solving from

Nature. Berlin, Germany: Springer-Verlag, 2004, pp. 832–842.

[34] E. Zitzler and Thiele L., "Multiobjective evolutionary

algorithms: a comparative case study and the strength pareto

approach," IEEE Transactions on Evolutionary Computation,

vol. 3, no. 4, pp. 257–271, 1999.

[35] E. Zitzler, M. Laumanns, and L. Thiele, "SPEA2: Improving the

strength pareto evolutionary algorithm," in Evolutionary

Methods for Design, Optimization and Control with

Applications to Industrial Problems. Athens, Greece, 2001, pp.

95-100.

501

