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Updates in Disjunctive Deductive Databases:
A Minimal Model Based Approach

Adnan H. Yahya

Electrical Engineering Department, Birzeit University, Palestine
Email: yahya@ee.birzeit.edu

Abstract. The issue of updates in Disjunctive Deductive Databases
(DDDBs) under the minimal model semantics is addressed. We consider
ground clause addition and deletion in a DDDB. The approach of this
paper is based on manipulating the clauses of the theory to produce
the required change to the minimal model structure necessary to achieve
the clause addition/deletion update. First we deal with ground positive
clause updates in ground DDDBs. Later we consider positive, then gen-
eral, clause addition/deletion in the class of range restricted DDDBs.
When we give more than one algorithm for a case we comment on the
comparative merits and limitations of each. We use the freedom offered
by the multiple possibilities for achieving an update to select the one
with the least change to the minimal model structure of the theory. We
argue that such minimality is desirable if one interprets the minimal
model structure as representing the possible states of the modeled world
and therefore an update must affect them minimally.

Keywords: Disjunctive Deductive Databases (DDDBs), Database Updates, Min-
imal Model Semantics, Minimal Model Generation.

1 Introduction

As a routine task in database maintenance, the update problem was ex-
tensively covered in the literature [1, 7, 4, 25, 27, 14, 15, 13, 26, 28].
Different semantics were suggested and several methods for accomplish-
ing updates were advanced. Since more than one way may be available to
accomplish an update, minimality under certain criteria can be used to
decide in favor of a particular choice.

Minimal models play an important role in understanding disjunctive
deductive databases (DDDBs). Given that the minimal model structure
is used to define the semantics of a DDDB, it is natural to specify updates
in terms of changes to the minimal model structure. Update minimality
in this case may be interpreted as the least change to the minimal model
structure of the theory necessary to accomplish the required update. This
need not be minimal in terms of change to the clausal structure. It is



known that minor changes to the clausal structure can reflect drastically
on the minimal model structure of a theory and vice versa. Therefore, it
is of interest to study the change to the clausal representation sufficient
so that certain changes to the minimal model structure of the database
can be achieved.

In this paper we address the issue of executing clause addition/deletion
updates using an approach based on manipulating the minimal model
structure of the theory. We consider general clause updates and do not re-
strict ourselves to fact insertions and deletions. We present several meth-
ods to deal with the update problem and show the merits and limitations
of each. Both the update itself and update minimality are defined in
terms of the effect on the minimal model structure of the theory. How-
ever, updates are accomplished by changing the theory itself and not the
individual minimal models directly. This is, in our view, the better choice
since the program encodes more than the minimal model structure of
the theory. That is, the theory and its minimal model representation are
generally not exchangeable [19, 29]

The rest of the paper is organized as follows. In the next section we
give some definitions and background material. In section 3 we address
the issue of updating ground DDDBs through isolating the component
of the theory that needs to be modified to achieve the required change
to the minimal model structure. In section 4 we treat the class of range
restricted DDDBs: a larger and more natural class of DDDBs and offer
two algorithms to accomplish each type of update. In section 5 we extend
our results to accommodate the case of nonpositive clause updates. We
comment on the possible interpretations of such updates and the way
these interpretations can influence the update algorithms. We also expand
on the update minimality criteria used in the paper. In the last section
we compare our approach with others reported in the literature, make
some comments and point to possible directions for further research.

2 Background and Notation

We adopt the usual notation relating to DDDBs as, e.g., in [21]. Here we
limit ourselves to the basic material needed for presenting the results of
this paper.

Definition 1. (DDDB) A disjunctive deductive database (DDDB), DB,
is a set of clauses in implication form: C'= A;V---VA,, «— B{A...AB,,
where m,n > 0 and the A; and B; are atoms in a First Order Language
(FOL) L. C is positive if n = 0 (that is, the body is T, true, empty)
and negative or denial if m = 0 (that is, the head is L, false, empty).



By Head(C') we denote the disjunction of atoms Ay V ---V A,, and by
Body(C') we denote the conjunction of atoms By A ... A B,. So C' =
Head(C) — Body(C).

The Herbrand base of DB, HBppg, is the set of all ground atoms
that can be formed using the predicate symbols and constants in £. We
identify an interpretation by the set of ground atoms it assigns the truth
value true. A Herbrand interpretation is any subset of H Bpg. A Herbrand
model of DB, M, is a Herbrand interpretation such that M |= DB (all
clauses of DB are true in M). M is minimal if no proper subset of M
is a model of DB. The set of all minimal models of DB is denoted by
MM(DB). Frequently, a DDDB is divided into three components: the
extensional database (EDB) or the, possibly disjunctive, facts; the inten-
sional database (IDB) consisting of the derivation rules; and the integrity
constraints (IC) which can be denials or general clauses [21].

Definition 2. (Range-Restriction) A clause C' is range-restricted if
every variable occurring in the head of C' also appears in the body of
C'. A database is range-restricted if and only if all its clauses are range-
restricted.

Definition 3. If C' is a clause and DB is a DDDB then by MM(DB)c
and MM(DB)-c we denote the set of minimal models of DB is which
C'is true and false, respectively. Clearly, MM(DB) = MM(DB)c U
MM(DB)-¢c.

This definition is extended to the case of a set of clauses in a straight-
forward manner.

By Atoms(C') we denote the set of atoms in a clause C'.

By min(S) we denote the set of minimal elements (relative to set
inclusion) of the set §.

If Aisan atom and DB is a DDDB then DBV A = {C'V A|C € DB}.

A model is treated as a conjunction of atoms and its negation is the
disjunction of all negative literals corresponding to the atoms in that
model. £ M =P A...ANP, then -M =M — L =-P,V..V-P,

When no confusion arises we may refer to both positive clauses and
models as sets of their constituent atoms.

Definition 4. A positive clause, €', is minimally derivable from D B iff it
is derivable from D B but no proper subclause of (' is derivable from DB.
Clearly, a positive clause C' is derivable from DB iff a (not necessarily
proper) subclause of C' is minimally derivable from DB.



Lemma5. [33] A positive clause C' is minimally derivable from a DDDB,
DB, iff DBF C andVA € Atoms(C') IM € MM(DB)|MnAtoms(C) =

{4}.

Under the minimal model semantics the natural way to define database
completions is in terms of the (Extended) Generalized Closed World As-
sumption, (E)GCWA [22, 33]. It reconciles the concepts of derivability
from the completed database and being true in all minimal models.

We consider two classes of updates: adding a clause to a DDDB and
deleting a clause from a DDDB. Under the minimal model semantics the
addition can be viewed as making the clause true in all minimal models
and the deletion as making it false in at least one minimal model of the
database.

Definition 6. (Clause Addition) Let DB be a DDDB and C be a posi-
tive clause such that DB I/ C'. We say that DB’ is the result of adding C' to
DB if DB+ C. In terms of minimal models': 3N € MM(DB) s.t.N [~
C and YM € MM(DB') M = C

Definition 7. (Clause Deletion) Let DB be a DDDB and C be a
positive clause such that DB + . We say that DB’ is the result of
deleting C' from DB iff DB’ t/ C. In terms of minimal models': VM €
MM(DB) M |= C and AN € MM(DB’) s.t.N [~ C.

There may exist a number of DB’s accomplishing an update. We are
interested in minimal change in some sense. In particular, we are con-
cerned with databases accomplishing the update with the least change to
the minimal model structure of DB%. Our approach is based on manipu-
lating the minimal model structure of the theory to achieve the required
update.

Lemma 8. Let DB be a DDDB and let M be a set of models for DB.

1. If C is a positive clause and C = {M — C|M € M} and DB" =
DB UC then DB" has the set of minimal models MM(DB") =
min(MM(DB)e U{(MU{A}) M € M and A € Atom(C)}), where
(M U{A})* is the extension of (M U{A}) to a model of DB".

2. If DB' = DBUC, where C = {M — L|M € M} then DB’ has the
set of minimal models MM(DB') = MM(DB) \ M.

! The statement of this definition in terms of minimal models is applicable to nonpos-
itive clauses as well.
2 More on the update minimality issue to be found in paragraph 5.3.



Proof. 1. Let N be aminimal model of DB”. N = DB.If N € MM(DB)
and since N |= C then N € MM(DB)c. If not, N must be a minimal
model for DB UC for otherwise N, a subset of N (M C N’ C N,
for some M € M), is a minimal model for DB" contradicting our
assumption.

If N ¢e MM(DB)¢ then N = DB and N |=C. N € MM(DB")
since YN’ C N, N’ [£ DB". Or else N is of the form (M U {A})*. If
M |= C then a subset of N is will be in MM(DB)¢ and N will not
survive the minimality test. As a superset of M, N = DB. If M [~£C
then NN C # 0. N | C and therefore N |= DB”. N survives the
minimality test only if it is minimal for DB".

2. See [5].

Lemma9. Let M be an interpretation for a« DDDB, DB. If DB’ =
DBV M = {DBV AlA € M} then DB’ has the set of minimal mod-
els MM(DB') = min(MM(DB)U {M}).

Proof. Immediate by noting that a model of DB’ is either a model of DB
or is (a superset of ) M.

In the following two sections we address the issue of adding/deleting a
ground positive clause C' to/from a disjunctive deductive database D B.
We consider several possibilities for accomplishing such an update in dif-
ferent classes of theories all of which lead to altering the minimal model
structure of the original theory to obtain the updated database. As shown
in [14, 15] it is possible to convert several other update types to this form.
We will discuss possible extensions of our results to the case of nonpositive
clauses in later sections.

3 Updates in Ground DDDBs

If the database, DB, is ground then it is possible to use a positive clause
C, Atoms(C') C HBpg, to split DB into components with particular
properties of minimal models regarding C'.

Definition 10. Let DB be aground DDDB and let €' = A1V AsV...VA,,,
where A; € H Bpp be a positive clause not necessarily derivable from D B.
Let A = Ay. Rewrite DB as {I; = AVF/}U{E; = ~AV EI}U{Cy}, where
F; are the clauses containing A, E; the clauses containing = A and (), the
clauses with no occurrences of A. Let DBy = {A} U{FE!} U {Cy} and
DB_ 4 = {FJ/} U {Ck} Clearly, MM(DB) = MM(DBA V DB_.A) [32].
Additionally, we let DB~* = {F/ v E} U{C}}. Both DB_4 and DB~4
have no occurrences of A.



All the minimal models for DB 4 (if any) contain A while none of the
minimal models of DB_ 4 has A since A doesn’t occur in DB_ 4. Thus we
get DBy = DBy, and DB_y = DB_4,.

In the next iteration we let DB = DB_4, A = Ay and repeat the
expansion for the new DB and A and continue in this fashion to pro-
duce DBy, DBs,...,DB,, and DB_5, DB_53,..., DB_,, corresponding to
the remaining atoms of C.

DB—(i+1) and DB, ;1 are derived from expanding DB_;, on A;41. That
is, DB—(H—I) = (DB_Z')_.AH_1 and DBy = (DB_Z')AH_1 form L1 <i<0,
where DB_g = DBy = DB (the original database itself).

DB; has A; as a unit clause and has no occurrences of A; for j < i.

The remaining component of the database, DB_,,, has no occurrences
of any atom of C'. Both DB; and DB_; are defined for m <1 < 0. How-
ever, for compactness of representation, by DB,,41 we denote the set
DB_,.:

DB, = (DB—O)A1 = DBy, and DB_; = (DB—O)—|A1 =DB_y4,.

DB2 = (DB_l)A2 = (DB_.A1 )A2 and DB_2 = (DB_l)_.A2 =
(DB—'A1)—'A2

DBs = (DB—Q)A3 = ((DB—'A1)—'A2)A3 and DB_3 = (DB—Q)—'A3 =
(

—_
)
&
1
e
~—
1
S
0
~—
1
S
@

DBy = (DB—(e1))a = (o (DBoty)ots) Ity i
DBus1 = DBy = (DB_(_1))=p = ((-((DBoay)mas ) )y )

The following lemma is an extension of a result proved in [32]:

Lemma1l. [32] Let DB be a DDDB, C be a positive clause and let D B;,
form+1 < <0 be as given in Definition 10. Then:

DB =VZrtDB;.

Lemma12. [32, 5] Let DB be a DDDB, C be a positive clause and let
DB;, for m+ 1 < ¢ <0 be as given in Definition 10. Then: A minimal
model of DB,,+1 cannot be subsumed by a minimal model of DB;, for
m<i<1.YM e MM(DB,41),YN € MM(DB;) form<i:<1,N ¢

M. Subsumption in the other direction is possible.

3.1 Clause Addition

Let DB be a DDDB and let €' be a positive clause of length m. Assume
that DB I C'" and we want to modify DB to DB’ such that DB’ + C.



It is possible to accomplish this task by adding the clause C' to DB and
have DB" = DB U {C}. However, one may demand that the change to
the minimal model structure of DB be minimal. That is, we would like
DB’ to have exactly the same set of minimal models as DB except that
an atom (or more) from ' is added to those models of DB with no atom
of C'. This leaves open the question of which atom(s) of C' to add to each
model. We can accomplish this task: by adding a single atom, some atoms
or all atoms of C' to every minimal model of DB not having an atom of C'.
To do that we need to determine the component of DB that needs to be
modified in order for DB’ to derive C'. That is, we would like to isolate
the part of DB that generates minimal models of DB not containing
atoms of C'. Farlier it was shown that the only component that makes
the clause C' nonderivable from DB is DB,,11 = DB_,,. We can restrict
our modification to this component of DB.

Theorem 13. (Clause Addition) Let DB be a DDDB and C' be a posi-
tive clause such that DBt/ C' and let DB;, for m+1 > i > 1 be as defined
above. Then: C' derivable from DB' = VIZ"DB; vV DB!, ., (DB'+C) if
DB, 11 is changed to DB, | so that DB, = C.

Proof. By Lemma 11, DB = \/ET‘HDBZ'. Since our modification is lim-
ited to DB, 41 to generate DB] | then DB’ = VIZ"DB; v DB;_ ;.

The only component that underwent modification is D B,,4+1. The min-
imal models of DB’ are among those of any of V;DB; for m > i > 1 and
those for DB, . The models of DB/ | depend on the way in which
D B,,+1 changed so that all its models have at least one element of C.

The modification of DB,,11 to get DB | can be accomplished in
any of the following ways:

1. To add a single atom of (', say A, as a unit clause to DB,,+1. This is
equivalent to adding A to every minimal model of DB falsifying C.

2. To add all the atoms of C', Ay, Ag, ..., A,y as unit clauses to DB, 1.
This is equivalent to adding the set {4y, As, ..., A,,} to every minimal
model of DB not having an atom of C.

3. An arrangement that is intermediate between the discussed options
(adding a subset of the atoms of C' to DBy,41.

4. To add ' itself as a clause to DB, 1. This is equivalent to generating
m new models from each model not having an atom of C' by adding
one atom of C.

5. 1f B4V Ey € DBjy1 and C = Ay V Ay then we can let DB | =
DBy1 U{ALV Ay, By V Ey, A1V Ey, A3V Eq}. This is equivalent to
adding an atom of €' to each minimal model of DB,,4+1 and different



models may get different atoms. The approach can be easily extended
to nonbinary clauses.

The minimal models of D B,, 41 are the only models of DB that didn’t
contain atoms of C'. The (retained, surviving minimality test) minimal
models of DB} ., are also minimal models for DB’ and therefore C' is
derivable from DB’ and the degree of change to the minimal model struc-
ture of DB is determined by the degree of change to the minimal models
of DB, 11 when transformed into DB7/n+1

Note that in all cases clauses with no occurrences of atoms from
the clause under consideration, {C%}, will be retained in the updated
database. Therefore, we can limit our consideration to clauses with oc-
currences of atoms from C'. These are the clauses that may need to un-
dergo change [26]. This can reduce the average cost of performing updates,
though not in the worst case.

To select among the available choices for adding C' one may demand
that C' be minimally derivable in the sense that no proper subclause of
(' is derivable from the updated database D B’.

Consider the following example?:

Example 1. DB = {P(a)VP(b), P(a)VP(c)VP(e), P(b)VP(c)VP(d), P(c)V
P(d) v P(e)}. MM(DB) = {{P(a), P(c)}, {P(a), P(d)},{P(b), P(e)},
{P(b), P(e)}}. Assume we want to add the clause P(c)V P(d).

DBy = DBpgy = {P(a)V P(B), Ple)}, DBop(o) = {P(a)V P(b), P(a)V
P(e), P(b)VP(d), P(d)VP(e)}, DBz = DB_p(.)p Pd) = {P(a)VP(b), P(a)V
Ple), P(d)},

DB3 = DB_,p( ) ( ) = DBm_|_1 = {P( ) (6

Selecting P(c¢) for addition we get DBY = {P(b),

DB = ViZ2DB;vDB, = {P(a)V P(b), P(c)V P(d), (a
which has the set of minimal models

MM(DB') = {{P(a), P(c)}, {P(a), P(d)}, {P(b), P(c)}, {P(b), P(d), P(e)}}
and in which the clause P(c) Vv P(d) is derivable.

We could have selected DB, = {P(b), P(e), P(d)} to get

DB =VZ2DB,v DBy = {P(a)V P(b), P(c)V P(d), P(a)V P(c)VP(e)}
which has the set of minimal models

MM(DB') = {{P(a), P(c)}, {P(a), P(d)}, {P(b), P()}, {P(b), P(d), P(e)}}
and in which the clause P(¢)V P(d) is also derivable.

® The entire minimal model structure is usually not needed for the update but is
given in the examples of this paper to illustrate the degree of change that structure
undergoes as a result of the update.



The next example shows that the result of updating DB,,+1 to get
DB, ., that derives C' can produce a database D B’ that is different from
the direct addition of €' to DB. It also shows that different choices for
modifying DB,,41 to get DB] | can give different updated theories.

Example 2. DB = {P(c¢)V P(b)V P(e), P(c) — P(a)}.

MM(DB) = {{P(a), P(e)}, {P(8)}, {P(e)}.

Assume we want to add the clause P(c)V P(d)

DBy = DBp(y = {P(a), P(e)}, DB_p(oy = {P(b) V P(e)}, DB, =
{P(D)V P(e)).

DB, ={P(b)V P(e), P(b)V P(d), P(c)V P(e), P(c)V P(d)} and

DB'=DByV DB}, ={P(a)V P(b)V P(e), P(a)V P(b)V P(d), P(c)V
P(e), P(¢)V P(d)} which has the set of minimal models

MM(DB') = {{P(a), P(c)}, {P(b), P(e)}, {P(d), P(¢)}} and in which
the clause P(c) Vv P(d) is derivable.

We could have selected DB, = {P(b) vV P(e), P(b) VvV P(c),P(d)V
P(e),P(c)v P(d)} and DB’ = DB,V DB, = {P(a)V P(b)V P(e), P(a)V
P(d)VP(e), P(b)VP(c), P(c)VP(d)} which has the set of minimal models
MM(DB) = {{P(a), P(c}}, {P(b), P(d)}, {P(c), P(e)}} and in which
the clause P(c) Vv P(d) is derivable.

Note that if DB” = DB U {P(c)V P(d)} =
{P(c)VP(b)VP(e), P(¢c)— P(a), P(c)VP(d)} then we have MM(DB") =

{P(a), P(c)}, {P(b), P(d)}, { P(d), P(e)}-

So the result of our updates can be different from direct addition of
the required clause.

We usually change the models of DB,,11 by expanding them to have
atoms of the added clause C'. This growth cannot remove any of the good
old models of DB. As a result the change to the model structure tends to
be minimal in the sense that the clause under consideration is derivable
and we retain as many minimal models of DB as possible. However, it is
possible that some models of DB;, 1 < ¢ < m become minimal because
they are no more suppressed by the minimal models of DB, .

3.2 Clause Deletion

Now given a positive ground clause C' = Ay V A3 V...V A,,, derivable from
DB, (DB F (), we want to modify DB to DB’ so that DB’ I/ C. First
we have the following lemma:

Lemmal14. Let DB be a DDDB, A be an atom of the Herbrand base of
DB and DB~ = {F!V E2YU{Ck}, where F; are the clauses containing



A, F; the clauses containing ~A and C}, the clauses with no occurrences
of A and F' and E' are the result of removing the occurrences of A from
F and F, respectively (as in Definition 10). Then M is a minimal model
of DB iff M\ {A} is a minimal model of DB~*.

Proof. — Let M be a minimal model of DB. It is a model of DB~ since
it satisfies the clauses of the set {Cy} of DB~ as they belong to DB as
well. If A € M then M satisfies E; as the only way for M to satisfy the
E clauses of DB. If A ¢ M then M satisfies F! as the only way for M
to satisfy the F' clauses of DB. In either case, F/ V E; is satisfied by M.
Since DB~ has no occurrences of A then M \ {A} is still a model for
DB~4. Assume that M’ = M\{A} is not a minimal model for DB~4. Let
M" C M' be a minimal model of DB~4. We show that M” U {A} C M
is a model of DB. M" satisfies the set {C} C DB. M"” must satisfy all
of the {F]} or all of the {E’}. This is so since otherwise there must exist
two clauses F and E7 not satisfied by M” and consequently, the clause
F/Vv E! € DB~ will be false in M" contradicting that M" is a model
for DB™4.

Now, assume M" satisfies the set {F}. M" contains no A and therefore
it also satisfies the set {£;}. M" is a model for DB and so is its superset
M"U{A}. Or else assume M" satisfies the set {£!/}. M”U{A} is a model
of DB since the A atom satisfies all the F' clauses and the I clauses are
satisfied by the satisfaction of their primed components (E’).

That is M"U{A} C M is a model of DB contradicting the assertion that
M e MM(DB).

«— Let M’ be a minimal model of DB~4. Clearly A ¢ M'. Two cases
are possible:

M’ is a minimal model for DB by satisfying the {C}} clauses and the
I’ clauses and the E clauses by the absence of A from M’. M correspond-
ing to M’ is equal to M’ with no occurrences of A.

Or M’ is not a model for DB but a model for £’ clauses. M = M'U{A}
is a minimal model for DB. In both cases M corresponding to M’ is a
minimal model for DB.

Theorem 15. (Clause Deletion) Let DB be a DDDB and C = Ay V
..V Ay, be a positive clause such that DB F C' (minimally). Let A be an
atom occurring in C'. Let M be a minimal model of DB containing A and
none of the other atoms of C (M € MM(DB) andA € M and VA; #
A A; @ M)*. Let M = M\ {A} and let DB~ and DB-4 be as defined
earlier. Let AUGYM(DB) = {EIu{C} u{AV B|B € M'} and let

* Such a model exists by Lemma 5.



DB = DBy v AUGM(DB). Then DB' i/ C' and DB’ has as its set
of minimal models the minimal elements of the set MM(DB) U {M'}.
MM(DB') = min(MM(DB)U{M'}).

Proof. DB' = DB_4vVAUGN(DB)= DB~ AU({F'}Vv{AVB|B € M'}).
In view of Lemma 14, minimal models of DB not having A are also
minimal models of DB~4 and satisfy ({F'}V{AV B|B € M'}) by making
{F'} true. The remaining models of DB are of the form {{A} UM|M €
MM(DB=)}. Clearly all models of DB~4 with A added satisfy DB’
due to the presence of A in every clause of ({F'} V{AV B|B € M'}).
On the other hand M’ is a model of DB~ by Lemma 14 and satisfies
the remaining clauses of DB’ by construction and has no A neither any

of the other atoms of C'. It is minimal because it is a minimal model of
DB~4.

This approach is biased towards a particular atom A and requires that
M contain an occurrence of A and none of the other atoms in the clause

to be deleted®.

Fzample3. — DB = {P(a)V P(b), P(a) — P(c)V P(d), P(b) — P(c)V
P(d)}. MM(DB) = {{P(a), P(e)}, {P(a), P(d)}, {P(b), P(c)},

{P(b), P(d)}}. We want to delete C' = P(c) Vv P(d). Take P(c) as the
candidate atom. We can take {P(a), P(c)} as the candidate model for
removal (update).
}1?3}2 {P(a) — P(d), P(b) — P()}, {E}} = 0, {Cx} = {P(a)V
DB_p = {P( )V P(b), P(a) — P(d), P(b) — P(d)}.
AUG“’ V(DB) = {P(a)V P(e)}U{C}.
DB { (a) V P(b), P(b) — P(c)V P(d)V P(a)} with the minimal
models {{P(a)},{P(b), P(c)},{P(b),P(d)}}. Or alternatively, if we
take { P(b), P(c)} as the candidate model:

DB' ={P(a)V P(b),P(a) — P(c)V P(d)V P(b)} with the minimal

models {{P(5)}, {P(a), P(e)}, {P(a), P(d)}}.

— Now let’s consider the equivalent (in terms of minimal models) database
DB ={P(a)V P(b), P(c)Vv P(d)}.
MM(DB) = {{P(a), P(e)}, {Pla), P(d)}, {P(b), P()}, {P(b), Pd)}}.
We want to delete C' = P(c)V P(d). We also take P(c) as the candidate
atom. We take {P(a), P(c)} as the candidate model.
{F1} = {P(d)},{E1} = 0, {Ch} = {P(a) v P(B)}.
DBopiy = 1P(a)V P(b), P(d)}.

® One can modify the procedure to make it less sensitive to the atom and the model
at hand.



AUGES TN DB) = {P(a) v P(e)} U {Ch).

DB" = {P(a) Vv P(b),P(c)V P(d) V P(a)} with the minimal mod-

els {{P(a)},{P(b),P(c)},{P(b), P(d)}}. Or alternatively, if we take

{P(b), P(c)} as the candidate model:

DB' = {P(a) Vv P(b),P(c)V P(d) V P(b)} with the minimal models

{{P®)}{Pla), P(e)}.{P(a), P(d)}}.

In each case, both databases, and any others resulting from the differ-
ent choices of the candidate atom, can serve as a solution to the problem
at hand. The change to the model structure is minimal in the sense that
the clause under consideration is not derivable anymore, and we retained
as many minimal models as possible from the original minimal model
structure. Note that the change in the structure of the candidate for re-
moval model rendered other models nonminimal and forced their removal.

So, the candidate for removal model shrinks by removing atoms of
(' from it. This may render other models nonminimal and force their re-
moval. The degree of update minimality, or model retention, will generally
depend on the choice of the candidate model. One may insist on selecting
the best such choice (one that keeps the most minimal models of DB)
but that may be computationally expensive. Removing the least number
of atoms from that model may serve as a good heuristic to achieve update
minimality.

4 Updates in Range Restricted DDDBs

The approach to update discussed so far is applicable to ground disjunc-
tive databases. Groundness was needed to isolate the components that
have to be modified to accomplish the update. One may argue that it can
be applied to nonground theories if we choose to ground them. The size of
the resulting theory may be prohibitive. In this section we present algo-
rithms for update in range restricted theories: a larger class than ground
theories but still a natural one that is encountered frequently [5].

4.1 Update Through Model Suppression/Augmentation

Given a positive clause €' and a DDDB, DB such that DB I/ €' and in
view of Lemma 8 it is possible to add negative clauses to DB so as to
suppress the minimal models that falsify C'. On the other hand, if DB+ C
and in view of Lemma 9 it is possible expand the model structure of DB
so as to add a minimal model that falsifies C'. We state the following
results the proofs of which are immediate.



Theorem 16. (Clause Addition via Model Suppression) Let DB be
a DDDB and C' be a positive ground clause such that DB t/ C. Let DB’ =
DBU{M — LM € MM(DB)~¢}. MM(DB') = MM(DB)c%. DB’ +
cr.

Proof. Immediate from Lemma 8

As for clause deletion, this approach is not applicable since all min-
imal models of DB satisfy C' and removing them all will result in an
inconsistent theory. This asymmetry is the result of having clause addi-
tion defined in terms of all minimal models and clause deletion in terms
of at least one minimal model.

Theorem 17. (Clause Deletion via Model Expansion) Let DB be a
DDDB and C be a positive ground clause such that DB+ C. Let DB’ =
DBV M', where M' = M \ Atoms(C) and M € MM(DB). DB ¥/ C
and MM(DB') = min(MM(DB)U{M'}).

Proof. Immediate from Lemma 9.

FErample 4. Let DB be the set of clauses:

DB ={
Cy =T — P(a), Ca=T —Q(b)
Cy = P(z) = Q(2) V R(z),Cy = P(z) A R(z) — 5(2),

R(x)
Cs=Q(z)— P(z)V R(z),Cs = S(a) N R(b) — L}.

MM(DB) = {{P(a),Q(b), P(b), Q(a)}, {Pa),Q(b), R(D),Q(a)},
{P(a),Q(b), P(b), R(a), S(a)}}.
Clearly, DBt/ C7 = R(a)V S(b) and DB+ Cg = R(b) vV P(b).

— Addition:
Add C7 = R(a)V S(b).
MM(DB)-¢ = {{P(a),Q(b), P(b),Q(a)}, {P( ),Q(b), R(b),Q(a)}}-
DB = DB U{ P(a) AQ(b) A R(b) A Q(a) —
Pla)NQb)AR(D)AQ(a) — L} or equlvalently (for the given theory):
DB"'=DBU{ Q(a) ANR(b)— L, Q(a)A P(b) — L}.
MM(DB') = {{P(a),Q(b), P(b), R(a), 5(a)}}.
6 A similar approach can be used to make C false in every minimal model of DB":
DB" = DBU{M — LM € MM(DB)c}. MM(DB") = MM(DB)-c. This
may be of interest when deleting a clause is interpreted as being false in all minimal

models of the theory. However, we don’t adopt this interpretation here.
T Note that if C'is true in no minimal model of DB then DB’ is inconsistent.



— Deletion:

Delete Cs = R(b) V P(b).
M = {P(a),Q(b), P(b),Q(a)}.
M’ = MAL{PQD), R(b)} = {P(a),Q(b),Q(a)}.
= {P(a) AQ(b) A Q(a)}.
DB =
ClzT—>P(), CQITHQ(I))

Cl=Plx)—Qz)VRa)vM, Cy=Pla)ANR(z)— S(x)v M,
Cl=Q(z)— P(z)V R(z)V M, Cs=S(a)nR(b)— L}.

MM(DB') = {{P(a),Q(6). Q(a)}.{ P(a).Q(b). P(b), R(a). S(a)}}.
The second element of MM(DB) was abandoned in MM(DB') for
becoming nonminimal.

Note that rather than augmenting each clause with every atom of
M’ we augmented clauses by the conjunction of atoms in M’ and
simplified the formulas with heads intersecting with M’.

Note also that removing minimal models for clause addition retains all
the good models of the original theory (MM(DB)c). However, adding
the shrunk model to accomplish clause deletion may remove more than
one minimal model of the original theory for becoming nonminimal.

4.2 Update Through Clause Expansion/Addition

Theorem 18. (Clause Addition) Let DB be a DDDB, C be a pos-
itive clause such that DB/ C. Define DB’ = DBU{M — C|M €
MM(DB)-c}. DB’ accomplishes the addition update of C. Addition-
ally, MM(DB)c € MM(DB').

Proof. Let N € MM(DB'). Either N is in MM(DB) or 3IM C N such
that M € MM(DB) and (M — C) € DB’; (N \ M) N Atoms(C') # ¢.

(' is true in N. The rest is a direct application of Lemma 8.

There may exist several ways to add M — ' and the discussion of the
point for Theorem 13 is applicable here as well.

Theorem 19. (Clause Deletion) Let DB be a DDDB, C be a posi-
tive clause such that DB F C and let M € MM(DB) and N = M \
Atoms(C'). Let C = {F € DB such that N | E}. Define DB' = (DB \
C)U{Ll'|Head(E)NHead(L') = Head( L) and Body(E) = Body(L') and
Ee€C and E'N N # ¢}. DB' accomplishes the deletion update of C' and
MM(DB') = min(MM(DB)U{N}).



Proof. N has no atoms of C' by construction. N satisfies every clause in
DB'. Assume that is not the case. There must exist a clause D € DB’
such that N [£ D. If D € DB then it would have been falsified by N and
Head( D) must consist entirely of atoms not in N. As a clause in DB that
is falsified by N, D must have been changed to include an element of N
by construction to produce D' and D ¢ DB’. N |= D’. A contradiction.

In view of Lemma 5 we may select the model that contains a single
atom, say A, of C. In this case only clauses with A in the head will be
falsified by N. However, the deletion process may still be nondeterministic
due to the existence of more than one such model. The choices can be
exploited to achieve better update minimality, may be at the expense of
more expensive computations.

Note that rather than adding N to every clause of DB we restrict our
modification to elements of C.

FErample 5. Let DB be the set of clauses of Example 4, i.e.:

DB ={
Cl—T—>P(), CQITHQ(I)),
C3 = P(z) — Q(z) v R(z), Cy = P(z) N R(z) — 5(z),
Cs = Q) — P(z) Vv R(z), Co = S(a) A R(b) — L}.
MM(DB) = {{P(a),Q(b), P(b),Q(a)}, { Pa),Q(b), R(b), Q(a)},
{P(a),Q(b), P(b), R(a), S(a)}}
— Addition: Add C7 = R(a)V S(b).
MM(DB)-c = {{P(a),Q(b), P(b), Q(a)},{P(a),Q(b), R(),Q(a)}}
DB = DBU{ P(a)ANQ(b)AP(b)AQ(a) — R(a)V S(b), P(a) ANQ(b)A
R(b)AQ(a) — R(a)V S

)
()}

MM(DB') = {{P(a), Q(b), P(b), R(a), 5(a)},
{P(),Q(b), R(b), Q(a), S(b)}, {P(a), Q(b), P(b), Q(a), S(B)}1.
Note that when dealing with a minimal model M it is frequently
possible to restrict our consideration (in the bodies of added clauses)
to those atoms of M that are not common to all other minimal models
of the theory and still achieve the required results, possibly with more
efficiency®.

— Deletion: Delete Cs = R(b) V P(b).
M = {P(a),Q(), P().Q(a)}. N = {P(a),Q(b), Q(a)}.
C={Q(b) — P(b)V R(b)}.

& This was also the case when adding denials in Example 4.



Oy =T — Pla), Cy=T — Q(b)
C3=P(z)—= Q(z)V R(z)V P(a),Cy = P(x) N R(z) — 5(z)
Cs=Q(a) — Pla)V R(a), Ce=S(a)NR(b) — L,
Cy=Q(b) — P(b)V R(b)V N}

MM(DB') = {{P(a),Q(b), Q(a)},{P(a),Q(D), P(b), B(a), S(a)}}.

5 Nonpositive Clause Updates

In this section we address the issue of adding/deleting a nonpositive clause
to a DDDB. As is the case for positive clauses, a clause in implication
form C' = Head(C') < Body(C) is true in DB if and only if all minimal
models of DB satisfy C'. That is, C' is not true in DB if and only if there
exists a minimal model of DB falsifying C: IM € MM(DB) such that
M |= Body(C') and M [~ Head(C'). The previous results can be viewed
as special cases of the general clause updates [29].

5.1 Clause Addition Update

Let DB be a DDDB and C' be a clause such that MM(DB).¢c =
{M € MM(DB) M |= Body(C') and M [£ Head(C')} is not empty. Let
DB = DBU{M — Head(C)|M € MM(DB).¢c}. DB’ accomplishes
the addition of C' to DB.

The result can be viewed as an application of Theorem 18. Clearly
there may exist many ways to have M — Head(C') as was discussed fol-
lowing Theorem 13. The update can also be accomplished by suppressing
the models of the theory not satisfying C' (those in MM(DB)_¢) in the
spirit of Theorem 16.

5.2 Clause Deletion Update

To delete C' from DB we have to create a minimal model of the updated
theory that doesn’t satisfy . To minimize the change we always select a
model that satisfies Body(C') and make sure that the modification of that
model retains the satisfiability of Body(C') but falsifies Head(C'). Once
that model is selected and since Head(C')is a positive clause then we can
use the results of earlier sections to accomplish the deletion of Head(C')
(Theorem 19) by making it false in the modified model.

It may be the case that such a model doesn’t exist. That is, all minimal
models of DB satisfy C' by falsifying its body. Then we have to create it.



We need to create a model that satisfies the body of ' but not its head.
For update minimality reasons we may select this model to be as close as
possible to a minimal model of DB

FErample 6. Let DB be the set of clauses of Example 4, i.e.:

DB = {
ClzT—>P(a), CQITHQ(I)),
Cs=P(z)— Q(z)V R(z), Cy=P(z)NR(z) — S(z),
Cs =Q(z) — P(z)V R(z), Ce= S(a)NR(b) — L}.

MM(DB) = {{P(a),Q(b), P(b),Q(a)}, { Pa),Q(b), R(b), Q(a)},
{P(a),Q(b), P(b), R(a), S(a)}}

— Addition: Add Cyq = P(a) — Q(a).
MM(DB)-cy, = {{P(a), Q(b),
DB'"=DBU{ P(a) NQ(b) A (a)
MM(DB') = {{P(a),Q(b), P(b), Q(a)},{

— Deletion: Delete C'13 = Q(b) — P(b) V R(b).
Select M = {P(a),Q(b), P(b),Q(a)}. M N Body(C12) = Body(C12),
MnN Head(Clg) 7£ @

N =M\ Head(Cro) = M\ {P(b), R(b)} = {P(a),Q(b), Q(a)}.
C={Q(b) — P(b)V R(b)}.

DB ={
ClzT—>P(a), CQITHQ(I))
C3=P(z) = Q(z)V R(z)V P(a),Cy = P(x) N R(z) — S(z)
Cs=Q(a) — Pla)V R(a), Cs= S(a)N R(b) — L,
Cy=Q()— P(b)V R(b)V N}

MM(DB') = {{P(a),Q(b),Q(a)}, {P(a),Q(b), P(b), R(a), S(a)}}.
Note that the clause S(b) — R(b) is true in all minimal models but
no minimal model has S(b).

5.3 On the Issue of Update Minimality

The concept of update minimality was described as the least change to
the minimal model structure but was not formally defined. We think of
it as consisting of two components:

First we would like to preserve as many minimal models as as possible
of those of the old: certainly all the models that satisfy the update criteria
(minimal models in which the added clause is true and minimal models



in which the deleted clause is false). We would like also to have as few
as possible minimal models change. In a sense we would like to have
(MM(DB")N MM(DB)) with maximal cardinality and (MM(DB’)\
MM(DB)) with minimal cardinality.

This criterion alone is usually not sufficient to guarantee the unique-
ness of the resulting updated theory since it deals with the number of
changed models and doesn’t touch on the degree of change models un-
dergo. For that we use the second criterion and borrow from interpretation
update concepts: we require that the modified models undergo the least
change necessary. That is, if M is a model in MM(D B) modified to M’
in MM(DB’) then we require (M \ M')U (M'\ M) to have minimum
cardinality[19].

Generally, our updates tend to meet the first minimality criterion since
we try to limit changes to the models that do not satisfy the update
requirements (in deriving the update clause). For clause addition updates
we always retain the models that do not need to undergo changes since
the changed models either grow or get deleted and both operations have
no effect on the "good old models”. However, for deletion updates the
modified models may shrink, a fact that may render some of the old
minimal models nonminimal. Different ways of modifying the bad models
can give different results under the first minimality criterion. The selection
of the one with maximum ”good model” retention, will usually be at the
expense of more expensive computations”.

The second criterion calls for adding/deleting the least number of
atoms to/from the updated model. That is not difficult to accomplish
although it may require more computation to select the model that will
require the least change as opposed to selecting an arbitrary model. We
may use the approach of [5, 32] to focus our search for such a model.
However, this criterion may conflict with the first one in the sense that
selecting the model needing the least change may suppress some of the
good old models that we strive to retain. The different algorithms pre-
sented in the paper tend to fair reasonably good by both minimality cri-
teria, while we generally select the modification that is not very expensive

to perform!°.

6 Conclusion and Remarks

We presented an approach to the update problem in DDDBs based on
modifying the theory to achieve the required change to the minimal model
® See Theorem 15 and the note following Theorem 19.

19 1f more than one update option is available one may use additional criteria such as
minimal syntactic change to the theory to make the final choice.



structure. We considered adding/deleting ground positive clauses to/from
ground DDDBs then range-restricted DDDBs and finally extended the
results to general clause updates.

Update minimality was defined in terms of the effect of the update
on the minimal model structure of the theory. This sounds natural if one
interprets minimal models as the possible states in which the theory can
be (had our information about the world been complete). In such a case it
is natural to try to minimize the effect of an update on both the number
of models as well as its effect on the content of individual models. These
are the criteria we tried to use to select among the possible updates. Qur
motivation for relaxing these requirements was to achieve more efficient
update algorithms.

The issue of update minimality received much attention in the liter-
ature [2, 16, 8, 10, 11, 13, 14]. Other approaches to define update mini-
mality were advanced. Examples are to define minimality in terms of the
weakness of the update [13] or in terms of the number of clauses mod-
ified to accomplish the update [14]. Some authors choose to impose no
minimality criteria on updates [6]. Clearly, least change to the minimal
model structure discussed here need not be minimal by other measures
of update minimality.

Our approach depends heavily on computing one or more minimal
models of the theory with particular properties with respect to the clause
to be added/deleted. An algorithm to perform this computation was given
in [5] and proven to be minimal model sound and complete for the class
of range-restricted theories: it returns all and only minimal models of its
input theory. It uses a clause ' to focus its search for minimal models
with specific characteristics regarding C'. The algorithm depends heavily
on utilizing denial rules to guide the model expansion process [32]. The
detailed discussion, an implementation and comments on efficiency results
can also be found in [5]. Another minimal model generating procedure
for ground DDDBs is given in [23].

The goal of an update is specified in terms of the minimal model
structure (and consequently in terms of the contents of individual mod-
els). However, we don’t achieve that by direct manipulation of individual
models but by modifying the theory specifying the database. This is in
line with the approach of [19, 24] and avoids the shortcomings of direct
model updates [17], discussed in [19, 29]. In this sense our approach is
closer to program update [19] or rule update [24] or formula update [28]
than it is to direct model (interpretation) update [17], and is applied to
the case of DDDBs.

Our approach differs from those discussed in [2, 25, 7] in that we



consider a more general class of theories and updates. We treat DDDBs
and consider adding/deleting general clauses to such theories. In [12, 9]
DDDBs are considered and the approach can be extended to the case
of range-restricted theories. However, they treat only positive clause up-
dates and our approach tends to expand much less of the model structure
through exploiting the ordering on model generation induced by the up-
date clause [32, 5]. We don’t assume a particular representation of the
model structure [12, 16] nor do we require it all to be present for an
update. The models are generated "ad-hoc” and in the order most appro-
priate for the update. Combined with the algorithms given in [32, 5] for
minimal model generation our approach can result in substantial savings
in constructing the needed portion of the minimal model structure as
opposed to generating a complete set of models then minimizing among
them. Additionally, we can have the update clause guide the system to
generate the most relevant models [29]. In a sense we can integrate the
updating process into the model generation process.

We offered several methods for accomplishing updates as opposed to
the one offered in [12] which can be viewed as a special case of our meth-
ods. Our approach, being more general, can still be combined with algo-
rithms reported in the literature for performing more complex tasks such
as controlling database dynamics [27].

In [13] the view update problem in stratified disjunctive databases
was addressed and extended to normal disjunctive databases in [9]. This
reduces to positive clause addition/deletion updates when DDDBs are
considered. Our results can be employed in that approach as well. The
work handles nonpositive additions as well but we offer more choices
and we advise employing algorithms that enable directed search for the
required models. The approach of [14] deals with normal databases and
it is of interest to extend our results to normal disjunctive databases.

[16] treats the issue of positive clause updates, both addition and dele-
tion, in a DDDB through the construction of so called deduction trees,
a representation for top-down processing of the theory to generate the
clauses needed to accomplish the required update. The relationship be-
tween deduction trees expansion and minimal models was established in
[31]. A similar approach is used in [2] for view deletion updates in definite
deductive databases.

We don’t restrict ourselves to modifying the extensional part of the
theory, as is the case in [2, 6, 14, 12, 13, 28], to accomplish an update.
Rather, we do that by adding arbitrary clauses to the DDDB including
modifying its IDB clauses. Such a modification is also employed in [26,
20, 3]. We believe that it is possible to modify our approach so that it



keeps track of the clauses added for the sole purpose of accomplishing an
update as opposed to the original clauses of the theory. This may help in
making the updates reversible in the sense that a sequence of adding and
deleting the same clause may take us back to the original theory which
is not usually the case for our algorithms as presented here or for most
other algorithms available.

Certain requirements regarding update minimality may produce data-
bases that are outside the class of theories to which the update is applied.
An example is that the updated theory can become indefinite to account
for the various ways of accomplishing an update to a definite theory [8,
13]. Certain approaches were advanced to avoid this [9]. This drawback
doesn’t apply to our case since the theories we treat can be indefinite to
start with!!.

The updates as presented here were interpreted as additions/deletions
to the theory (EDB, IDB). One can also talk about adding/deleting in-
tegrity constraints'?. While the interpretation of the integrity constraint
addition is obvious: retain all the minimal models that satisfy the con-
straint and remove the others, the deletion is not. To delete a constraint
it may be sufficient to just stop enforcing it and not necessarily making
it false in some minimal model. So a deleted integrity constraints may be
true in all minimal models still.

Our restriction to the case of range-restricted theories is dictated by
the class of theories that can be handled by the minimal model generation
procedure rather than a limitation of the adopted approach.

Efficiency improvement methods can be employed to improve the per-
formance of the algorithms presented here. Examples are the incremental
generation of models and the inclusion of only the relevant portions of
the constraints added to the theory during the model generation pro-
cess [, 32].

Topics for future work include extending the approach reported here
to larger classes of theories such as theories with negation in rule bodies
and for theories with more than one type of negation as well as treat-
ing nonground clause updates efficiently. Our updates are not reversible.
Adding then deleting the same clause generally doesn’t result in the orig-
inal theory. It is of interest to study the conditions needed to ensure
update reversibility. Another possibility is to investigate the feasibility of
accomplishing minimal updates under our criteria augmented by others

11 Updates can be one of the sources of indefiniteness in databases.

12 Under the weak interpretation of integrity constraints: a set of constraints is satisfied
if there is a model of the theory satisfying all of the constraints or if the theory
together with the constraints is consistent [18].



such as minimizing the syntactic change and restricting modification to
certain components, say the EDB, of the theory, and to compare them
with the methods discussed here.
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