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Updates in Disjunctive Deductive Databases:A Minimal Model Based ApproachAdnan H. YahyaElectrical Engineering Department, Birzeit University, PalestineEmail: yahya@ee.birzeit.eduAbstract. The issue of updates in Disjunctive Deductive Databases(DDDBs) under the minimal model semantics is addressed. We considerground clause addition and deletion in a DDDB. The approach of thispaper is based on manipulating the clauses of the theory to producethe required change to the minimal model structure necessary to achievethe clause addition/deletion update. First we deal with ground positiveclause updates in ground DDDBs. Later we consider positive, then gen-eral, clause addition/deletion in the class of range restricted DDDBs.When we give more than one algorithm for a case we comment on thecomparative merits and limitations of each. We use the freedom o�eredby the multiple possibilities for achieving an update to select the onewith the least change to the minimal model structure of the theory. Weargue that such minimality is desirable if one interprets the minimalmodel structure as representing the possible states of the modeled worldand therefore an update must a�ect them minimally.Keywords: Disjunctive Deductive Databases (DDDBs), Database Updates, Min-imal Model Semantics, Minimal Model Generation.1 IntroductionAs a routine task in database maintenance, the update problem was ex-tensively covered in the literature [1, 7, 4, 25, 27, 14, 15, 13, 26, 28].Di�erent semantics were suggested and several methods for accomplish-ing updates were advanced. Since more than one way may be available toaccomplish an update, minimality under certain criteria can be used todecide in favor of a particular choice.Minimal models play an important role in understanding disjunctivedeductive databases (DDDBs). Given that the minimal model structureis used to de�ne the semantics of a DDDB, it is natural to specify updatesin terms of changes to the minimal model structure. Update minimalityin this case may be interpreted as the least change to the minimal modelstructure of the theory necessary to accomplish the required update. Thisneed not be minimal in terms of change to the clausal structure. It is



known that minor changes to the clausal structure can re
ect drasticallyon the minimal model structure of a theory and vice versa. Therefore, itis of interest to study the change to the clausal representation su�cientso that certain changes to the minimal model structure of the databasecan be achieved.In this paper we address the issue of executing clause addition/deletionupdates using an approach based on manipulating the minimal modelstructure of the theory. We consider general clause updates and do not re-strict ourselves to fact insertions and deletions. We present several meth-ods to deal with the update problem and show the merits and limitationsof each. Both the update itself and update minimality are de�ned interms of the e�ect on the minimal model structure of the theory. How-ever, updates are accomplished by changing the theory itself and not theindividual minimal models directly. This is, in our view, the better choicesince the program encodes more than the minimal model structure ofthe theory. That is, the theory and its minimal model representation aregenerally not exchangeable [19, 29]The rest of the paper is organized as follows. In the next section wegive some de�nitions and background material. In section 3 we addressthe issue of updating ground DDDBs through isolating the componentof the theory that needs to be modi�ed to achieve the required changeto the minimal model structure. In section 4 we treat the class of rangerestricted DDDBs: a larger and more natural class of DDDBs and o�ertwo algorithms to accomplish each type of update. In section 5 we extendour results to accommodate the case of nonpositive clause updates. Wecomment on the possible interpretations of such updates and the waythese interpretations can in
uence the update algorithms. We also expandon the update minimality criteria used in the paper. In the last sectionwe compare our approach with others reported in the literature, makesome comments and point to possible directions for further research.2 Background and NotationWe adopt the usual notation relating to DDDBs as, e.g., in [21]. Here welimit ourselves to the basic material needed for presenting the results ofthis paper.De�nition 1. (DDDB) A disjunctive deductive database (DDDB), DB,is a set of clauses in implication form: C = A1_� � �_Am  B1^ . . .^Bn ;where m;n � 0 and the Ai and Bj are atoms in a First Order Language(FOL) L. C is positive if n = 0 (that is, the body is >, true, empty)and negative or denial if m = 0 (that is, the head is ?, false, empty).



By Head(C) we denote the disjunction of atoms A1 _ � � � _ Am and byBody(C) we denote the conjunction of atoms B1 ^ . . . ^ Bn. So C =Head(C) Body(C).The Herbrand base of DB, HBDB, is the set of all ground atomsthat can be formed using the predicate symbols and constants in L. Weidentify an interpretation by the set of ground atoms it assigns the truthvalue true. A Herbrand interpretation is any subset ofHBDB. A Herbrandmodel of DB, M , is a Herbrand interpretation such that M j= DB (allclauses of DB are true in M). M is minimal if no proper subset of Mis a model of DB. The set of all minimal models of DB is denoted byMM(DB). Frequently, a DDDB is divided into three components: theextensional database (EDB) or the, possibly disjunctive, facts; the inten-sional database (IDB) consisting of the derivation rules; and the integrityconstraints (IC) which can be denials or general clauses [21].De�nition 2. (Range-Restriction) A clause C is range-restricted ifevery variable occurring in the head of C also appears in the body ofC. A database is range-restricted if and only if all its clauses are range-restricted.De�nition 3. If C is a clause and DB is a DDDB then byMM(DB)CandMM(DB):C we denote the set of minimal models of DB is whichC is true and false, respectively. Clearly, MM(DB) = MM(DB)C [MM(DB):C .This de�nition is extended to the case of a set of clauses in a straight-forward manner.By Atoms(C) we denote the set of atoms in a clause C.By min(S) we denote the set of minimal elements (relative to setinclusion) of the set S.If A is an atom and DB is a DDDB then DB_A = fC_AjC 2 DBg.A model is treated as a conjunction of atoms and its negation is thedisjunction of all negative literals corresponding to the atoms in thatmodel. If M = P1 ^ :::^ Pn then :M =M ! ? = :P1 _ :::_ :PnWhen no confusion arises we may refer to both positive clauses andmodels as sets of their constituent atoms.De�nition 4. A positive clause, C, is minimally derivable from DB i� itis derivable from DB but no proper subclause of C is derivable from DB.Clearly, a positive clause C is derivable from DB i� a (not necessarilyproper) subclause of C is minimally derivable from DB.



Lemma 5. [33] A positive clause C is minimally derivable from a DDDB,DB, i�DB ` C and 8A 2 Atoms(C) 9M 2 MM(DB)jM\Atoms(C) =fAg.Under the minimal model semantics the natural way to de�ne databasecompletions is in terms of the (Extended) Generalized Closed World As-sumption, (E)GCWA [22, 33]. It reconciles the concepts of derivabilityfrom the completed database and being true in all minimal models.We consider two classes of updates: adding a clause to a DDDB anddeleting a clause from a DDDB. Under the minimal model semantics theaddition can be viewed as making the clause true in all minimal modelsand the deletion as making it false in at least one minimal model of thedatabase.De�nition 6. (Clause Addition) Let DB be a DDDB and C be a posi-tive clause such thatDB 6` C.We say thatDB0 is the result of adding C toDB if DB0 ` C. In terms of minimal models1: 9N 2 MM(DB) s:t:N 6j=C and 8M 2 MM(DB0) M j= CDe�nition 7. (Clause Deletion) Let DB be a DDDB and C be apositive clause such that DB ` C. We say that DB0 is the result ofdeleting C from DB i� DB0 6` C. In terms of minimal models1: 8M 2MM(DB) M j= C and 9N 2 MM(DB0) s:t:N 6j= C.There may exist a number of DB0s accomplishing an update. We areinterested in minimal change in some sense. In particular, we are con-cerned with databases accomplishing the update with the least change tothe minimal model structure of DB2. Our approach is based on manipu-lating the minimal model structure of the theory to achieve the requiredupdate.Lemma 8. Let DB be a DDDB and letM be a set of models for DB.1. If C is a positive clause and C = fM ! CjM 2 Mg and DB00 =DB [ C then DB00 has the set of minimal models MM(DB00) =min(MM(DB)C [ f(M [ fAg)�jM 2 M and A 2 Atom(C)g), where(M [ fAg)� is the extension of (M [ fAg) to a model of DB00.2. If DB0 = DB [ C, where C = fM ! ?jM 2 Mg then DB0 has theset of minimal modelsMM(DB0) =MM(DB) nM.1 The statement of this de�nition in terms of minimal models is applicable to nonpos-itive clauses as well.2 More on the update minimality issue to be found in paragraph 5.3.



Proof. 1. LetN be a minimal model ofDB00.N j= DB. IfN 2 MM(DB)and since N j= C then N 2 MM(DB)C. If not, N must be a minimalmodel for DB [ C for otherwise N 0, a subset of N (M � N 0 � N;for some M 2 M), is a minimal model for DB00 contradicting ourassumption.If N 2 MM(DB)C then N j= DB and N j= C. N 2 MM(DB00)since 8N 0 � N;N 0 6j= DB00. Or else N is of the form (M [ fAg)�. IfM j= C then a subset of N is will be in MM(DB)C and N will notsurvive the minimality test. As a superset of M , N j= DB. If M 6j= Cthen N \ C 6= ;. N j= C and therefore N j= DB00. N survives theminimality test only if it is minimal for DB00.2. See [5].Lemma9. Let M be an interpretation for a DDDB, DB. If DB0 =DB _M = fDB _ AjA 2 Mg then DB0 has the set of minimal mod-elsMM(DB0) = min(MM(DB) [ fMg).Proof. Immediate by noting that a model of DB0 is either a model of DBor is (a superset of) M .In the following two sections we address the issue of adding/deleting aground positive clause C to/from a disjunctive deductive database DB.We consider several possibilities for accomplishing such an update in dif-ferent classes of theories all of which lead to altering the minimal modelstructure of the original theory to obtain the updated database. As shownin [14, 15] it is possible to convert several other update types to this form.We will discuss possible extensions of our results to the case of nonpositiveclauses in later sections.3 Updates in Ground DDDBsIf the database, DB, is ground then it is possible to use a positive clauseC, Atoms(C) � HBDB , to split DB into components with particularproperties of minimal models regarding C.De�nition 10. LetDB be a ground DDDB and let C = A1_A2_:::_Am,where Ai 2 HBDB be a positive clause not necessarily derivable fromDB.Let A = A1. Rewrite DB as fFi = A_F 0ig[fEj = :A_E 0jg[fCkg, whereFi are the clauses containing A, Ej the clauses containing :A and Ck theclauses with no occurrences of A. Let DBA = fAg [ fE 0ig [ fCkg andDB:A = fF 0jg [ fCkg Clearly, MM(DB) = MM(DBA _ DB:A) [32].Additionally, we let DB�A = fF 0i _ E 0jg [ fCkg. Both DB:A and DB�Ahave no occurrences of A.



All the minimal models for DBA (if any) contain A while none of theminimal models of DB:A has A since A doesn't occur in DB:A. Thus weget DB1 = DBA1 and DB�1 = DB:A1 .In the next iteration we let DB = DB:A, A = A2 and repeat theexpansion for the new DB and A and continue in this fashion to pro-duce DB2; DB3; :::; DBm and DB�2; DB�3; :::; DB�m corresponding tothe remaining atoms of C.DB�(i+1) andDBi+1 are derived from expanding DB�i, onAi+1. Thatis,DB�(i+1) = (DB�i):Ai+1 andDBi+1 = (DB�i)Ai+1 form� 1 � i � 0,where DB�0 = DB0 = DB (the original database itself).DBi has Ai as a unit clause and has no occurrences of Aj for j < i.The remaining component of the database,DB�m, has no occurrencesof any atom of C. Both DBi and DB�i are de�ned for m � i � 0. How-ever, for compactness of representation, by DBm+1 we denote the setDB�m:DB1 = (DB�0)A1 = DBA1 and DB�1 = (DB�0):A1 = DB:A1 .DB2 = (DB�1)A2 = (DB:A1)A2 and DB�2 = (DB�1):A2 =(DB:A1):A2 .DB3 = (DB�2)A3 = ((DB:A1):A2)A3 and DB�3 = (DB�2):A3 =((DB:A1):A2):A3 .::DBm = (DB�(m�1))Am = ((:::((DB:A1):A2):::):Am�1)Am .DBm+1 = DB�m = (DB�(m�1)):Am = ((:::((DB:A1):A2):::):Am�1):Am .The following lemma is an extension of a result proved in [32]:Lemma 11. [32] Let DB be a DDDB, C be a positive clause and let DBi,for m+ 1 � i � 0 be as given in De�nition 10. Then:DB = _i=m+1i=1 DBi:Lemma 12. [32, 5] Let DB be a DDDB, C be a positive clause and letDBi, for m + 1 � i � 0 be as given in De�nition 10. Then: A minimalmodel of DBm+1 cannot be subsumed by a minimal model of DBi, form � i � 1. 8M 2 MM(DBm+1); 8N 2 MM(DBi) for m � i � 1; N 6�M . Subsumption in the other direction is possible.3.1 Clause AdditionLet DB be a DDDB and let C be a positive clause of length m. Assumethat DB 6` C and we want to modify DB to DB0 such that DB0 ` C.



It is possible to accomplish this task by adding the clause C to DB andhave DB0 = DB [ fCg. However, one may demand that the change tothe minimal model structure of DB be minimal. That is, we would likeDB0 to have exactly the same set of minimal models as DB except thatan atom (or more) from C is added to those models of DB with no atomof C. This leaves open the question of which atom(s) of C to add to eachmodel. We can accomplish this task: by adding a single atom, some atomsor all atoms of C to every minimal model ofDB not having an atom of C.To do that we need to determine the component of DB that needs to bemodi�ed in order for DB0 to derive C. That is, we would like to isolatethe part of DB that generates minimal models of DB not containingatoms of C. Earlier it was shown that the only component that makesthe clause C nonderivable from DB is DBm+1 = DB�m. We can restrictour modi�cation to this component of DB.Theorem13. (Clause Addition) Let DB be a DDDB and C be a posi-tive clause such that DB 6` C and let DBi, for m+1 � i � 1 be as de�nedabove. Then: C derivable from DB0 = _i=mi=1 DBi _DB0m+1 (DB0 ` C) ifDBm+1 is changed to DB0m+1 so that DB0m+1 ` C.Proof. By Lemma 11, DB = _i=m+1i=1 DBi. Since our modi�cation is lim-ited to DBm+1 to generate DB0m+1 then DB0 = _i=mi=1 DBi _DB0m+1.The only component that underwent modi�cation isDBm+1. The min-imal models of DB0 are among those of any of _iDBi for m � i � 1 andthose for DB0m+1. The models of DB0m+1 depend on the way in whichDBm+1 changed so that all its models have at least one element of C.The modi�cation of DBm+1 to get DB0m+1 can be accomplished inany of the following ways:1. To add a single atom of C, say A, as a unit clause to DBm+1. This isequivalent to adding A to every minimal model of DB falsifying C.2. To add all the atoms of C, A1; A2; :::; Am, as unit clauses to DBm+1.This is equivalent to adding the set fA1; A2; :::; Amg to every minimalmodel of DB not having an atom of C.3. An arrangement that is intermediate between the discussed options(adding a subset of the atoms of C to DBm+1.4. To add C itself as a clause to DBm+1. This is equivalent to generatingm new models from each model not having an atom of C by addingone atom of C.5. If E1 _ E2 2 DBm+1 and C = A1 _ A2 then we can let DB0m+1 =DBm+1 [ fA1 _A2; E1 _E2; A1 _E2; A2 _E1g. This is equivalent toadding an atom of C to each minimal model of DBm+1 and di�erent



models may get di�erent atoms. The approach can be easily extendedto nonbinary clauses.The minimal models of DBm+1 are the only models of DB that didn'tcontain atoms of C. The (retained, surviving minimality test) minimalmodels of DB0m+1 are also minimal models for DB0 and therefore C isderivable from DB0 and the degree of change to the minimal model struc-ture of DB is determined by the degree of change to the minimal modelsof DBm+1 when transformed into DB0m+1.Note that in all cases clauses with no occurrences of atoms fromthe clause under consideration, fCkg, will be retained in the updateddatabase. Therefore, we can limit our consideration to clauses with oc-currences of atoms from C. These are the clauses that may need to un-dergo change [26]. This can reduce the average cost of performing updates,though not in the worst case.To select among the available choices for adding C one may demandthat C be minimally derivable in the sense that no proper subclause ofC is derivable from the updated database DB0.Consider the following example3:Example 1. DB = fP (a)_P (b); P (a)_P (c)_P (e); P (b)_P (c)_P (d); P (c)_P (d) _ P (e)g.MM(DB) = ffP (a); P (c)g; fP (a); P (d)g; fP (b); P (c)g;fP (b); P (e)gg. Assume we want to add the clause P (c)_ P (d).DB1 = DBP (c) = fP (a)_P (b); P (c)g,DB:P (c) = fP (a)_P (b); P (a)_P (e); P (b)_P (d); P (d)_P (e)g,DB2 = DB:P (c)P (d) = fP (a)_P (b); P (a)_P (e); P (d)g,DB3 = DB:P (c):P (d) = DBm+1 = fP (b); P (e)g.Selecting P (c) for addition we get DB03 = fP (b); P (e); P (c)g andDB0 = _i=2i=1DBi_DB03 = fP (a)_P (b); P (c)_P (d); P (a)_P (c)_P (e)gwhich has the set of minimal modelsMM(DB0) = ffP (a); P (c)g; fP (a); P (d)g; fP (b); P (c)g; fP (b); P (d); P (e)ggand in which the clause P (c) _ P (d) is derivable.We could have selected DB03 = fP (b); P (e); P (d)g to getDB0 = _i=2i=1DBi_DB03 = fP (a)_P (b); P (c)_P (d); P (a)_P (c)_P (e)gwhich has the set of minimal modelsMM(DB0) = ffP (a); P (c)g; fP (a); P (d)g; fP (b); P (c)g; fP (b); P (d); P (e)ggand in which the clause P (c) _ P (d) is also derivable.3 The entire minimal model structure is usually not needed for the update but isgiven in the examples of this paper to illustrate the degree of change that structureundergoes as a result of the update.



The next example shows that the result of updating DBm+1 to getDB0m+1 that derives C can produce a database DB0 that is di�erent fromthe direct addition of C to DB. It also shows that di�erent choices formodifying DBm+1 to get DB0m+1 can give di�erent updated theories.Example 2. DB = fP (c)_ P (b) _ P (e); P (c)! P (a)g.MM(DB) = ffP (a); P (c)g; fP (b)g; fP (e)gg.Assume we want to add the clause P (c)_ P (d).DB1 = DBP (c) = fP (a); P (c)g, DB:P (c) = fP (b) _ P (e)g, DB2 =fP (b)_ P (e)g.DB02 = fP (b)_ P (e); P (b)_ P (d); P (c)_ P (e); P (c)_ P (d)g andDB0 = DB1 _DB02 = fP (a)_ P (b)_P (e); P (a)_P (b)_ P (d); P (c)_P (e); P (c)_ P (d)g which has the set of minimal modelsMM(DB0) = ffP (a); P (c)g; fP (b); P (c)g; fP (d); P (e)gg and in whichthe clause P (c) _ P (d) is derivable.We could have selected DB02 = fP (b) _ P (e); P (b) _ P (c); P (d) _P (e); P (c)_P (d)g and DB0 = DB1 _DB02 = fP (a)_P (b)_P (e); P (a)_P (d)_P (e); P (b)_P (c); P (c)_P (d)gwhich has the set of minimal modelsMM(DB0) = ffP (a); P (c)g; fP (b); P (d)g; fP (c); P (e)gg and in whichthe clause P (c) _ P (d) is derivable.Note that if DB00 = DB [ fP (c)_ P (d)g =fP (c)_P (b)_P (e); P (c)! P (a); P (c)_P (d)g then we haveMM(DB00) =ffP (a); P (c)g; fP (b); P (d)g; fP (d); P (e)g.So the result of our updates can be di�erent from direct addition ofthe required clause.We usually change the models of DBm+1 by expanding them to haveatoms of the added clause C. This growth cannot remove any of the goodold models of DB. As a result the change to the model structure tends tobe minimal in the sense that the clause under consideration is derivableand we retain as many minimal models of DB as possible. However, it ispossible that some models of DBi, 1 � i � m become minimal becausethey are no more suppressed by the minimal models of DB0m+1.3.2 Clause DeletionNow given a positive ground clause C = A1_A2 _ :::_Am derivable fromDB, (DB ` C), we want to modify DB to DB0 so that DB0 6` C. Firstwe have the following lemma:Lemma14. Let DB be a DDDB, A be an atom of the Herbrand base ofDB and DB�A = fF 0i _E 0jg [ fCkg, where Fi are the clauses containing



A, Ej the clauses containing :A and Ck the clauses with no occurrencesof A and F 0 and E 0 are the result of removing the occurrences of A fromF and E, respectively (as in De�nition 10). Then M is a minimal modelof DB i� M n fAg is a minimal model of DB�A.Proof. ! LetM be a minimal model of DB. It is a model of DB�A sinceit satis�es the clauses of the set fCkg of DB�A as they belong to DB aswell. If A 2 M then M satis�es E 0j as the only way for M to satisfy theE clauses of DB. If A 62 M then M satis�es F 0i as the only way for Mto satisfy the F clauses of DB. In either case, F 0i _E 0j is satis�ed by M .Since DB�A has no occurrences of A then M n fAg is still a model forDB�A . Assume thatM 0 =MnfAg is not a minimal model forDB�A . LetM 00 � M 0 be a minimal model of DB�A. We show that M 00 [ fAg � Mis a model of DB. M 00 satis�es the set fCkg � DB. M 00 must satisfy allof the fF 0ig or all of the fE 0jg. This is so since otherwise there must existtwo clauses F 0l and E 0s not satis�ed by M 00 and consequently, the clauseF 0l _ E 0s 2 DB�A will be false in M 00 contradicting that M 00 is a modelfor DB�A .Now, assumeM 00 satis�es the set fF 0ig.M 00 contains noA and thereforeit also satis�es the set fEjg. M 00 is a model for DB and so is its supersetM 00[fAg. Or else assumeM 00 satis�es the set fE 0ig.M 00[fAg is a modelof DB since the A atom satis�es all the F clauses and the E clauses aresatis�ed by the satisfaction of their primed components (E 0).That isM 00[fAg �M is a model of DB contradicting the assertion thatM 2 MM(DB). Let M 0 be a minimal model of DB�A . Clearly A 62M 0. Two casesare possible:M 0 is a minimal model for DB by satisfying the fCkg clauses and theF 0 clauses and the E clauses by the absence of A fromM 0.M correspond-ing to M 0 is equal to M 0 with no occurrences of A.Or M 0 is not a model for DB but a model for E 0 clauses. M =M 0 [ fAgis a minimal model for DB. In both cases M corresponding to M 0 is aminimal model for DB.Theorem15. (Clause Deletion) Let DB be a DDDB and C = A1 _:::_Am be a positive clause such that DB ` C (minimally). Let A be anatom occurring in C. Let M be a minimal model of DB containing A andnone of the other atoms of C (M 2 MM(DB) andA 2 M and 8Ai 6=A;Ai 62M)4. Let M 0 =M n fAg and let DB�A and DB:A be as de�nedearlier. Let AUGMA (DB) = fE 0jg [ fCkg [ fA _ BjB 2 M 0g and let4 Such a model exists by Lemma 5.



DB0 = DB:A _ AUGMA (DB). Then DB0 6` C and DB0 has as its setof minimal models the minimal elements of the set MM(DB) [ fM 0g.MM(DB0) = min(MM(DB) [ fM 0g).Proof. DB0 = DB:A_AUGMA (DB) = DB�A[(fF 0g_fA_BjB 2M 0g).In view of Lemma 14, minimal models of DB not having A are alsominimal models ofDB�A and satisfy (fF 0g_fA_BjB 2M 0g) by makingfF 0g true. The remaining models of DB are of the form ffAg [M jM 2MM(DB�A)g. Clearly all models of DB�A with A added satisfy DB0due to the presence of A in every clause of (fF 0g _ fA _ BjB 2 M 0g).On the other hand M 0 is a model of DB�A by Lemma 14 and satis�esthe remaining clauses of DB0 by construction and has no A neither anyof the other atoms of C. It is minimal because it is a minimal model ofDB�A.This approach is biased towards a particular atom A and requires thatM contain an occurrence of A and none of the other atoms in the clauseto be deleted5.Example 3. { DB = fP (a) _ P (b); P (a)! P (c) _ P (d); P (b)! P (c) _P (d)g.MM(DB) = ffP (a); P (c)g; fP (a); P (d)g; fP (b); P (c)g;fP (b); P (d)gg. We want to delete C = P (c) _ P (d). Take P (c) as thecandidate atom. We can take fP (a); P (c)g as the candidate model forremoval (update).fF 0ig = fP (a) ! P (d); P (b) ! P (d)g; fE 0jg = ;, fCkg = fP (a) _P (b)g.DB:P (c) = fP (a)_ P (b); P (a)! P (d); P (b)! P (d)g.AUGfP (a);P (c)gP (c) (DB) = fP (a) _ P (c)g [ fCkg.DB0 = fP (a) _ P (b); P (b)! P (c) _ P (d) _ P (a)g with the minimalmodels ffP (a)g; fP (b); P (c)g; fP (b); P (d)gg. Or alternatively, if wetake fP (b); P (c)g as the candidate model:DB0 = fP (a) _ P (b); P (a) ! P (c) _ P (d) _ P (b)g with the minimalmodels ffP (b)g; fP (a); P (c)g; fP (a); P (d)gg.{ Now let's consider the equivalent (in terms of minimal models) databaseDB = fP (a) _ P (b); P (c)_ P (d)g.MM(DB) = ffP (a); P (c)g; fP (a); P (d)g; fP (b); P (c)g; fP (b); P (d)gg.We want to delete C = P (c)_P (d). We also take P (c) as the candidateatom. We take fP (a); P (c)g as the candidate model.fF 0ig = fP (d)g; fE 0jg = ;, fCkg = fP (a) _ P (b)g.DB:P (c) = fP (a)_ P (b); P (d)g.5 One can modify the procedure to make it less sensitive to the atom and the modelat hand.



AUGfP (a);P (c)gP (c) (DB) = fP (a) _ P (c)g [ fCkg.DB0 = fP (a) _ P (b); P (c) _ P (d) _ P (a)g with the minimal mod-els ffP (a)g; fP (b); P (c)g; fP (b); P (d)gg. Or alternatively, if we takefP (b); P (c)g as the candidate model:DB0 = fP (a) _ P (b); P (c) _ P (d) _ P (b)g with the minimal modelsffP (b)g; fP (a); P (c)g; fP (a); P (d)gg.In each case, both databases, and any others resulting from the di�er-ent choices of the candidate atom, can serve as a solution to the problemat hand. The change to the model structure is minimal in the sense thatthe clause under consideration is not derivable anymore, and we retainedas many minimal models as possible from the original minimal modelstructure. Note that the change in the structure of the candidate for re-moval model rendered other models nonminimal and forced their removal.So, the candidate for removal model shrinks by removing atoms ofC from it. This may render other models nonminimal and force their re-moval. The degree of update minimality, or model retention, will generallydepend on the choice of the candidate model. One may insist on selectingthe best such choice (one that keeps the most minimal models of DB)but that may be computationally expensive. Removing the least numberof atoms from that model may serve as a good heuristic to achieve updateminimality.4 Updates in Range Restricted DDDBsThe approach to update discussed so far is applicable to ground disjunc-tive databases. Groundness was needed to isolate the components thathave to be modi�ed to accomplish the update. One may argue that it canbe applied to nonground theories if we choose to ground them. The size ofthe resulting theory may be prohibitive. In this section we present algo-rithms for update in range restricted theories: a larger class than groundtheories but still a natural one that is encountered frequently [5].4.1 Update Through Model Suppression/AugmentationGiven a positive clause C and a DDDB, DB such that DB 6` C and inview of Lemma 8 it is possible to add negative clauses to DB so as tosuppress the minimal models that falsify C. On the other hand, if DB ` Cand in view of Lemma 9 it is possible expand the model structure of DBso as to add a minimal model that falsi�es C. We state the followingresults the proofs of which are immediate.



Theorem16. (Clause Addition via Model Suppression) Let DB bea DDDB and C be a positive ground clause such that DB 6` C. Let DB0 =DB[fM ! ?jM 2 MM(DB):Cg.MM(DB0) =MM(DB)C6. DB0 `C7.Proof. Immediate from Lemma 8As for clause deletion, this approach is not applicable since all min-imal models of DB satisfy C and removing them all will result in aninconsistent theory. This asymmetry is the result of having clause addi-tion de�ned in terms of all minimal models and clause deletion in termsof at least one minimal model.Theorem17. (Clause Deletion via Model Expansion) Let DB be aDDDB and C be a positive ground clause such that DB ` C. Let DB0 =DB _M 0, where M 0 = M n Atoms(C) and M 2 MM(DB). DB 6` CandMM(DB0) = min(MM(DB) [ fM 0g).Proof. Immediate from Lemma 9.Example 4. Let DB be the set of clauses:DB = fC1 = > ! P (a); C2 = > ! Q(b)C3 = P (x)! Q(x)_ R(x); C4 = P (x) ^R(x)! S(x);C5 = Q(x)! P (x) _ R(x); C6 = S(a)^R(b)! ?g.MM(DB) = ffP (a); Q(b); P (b);Q(a)g; fP (a);Q(b);R(b);Q(a)g,fP (a); Q(b); P (b);R(a); S(a)gg.Clearly, DB 6` C7 = R(a) _ S(b) and DB ` C8 = R(b)_ P (b).{ Addition:Add C7 = R(a)_ S(b).MM(DB):C = ffP (a); Q(b); P (b);Q(a)g; fP (a);Q(b);R(b);Q(a)gg.DB0 = DB [ f P (a) ^ Q(b)^ R(b)^Q(a)! ?,P (a)^Q(b)^R(b)^Q(a)! ?g or equivalently (for the given theory):DB0 = DB [ f Q(a) ^R(b)! ?, Q(a)^ P (b)! ?g.MM(DB0) = ffP (a); Q(b); P (b);R(a); S(a)gg.6 A similar approach can be used to make C false in every minimal model of DB00:DB00 = DB [ fM ! ?jM 2 MM(DB)Cg. MM(DB00) = MM(DB):C. Thismay be of interest when deleting a clause is interpreted as being false in all minimalmodels of the theory. However, we don't adopt this interpretation here.7 Note that if C is true in no minimal model of DB then DB0 is inconsistent.



{ Deletion:Delete C8 = R(b)_ P (b).M = fP (a); Q(b); P (b);Q(a)g.M 0 =M n fP (b); R(b)g= fP (a); Q(b);Q(a)g.M 0 = fP (a) ^Q(b)^ Q(a)g.DB0 = fC1 = > ! P (a); C2 = > ! Q(b)C03 = P (x)! Q(x) _R(x)_M 0; C 04 = P (x) ^R(x)! S(x)_M 0;C05 = Q(x)! P (x) _R(x)_M 0; C6 = S(a)^R(b)! ?g.MM(DB0) = ffP (a); Q(b); Q(a)g; fP (a);Q(b); P (b); R(a); S(a)gg.The second element ofMM(DB) was abandoned in MM(DB0) forbecoming nonminimal.Note that rather than augmenting each clause with every atom ofM 0 we augmented clauses by the conjunction of atoms in M 0 andsimpli�ed the formulas with heads intersecting with M 0.Note also that removing minimal models for clause addition retains allthe good models of the original theory (MM(DB)C). However, addingthe shrunk model to accomplish clause deletion may remove more thanone minimal model of the original theory for becoming nonminimal.4.2 Update Through Clause Expansion/AdditionTheorem18. (Clause Addition) Let DB be a DDDB, C be a pos-itive clause such that DB 6` C. De�ne DB0 = DB [ fM ! CjM 2MM(DB):Cg. DB0 accomplishes the addition update of C. Addition-ally,MM(DB)C �MM(DB0).Proof. Let N 2 MM(DB0). Either N is inMM(DB) or 9M � N suchthat M 2 MM(DB) and (M ! C) 2 DB0; (N nM) \ Atoms(C) 6= �.C is true in N . The rest is a direct application of Lemma 8.There may exist several ways to addM ! C and the discussion of thepoint for Theorem 13 is applicable here as well.Theorem19. (Clause Deletion) Let DB be a DDDB, C be a posi-tive clause such that DB ` C and let M 2 MM(DB) and N = M nAtoms(C). Let C = fE 2 DB such that N 6j= Eg. De�ne DB0 = (DB nC)[fE 0jHead(E)\Head(E0) = Head(E) and Body(E) = Body(E 0) andE 2 C and E 0 \N 6= �g. DB0 accomplishes the deletion update of C andMM(DB0) = min(MM(DB) [ fNg).



Proof. N has no atoms of C by construction. N satis�es every clause inDB0. Assume that is not the case. There must exist a clause D 2 DB0such that N 6j= D. If D 2 DB then it would have been falsi�ed by N andHead(D) must consist entirely of atoms not in N . As a clause in DB thatis falsi�ed by N , D must have been changed to include an element of Nby construction to produce D0 and D 62 DB0. N j= D0. A contradiction.In view of Lemma 5 we may select the model that contains a singleatom, say A, of C. In this case only clauses with A in the head will befalsi�ed byN . However, the deletion process may still be nondeterministicdue to the existence of more than one such model. The choices can beexploited to achieve better update minimality, may be at the expense ofmore expensive computations.Note that rather than adding N to every clause of DB we restrict ourmodi�cation to elements of C.Example 5. Let DB be the set of clauses of Example 4, i.e.:DB = fC1 = > ! P (a); C2 = > ! Q(b);C3 = P (x)! Q(x)_ R(x); C4 = P (x) ^R(x)! S(x);C5 = Q(x)! P (x) _ R(x); C6 = S(a)^R(b)! ?g.MM(DB) = ffP (a); Q(b); P (b);Q(a)g; fP (a);Q(b);R(b);Q(a)g,fP (a); Q(b); P (b);R(a); S(a)gg.{ Addition: Add C7 = R(a)_ S(b).MM(DB):C = ffP (a); Q(b); P (b);Q(a)g; fP (a);Q(b);R(b);Q(a)gg.DB0 = DB[f P (a)^Q(b)^P (b)^Q(a)! R(a)_S(b), P (a)^Q(b)^R(b)^Q(a)! R(a) _ S(b)g.MM(DB0) = ffP (a); Q(b); P (b);R(a); S(a)g;fP (a); Q(b); R(b);Q(a); S(b)g; fP (a); Q(b); P (b);Q(a); S(b)gg.Note that when dealing with a minimal model M it is frequentlypossible to restrict our consideration (in the bodies of added clauses)to those atoms ofM that are not common to all other minimal modelsof the theory and still achieve the required results, possibly with moree�ciency8.{ Deletion: Delete C8 = R(b)_ P (b).M = fP (a); Q(b); P (b);Q(a)g. N = fP (a); Q(b); Q(a)g.C = fQ(b)! P (b)_R(b)g.8 This was also the case when adding denials in Example 4.



DB0 = fC1 = > ! P (a); C2 = > ! Q(b)C3 = P (x)! Q(x) _R(x)_ P (a); C4 = P (x) ^R(x)! S(x)C5 = Q(a)! P (a) _R(a); C6 = S(a)^R(b)! ?;C09 = Q(b)! P (b) _R(b)_Ng.MM(DB0) = ffP (a); Q(b); Q(a)g; fP (a);Q(b); P (b); R(a); S(a)gg.5 Nonpositive Clause UpdatesIn this section we address the issue of adding/deleting a nonpositive clauseto a DDDB. As is the case for positive clauses, a clause in implicationform C = Head(C) Body(C) is true in DB if and only if all minimalmodels of DB satisfy C. That is, C is not true in DB if and only if thereexists a minimal model of DB falsifying C: 9M 2 MM(DB) such thatM j= Body(C) and M 6j= Head(C). The previous results can be viewedas special cases of the general clause updates [29].5.1 Clause Addition UpdateLet DB be a DDDB and C be a clause such that MM(DB):C =fM 2 MM(DB) M j= Body(C) and M 6j= Head(C)g is not empty. LetDB0 = DB [ fM ! Head(C)jM 2 MM(DB):Cg. DB0 accomplishesthe addition of C to DB.The result can be viewed as an application of Theorem 18. Clearlythere may exist many ways to have M ! Head(C) as was discussed fol-lowing Theorem 13. The update can also be accomplished by suppressingthe models of the theory not satisfying C (those inMM(DB):C) in thespirit of Theorem 16.5.2 Clause Deletion UpdateTo delete C from DB we have to create a minimal model of the updatedtheory that doesn't satisfy C. To minimize the change we always select amodel that satis�es Body(C) and make sure that the modi�cation of thatmodel retains the satis�ability of Body(C) but falsi�es Head(C). Oncethat model is selected and since Head(C) is a positive clause then we canuse the results of earlier sections to accomplish the deletion of Head(C)(Theorem 19) by making it false in the modi�ed model.It may be the case that such a model doesn't exist. That is, all minimalmodels of DB satisfy C by falsifying its body. Then we have to create it.



We need to create a model that satis�es the body of C but not its head.For update minimality reasons we may select this model to be as close aspossible to a minimal model of DBExample 6. Let DB be the set of clauses of Example 4, i.e.:DB = fC1 = > ! P (a); C2 = > ! Q(b);C3 = P (x)! Q(x)_ R(x); C4 = P (x) ^R(x)! S(x);C5 = Q(x)! P (x) _ R(x); C6 = S(a)^R(b)! ?g.MM(DB) = ffP (a); Q(b); P (b);Q(a)g; fP (a);Q(b);R(b);Q(a)g,fP (a); Q(b); P (b);R(a); S(a)gg.{ Addition: Add C11 = P (a)! Q(a).MM(DB):C11 = ffP (a); Q(b); P (b);R(a); S(a)gg.DB0 = DB [ f P (a) ^ Q(b)^ P (b)^ R(a)^ S(a)! Q(a)g.MM(DB0) = ffP (a); Q(b); P (b);Q(a)g; fP (a);Q(b);R(b);Q(a)gg.{ Deletion: Delete C12 = Q(b)! P (b)_ R(b).Select M = fP (a); Q(b); P (b);Q(a)g. M \ Body(C12) = Body(C12),M \Head(C12) 6= ;.N =M nHead(C12) =M n fP (b); R(b)g= fP (a); Q(b); Q(a)g.C = fQ(b)! P (b)_R(b)g.DB0 = fC1 = > ! P (a); C2 = > ! Q(b)C3 = P (x)! Q(x) _R(x) _ P (a); C4 = P (x) ^ R(x)! S(x)C5 = Q(a)! P (a) _R(a); C6 = S(a)^ R(b)! ?;C09 = Q(b)! P (b) _R(b)_Ng.MM(DB0) = ffP (a); Q(b);Q(a)g; fP (a);Q(b); P (b);R(a); S(a)gg.Note that the clause S(b) ! R(b) is true in all minimal models butno minimal model has S(b).5.3 On the Issue of Update MinimalityThe concept of update minimality was described as the least change tothe minimal model structure but was not formally de�ned. We think ofit as consisting of two components:First we would like to preserve as many minimal models as as possibleof those of the old: certainly all the models that satisfy the update criteria(minimal models in which the added clause is true and minimal models



in which the deleted clause is false). We would like also to have as fewas possible minimal models change. In a sense we would like to have(MM(DB0) \MM(DB)) with maximal cardinality and (MM(DB0) nMM(DB)) with minimal cardinality.This criterion alone is usually not su�cient to guarantee the unique-ness of the resulting updated theory since it deals with the number ofchanged models and doesn't touch on the degree of change models un-dergo. For that we use the second criterion and borrow from interpretationupdate concepts: we require that the modi�ed models undergo the leastchange necessary. That is, if M is a model inMM(DB) modi�ed to M 0in MM(DB0) then we require (M nM 0) [ (M 0 nM) to have minimumcardinality[19].Generally, our updates tend to meet the �rst minimality criterion sincewe try to limit changes to the models that do not satisfy the updaterequirements (in deriving the update clause). For clause addition updateswe always retain the models that do not need to undergo changes sincethe changed models either grow or get deleted and both operations haveno e�ect on the "good old models". However, for deletion updates themodi�ed models may shrink, a fact that may render some of the oldminimal models nonminimal. Di�erent ways of modifying the bad modelscan give di�erent results under the �rst minimality criterion. The selectionof the one with maximum "good model" retention, will usually be at theexpense of more expensive computations9.The second criterion calls for adding/deleting the least number ofatoms to/from the updated model. That is not di�cult to accomplishalthough it may require more computation to select the model that willrequire the least change as opposed to selecting an arbitrary model. Wemay use the approach of [5, 32] to focus our search for such a model.However, this criterion may con
ict with the �rst one in the sense thatselecting the model needing the least change may suppress some of thegood old models that we strive to retain. The di�erent algorithms pre-sented in the paper tend to fair reasonably good by both minimality cri-teria, while we generally select the modi�cation that is not very expensiveto perform10.6 Conclusion and RemarksWe presented an approach to the update problem in DDDBs based onmodifying the theory to achieve the required change to the minimal model9 See Theorem 15 and the note following Theorem 19.10 If more than one update option is available one may use additional criteria such asminimal syntactic change to the theory to make the �nal choice.



structure. We considered adding/deleting ground positive clauses to/fromground DDDBs then range-restricted DDDBs and �nally extended theresults to general clause updates.Update minimality was de�ned in terms of the e�ect of the updateon the minimal model structure of the theory. This sounds natural if oneinterprets minimal models as the possible states in which the theory canbe (had our information about the world been complete). In such a case itis natural to try to minimize the e�ect of an update on both the numberof models as well as its e�ect on the content of individual models. Theseare the criteria we tried to use to select among the possible updates. Ourmotivation for relaxing these requirements was to achieve more e�cientupdate algorithms.The issue of update minimality received much attention in the liter-ature [2, 16, 8, 10, 11, 13, 14]. Other approaches to de�ne update mini-mality were advanced. Examples are to de�ne minimality in terms of theweakness of the update [13] or in terms of the number of clauses mod-i�ed to accomplish the update [14]. Some authors choose to impose nominimality criteria on updates [6]. Clearly, least change to the minimalmodel structure discussed here need not be minimal by other measuresof update minimality.Our approach depends heavily on computing one or more minimalmodels of the theory with particular properties with respect to the clauseto be added/deleted. An algorithm to perform this computation was givenin [5] and proven to be minimal model sound and complete for the classof range-restricted theories: it returns all and only minimal models of itsinput theory. It uses a clause C to focus its search for minimal modelswith speci�c characteristics regarding C. The algorithm depends heavilyon utilizing denial rules to guide the model expansion process [32]. Thedetailed discussion, an implementation and comments on e�ciency resultscan also be found in [5]. Another minimal model generating procedurefor ground DDDBs is given in [23].The goal of an update is speci�ed in terms of the minimal modelstructure (and consequently in terms of the contents of individual mod-els). However, we don't achieve that by direct manipulation of individualmodels but by modifying the theory specifying the database. This is inline with the approach of [19, 24] and avoids the shortcomings of directmodel updates [17], discussed in [19, 29]. In this sense our approach iscloser to program update [19] or rule update [24] or formula update [28]than it is to direct model (interpretation) update [17], and is applied tothe case of DDDBs.Our approach di�ers from those discussed in [2, 25, 7] in that we



consider a more general class of theories and updates. We treat DDDBsand consider adding/deleting general clauses to such theories. In [12, 9]DDDBs are considered and the approach can be extended to the caseof range-restricted theories. However, they treat only positive clause up-dates and our approach tends to expand much less of the model structurethrough exploiting the ordering on model generation induced by the up-date clause [32, 5]. We don't assume a particular representation of themodel structure [12, 16] nor do we require it all to be present for anupdate. The models are generated "ad-hoc" and in the order most appro-priate for the update. Combined with the algorithms given in [32, 5] forminimal model generation our approach can result in substantial savingsin constructing the needed portion of the minimal model structure asopposed to generating a complete set of models then minimizing amongthem. Additionally, we can have the update clause guide the system togenerate the most relevant models [29]. In a sense we can integrate theupdating process into the model generation process.We o�ered several methods for accomplishing updates as opposed tothe one o�ered in [12] which can be viewed as a special case of our meth-ods. Our approach, being more general, can still be combined with algo-rithms reported in the literature for performing more complex tasks suchas controlling database dynamics [27].In [13] the view update problem in strati�ed disjunctive databaseswas addressed and extended to normal disjunctive databases in [9]. Thisreduces to positive clause addition/deletion updates when DDDBs areconsidered. Our results can be employed in that approach as well. Thework handles nonpositive additions as well but we o�er more choicesand we advise employing algorithms that enable directed search for therequired models. The approach of [14] deals with normal databases andit is of interest to extend our results to normal disjunctive databases.[16] treats the issue of positive clause updates, both addition and dele-tion, in a DDDB through the construction of so called deduction trees,a representation for top-down processing of the theory to generate theclauses needed to accomplish the required update. The relationship be-tween deduction trees expansion and minimal models was established in[31]. A similar approach is used in [2] for view deletion updates in de�nitedeductive databases.We don't restrict ourselves to modifying the extensional part of thetheory, as is the case in [2, 6, 14, 12, 13, 28], to accomplish an update.Rather, we do that by adding arbitrary clauses to the DDDB includingmodifying its IDB clauses. Such a modi�cation is also employed in [26,20, 3]. We believe that it is possible to modify our approach so that it



keeps track of the clauses added for the sole purpose of accomplishing anupdate as opposed to the original clauses of the theory. This may help inmaking the updates reversible in the sense that a sequence of adding anddeleting the same clause may take us back to the original theory whichis not usually the case for our algorithms as presented here or for mostother algorithms available.Certain requirements regarding update minimality may produce data-bases that are outside the class of theories to which the update is applied.An example is that the updated theory can become inde�nite to accountfor the various ways of accomplishing an update to a de�nite theory [8,13]. Certain approaches were advanced to avoid this [9]. This drawbackdoesn't apply to our case since the theories we treat can be inde�nite tostart with11.The updates as presented here were interpreted as additions/deletionsto the theory (EDB, IDB). One can also talk about adding/deleting in-tegrity constraints12. While the interpretation of the integrity constraintaddition is obvious: retain all the minimal models that satisfy the con-straint and remove the others, the deletion is not. To delete a constraintit may be su�cient to just stop enforcing it and not necessarily makingit false in some minimal model. So a deleted integrity constraints may betrue in all minimal models still.Our restriction to the case of range-restricted theories is dictated bythe class of theories that can be handled by the minimal model generationprocedure rather than a limitation of the adopted approach.E�ciency improvement methods can be employed to improve the per-formance of the algorithms presented here. Examples are the incrementalgeneration of models and the inclusion of only the relevant portions ofthe constraints added to the theory during the model generation pro-cess [5, 32].Topics for future work include extending the approach reported hereto larger classes of theories such as theories with negation in rule bodiesand for theories with more than one type of negation as well as treat-ing nonground clause updates e�ciently. Our updates are not reversible.Adding then deleting the same clause generally doesn't result in the orig-inal theory. It is of interest to study the conditions needed to ensureupdate reversibility. Another possibility is to investigate the feasibility ofaccomplishing minimal updates under our criteria augmented by others11 Updates can be one of the sources of inde�niteness in databases.12 Under the weak interpretation of integrity constraints: a set of constraints is satis�edif there is a model of the theory satisfying all of the constraints or if the theorytogether with the constraints is consistent [18].
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