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Abstract—Software design is a process of trading off competing 

objectives. If the user objective space is rich, then we should use 

optimizers that can fully exploit that richness. For example, this 

study configures software product lines (expressed as feature 

maps) using various search-based software engineering methods. 

As we increase the number of optimization objectives, we find 

that methods in widespread use (e.g. NSGA-II, SPEA2) perform 

much worse than IBEA (Indicator-Based Evolutionary 

Algorithm). IBEA works best since it makes most use of user 

preference knowledge. Hence it does better on the standard 

measures (hypervolume and spread) but it also generates far 

more products with 0% violations of domain constraints. Our 

conclusion is that we need to change our methods for search-

based software engineering, particularly when studying complex 

decision spaces. 

Index Terms—Software Product Lines, Feature Models, 

Optimal Feature Selection, Multiobjective Optimization, 

Indicator-Based Evolutionary Algorithm, Search-Based Software 

Engineering. 

I. INTRODUCTION 

As software changes from product-based to app-based, this 
changes the nature of software engineering. Previously, in 
product-based methods, vendors tried to retain their user base 
via some complete solution to all their anticipated needs (e.g. 
Microsoft Office). Such large software platforms are very 
complex and, hence, very slow to change. 

With smart phones and tablet-based software, users can 
choose from large numbers of small apps from different 
vendors, each performing a specific small task. In app-based 
software engineering, vendors must quickly and continually 
reconfigure their apps in order to retain and extend their 
customer base. This new style of software engineering 
demands a new style of feature-based analysis. For example, 
feature maps are a lightweight method for defining a space of 
options as well as assessing the value of a particular subset of 
those options. 

Feature models allow visualization, reasoning, and 
configuration of large and complex software product lines 
(SPLs). Common SPLs now consist of hundreds (even 
thousands) of features, with complex dependencies and 
constraints that govern which features can or cannot live and 
interact with other features. For instance, according to [3], the 
Linux model has 6320 features, of which 86% declare 
constraints of some sort, and most features refer to 2-4 other 

features. Such level of complexity surely requires automated 
reasoning and configuration techniques, especially if the 
intricacies of the feature model are combined with further user 
preferences and priorities, such as those related to cost and 
reliability. In that case, the job of offering product variants with 
guaranteed conformance to the feature model and efficiency 
according to user preferences becomes monumental, requiring 
tool assistance. 

The automation of optimal feature selection in SPLs has 
been attempted before, but never with multiobjective 
evolutionary optimization algorithms (MEOAs). Previous 
approaches will be highlighted in section II.  

The logical structure of feature models poses a challenge to 
evolutionary techniques, since those techniques depend on 
random crossover and mutation which invariably destroy 
feature dependencies and constraints. In [12], this hurdle is 
overcome by introducing a repair operator to “surgically” 
make each candidate solution fully-compatible with the feature 
model after each round of crossover and mutation. In our 
opinion, this approach fails to take advantage of the automatic 
correction afforded by the metaheuristic algorithms via 
“survival of the fittest”. As we show in this paper, conformance 
with the feature model can be achieved by the evolutionary 
algorithms (especially IBEA) without resorting to a repair 
operator or special crossover and mutation operators. We 
demonstrate how logical correctness can be obtained by 
generating a range of solutions (i.e. a Pareto front) which 
include fully-correct and marginally-incorrect solutions 
(solutions with a very small number of rule violations), as well 
as totally intolerable ones. We believe that by shedding light on 
marginally-incorrect solutions we provide wider configuration 
options to product managers, and might inspire software 
developers to rethink the feature model and the relationships 
defined therein. 

More importantly, the main contribution of this paper is 
true, high-dimensional multiobjective search, which puts each 
user preference in focus without aggregation, and then 
incorporates the user preferences in the Pareto dominance 
criteria, using the Indicator-Bases Evolutionary Algorithm 
(IBEA). We show remarkable results obtained with IBEA 
compared to six other multiobjective evolutionary optimization 
algorithms (MEOAs). Up to 5 optimization objectives are used, 
namely: to maximize logical (syntactic) correctness, maximize 
richness of feature offering, minimize cost, maximize code 
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reuse and minimize known defects. We demonstrate how 
popular algorithms such as NSGA-II and SPEA2 become 
useless as we increase the number of objectives, a result that 
was shown in other domains [27] but never before in software 
engineering. 

The uniqueness of IBEA comes from the way it calculates 
dominance as a value, which incorporates the user preferences 
(i.e. optimization objectives), thus providing an “amount” of 
dominance. All other algorithms rank solutions in the objective 
space according to absolute dominance, with second preference 
given to diversity of solutions. The glaring superiority of IBEA 
at higher dimensions shown in this work gives software 
engineers this take-home message:  

“If your user preference space is rich, then use an 
MEOA that can exploit that richness.” 

The rest of the paper is organized as follows: section II 
reviews related work in automated software product 
configuration, as well as the use of multiobjective evolutionary 
optimization algorithms (MEOAs) in software engineering. 
Section III provides background material on software product 
lines and MEOAs. Sections IV and V describe the 
experimental setup and the results of the experiments. In 
sections VI, we discuss the findings and their implications. 
Section VII presents the threats to validity. And in the final 
section, we present our conclusions and future work. 

II. RELATED WORK 

A. Automated Software Product Configuration 

First, we discuss related work in the area of automated 

product configuration and feature selection. 

In our previous work [26], we analyzed feature models 

using a data mining technique, which runs over thousands of 

randomly-generated product variants and identifies the most 

critical feature choices that amount to the most constraint 

violations. Based on that, we offered recommendations as to 

where the configuration task should begin in order to avoid 

related errors. In the present work we augment the feature 

models with quality attributes and seek to find the optimal 

product variants based on the desired preferences. 

The idea of extending (or augmenting) feature models with 

quality attributes was proposed by many, among them Zhang 

et al. [32]. The following papers used a similar approach and 

synthetic data to experiment with optimizing feature selection 

in SPLs. 

Benavides et al. [1] provided automated reasoning on 

extended feature models. They assigned extra-functionality 

such as price range or time range to features. They modeled 

the problem as a Constraint Satisfaction Problem, and solved it 

using CSP solvers to return a set of features which satisfy the 

stakeholders’ criteria. 

White et al. [28] mapped the feature selection problem to a 

multidimensional multi-choice knapsack problem (MMKP). 

They apply Filtered Cartesian Flattening to provide partially 

optimal feature configuration. 

Also White et al. [29] introduced the MUSCLE tool which 

provided a formal model for multistep configuration and 

mapped it to constraint satisfaction problems (CSPs). Hence, 

CSP solvers were used to determine the path from the start of 

the configuration to the desired final configuration. Non-

functional requirements were considered such as cost 

constraints between two configurations. A sequence of 

minimal feature adaptations is calculated to reach from the 

initial to the desired feature model configurations. 
The limitations of these methods are obvious, given the 

small models that they experimented with. As SPLs become 
larger the problem grows more intractable. More recently, a 
Genetic Algorithm was used to tackle this problem [12]. 
Although the problem is obviously multiobjective, the various 
objectives where aggregated into one and a simple GA was 
used. The result is to provide the product manager with only 
one “optimal” configuration, which is only optimal according 
to the weights chosen in the objective formula. Also, they used 
a repair operator to keep all candidate solutions in line with 
the feature model all throughout the evolutionary process. We 
contend with this, as discussed in the introduction. 

B. Use of MEOAs in Software Engineering 

We now review broadly-related work in the area of 

multiobjective optimization applied to various problems in 

Software Engineering. 

Historically, the field of Search-Based Software 

Engineering (SBSE) has seen a slow adoption of MEOAs. 

Back in 2001, when Harman and Jones coined the term SBSE 

[14], all surveyed and suggested techniques were based on 

single-valued fitness functions. In 2007, Harman commented 

on the current state and future of SBSE [13], and in the “Road-

map for Future Work” section he suggested using 

multiobjective optimization. Then in 2009, Harman et al. [16] 

were able to cite several works in which multiobjective 

evolutionary optimization techniques were deployed. Still, 

most of the work reviewed therein, as well as work done 

thereafter, optimized two objectives only, while higher 

numbers appeared only occasionally. Also, the typical 

tendency was to use algorithms that are popular in other 

domains, such as NSGA-II and SPEA2. To support these two 

assertions, Table 1 lists examples of papers that used MEOAs 

in various software engineering problems, along with number 

of objectives and the algorithms used.  
Among the papers in Table 1, the paper by Bowman et al. 

[4] is noted for using 5 objectives, and achieving good results 
with SPEA2. We attribute that to the moderate size of the 
model, and lack of complexity within. In our experiment, 
SPEA2 does not perform well with 5 objectives when applied 
to the relatively large E-Shop feature model. 

A literature survey of Pareto-Optimal Search-Based 
Software Engineering [25] confirms these tendencies after 
studying 51 related papers. For example, 70% of the papers 
only applied a single multiobjective algorithm to their 
problems. Most researchers chose their algorithms based on 
popularity (especially NSGA-II); often time not stating any 
reasons for their choice. It also shows that most papers tackled 
two or three optimization objectives. Very few examples were 
found where the researchers analyzed the suitability of certain 
algorithms for the problems at hand. Consequently, the field of 
SBSE is ripe for much reconsideration of algorithms, 
reformulation of problems, and performance comparisons. 
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TABLE 1: EXAMPLES OF USE OF MEOAS IN SOFTWARE ENGINEERING 

Reference Application 
Number of 
Objectives 

MEOA Used 

Zhang et al., 2007 [31] Next release problem 2 NSGA-II, Pareto GA 
Lakhotia et al., 2007 [15] Test data generation 2 NSGA-II 
Yoo and Harman, 2007 [30] Test case selection 2, 3 NSGA-II, vNSGA-II 
Gueorguiev et al., 2009 [11] Software project planning for robustness and completion time 2 SPEA2 
Bowman et al., 2010 [4] Class responsibility assignment problem 5 SPEA2 
Colanzi et al., 2011 [5] Generating integration test orders for aspect-oriented software 2 NSGA-II, SPEA2 
Heaven and Letier, 2011 [17] Optimizing design decisions in quantitative goal models 2 NSGA-II 

 

III. BACKGROUND 

A. Software Product Line Engineering (SPLE) 

Increasingly, software engineers spend their time creating 

software families consisting of similar systems with many 

variations [6]. Many researchers in industry and academia 

started using a feature-oriented approach to commonality and 

variability analysis after the Software Engineering Institute 

introduced Feature-Oriented Domain Analysis (FODA) in 

1990 [18]. Software product line engineering is a paradigm to 

develop software applications using platforms and mass 

customization. Benefits of SPLE include reduction of 

development costs, enhancement of quality, reduction of time 

to market, reduction of maintenance effort, coping with 

evolution and complexity [24], and identifying opportunities 

for automating the creation of family members [6]. 

B.  Feature Models and the SXFM format  

A feature is an end-user-visible behavior of a software 
product that is of interest to some stakeholder. A feature model 
represents the information of all possible products of a software 
product line in terms of features and relationships among them. 
Feature models are a special type of information model widely 
used in software product line engineering. A feature model is 
represented as a hierarchically arranged set of features 
composed by: 
1. Relationships between a parent feature and its child 

features (or subfeatures).  
2. Cross-tree constraints that are typically inclusion or 

exclusion statements in the form: if feature F is included, 
then features A and B must also be included (or excluded).  

Figure 1, adapted from [2], depicts a simplified feature 
model inspired by the mobile phone industry. 

The Simple XML Feature Model (SXFM) format was 
defined by the SPLOT website [21], which was launched in 
May 2009. SPLOT is host to a feature model repository which 
adheres to the SXFM format. Figure 2 shows the SXFM format 
for the mobile phone feature model from Figure 1. It shows the 
root feature (marked with :r), the mandatory features (marked 
with :m), the optional features (marked with :o), and the group 
features (marked with :g). The cross-tree constraints are listed 
at the bottom in Conjunctive Normal Form (CNF). 

The full set of rules in a feature model can be captured in a 
Boolean expression, such as the one in Figure 3, which shows 
the expression for the mobile phone feature model. From it we 
can conclude that the total number of rules in this feature 
model is 16, including the following: 

 The root feature is mandatory. 

 Every child requires its own parent. 

 

Figure 1: Feature model for mobile phone product line 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Mobile Phone feature model in SXFM format 

 

 

 

 

 

 

 

Figure 3: Mobile phone feature model as a Boolean expression 

<feature_model name="Mobile-Phone"> 
<meta> 
<data name="description">Mobile Phone</data> … 
</meta> 
<feature_tree> 
:r Mobile Phone(root) 
 :m calls(calls) 
 :o GPS(gps) 
 :m screen(screen) 
  :g (_g_1) [1,1]  
   : basic(basic) 
   : color(color) 
   : high-resolution(hi_res) 
 :o media(media) 
  :g (_g_2) [1,*]  
   : camera(camera) 
   : mp3(mp3) 
</feature_tree> 
<constraints> 
constraint_1: ~gps or ~basic 
constraint_2: camera or ~hi_res 
</constraints> 

</feature_model> 

FM =  (Mobile Phone ↔ Calls) 
 ˄ (Mobile Phone ↔ Screen) 
 ˄ (GPS → Mobile Phone) 
 ˄ (Media → Mobile Phone) 
 ˄ (Screen ↔ XOR (Basic, Color, High resolution)) 
 ˄ (Media ↔ Camera ˅ MP3) 
 ˄ (Camera → High resolution) 

˄ ¬(GPS ˄ Basic) 
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 If the child is mandatory, the parent requires the child. 

 Every group adds a rule about how many members can be 
chosen. 

 Every cross-tree constraint (CTC) is a rule. 
The total number of rules will be used as the “full 

correctness” score in this experiment, thus making 
“correctness” one of the optimization objectives. 

The feature models used in this study were downloaded 
from SPLOT, and were further augmented with properties 
pertaining to cost and reliability to allow for multiobjective 
optimization, as will be explained in section  IV. 

C. Multiobjective Evolutionary Optimization Algorithms 

(MEOAs) 

Many real-world problems involve simultaneous 

optimization of several incommensurable and often competing 

objectives. Often, there is no single optimal solution, but 

rather a set of alternative solutions. These solutions are 

optimal in the wider sense that no other solutions in the search 

space are superior to them when all objectives are considered 

[34].  

Formally, we define two types of Pareto Dominance: 

Boolean Dominance is defined as follows: A vector    
             is said to dominate a vector                 if 

and only if u is partially less than v, i.e. 

           ,                                  (1) 

whereas Continuous Dominance is measured with a 

continuous function, such as equation 2 in Figure 4. 

The Pareto Front is defined as the set of all points in the 

objective space that are not dominated by any other points. 

Many algorithms have been suggested over the past two 

decades for multiobjective optimization based on evolutionary 

algorithms that were designed primarily for single-objective 

optimization, such as Genetic Algorithms, Evolutionary 

Strategies, Particle Swarm Optimization, and Differential 

Evolution.  

The algorithms we used in this study were already 

implemented in the jMetal framework [8]. They are: 

1- IBEA: Indicator-Based Evolutionary Algorithm [33]. 

2- NSGA-II: Nondominated Sorting Genetic Algorithm, 

version 2 [7]. 

3- ssNSGA-II, a “steady-state” version of NSGA-II [9]. 

4- SPEA2: Strength Pareto Evolutionary Algorithm, version 

2 [35].  

5- FastPGA: Fast Pareto Genetic Algorithm [10]. 

6- MOCell: A Cellular Genetic Algorithm for Multiobjective 

Optimization [23]. 

7- MOCHC: A Multiobjective version of CHC, which stands 

for: Cross generational elitist selection, Heterogeneous 

recombination, Cataclysmic mutation [22]. 

Table 2 provides a brief comparison among the 7 

algorithms, highlighting their major properties. 

D. Indicator-Based Evolutionary Algorithm 

Of the 7 algorithms listed above, IBEA is unique in terms 

of its dominance criteria. All other algorithms followed a 

ranking approach according to Boolean dominance (equation 

1), while favoring diversity in the Pareto-optimal set of 

solutions. They only gave each solution a place in the ranking. 

IBEA, on the other hand, makes more use of the preference 

criteria. Equation 2 in Figure 4 shows IBEA's continuous 

dominance criteria where each solution is given a weight 

based on quality indicators, thus factoring in more of the 

optimization objectives of the user. The authors of IBEA, 

Zitzler and Kunzli, designed the algorithm such that 

“preference information of the decision maker” can be 

“integrated into multiobjective search.” In Figure 4, we 

provide an outline of the IBEA algorithm. The details can be 

found in [33]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Outline of IBEA

  

   (  )   ∑     (         )  

           

                       ( ) 

 

Input:  α (population size) 
N (maximum number of generations) 
κ (fitness scaling factor) 

Output:  A (Pareto set approximation) 
 
Step 1: Initialization: Generate an initial 
population P of size α; and an initial mating pool 
P’ of size α; append P’ to P; set the generation 
counter m to 0. 
Step 2: Fitness assignment: Calculate fitness 

values of individuals in P, i.e., for all x1 ∈ P set  

Where I(.) is a dominance-preserving binary 

indicator.  

Step 3: Environmental selection: Iterate the 
following three steps until the size of population 
P does not exceed α: 

1. Choose an individual x∗ ∈ P with the smallest 

fitness value, i.e., F(x∗) ≤ F(x) for all x ∈ P. 

2. Remove x∗ from the population. 

3. Update the fitness values of the remaining 
individuals, i.e. 
 

F(x) = F(x) +    (         )   for all x ∈ P. 
 

Step 4: Termination: If m ≥ N or another stopping 

criterion is satisfied then set A to the set of 
decision vectors represented by the 
nondominated individuals in P. Stop. 
Step 5: Mating selection: Perform binary 
tournament selection with replacement on P in 
order to fill the temporary mating pool P’. 
Step 6: Variation: Apply recombination and 
mutation operators to the mating pool P’ and add 
the resulting offspring to P. Increment the 
generation counter (m = m + 1) and go to Step 2. 
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TABLE 2: COMPARISON OF MULTIOBJECTIVE EVOLUTIONARY OPTIMIZATION ALGORITHMS 

Algorithm Population Operators Domination criteria Goal of domination criteria 

IBEA Main + 

archive 

Crossover, mutation, 

environmental selection 

Calculates domination value (i.e. amount of dominance) 

based on indicator (e.g. hypervolume). Favors those 
dominating by far. 

Favor objectives, i.e. user 

preferences 

NSGA-II One Crossover, mutation, 
tournament selection 

Calculates distance to closest point for each objective. 
Fitness is product of these distances. Favors higher fitness, 

i.e. more isolated points. 

Favor absolute domination 
and more spread out 

solutions. 

ssNSGA-
II 

One Crossover, mutation, 
tournament selection 

Same as NSGA-II. But, only one new individual inserted 
into population at a time. 

Favor absolute domination 
and more spread out 

solutions. 

SPEA2 External & 

internal 

Crossover, mutation, 

tournament selection 

Strength of an external point is number of points 

dominated by it or equal to it. Strength of an internal point 
is sum of strengths of points dominating or equal. 

Minimize strength to minimize crowding. 

Favor absolute domination 

and more spread out 
solutions. 

FastPGA One Crossover, mutation, 

tournament selection, 
dynamic population 

sizing 

The fitness of the nondominated solutions is calculated 

using the crowding distance as in NSGA-II. The fitness of 
dominated solution is the number of solutions it 

dominates, similar to SPEA2. Ranking by both domination 

and fitness. 

Favor absolute domination 

and more spread out 
solutions. 

MOCell Main + 
archive 

Crossover, mutation, 
tournament selection, 

random feedback 

The solutions are ordered using a ranking and a crowding 
distance estimator similar to NSGA-II. Bigger distance 

values are favored. 

Favor absolute domination 
and more spread out 

solutions. 

MOCHC One Crossover, cataclysmic 

mutation, ranking & 
crowding selection 

The solutions are ordered using a ranking and a crowding 

distance estimator similar to NSGA-II. Bigger distance 
values are favored. 

Favor absolute domination 

and more spread out 
solutions. 

 

E. Quality of Pareto Front 

Quality indicators can be calculated to assess the 

performance of multiobjective metaheuristics. In this study, 

we used two indicators: 

1- Hypervolume: defined in [34] as a measure of the size of 

the space covered, as follows: Let (x1, x2, …, xk) be a set of 

decision vectors. The hypervolume is the volume enclosed by 

the union of the polytopes (p1, p2, …, pk) where each pi is 

formed by the intersections of the following hyperplanes 

arising out of xi, along with the axes: for each axis in the 

objective space, there exists a hyperplane perpendicular to the 

axis and passing through the point (f1(xi), f2(xi), …, fn(xi)). In 

the two-dimensional (2-D) case, each pi represents a rectangle 

defined by the points (0,0) and (f1(xi), f2(xi)). In jMetal, all 

objectives are minimized, but the Pareto front is inverted 

before calculating hypervolume, thus the preferred Pareto 

front would be that with the most hypervolume. 

2- Spread: defined in [7], measures the extent of spread in 

the obtained solutions. It is found with the formula: 

 

                         
        ∑        ̅     

   

       (   ) ̅ 
             ( ) 

Where: 

N is the number of points in the Pareto front, 

di is Euclidean distances between consecutive points, 

 ̅ is Average of di’s, and 

df and dl are the  Euclidean distances between the extreme 

solutions and the boundary solutions of the Pareto front. 

Other quality indicators are used elsewhere, namely: 

generational distance, inverted generational distance, epsilon, 

and generalized speed. These indicators weren’t used here 

since they compare the calculated Pareto Front to a 

previously-known “true Pareto Front”, which we do not have 

in this case. 

An indicator that is particular to this problem is the 

percentage of correct solutions, since correctness is an 

optimization objective that allows product configurations to 

evolve into full conformance with the feature model. We are 

interested in points within the Pareto front that have zero 

violations, and thus a full-correctness score. The importance of 

this indicator will become very clear in this experiment. 

IV. SETUP 

A. Setting Up Feature Models 

The two feature models used in this study belong to the 

feature model repository at SPLOT website [21], a popular 

repository used by many researchers. We chose “Web Portal”, 

a moderate-size feature model, and “E-Shop”, the largest 

feature model in that repository. Table 3 shows the feature 

models, along with size information and the references where 

the feature models are described. For an explanation of 

“features”, “CTCs”, and “total rules”, please refer to section 

III, subsection  B. 

Further, we augmented the feature models with 3 attributes 

for each feature: COST, USED_BEFORE, and DEFECTS. The 

choice of values was considered yet arbitrary. COST takes real 

values distributed normally between 5.0 and 15.0, 

USED_BEFORE takes Boolean values distributed uniformly, 

and DEFECTS takes integer values distributed normally 

between 0 and 10. This approach of using synthetic data for 

experimentation was used by many researchers before us, see 

for instance tables II through XI in [16]. 
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TABLE 3: FEATURE MODELS USED IN THIS STUDY 

Feature 

model 

Features CTCs Total 

rules 

Reference 

Web 

portal 
43 6 63 

Mendonca et al., 2008 

[20] 

E-Shop 290 21 419 Lau, 2006 [19] 

The only dependency among these qualities is: 

   if (not USED_BEFORE) then DEFECTS = 0     (4) 

This provides three of the five optimization objectives: to 

minimize total cost, to maximize feature that were used 

before, and to minimize the total number of known defects. 

The two remaining objectives are: to maximize correctness, 

i.e. minimize rule violations, and to maximize the number of 

offered features. 

Table 4 shows a sample of the attributes given to the “Web 

Portal” feature model. 

TABLE 4: SAMPLE ATTRIBUTES ADDED TO FEATURE MODELS 

Feature USED_BEFORE DEFECTS COST 

add_services FALSE 0 5.0 

site_stats TRUE 7 15.0 

Logging TRUE 6 9.8 

db TRUE 5 11.4 

B. Setting Up the Multiobjective Evolutionary Optimization 

Algorithms (MEOAs) 

1) Framework: We used algorithms implemented in jMetal 
[8], an open-source Java framework for multiobjective 
optimization. We actually used those algorithms that supported 
binary solution type. As detailed in section  II, subsection  C; the 
algorithms used in this study are: IBEA, NSGA-II, ssNSGA-II, 
SPEA2, FastPGA, MOCell, and MOCHC. 

Initially, we also experimented with PAES, PESA-II, and 
DENSEA. PAES and PESA-II took prohibitively longer than 
other algorithms at 5 objectives, while the results (i.e. Pareto 
fronts) were not encouraging. DENSEA caused infinite loops 
in some runs, and didn’t produce good results when it finished. 
For these reasons, PAES, PESA-II, and DENSEA were 
excluded from the experiment. 

Other algorithms are available in jMetal framework that 
only support real-valued solutions, and were not thus far 
adapted to support binary solution type. Such algorithms 
include CellDE, GDE3, MOEA/D-DE (based on Differential 
Evolution), OMOPSO, SMPSO (based on Particle Swarm 
Optimization), and AbYSS (based on scatter search)1. These 
algorithms were not used in this study, but may be pursued in 
future work. 
2) Parameter settings: Table 5 lists the configuration 
parameters that are common to most of the algorithms we used, 
while table 6 lists exceptions and configurations particular to 
certain algorithms. The settings used here were mostly the 
default setting in jMetal. The focus was on comparing MEOAs 
to one another, rather than tuning the parameters to achieve the 

                                                                 

1 A complete list of implemented algorithms is available at: 

http://jmetal.sourceforge.net/algorithms.html 

best performance in each algorithm, which could be explored 
in future work. 

TABLE 5: PARAMETER SETTINGS FOR MEOAS 

Parameter Setting 

Population size 100 
Crossover type Single-Point Crossover 
Crossover probability 0.9 
Mutation type Bit-Flip Mutation 
Mutation probability 0.05 

 

TABLE 6: EXCEPTIONS AND SPECIAL CONFIGURATIONS 

Algorithm Exceptions/special configurations 

FastPGA a = 20, b = 1, c = 20, d = 0 
IBEA Archive size = 100 
MOCell Archive size = 100, feedback = 10 
MOCHC Initial Convergence Count = 0.25, preserved 

population = 5%, convergence value = 3 

3) Problem encoding: The feature models were represented 
as binary strings, where the number of bits is equal to the 
number of features. If the bit value is TRUE then the feature is 
selected, otherwise the feature is removed. 

C. Defining the Optimization Objectives 

In this work we optimize the following objectives: 
1- Correctness; i.e. compliance to the relationships and 
constraints defined in the feature model. Since jMetal treats all 
optimization objectives as minimization objectives, we seek to 
minimize rule violations. 
2- Richness of features; we seek to minimize the number of 
deselected features. 
3- Features that were used before; we seek to minimize the 
number of features that weren’t used before. 
4- Known defects; which we seek to minimize. 
5- Cost; which we seek to minimize. 

Next we explain the variety of “number of objectives” used 
throughout the experiment: 
1- In the two-objective run, we optimize objectives 1 and 2 
above, i.e. correctness and number of features. 
2- In the three-objective run, we optimize objectives 1, 2 and 
5 above. 
3- In the four-objective run, we optimize objectives 1, 2, 3 
and 5 above. 
4- In the five-objective run, we optimize all the objectives 
mentioned above. 

V. RESULTS 

In this section we summarize the results of running 7 
algorithms on our augmented feature models. First we compare 
the run times, and then quality indicators over two, three, four, 
and five optimization objectives, as explained in the previous 
section. Second, we make further runs for IBEA on E-Shop 
with 5 objectives. Then we closely study an example of the 
obtained Pareto Fronts to explore the usefulness of the offered 
solutions. We register our observations in this section and then 
offer our reasoning in section  VI. 

A. Run Time Comparison 

We show here representative run time figures, since there 

can be no precise run time measurement when it comes to any 

type of randomized algorithms. Table 7 shows run times for 
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all algorithms applied to the E-Shop feature model with 

50,000 objective function evaluations. 

 
TABLE 7: RUN TIME COMPARISON 

ALGORITHM 2 Objs. 3 Objs. 4 Objs. 5 Objs. 

IBEA 6.9 sec 7.9 sec 9.0 sec 12.3 sec 
NSGA-II 2.2 sec 2.3 sec 2.5 sec 2.4 sec 
ssNSGA-II 14.3 sec 17.7 sec 21 sec 24 sec 
SPEA2 3.7 sec 7.2 sec 10.8 sec 13.3 sec 
FastPGA 1.8 sec 4.4 sec 4.9 sec 5.3 sec 
MOCell 1.7 sec 3.6 sec 4.7 sec 6.5 sec 
MOCHC 1.2 sec 1.6 sec 1.7 sec 1.9 sec 

 

B. Quality Indicator Comparison 

Table 8 shows our results. The algorithms are sorted on 
Hypervolume (HV) in the 5-objective, E-Shop measurements. 
In the 50-K runs, each algorithm run is repeated 10 times, each 
time making 50,000 evaluations of the objective functions. The 
median of the quality indicators (HV and spread) is reported. 
Also reported is the percentage of fully-correct solutions in the 
Pareto fronts, i.e. solutions that have zero violations, which is 
the first optimization objective. In the 50-M runs, each 
algorithms is run only once with 50 Million evaluations. Black 
cells with white font indicate results where IBEA performed 
much better than other algorithms, as discussed below. 

All quality indicators in Table 8 are better when greater 

(see section III, subsection  E). We do not have any reference 

measurements to compare to; therefore we only compare the 

different runs against one another. 

Looking at the results in Table 8, we make the following 

observations: 

 IBEA stands out in terms of HV, spread, and percentage of 

fully-correct solutions, as can be seen in the black cells with 

white font. The remarkable gains with this algorithm become 

obvious with the bigger, more complex E-Shop feature model, 

and with more objectives. 

 We pay special attention to the better spread results that 

IBEA achieves, although IBEA does not incorporate crowd 

pruning measures in its dominance criteria. It outperforms the 

very algorithms that depend on crowd pruning.  

 The remaining algorithms (NSGA-II, ssNSGA-II, SPEA2, 

FastPGA, MOCell, and MOCHC) perform moderately with 

the smaller Web Portal feature model with 2 and 3 objectives. 

With 4 or 5 objectives, or when applied to the bigger E-Shop 

feature model, these algorithms do not perform nearly 

acceptably when compared with the IBEA results. The least 

performing among these were MOCHC and SPEA2, 

especially with 4 and 5 objectives. 

 In the 2-objective run for E-Shop, with 50 Million 

evaluations, all algorithms seem to yield the same results, with 

100% of the Pareto front having zero violations, except for 

MOCHC, which fails miserably. After examining the resulting 

Pareto fronts, we find that IBEA outperforms in this category 

as well; since IBEA is able to find 3 solutions, each having 

zero violations and only one missing feature. Other algorithms 

only found one or two solutions, and some solutions had two 

missing features. 

 
TABLE 8: COMPARISON OF QUALITY INDICATORS, SORTED ON HV IN 5-OBJ, E-SHOP 50M EVALS. 

FM 
ALGO 

RITHM 

5 Objectives 4 Objectives 3 Objectives 2 Objectives 

HV SPREAD 
% 

CORRE
CT 

HV SPREAD 
% 

CORR
ECT 

HV SPREAD 
% 

CORR
ECT 

HV SPREAD 
% 

CORR
ECT 

Web 
Portal
(50K 
evals) 

IBEA 0.34 0.79 73% 0.43 1.18 56% 0.56 1.33 82% 1.00 1.04 14% 

NSGA-II 0.27 0.68 8% 0.39 0.74 8% 0.57 1.03 24% 1.00 1.04 14% 

MOCell 0.27 0.65 4% 0.38 0.68 8% 0.57 1.07 27% 1.00 0.95 20% 

ssNSGAII 0.27 0.70 6% 0.40 0.73 8% 0.57 1.15 31% 1.00 1.04 14% 

FastPGA 0.27 0.68 7% 0.40 0.71 9% 0.57 1.13 34% 1.00 1.04 14% 

SPEA2 0.27 0.54 0% 0.40 0.62 2% 0.57 0.86 13% 1.00 1.04 14% 

MOCHC 0.28 0.68 6% 0.42 0.65 7% 0.55 0.94 25% 1.00 0.95 20% 

E-
Shop 
(50K 
evals) 

IBEA 0.21 0.77 0% 0.28 0.78 0% 0.40 1.01 0% 0.98 0.99 0% 

NSGA-II 0.17 0.72 0% 0.20 0.72 0% 0.34 0.71 0% 0.98 0.99 0% 

MOCell 0.16 0.70 0% 0.19 0.71 0% 0.32 0.70 0% 0.98 0.99 0% 

ssNSGAII 0.16 0.69 0% 0.20 0.68 0% 0.34 0.70 0% 0.98 0.99 0% 

FastPGA 0.16 0.67 0% 0.19 0.69 0% 0.33 0.71 0% 0.98 0.99 0% 

SPEA2 0.14 0.48 0% 0.19 0.55 0% 0.32 0.61 0% 0.98 0.99 0% 

MOCHC 0.14 0.66 0% 0.20 0.69 0% 0.31 0.72 0% 0.97 1.00 0% 

E-
Shop 
(50M 
evals) 

IBEA 0.28 0.88 52% 0.37 1.15 42% 0.52 1.08 80% 1.00 1.00 100% 

NSGA-II 0.23 0.75 1% 0.25 0.81 1% 0.42 0.93 1% 1.00 1.00 100% 

MOCell 0.23 0.82 1% 0.25 0.86 1% 0.43 0.76 1% 1.00 1.00 100% 

ssNSGAII 0.22 0.73 1% 0.24 0.86 1% 0.41 0.87 1% 1.00 1.00 100% 

FastPGA 0.22 0.82 0% 0.25 0.81 1% 0.42 0.85 1% 1.00 1.00 100% 

SPEA2 0.20 0.55 0% 0.23 0.64 0% 0.39 0.60 0% 1.00 1.00 100% 

MOCHC 0.19 0.66 0% 0.23 0.70 0% 0.35 0.72 0% 0.97 0.99 0% 
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C. Further Runs with IBEA 

In order to get a rough idea about how soon IBEA arrives 
at fully-correct solutions, we performed further runs on the E-
Shop feature model with 5 objectives. The results are shown in 
Table 9. 

The quickest results were 3 compliant configurations 

obtained within 8 minutes. Such results can be useful when a 

reasoned argument is needed quickly (e.g. at a meeting). 

Longer runs would be needed to get more optimized and better 

diversified results. While IBEA achieved 3 acceptable 

configuration in about 8 minutes, other algorithms took 50 

million evaluations (about 3 hours) to find just one acceptable 

configuration. 

TABLE 9: VARIOUS RUNS WITH IBEA ON E-SHOP, 5 OBJECTIVES 

Evals. Run Time HV Spread % Correct 

50,000 12.3 sec 0.21 0.77 0% 

1 Million 4 min 0.25 0.77 0% 

2 Million 8 min 0.25 0.98 3% 

5 Million 20 min 0.27 1.00 16% 

10 Million 38 min 0.28 0.86 16% 

20 Million 81 min 0.28 0.91 30% 

50 Million ~ 3 hours 0.28 0.88 52% 

D. Usefulness of the Pareto Fronts 

We now closely study an example of the resulting Pareto 

Fronts to demonstrate their usefulness to product managers 

and software developers. These are the values that matter more 

to the end users than aggregate measures such as 

Hypervolume and Spread. 

Table 10 shows portions of the Pareto front resulting from 

applying IBEA to the E-Shop feature model with five 

objectives. The values shown are those values to be 

minimized, as explained in section  IV, subsection  C. The rows 

are sorted on violations from smallest to largest. 

TABLE 10: PORTIONS OF PARETO FRONT FOR IBEA ON E-SHOP, 5 OBJS. 

# Violations 
Missing 

Features 

Not Used 

Before 
Defects Cost 

      

1 0 63 103 602 2204 
2 0 65 101 604 2189 

3 0 65 124 480 2122 

4 0 67 123 471 2106 
5 0 78 89 613 2033 

… … … … … … 

51 0 220 40 126 653 
52 0 220 42 116 649 

53 1 119 63 532 1587 

54 1 123 62 509 1568 

… … … … … … 

64 2 231 28 147 554 
65 2 235 26 135 516 

66 3 209 31 242 750 

67 3 211 31 227 724 
… … … … … … 

98 10 279 5 17 86 

99 12 280 5 9 78 
      

We first note that, out of 99 points on the Pareto front, 52 

points had zero rule violations; 8 points had only 1 violation, 5 

points had only 2 violations, and so forth. This result is 

especially remarkable compared to other algorithms. NSGA-

II, ssNSGA-II, and MOCell each resulted in only one point 

with zero violations. SPEA2, FastPGA and MOCHC did not 

result in any points with zero violations.  

The major advantage of this set of feature configurations is 

that the product manager has 52 choices that are fully 

compliant with the feature model. Each one of these 

configurations is Pareto-optimal; i.e. no solution exists that 

can beat it in one objective while keeping the remaining 

objectives the same.  

E. Fully-Correct vs. Marginally-Incorrect Results 

Table 10 also shows quite a few solutions that are 

marginally-incorrect; i.e. solutions with a small number of 

violations. By nature of the Pareto front, and by examining 

these solutions against solutions with zero violations, one can 

assert that the other objectives (especially COST, DEFECTS) 

are either improved or at least not made worse. If the 

improvement in certain objectives is deemed significant, 

software developers can mitigate or work around the one or 

two rule violations in question, thus providing product 

managers with an even broader range of configuration choices. 

VI. DISCUSSION 

In this section, we reason about the findings of the 

experiment and their implications. 

A. Indicator-Based Evolutionary Algorithm (IBEA) vs. Other 

MEOAs 

We first tend to the question: why does IBEA perform so 

well? And why does it outperform commonly used 

algorithms? An explanation is provided in [27], where it is 

experimentally demonstrated with real-valued benchmark test 

functions that the performance of NSGA-II and SPEA2 

rapidly deteriorates with increasing dimension, and that other 

algorithms like ε-MOEA, MSOPS, IBEA and SMS-EMOA 

cope very well with high-dimensional objective spaces. It was 

found that NSGA-II and SPEA2 tended to “increase the 

distance to the Pareto front in the first generations because the 

diversity-based selection criteria favor higher distances 

between solutions. Special emphasis is given to extremal 

solutions with values near zero in one or more objectives. 

These solutions remain non-dominated and the distance cannot 

be reduced thereafter.” All other algorithms used in this study 

(except IBEA) depend on evaluation criteria similar to NSGA-

II or SPEA2, thus inheriting the same handicap at higher 

dimension; they tended to prune out solutions that crowded 

towards the much-desired zero-violation point, thus achieving 

low scores on the %correct measure. 

IBEA, on the other hand, calculates a dominance value 

based on quality indicators that depend primarily on the user 

preferences. Thus IBEA has no need for a secondary 

evaluation criterion such as diversity of solutions. This 
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enabled IBEA to explore the various optimal solutions with 

zero-violations of model constraints. 

This actually highlights IBEA’s ability to find correct as 

well as optimal solutions. Other algorithms focused on finding 

optimal and diversified solutions, but failed in both, because 

they couldn’t explore the fully-correct solution space. 

Evolutionary search algorithms are not only meant for 

optimization, although they’re mostly used for that, but they’re 

also meant to find feasible solutions from a large space of 

possible combinations that may or may not conform to model 

constraints and dependencies. 

B. Method for Achieving Product Correctness 

In this experiment, we were able to generate many 

acceptable configurations with the help of evolutionary 

algorithms. Other researchers [12] included a repair operator 

to guarantee that each candidate solution conforms with the 

feature model before evaluating it for promotion to the next 

generation. They refrained from designing the objective 

function so that invalid solutions always score lower than 

valid solutions, because it was hard to do so with a single-

objective fitness function. Having attempted the inclusion of 

correctness within another objective in order to guarantee 

correctness, we recognize this hardship. It was much easier for 

us to obtain correct solutions (especially with IBEA) by 

defining correctness as an objective of its own. 

The results from this experiment show that our method is 

sufficient, but they do not preclude further research into other 

methods, including the possibility of designing new crossover 

and mutation operators which “know” the feature model and 

avoid tampering with its constraints while altering the decision 

string. 

VII. THREATS TO VALIDITY 

One issue with our analysis is the use of synthetic data as 
attributes of features, i.e. COST, DEFECTS, and 
USED_BEFORE. The data were generated randomly based on 
distributions seen in historical data sets. The difficulty of 
obtaining real data comes from the fact that such numbers are 
usually associated with software components, not features. 
When available, such data is often proprietary and not 
published. Nevertheless, the results we obtained have such a 
large margin of superiority achieved by IBEA over other 
algorithms which couldn’t possibly be biased by the synthetic 
data. Future work should attempt to collect real data for use 
with IBEA and other MEOAs to best optimize product 
configuration. 

Also, the various parameter settings of the MEOAs were 
fixed according to the default settings in jMetal. The focus was 
on comparing algorithms to one another while using the same 
parameter settings. A more thorough investigation might 
explore the effects of parameter fine-tuning. 

A threat to external validity is that we are unable to 
generalize our findings to other software engineering problems. 
Nevertheless, we do provide a discussion of the problem 
characteristics that make IBEA perform best for the software 
product line domain, and we anticipate the same performance 
advantage when applying IBEA to problems with similar 
complexity and dimensionality. 

VIII. CONCLUSIONS AND FUTURE WORK 

The greatest conclusion of this experiment is the clear 

advantage IBEA search algorithm because of the way it 

exploits user preferences. This is the first time in software 

engineering research that IBEA is used, and it is shown to 

succeed and outperform often-used algorithms such as NSGA-

II. In fact, we show that IBEA can arrive at acceptable 

configurations for the large E-Shop model with 5 objectives in 

as little as 8 minutes, while some absolute-dominance type 

algorithms found one acceptable configuration after 3 hours, 

and some couldn’t find any. 

The solution diversity results, indicated by the spread 

values, were also superior for IBEA, although it is the one 

algorithm that does not include crowd pruning as a strategy. 

The reliance on crowd pruning by other algorithms not only 

caused stagnation afar from the true Pareto front, but also 

lesser diversity in the end result. This effect is worthy of 

further exploration both theoretically and experimentally. 

The E-Shop problem was especially complex in the 

decision space, since a string of 290 decisions had to comply 

with 419 rules. Also, the objective space was 5-dimensional, 

which is rare in SBSE literature. Consequently, the results of 

this paper should propel the field into exploring the 

performance of IBEA compared to older results in various 

problems; attempting harder, more complex problems with 

this powerful tool; and holding more comparisons among 

available MEOAs applied to software engineering problems. 

The other major finding is the ability to generate Pareto-

optimal, feature-model-compliant configurations through an 

evolutionary algorithm (IBEA), by treating correctness as one 

of the optimization objectives and letting the optimizer “learn” 

its way into compliance. There was no need for a repair 

operator or special evolutionary operators that are custom-

tailored to this domain. Still, the question may arise regarding 

the speed of convergence or the savings in computing power 

when this method is used as opposed to other methods, which 

may be the subject of future exploration. 
Other directions for future work may be: 

1- Examining scalability of the remarkable results obtained 

with IBEA with larger Feature Model, and possibly more 

optimization objectives. 

2- Investigating the effects of parameter tuning with IBEA 

and other MEOAs. 

3- Exploring minor differences among MEOAs reflected in 

the data collected here but not further investigated. 
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